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Abstract

A circular program creates a data structure whose
computation depends upon itself or refers to itself.
The technique is used to implement the classic data
structures circular and doubly-linked lists, threaded
trees and queues, in a functional programming lan-
guage. These structures are normally thought to re-
quire updatable variables found in imperative lan-
guages. For example, a functional program to per-
form the breadth-first traversal of a tree is given.
Some of the examples result in circular data struc-
tures when evaluated. Some examples are particu-
larly space-efficient by avoiding the creation of inter-
mediate temporary structures which would otherwise
later become garbage. Lastly, the technique can be
applied in an imperative language to give an elegant
program.

Keywords: circular program, corecursion, func-
tional programming, lazy evaluation, call by need,
recursion.

1 Introduction

Bird [2] describes the use of circular programs and
applies the technique to transform a program mak-
ing multiple passes over a data structure into an-
other program making only one pass. He at-
tributes knowledge of the technique to Hughes and
to Wadler. Bird’s examples are specialized and given

∗first version November 1987; a later version Software Prac-
tice and Experience, 19(2), 99-109, 1989.

†later the Faculty of Information Technology (FIT)

in a program-transformation setting. The purpose of
this paper is firstly to show that circular programs are
more widely applicable as a programming technique.
Under suitable circumstances, circular programs can
be used to program circular and doubly linked lists,
threaded trees and queues [1]. These classic data
structures are normally thought to require updatable
variables. Secondly, a circular program can be more
space-efficient than a conventional program by avoid-
ing the creation of temporary data structure which
need to be garbage collected later. Examples include
removing duplicates from a list and variations on the
sieve of Eratosthenese. Lastly, a circular program
can often be translated into an imperative language,
if that is necessary, giving an elegant and efficient
program.
A circular program involves a recursive or self-

referential expression for a data structure.

let rec ds = f(ds)

in ds

Note that ‘ds’ is a data structure and not a func-
tion. To write a circular program in a functional
language requires a lazy language [4, 5]. The evalua-
tion of the data-structure refers to the data-structure
itself; this plainly rules out a strict language. The
evaluation must not use any part or attribute of the
structure before it has been, or can be, computed
as this would call for prescience. Many applications
involve specifying a structure before its contents are
known and this is a forte of lazy languages.
There appears to be no universally accepted and

precise definition of lazy evaluation. The bare mini-
mum for the programs in this paper to run correctly is
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a call by name mechanism for binding the right-hand
sides of local definitions and for passing parameters.
This would however be enormously inefficient and re-
sult in duplicate evaluation of many expressions and
void the point of the exercise. The minimum require-
ment to gain the full advantages of circular programs
is a graph reduction mechanism using call by need
for the right hand side of local definitions, for param-
eter passing and in particular for the parameters of
type constructors such as cons or ‘.’ for lists. Un-
der call by need, an object is bound to a recipe [6]
which will produce the desired value if and when it
is needed. If the value is needed then the recipe is
forced or evaluated and the recipe is also overwritten
so that the value is immediately available thereafter.
A value may contain sub-recipes and these are not
forced until necessary. If a value contains a recursive
reference to itself, this is implemented as a pointer
to the top of the value - hence graph reduction. All
of this is invisible to the programmer. Lazy evalua-
tion is taken to mean such a system throughout this
paper.

In the scheme above, ds is bound initially to a
recipe for f(ds). As parts of ds are used in other
computations the recipe is progressively evaluated.
When f finally makes reference to ds all is well if
the required parts and attributes have been com-
puted. If f(ds) simply incorporates ds itself in its
value, dsmust already have been forced to avoid non-
termination. In this case a pointer to the “top” of
the data structure is incorporated and a circular data
structure results in the underlying implementation of
the language. There is then a path from the top of
the data structure only through type constructors,
or unevaluated functors in logic-programming terms,
back to the top of the structure. This can be very
efficient as some infinite values can be represented in
finite space! In other examples f uses ds in some
other way and no circular data structure is created.

The programs given here do not require the even
more parsimonious evaluation rule called full laziness
(although it does no harm) which guarantees that no
expression at all is evaluated twice. As an example [9]
consider:

let f x y = sqrt x + y

in let g = f 4

in g 1 + g 2

the expression sqrt x = sqrt 4 = 2 is evaluated
twice. In a fully lazy system an optimization equiva-
lent to the following is made:

let f x = let sqrtx = sqrt x

in lambda y. sqrtx + y

in let g = f 4 -- = lambda y.2+y

in g 1 + g 2

and sqrtx is only evaluated once.
A final requirement for writing any functional pro-

gram is that the data structure, ds, be of the single
assignment type. That is, values are not changed
once they are known. Many uses of data structures
do have this property. Sometimes the fact is dis-
guised in an imperative coding in that a value may
be tagged, set to nil or otherwise marked until the
proper value is known.
In the following sections various examples are given

of circular programs in a functional language. The
use of the technique in imperative languages is then
discussed.

2 Functional Examples

Various applications of circular programs follow. A
simple functional language is used in which local def-
initions are included by ‘let in’ or by ‘where’. Re-
cursive definitions are qualified by ‘rec’. Lists are
frequently used and the empty list is denoted by nil

or by ‘[]’ and the list constructor (cons) by ‘.’.

2.1 Circular Lists

The simplest circular program of all creates the ap-
parently infinite list [1, 1, ...].

let rec ones = 1.ones

in ones

This is easily evaluated in a lazy language and the
implementation creates a circular list containing one
cell that points to itself. Initially ones is bound to a
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recipe for 1.ones. Assuming that this is evaluated, a
list cell is created which contains recipes for 1 and for
ones. If the latter is evaluated, it is also overwritten
– with the value of ones which is a pointer to the list
cell. This creates the following graph:

ones:---------> . <-----

/ | ^

/ | |

/ --->--|

1

A program scheme for creating many, although by
no means all, circular lists generalizes ones:

let circ x = c

where rec

c = build x -- c self-referential

and build y =

f(y).(if p y then c else build (g y))

p is some predicate and f and g are arbitrary func-
tions. Note that c is a data structure and build is
a function. The result is a list, c which is equal to
the result of appending [f(x), f(g(x)), f(g2(x))

..., f(gn(x))] and c where n ≥ 0 and p(gn(x)) is
true. The final c is implemented as a pointer back to
the start of the list. It is possible to eliminate c by
substituting it in build to get the following program:

let uncirc x = build x

where rec

build y =

f(y).(if p y then build x

else build (g y))

This produces the correct value but it is no longer
implemented as a circular structure; the data struc-
ture is unfolded: [f(x), ..., f(gn(x)), f(x),

..., f(gn(x)), f(x),...]. This is an equivalent,
although much more wasteful, way of representing
the value. Note that a system using string reduction
rather than graph reduction is liable to produce this
data structure for program circ. Hughes [7] describes
a mechanism called lazy memo functions which would
build the circular data structure for the program un-
circ by remembering and reusing function results for
past inputs – such as build x.

2.2 Doubly Linked Lists

A doubly linked list can be defined in a manner simi-
lar to a circular list. A doubly linked list is either nil
or contains three things – a pointer to a predecessor,
an element and a pointer to a successor node.

datatype dbl_list = nil |

dbl of dbl_list * elt_type * dbl_list

let double x = build [] x

where rec

build prev y =

if p y then []

else d

where rec

d = dbl(prev, f y, build d (g y))

If p y is immediately true build returns nil oth-
erwise it creates a node d. The node points to its
predecessor prev. It also points to the successor cre-
ated by a recursive call of build. The predecessor of
this next node is d. textttd is local to build because
the predecessor of a node was created by the preced-
ing call to build. On the other hand, c is global to
the routine for circular lists because the start point
remains the same through the recursive calls.

In an imperative language a doubly-linked list
would be created one node at a time. The successor
pointer of a node would be set to nil or left undefined
until the successor was created. The pointer would
then be overwritten. In the circular program above,
a node is created although part of it (the successor
pointer) is unevaluated. The node can still be passed
as a parameter so that a pointer to it can be included
as the predecessor of the succeeding node.

Given a lazy language, any amount of scanning the
doubly linked list backwards and forwards causes no
extra copies of the list to be created. d is directly re-
cursive and can only be removed first by using a fixed-
point operator and then by substituting in build but
then, as in the previous example, no circular data
structure is created.
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2.3 Threaded Trees

A node of a binary tree contains an element and
pointers to the left and right subtrees. Most of the
tree consists of leaves and most of the pointers are
empty. A threaded tree [8] uses those right pointers
that would be empty to point to successor nodes in
infix order. The threads allow the elements in the
tree to be processed sequentially by an iterative or
linear-recursive routine.

datatype threaded_tree = empty |

thrd of threaded_tree |

fork of threaded_tree *

elt_type *

threaded_tree

Such a tree may be created in an imperative language
by overwriting empty pointers when the threads were
known.
Provided that all the elements to be placed in the

tree are given at one time, a circular program can be
written to create a threaded tree. (In this example
the tree is also a binary search tree without dupli-
cates.)

let thread L = build true empty L

where rec

build isleft succ L =

if null L then

if isleft then empty

else thrd(succ)

else t

where rec t =

fork(build true t

(filter (< hd L) L),

hd L,

build false succ

(filter (> hd L) L))

The input elements are in the list L. filter is a com-
mon function to select elements from a list according
to a predicate or test:

let rec filter p l =

if null l then []

else let h=hd l

and rest = filter(tl l)

in if p h then h.rest else rest

If L is not null, a node t is built. t contains a left
subtree and either a right subtree or a thread. The
successor thread for the left subtree is t itself. The
successor thread for the right subtree is the successor
of t. This example uses only right threads but left
or predecessor threads are easily added. The require-
ment that all elements be given in a list L is to ensure
that the tree does not need to be updated when new
elements arrive.

2.4 Breadth-First Traversal

The next example and following ones use expressions
which are recursive or circular but whose values, the
result of evaluation, are not and thus no circular data
structures are created.
Prefix, infix and postfix traversals of a tree are eas-

ily programmed in a functional language but breadth-
first traversal is harder. The usual imperative algo-
rithm employs a queue and seems to need destructive
assignment. An element is taken from the front of the
queue for traversal and its children are added to the
end of the queue. This appears to imply that either
the queue must be updated or that new copies of
a modified queue must be created at each step. A
circular program can be written however in which el-
ements are removed from the front of the queue as
the end is still being computed:

datatype tree = empty

| fork of tree * elt_type

* tree

let bfirst t = r -- bfirst: tree->list

where rec

r = case t of

empty => [] |

fork(left,elt,right) => t.(bf r 1)

where rec

bf q n = -- bf: list->int->list

if n=0 then [] -- q is used up

else let root = hd q

and rest = bf (tl q)

in case root of

fork(empty,e,empty)=>rest(n-1) |

fork(left, e,empty)=>left.(rest n) |
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fork(empty,e,right)=>right.(rest n) |

fork(left, e,right)=>

left.(right.(rest(n+1)))

bfirst returns a list or queue of the nodes of the
tree t in breadth-first order. If t is not empty, the
first node is the root t itself; at this point the queue
has one known element. bf is the central function.
It absorbs a queue q whose known part is of length n

while computing the result queue; the two queues are
in fact one. n indicates the shape of that part of the
structure r that can be used safely. In an imperative
language n would not be necessary and r might be
temporarily terminated by nil but that cannot be
done in a functional language. bf places non-empty
children in the result queue and adjusts its length
accordingly; each call to bf uses one element from
q and adds 0, 1 or 2 elements. rest is a function
to build the result literally for the rest of the input
queue after the current node. Note that bfirst can
traverse even infinite trees. It uses one list cell for
each node that is traversed.

2.5 Unique

The previous examples illustrated the use of circu-
lar programs to implement classical data structures
in functional programs. The next example uses the
technique to make a space-efficient program.

Consider the problem of writing a function unique.
It is to accept a list as parameter and to return a list
with the same members but with duplicate members
removed and the order of first occurrence is to be
maintained. The problem is close to finding the union
of two sets represented by lists.

It is easy to write such a function if the constraint
on order is dropped:

let rec uniqueL L =

if null L then []

else if member (hd L) (tl L) then

uniqueL (tl L)

else (hd L).(uniqueL (tl L))

uniqueL preserves the order of last occurrence
so reverse ◦ uniqueL ◦ reverse would solve the

original problem. It would also create garbage in the
shape of two intermediate lists.
Another solution to the problem that is not quite

good enough is

let rec uniqueF L =

if null L then []

else (hd L).(uniqueF (filter (!= hd L) L))

uniqueF certainly preserves the order of first occur-
rence but each call of filter creates a temporary list.
uniqueF creates O(|L|) such lists and uses O(|L|2)
space.
An imperative programmer might arrive at the fol-

lowing informal description of a solution. Unique
should create a list r. It should examine the input
L, element by element. If the current element of L is
in r it should not be added again. If it is not in r

it should be added to r. There is no need to use an
imperative language to implement this algorithm. A
circular program can use the list r while creating it
at the same time:

let unique L = r

where rec

r = u L 0

and u L n =

if null L then []

else if member (hd L) r n then

u (tl L) n

else (hd L).(u (tl L) (n+1))

and member e L n =

if n=0 then false

else if e=hd L then true

else member e (tl L) (n-1)

r is the self-referential data structure that function
u both creates and uses at the same time. member

is a variation on the conventional list membership
function. While the result r is being built its end is
unknown; it terminates in a recipe. member cannot
therefore use null(L) to detect the current end point
of the search list. As in breadth-first traversal, an
integer parameter n is added to keep track of the
length of the known part of r; it stops member from
forcing the recipe and causing an infinite loop. Note
that the shape of a list is represented by a single
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integer but that the shape of a tree is more expensive
to represent; a circular program that computes a tree
where the computation depends on the shape of the
part already evaluated is unlikely to be so efficient.

Note that uniqueF and unique will operate on in-
finite lists but that only unique creates no interme-
diate lists and runs in space linear in the amount of
output.

2.6 Primes

The final functional examples of circular programs
are variations on the sieve of Eratosthenese. A typi-
cal non-circular coding, similar to one in Henderson’s
book [6] is

let knot p x = not(p x)

and mult m n = n mod m = 0

in let rec

from n = n.(from (n+1))

and sieve L =

(hd L)

.(sieve (filter (knot mult (hd L)) L))

in sieve (from 2)

This program creates many intermediate lists –
from 2 and various sublists containing fewer and
fewer composites. This is due to the many succes-
sive calls on filter each of which returns a list.

There are two main families of primes programs in
imperative programming. A sieve program finds suc-
cessive primes and for each prime removes all mul-
tiples of it from the set of numbers. A program of
the other family maintains a set of primes. There
is a loop over new candidates and each candidate is
tested for primality against members of the set. It
may then be added to the set. The filtering of each
candidate becomes the inner operation and it can be
coded as follows:

let rec

multiple L n =

if sqr(hd L) > n then false

else if mult (hd L) n then true

else multiple (tl L) n

in let rec

primes = 2

. (filter (knot (multiple primes))

(from 3))

in primes

In this circular program, the expression for primes is
self-referential. It starts with 2 and a sublist of from
3 follows. All composite numbers are removed by one
call to filter and so no intermediate lists are created.
The predicate multiple primes tests if a number
is composite by examining only primes already cal-
culated. When a new number is tested for primal-
ity, primes exceeding its square root are known and
so it is not necessary to pass the number of known
primes to multiple (compare this with breadth-first
and unique).

The central expression knot (multiple primes)

is precisely the predicate isprime. This observation
yields the alternative circular program:

let rec

primes = 2

. (filter isprime (from 3))

and isprime = knot (multiple primes)

in primes

primes and isprime form a mutually recursive
data structure and function pair. Alternatively, sub-
stituting primes in isprime gives:

let rec

isprime = knot(multiple

(2.(filter isprime

(from 3))))

Substituting and moving between these three pro-
grams brings no disadvantage except perhaps for
the loss of the ability to refer to both primes and
isprime, because no circular data structure is cre-
ated in any of the programs. The behaviour of
isprime is interesting because it runs faster the sec-
ond time that it is called on a number of a given order
of magnitude because the primes that it needs have
already been calculated.
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3 Imperative Languages

On circular programs, Bird [2] states “the Pascal pro-
grammer confronted with the same idea for optimiza-
tion has to undertake a major revision of his or her
program to achieve the same end”. It is certainly
true that Bird’s transformations, and many others,
are very hard to apply systematically in an imper-
ative language because of side-effects but a circular
program can often be written quite easily in such a
language. If using an imperative language is a con-
dition of the job, a circular program might still be
coded to give an elegant and efficient result.
A direct translation of unique, for example, into

Pascal will not work because Pascal uses strict eval-
uation. But

function f(...):...;

begin ... f:=e; ... end

can be replaced by

procedure f(... var fresult:...);

begin ...; fresult:=e ... end

which is defined more often than the former. If this
is applied to unique, the result is:

function unique(L:list):list;

var r :list;

function member(e:element;

L:list;

n:integer):boolean; ...;

procedure u(L:list; n:integer;

var uresult:list);

begin

if L=nil then uresult:=nil

else if member(L^.hd, r, n) then

u(L^.tl, n, uresult)

else

begin

uresult:=cons(L^.hd, nil);

(* nil - not a recipe *)

u(L^.tl, n+1, uresult^.tl)

end

end;

begin r:=nil; u(L, 0, r); unique:=r

end

Note that the list r is nil terminated so a more
usual version of member can be adopted and parame-
ter n of routines u and member can be dropped. Need-
less to say the Pascal version will not run on infinite
lists. A similar transformation can be performed to
give a Pascal version of the breadth-first traversal
program and of the other programs.

The Pascal version of unique is simply doing what
the implementation of a lazy language would do for
a circular program. It marks the current end of the
result r as nil for unevaluated and this is overwritten
when its value is known.

One of Bird’s examples is to transform a tree, into
a tree of the same shape but replacing the leaf val-
ues by the minimum leaf value of the input tree. His
circular program builds a leaf with a minimum but
unevaluated value while incorporating this leaf in a
tree of the correct shape. The leaf’s value is calcu-
lated during the same traversal that copies the tree’s
shape. A Pascal version is almost as simple. It cre-
ates a node, traverses the input tree incorporating the
node in a new tree and also searching for the mini-
mum value. When all is done this value is stored in
the leaf. Again this mimics the lazy implementation.

4 Conclusion

A circular program uses a recursive expression for
a data structure. In cases where the evaluation of
the expression incorporates the data structure di-
rectly, the result is a circular data structure. Cir-
cular programs permit classic data structures such as
circular and doubly-linked lists, threaded trees, and
queues to be used in a functional programming lan-
guage and brings some of the efficiency of imperative
programming to functional programming. Provided
that the structures are subject to the single assign-
ment rule, reference variables and assignment (:=)
are not needed. Many times a circular program is
more space-efficient than its conventional counterpart
by avoiding the creation of intermediate structures.
A lazy functional language is needed to write a

circular program. Garbage collectors based purely
on reference counts cannot collect circular structures
but mark-scan collectors, copying collectors and hy-
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brid schemes can [3]. Since the programs are space
efficient, the collector should in any case be called
infrequently.
In addition to the use of functional languages, a

circular program can often be translated into an im-
perative language such as Pascal with only minor re-
vision of ideas.
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