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SUMMARY 

We extend the well-known interval analysis method so that it can be used to gather global flow 
information for individual array elements. Data dependences between all array accesses in 
different basic blocks, different iterations of the same loop, and across different loops are 
computed and represented as labelled arcs in a program flow graph. This approach results in 
a uniform treatment of scalars and arrays in the compiler and builds a systematic basis from 
which the compiler can perform numerous global optimizations. 

This global dataflow analysis is performed as a separate phase in the compiler. This phase 
only gathers the global relationships between different accesses to a variable, yet the use of this 
information is left to the code generator. This organization substantially simplifies the engineer- 
ing of an optimizing compiler and separates the back end of the compiler (e.g. code generator 
and register allocator) from the flow analysis part. 

The global dataflow analysis algorithm described in this paper has been implemented and 
used in an optimizing compiler for a processor with deep pipelines. This paper describes the 
algorithm and its compact implementation and evaluates it, both with respect to the accuracy 
of the information and to the compile-time cost of obtaining and using it. 
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INTRODUCTION 

Many compilers for computers with multiple functional units, pipelines, or vector units 
face the task of extracting parallelism from a sequential description of the program. 
Depending on the architecture, the compiler has to change the order of execution 
between statements, move operations from one basic block to another, map the body 
of a loop into a vector instruction, or execute different loop iterations in parallel. To 
preserve the semantics of sequential execution, the compiler needs information about 
the control and data dependences in the program. 

Scalar dataflow analysis 
Several efficient algorithms for scalar dataflow analysis are known; they include 

iterative dataflow analysis' and interval Compilers typically calculate the 
dependence information for the whole program at once and attach this information to 
the program representation, where it is used by the optimization phase. When depen- 
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dences change because of optimizations, the dependence information is either updated 
incrementally or recalculated. 

This organization separates a compiler into two parts, one that builds and analyses 
the flow graph, and one that generates and optimizes the code; this organization is 
almost universally accepted for all scalar compilers. However, it has the disadvantage 
that dataflow analysis algorithms usually treat arrays as  one unit, that is, all accesses 
to the same array interfere with each other. This is unacceptable in scientific programs 
where practically all computation is done on arrays. If all references to the same array 
have to be executed sequentially because of overly conservative dependence information, 
the compiler can never extract any reasonable parallelism from the program, which is 
essential to use any high-performance computer effectively. 

Dataflow analysis for arrays 

Because of the importance of arrays in scientific code, special methods have been 
developed to gather dependence information regarding arrays. Most research on 
dataflow analysis for arrays has concentrated on analysing a single for-loop or a group 
of nested for-loops. T h e  objective is to find implicit parallelism so that the program can 
be transformed for execution on shared-memory multiprocessors or vector processors."' 
Dependences between array references in FORTRAN programs have been studied 
extensively8. ' and this pribr research has led to the development of tools that can 
transform sequential programs for multi-processors and vector processors. T h e  Paraf- 
rase system can transform loops to execute in parallel on multiprocessors"' as well as 
identify loops for efficient execution on vector processes. I '  T h e  Parallel Fortran Con- 
verter (PFC) uses dependence information to determine i f  it is possible to interchange 
the nesting of loops.', l2  T h e  framework for dependences that was developed for these 
tools forms also the basis for several commercial systems, e.g. the vectorizer for the 
IBM 309013 and the Ardent compiler system" are based on the earlier PFC tool. 

The  basic dependence analysis operation used i n  these compilers is the disambigu- 
ation of two references to the same array. This operation is either used to disambiguate 
array references whenever necessary, l 5  or systematically to check for dependences by 
comparing every pair of statements inside a nested 100p.~ This approach to dependence 
analysis is different from the approach used for scalars: in scalar analysis, dataflow 
information is propagated through all basic blocks of the program, based on a set of 
flow equations that capture the behaviour of the statements. 

-4 COAIPILER FOR SCIENTIFIC  CODE 

In this paper we present an approach to dependence analysis that is based on collecting 
detailed information for scalars and arrays once during compilation i n  a systematic 
way. Then this information is re-used throughout the compiler. In the front-end of 
the compiler, where the structure in the program (e.g. the structure of loops) is readily 
available, we perform dataflow analysis. This information is stored together with the 
program representation, where it is available for use in the back-end of the compiler, 
i.e. the code generator. 

Such an approach is desirable for highly optimizing compilers since all phases of the 
compilation can benefit from global flow information. T o  be a realistic approach, 
collecting global dataflow information for both scalars and arrays must be cheap and 
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systematic. We developed a global dataflow analysis algorithm that calculates depen- 
dence information for both scalars and arrays in a uniform and efficient way; the 
information for arrays is accurate up to an individual array element. The  algorithm is 
based on the interval analysis method for gathering scalar dataflow information. It is 
interesting that the proposed structure for the compiler is the same as the structure of 
traditional scalar compilers : build an internal representation for the program, do 
dataflow analysis, optimize, and finally generate code. 

The  outline of the paper is as follows. We first present the algorithm for gathering 
data dependence information. We then describe how the algorithm is used in an 
optimizing compiler, how the dependence information is inserted in the program 
representation, and how the optimizer and the scheduler use the dependence infor- 
mation. We conclude with an evaluation of our method. 

T o  illustrate the compilation process, we will use the program segment in Figure 1 
as an example of a program with multiple array accesses. (Information regarding scalar 
variables is not shown in the examples to keep the description concise. This paper, as 
well as our current implementation, assumes that all arrays are zero based. This 
limitation is not inherent in the approach but turns out to be quite convenient.) 

If arrays are treated as one unit, all statements will have to be executed sequentially. 
In reality, a lot of parallelism is present. For example, if information is available on 
the individual array elements, the execution of loops 1 and 2 could be scheduled to 
overlap. Simple comparison of the array subscripts is not sufficient: we have to include 
the value of the lower and upper bounds of the loop indices in the analysis. Loop 3 
must follow loops 1 and 2, but no iteration of loop 3 uses a value computed in an 
earlier iteration of this loop, and this observation can be exploited when scheduling 
this loop for a pipelined processor. In loop 4, each iteration depends on the result of 
a prior iteration; reference 4 restricts the parallel execution of different iterations. 

A FAST ALGORITHM FOR GLOBAL DATAFLOW ANALYSIS FOR 
ARRAYS 

In scientific programs, most computation time is spent in for-loops. As illustrated 
above, it is important that the values of the lower and upper bounds of loop indices, 
if available, are included in the analysis. Of the different scalar dataflow analysis 
methods, interval analysis is best suited to be generalized to arrays. In interval analysis, 

for i := 0 to 5 do 
a l i ]  := 0; 

for j := 6 to 1 0  do 
a l j l  := j; 

for k := 0 to 10 do 
a r k ]  := a [ k + l l  + c; 

for  m := 2 to 10 do 
i f  (a[ml > 0 )  

then arm] := (arm] + 
else a[ml := 0; 

a tm-21) /2; 

Figure I. Pmgram example 

/* loop 1 */ 
/* def 1 */ 

/* loop 2 */ 
/* dei 2 */ 

/* loop 3 */  
/* def 3, ref 1 */ 

/* loop 4 */ 
/* ref 2 */ 
/* def 4. ref 3 */ 
/* rai 4 */ 
/* def 5 */ 
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a complicated flow graph is analysed incrementally by performing dataflow analysis 
one 'interval' at a time. Each loop corresponds to an interval, and it is straightforward 
to include information on loop counters systematically in the analysis. Interval analysis 
requires that the program's flow graph be reducible; this is guaranteed by the block 
structure of the programming language in our case and is satisfied for almost all 
programs in other languages. 

In  the next section we briefly review the classical interval analysis algorithm for 
scalars, and we then extend the algorithm to include arrays. 

Interval analysis for scalars 
T h e  use of interval analysis to collect global dataflow information was first described 

in References 2 and 4 and has later been extended to deal with backward global dataflow 
problems." Since then other forms of interval analysis have been propo~ed."-~" T h e  
methods differ mainly in the way the intervals are defined, but they are all based on 
the same idea, as is informally described below for the case of reaching definitions.2' 
T h e  terminology is taken from Reference 1 .  

Global dataflow analysis for a program with a cycle-free flow graph is simple and 
can be performed in a single pass. Taking a forward flow problem (such as reaching 
definitions) as an example, information is collected for each basic block and is then 
propagated 'downwards', starting with the unique start node and proceeding along the 
control flow graph. Since the program is cycle-free, all potential reaching definitions 
for any point in the program will be 'upstream' of that point in the graph, and one 
single pass over the graph is sufficient to find all reaching definitions for all references 
in the program. 

If the flow graph has cycles, a single pass o\.er the program graph cannot uncover 
all reaching definition: for nodes that are the target of backward arcs in (the spanning 
tree of) the graph, information about what happens 'downstream' in the graph is 
required to determine the reaching definitions. T h e  idea behind interval analysis is to 
break up  the analysis of a potentially very complicated flow graph into the analysis of 
a sequence of smaller graphs. During the first part of the analysis, the analyser isolates 
intewals from the flow graph; an interval is a subgraph with a single header node and 
with one or a limited number of back arcs and corresponds roughly to the body of a 
loop. Because of the way intervals are selected, it is possible to determine by a single 
pass over the interval what variables are set in the interval, and what definitions in the 
interval can reach exit nodes of the inter\.al. Using the dataflow information about one 
interval, we can determine what definitions from inside the interval can reach the loop 
header through the backward arcs, and \ve can replace the interval by a suiiirwat~~ tiode 
that has the same effect on the rest of the graph as the interval it replaces. This  process 
is repeated until all backward arcs are eliminated; \vhen this is done, a cycle-free flow 
graph remains and Phase 1 of interval analysis is completed. Phase 1 propagates the 
information from inner loops to the top level, and at the end, the reaching definitions 
for all nodes in the reduced, cycle-free flow graph can be found in a single pass. 

T h e  second phase propagates the information from the top level to the innermost 
loops. In  this phase of the analysis, the reaching definitions for all basic blocks in the 
original graph are calculated by expanding the summary nodes one by one, in the 
reverse order of how they were created. Each time a summary block is expanded, the 
reaching definitions of the header node can be found as the union of the reaching 
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definitions that reached the summary node in the flow graph before expansion, and of 
the definitions inside the interval that reach the header node through the backward 
arcs, as determined during the first phase. These reaching definitions can then be 
propagated in the interval to find the reaching definitions for all basic blocks in the 
interval. 

Extending interval analysis to arrays 
Only the names of the variables are propagated during scalar dataflow analysis, but 

when extending the analysis to arrays, it is also necessary to keep track of what elements 
in the array are referenced. Listing individual array elements is not an attractive 
solution: the sets of variables and definitions would become very big, they could not 
handle procedure or function arguments, and handling such sets would be very slow. 
For this reason, we chose to group array elements in regions that can be represented 
in a concise way. Figure 2 shows two array references inside a loop; both references 
access a rectangular region in the array. Since we need a representation that fosters a 
fast implementation of the intersection, union, and difference of sets of definitions or 
variables, we decided to restrict regions to have a rectangular shape as will elaborated 
on in the implementation section. Regions of arrays have been used in other compilers, 
for example to capture the extended effect of a procedure call on its actual parameters.--’ 77 

23 

Reaching definitions 
We present the interval analysis algorithm for reaching definitions. The  algorithm 

handles both arrays and scalars at the same time; scalars are analysed as arrays of 
dimension zero. T h e  term variable in the following means either a scalar variable or 
a region in an array, and the basic blocks header and exit refer to the header and exit 
basic blocks of intervals. Finding the intervals is usually trivial and can be done as 
part of building the program flow graph. 

for i := IL to I0 do 
for j := JL t o  JW do 
.[i, j]  := ... 

:= .[i+2, j-11 

JU 

JL 

O I L  Iu N 

Figure 2 .  Two regions referenced in an array 
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Phase I :  pi-opagatiiig iufoiwiation . f , - o i ~  iuwr loops to the top 1e.z.el 

For each basic block i in the program, calculate: 

(a) MAYGEN[i]: the set of definitions in basic block i that reach the end of the 
block; associated with each definition is the set of variables that may be defined 
by that definition. 

(b) DOESGEN(i1: the set of \.ariables that are definitely defined within basic block 

(c) KILL[i] : the set of definitions outside basic block i that are killed by the definitions 
in this block. This set does not have to be calculated explicitly, DOESGEN can 
be used instead. 

Starting with the inner loops, we execute the follouing steps for each interval (loop 
body) : 

1. For each basic block i calculate: 

from the loop entry. 

from the loop entry. 

loop entry to the entry of basic block i. 

loop entry to the exit of basic block i. 

1 .  

(a) Mi,[i]: the reaching definitions for the entry of basic block i on any path 

(b) Mout[i]: the reaching definitions for the exit of basic block i on any path 

(c) Uin[i]: the set of variables that are definitely defined on any path from the 

(d) U,,,[i] : the set of \-ariables that are definitely defined on any path from the 

The  sets Mi"[;], Mout[i], U,,[i] and Uou,[i] are found by solving the following flow 
equations for all basic blocks, starting with the header node, and proceeding 
down the flow graph of the loop body: 

Mi,[;] = UpMout[P] 
Mo,,[i] = (Mi,[i] - KILL[;]) U MAYGEN[i] 

Uin[i] = npUout[P] 
U,,,[i] = U, , [ i ]  U DOESGEN[i] 

where blockp is a predecessor of block i in the loop. As mentioned earlier, KILL[i] 
is not calculated explicitly; instead, DOESGEN[i] is used to determine what 
definition have to be removed from Mi,. For the header node of the interval 
(i.e. the first basic block in the loop body), U,,,[header] and M,,,[header] are 
DOESGEN[header] and MAYGEN[header], respectively. 

The  sets MOut[exit] and Uout[exit] describe the effect of-a single loop iteration. 
2. Replace the body of the loop by a summary basic block called loop. DOESGEN 

[loop] is the union over all possible values of the loop index of Uout[exit] of the 
loop body. MAYGEN[loop] is obtained by taking the union over all possible values 
of the loop index of Mout[exit], and by eliminating definitions which define 
variables that are overwritten in later iterations. Two cases can occur during the 
calculation of the union: 

(i) If an array subscript of the reference is a function of the loop index for that 
loop, the loop bounds determine the part of the array that is modified. T h e  
index expression and the loop bounds are used to calculate the boundaries 
of the region of the array. 
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(ii) If an array subscript expression is loop-invariant, then the last iteration of 

Scalars or references to arrays where all array subscript are constants always fall 
in the second category. 

The  summary basic block created in the last step summarizes all actions in the loop 
body. After the innermost block is replaced with the summary node, its enclosing loop 
(if  it exists) becomes the innermost loop, and at the end of Phase 1, all the loop bodies 
have been replaced with summary locks, and a cycle-free flow graph remains. 

that loop defines the reaching definition of the entire loop. 

Phase 2: propagating reaching definitions fi-om the top level to inner loops 

We first calculate the reaching definitions for each of the basic blocks and summar) 
blocks of the cycle-free flow graph obtained at the end of Phase 1. b'e then find the 
reaching definitions for statements inside loops by replacing the summary blocks one 
after another by the loops they represent, starting with the outer loops. For each loop, 
the reaching definitions for (the entry of) the blocks bb in the loop body fall into three 
classes : 

1. Definitions in the current iteration of the loop: they correspond to the set M,,[bb] 
that was calculated during the first pass. This group of dependences corresponds 
to the loop-independent dependences described in Reference 5.  

2. Definitions from pi-erious iterations of the loop : these definitions reach the header 
node of the loop through the backward arc, as determined during the first phase. 
The  set consists of the union of all reaching definitions of the previous iterations, 
minus those overwritten in earlier iterations or in the current iteration. Mout[loop 
exit], UOut[loop exit] and U,,[bb] are needed for this computation. This group of 
dependences corresponds to the loop-canied dependences described in Reference 
5. 

3 .  Definitions j -om outside the current loop : these definitions are the reaching defi- 
nitions of the summary block before expansion that are not overwritten in an 
earlier iteration or in the current iteration. The  reaching definitions for the 
summary block, Uin[bb] and U,,,[loop exit] are required. We will call these 
dependences interloop dependences. 

Figure 3 depicts the classes of reaching definitions for a Basic Block Z inside a loop 
body (incated by the shaded region). Note that definitions that appear textually before 
the basic block in question can be either in Class 1 or Class 3 .  Definitions that appear 
textually later (and are not subsequently killed) are in Class 2. 

The  reaching definitions for the entry of a basic block can be propagated inside the 
basic block to find the reaching definitions for each statement. To find the reaching 
definitions for a specific reference we compare the subscript expressions of the reference 
with the regions of the variable in the reaching definition set. The  condition that the 
reference has to lie inside the region results in a condition on the loop counters which 
determines for which iterations the definition is a reaching definition for the reference. 

This algorithm visits each basic block in the program twice: once during Phase 1, 
and once during Phase 2. For each visit, each reference node or definition node is 
considered once. T h e  run-time of the algorithm is linear in the number of basic blocks. 

To catch uninitialized variables, the compiler inserts initialization definitions for all 
variables at the beginning of the program before starting the dataflow analysis. When 
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Earlier 

rwritten (Class 2) 
s 3) 
iteration (Class 1)  

0 Definition 

Figure 3. C'lasses of i eachiiig clrfiiir t m i 5  

the set of reaching definitions for a variable includes such a 'fake' definil 'on, there must 
be an execution path through the flow graph that does not initialize all elements of the 
array, and the compiler generates a warning. Since the complete program is analysed 
systematically, the compiler detects uninitialized scalars and array elements in a uniform 
way. 

Example 
Let us look in detail at the different steps of the dataflow analysis for the program 

from Figure 1. For the first loop body, MAYGENIblock 11 consists solely of definition 
1, and DOESGEN[block I] contains the variable all]. LVhen we replace the loop by a 
summary basic block during phase 1, the term a[il is replaced by the region a[0..51. 
Similar procedures on the other loops yield the following DOESGEN and MAYGEN sets 
at the end of Phase 1 :  

DOESGEN[loop 11 = { a[0..51 } MAYGENlloop 11 = { Def 1:  a[i], i: 0..5 } 
DOESGEN[loop 21 = { a[6..101 } MAYGEN[loop 21 = { Def 2: a[j]> j :  6..10 } 
DOESGENIloop 31 = { a[O..101 } MAYGENIloop 31 = { Def 3:  a[kl. k: 0..10 } 
Uout[exit loop 41 = { a[ml } M,,,{exit loop 41 = { Def 4: a[ml, 

DOESGENIloop 41 = { a[2..101 } MAYGEN[loop 41 = { Def 4: a[m], m:2..10; 
Def 5: a[m] } 

Def 5: a[ml, m: 2..10 } 

The compiler detects that the fourth loop always defines a[2..10], even though the 
loop contains a conditional statement. 
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Def 1 

T o  illustrate how the second phase of the algorithm works, we calculate the definitions 
that reach the body of loop 3, for interaction K. We expand the summary nodes 
representing loops 1 and 2, and we calculate the definitions that reach the start of loop 
3:  

Def2 

Def 1 :  a[0..51; 
Def 2: a[6..101 

(a) Def3 Def 1 Def 2 K<6 

We now expand loop 3. The definitions that reach the start of iteration K include those 
definitions that reach the loop entry and are not overwritten in iterations 0 to K - I  (the 
interloop dependences of Figure 3) : 

(b) 

Def 1 : a[K..5]; 
Def 2: a[6..101, K<6; Def 2: a[K..10], 6<=K 

Def 3 Lkf2 6<=K 

and definitions from previous iterations that are not overwritten in later iterations (the 
loop-carried dependences of Figure 3) : 

Def 1 Def 2 ? 

Def 3: a[O..K-I] 

a[k+l] 

To find the reaching definitions for a [ k + l l  (reference 1 in loop 3), we compare its 
array subscript expression for the ‘current’ iteration, i.e. for k = K, with the array 
subscript ranges of all definitions that reach this block. This gives a condition on the 
loop index, specifying for which values of the loop index the definition is a reaching 
definition. For some definitions the condition will be false for all values of the loop 
index (for example definition 3). We find the following reaching definitions: 

Def 1 :  K<=4 
Def 2: 5<=K<6 
Def 2: 6<=K<=9 
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Def 3 

or, after merging the ranges for definition 2, 

a b l  

Def 1 : K<=4 
Def 2: 5<=K<=9 

There is no reaching definition for a [ k + l l  for k=10. 

definition 3 always reaches the loop entry: 
T h e  reaching definitions for the references in loop 4 can be found in a similar way: 

0 10 

Definitions 4 and 5 from earlier iterations reach the start of iteration M ,  

and combining this information yields the set of all the definitions that reach the start 
of iteration M :  

0 1 2  M-1 M 10 
Def 4 
D e f 5  Def 3 Def 3 

T h e  reaching definitions for a[ml, reference 3, for iteration m=M are then 

Def 3:  2<=M<=10 

and for reference 1 a Im-21, we have 

Def 3:  2<=M<=3 
Def 4: 4<=M<=10 
Def 5:  4<=M<=10 

2 3 4  10 

I Def3 1 Def 4 
Def 5 

There are two reaching definitions for this reference since the analyser cannot determine 
which branch of the if-statement n i l 1  be taken. 

Other types of dataflow analysis 
T h e  above algorithm calculates reaching definitions. They correspond roughly to the 

j h ~  depetidericcs as used by the Parafrase systems.' They  limit the reordering of 
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statements because, to preserve the semantics of the program, all reaching definitions 
of a reference have to be executed before the reference itself. 

There are two additional restrictions on the reordering of statements: the order of 
two definitions of the same array element or scalar should not be changed, and the use 
of a scalar or array element should not be moved after a later redefinition of that 
variable. These dependences correspond to ozitpzit  elation and antidepedence .' T h e  
definitions that overwrite a value set by an earlier definition, or a value used in an 
earlier statement, can be looked at as reaching definitions for the program in which 
the control flow has been inverted. They are obtained by changing the above algorithm 
for reaching definitions to solve the backward flow problem, in a manner similar 
to the extension of scalar interval analysis to deal with backward global dataflow 
problems. "' 

The following changes have to be made to the algorithm for backward flow analysis: 

1. Redefine DOESGEN and KILL as the definitions that are visible from the entry of 
the basic block. In the reaching definition problem they are the definitions that 
reach the end of the basic block. 

2. Use the following equations: 

Mout[i] = U5 Min[s] 
Min[i] = (Mout[i] - KILL[i]) U MAYGEN[i] 
Uout[i] = ns'Jin[s] 
Uin[i] = UoU,[z] U DOESGEN[i] 

with s the successors of basic block i. 
The  backward and forward algorithms correspond directly to the different types of 
scalar dataflow anlaysis. Our reaching definitions correspond to the reaching definitions 
in Reference 1 (forward flow analysis with confluence operator). T h e  backward problem 
corresponds to the du-problem in Reference 1 (backward flow analysis with confluence 
operator), but the role of uses and definitions is inverted. 

USE O F  T H E  DATAFLOW ALGORITHM I N  T H E  WARP COMPILER 

The Warp machine and compiler 

The  Warp machine is a systolic array of ten high-performance processors.24 Each 
processor has multiple highly pipelined functional units that are controlled by a 
'wide instruction word'. T o  use the fine-grain parallelism effectively, detailed dataflow 
information for both arrays and scalars is needed. For example, each processor of the 
Carnegie Mellon Warp machine has two arithmetic units, and each unit has a five- 
stage pipeline. Unless the compiler can overlap the execution of several operations, the 
performance of such a processor can be limited to 1/10 of its peak, or less if other 
resources like memory or registers are involved. 

The  algorithm presented in the previous section is used to collect the global depen- 
dence information. The  analysis is implemented as an independent phase in the 
compiler; the generation of the data is separated from its use. This global information 
is used for the traditional global optimizations (loop invariant removal, induction 
variable optimizations) as well as in the code scheduler. Since the code scheduler knows 
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the resource requirements of a code segment under consideration, it can better assess 
the benefits of moving operations to different basic blocks. By making the global flow 
information available to the code scheduler, code motion can be performed in the back- 
end, leading to results superior to those that could be achieved by estimates in a 
separate phase. 

The input language for the Warp compiler (\V2”~ ”) is similar to Pascal (as far as 
array references and loops are concerned), but the algorithms presented in this paper 
apply to other languages (including FORTRAN) as well. 

Program representation 
The compiler represents a program as a flow graph of dags; each basic block is 

modelled by a node in the flow graph, and the nodes in the dag represent operations 
in the basic block.’ Xrcs between nodes in the flow graph denote control dependences, 
and arcs between dag nodes indicate data dependences and necessary sequencing 
constraints. The  compiler normalizes loops so that the loop index is zero for the first 
iteration. 

Since the operations represented by the nodes in a loop body are executed once for 
each loop iteration, a simple arc is not sufficient to capture all the dependence infor- 
mation, and labels have to be added to the dependence arcs to distinguish between the 
different instances of nodes. Each arc is labelled by a context and an instance. The  
context defines the instantiation of the target (use) node in the data dependence 
relationship, and the instance specifies the instantiation of the source (definition) 
node. The  use arcs for the program in Figure 1 are shown in Figure 4, with the 

Figwe 4 .  Dependence (it-cs 
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instance (shaded) specified above the context for each arc. For example, reference 1 
uses the result of definition 1 in iterations 0 to 4, and uses the result of definition 2 
for iterations 5 to 9. (We saw earlier that a [ I l l  for iteration 10 is undefined.) T h e  
contexts for these arcs are simply 0. .4  and 5..9, respectively. When two or more arcs 
with overlapping context fields arrive at the same node, this indicates that several 
definitions can generate the result. For example, either definition 4 or definition 5 can 
generate the value used to be reference 4. T h e  expressions in the instance can either 
be constants or a functions of the normalized loop index L1 of the source node. For 
example, when L1 is between 5 and 9, the reference of the L1-th iteration in loop 3 
depends on the (LI -5 )  -th iteration of loop 2. 

Implementation of regions and sets 
Regions play a critical role in the algorithm. We decided to restrict regions to 

rectangular areas in arrays, so the only array access pattern that can be represented 
accurately is a sum of rectangular areas. This restriction is not inherent in the algorithm, 
but is an implementation decision that is based on a trade-off between complexity of 
the implementation and accuracy of the information. The  following observations motiv- 
ate this decision : 

(a) Loops access rectangular areas in arrays in the vast majority of the cases in our 
application domain. 

(b) Rectangular areas in arrays can be represented concisely by recording the upper 
bound and lower bound for each dimension in the array. 

(c) If the access pattern of an array reference in a loop is not rectangular, the 
opportunities for optimization in that loop are usually restricted, i.e. it would 
be very hard for the back-end code generator or optimizer to use information 
about more complex access patterns. 

The  access pattern of an array reference is guaranteed to be rectangular if the following 
conditions are fulfilled : 

1. All array subscript expressions are either constant, or a linear function of a loop 
counter. 

2. In each array reference, a loop counter can appear in only one array subscript 
expression at a time. 

3. If there are several references to the same array in the same loop, then the same 
array subscript depends on the loop counter either in all the references or in 
none. 

While building the MAYGEN and DOESGEN sets, the compiler tests whether these 
conditions are fulfilled. For references that violate some of the conditions, worst-case 
assumptions are made and these ‘worst case’ sets of array elements are placed in 
MAYGEN and DOESGEN. For example, in the case of reaching definitions, the region 
is extended to include the whole array dimension. As a result, the rest of the flow 
analysis only has to handle rectangular regions. 

Rectangular regions are described by a list of independent dimension records. A 
dimension record describes valid values for one dimension of the array: it captures the 
lower bound and upper bound for that dimension, an offset function that describes 
how the loop index relates to the array subscript for that dimension, and possibly 
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conditions on loop counters. In the remainder of this section we discuss in more detail 
what information has to be stored in the dimension records, and how the above 
conditions simplify the representation. We will represent loop counters by i, j ..., and 
array subscripts by a, p, ... 

The elements of the sets MAYGEN and DOESGEN at the beginning of phase 1 are 
definitions and variables of the form A[a,P], with a and p either constant, or linear 
expressions that depend on a loop counter, so dimension records are of the form (type 1) 

array subscript = offsetfct(1oop index) 

T o  calculate the overall effect of the loop on the surrounding program, we evaluate 
the array subscript expression for all values of the loop counters, possibly eliminating 
elements that are overwritten in later iterations. After this expansion, the dimension 
records are of the form (type 2) 

array subscript <= upperbound 
array subscript >= lowerbound 

As we replace loops by summary blocks, all dimension records are gradually turned 
into dimension records of the second type. Constant array subscripts are represented 
by dimension records of the second type with both the upper and lower bound equal 
to the constant. LVhen reaching definitions are propagated in the cycle-free graph in 
the beginning of phase 2, all dimension records are of the second type. 

When propagating reaching definitions from the outer loops towards the inner loops 
in Phase 2, we replace the summary blocks by the loops they represent. When building 
the set of reaching definitions for iteration I of such a loop, we have to consider 
definitions from three sources: 

1. Definitio?is $ m i  the cur-i'rnt iteration : these regions are calculated in phase 1, and 
their dimension records are of types one and two, with loop counter equal to I .  

2. Defiirittoiis $ W F I  p??.z.ious iterations that zcei'e riot o?-erwiitte?i in late?. iterations : 
we have to consider tkvo cases: 

(a) One of the arrav subscript expressions depends on the loop index: we have 
to evaluate the [ndex expression for the values of the counter in the previous 
iteration, and the dimension record will be of the format 

array subscript <= f ( l )  
array subscript >= g(l) 

with f, g, functions of the loop index. Such a dimension record is of type 
3. 

(b) None of the array subscript expression depends on the loop counter: in this 
case the reaching definition will be the definition executed in the previous 
iteration, if the counter is higher than its lower bound, so the dimension 
record looks like 

loop counter = 1-1 
loop counter > lowerbound 
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This is a dimension record of type 4. 
3 .  Definitions from outside the loop that were not ovemwitten in the precious iter- 

ations : they are found by subtracting the variables set in iterations lowerbound .. 
( I  - 1) from the definitions that reached the summary node, and the resulting 
dimension records are of types 3 and 4. 

T o  find the reaching definitions for a specific array reference A[a, p, . . . I ,  the index 
expressions a, p, ... (e.g. a = i+3) are substituted in the conditions in the dimension 
records of the regions of A in the reaching definitions for the statement. This results 
in a boolean expression in the loop counters; this expression can be unconditionally 
true or false, or it can express a condition on the loop counters, indicating the conditions 
under which the reference falls in the region. In the first and last cases, an arc is added 
to the program graph with a tag that indicates for what iterations the definition is a 
reaching definition for the array reference. 

When the array subscripts do not fulfil all the conditions listed above, it is also 
necessary to represent conditions between array subscripts, and between loop counters, 
1.e. 

(loop counter) (relation) (loop counter ) 

or 

(array subscript) (relation) (array subscript) 

For example, given the definition A[i+j,il, with i and j ranging between 0 and 10, then 
after replacing loops j and i by summary blocks, we have the following region: 

0 <= a <= 20 
0 <= p <= 10 
p a .  

This type of information makes the set operations more complicated and rarely results 
in useful information, and is therefore conservatively approximated. 

The current implmentation does not use information that can be derived from the 
test in if-then-else statements. If the test puts a condition on a loop counter, this 
information could be used to collect more specific information about what elements 
are referenced in the true and false branches of the if-statement. 

Operations on sets of variables and definitions 
The following operations are performed on sets of variables and sets of definitions: 

(a) union of two sets of definitions: for each definition, take the union of their 
variables 

(b) dz3fference of a set of definitions and a set of variables: for each definition in the 
first set, take the difference of its variable, and of the variable in the second set 
with the same name 

(c) intersection of two sets of caiiables: for each variable in the first set, take its 
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intersection with the variable in the second set with the same name 
(d) union of two sets of variables: for each variable in the first set, take its union 

with the variable in the second set with the same name 
(e) expand loop index in a set of definitions, while removing variables ovemii t ten 

by later iterations, given in a set of variables: for each definition, if there is no 
variable with the same name, and with a smaller index in the set of variables, 
then place conditions on the array subscript that correspond to the loop bounds, 
otherwise impose a stronger condition that excludes overwritten array elements. 

(f) expand a loop index in a set of vatiables: replace all array subscripts which are 
a function of that loop index by two conditions on the loop index. 

Operations on variables and regions 
A variable is represented as a boolean expression in a normalized sum of products 

form of regions, and the operations on variables can be described as boolean operations 
on these boolean expressions. In this context, ‘normalized’ means that regions do not 
overlap, i.e. the and of any two terms should be false. %’e have the following operations 
on variables : 

(i) union: take the or of the two sets followed by a normalization step; the result 

(ii) intersection: take the and of the two sets, and bring into sum of products 

(iii) difference: take the and of the first set and of the not of the second set; bring 

The boolean operations on individual regions are straightforward to implement. For 
example for the union, add the regions of the first set term by term to the second set. 

Normalization compares every pair of regions in a variable, and if the regions overlap, 
it replaces them by a set of non-overlapping regions. Normalization in general reduces 
the number of regions in a variable, since it eliminates identical and containing regions; 
this speeds up further operations on the sets. Given two regions in an arraq of dimension 
n ,  each of the dimensions will fall under one of the cases in Figure 5.  

is a sum of products 

form using the distributivity law; no normalization is necessary 

into sum of products form and normalize. 

The normalization algorithm for two regions is straightforward : 

1. For each dimension, check whether the dimensions of the two regions are disjunct, 

2. Test for the following three special cases: 
containing or overlapping. 

, o  Up-bound , 
Disjunct 

Containing 

Overlapping 

Figure 5.  Chses for dependeriq. injarmation 
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(a) If any of the dimensions are disjunct, the regions are disjunct already. 
(b) If all dimensions of one region are contained in the dimensions of the other 

(c) If the regions differ in only one dimension, they can be merged into one 

3.  In  all other cases, the region with the largest number of dimensions containing 
the other region is returned as the first region of the normalized set. T h e  second 
region is divided into a number of smaller regions as follows: 

(a) Select all dimensions that were overlapping, or that contained the first 
region. 

(b) For  each of these dimensions, slice the region into two (for overlapping 
dimension), or three (for containing dimension) areas. Continue working 
with the region that is the intersection of the two regions in that dimension; 
the other regions are accumulated in the result. 

region, the smaller region can be dropped from the set. 

larger region. 

EVALUATION 

Accuracy of the information 

I t  is difficult to compare the different algorithms that have been used for dataflow 
analysis on arrays. Several papers classify data dependences and describe the transform- 
ations and optimizations that can be done once the dependences are “’. ‘‘7 ”’- 
27 but they rarely describe how accurate the dependence information is, or even how 
it is obtained. An interesting issue is also that the accuracy of the derived information 
is usually not determined by the dataflow analysis algorithm, but by its implementation : 
what algorithm is used to disambiguate two subscript equations, and how much effort 
was spent on including knowledge about the possible values of loop indices in the 
analysis. 

Implementors of compilers determine the accuracy of the dataflow information they 
want to obtain based on how useful the information is for the types of applications 
and architectures the compiler is targeted for, and on how much effort is required to 
get the information. As a result, the dataflow algorithm used indirectly influences the 
accuracy of the information: a cleaner and more efficient algorithm will make it easier 
(or feasible) to extract more information. 

Various papers describing the research performed at the University of Illinois’ ’ 
distinguish three types of dependences between two statements; the usage pattern of 
the variable that creates dependence determines the type of the dependence relationship : 

(i) true dependence: a definition followed by a use 
(ii) antidependence: a use followed by a definition 

(iii) output depeiideirce : two consecutive definitions. 
T h e  forward version of our algorithm detects true dependences, while antidependences 
and output dependences are detected by the backward version. Parafrase uses Banerjee’s 
algorithm’ to test two subscript expressions for dependences. 

T h e  dataflow analysis used in the P F C  system is described in References 5 and 28. 
There, two types of dependences that can hold between two statements are introduced, 
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and these types differ in the relative position of the iterations in which the conflicting 
instances of the two statements occur in the nested loop: 

(a) loop-canied dependences : the conflicting accesses occur in different iterations 
(b) loop-independent clependences : the conflicting accesses occur in the same inter- 

Our algorithm detects both loop-carried and loop-independent dependences, and we 
also detect interloop dependences, dependences between accesses in loops that are not 
nested (or that are not in loops). The  dataflow analysis algorithm in the PFC compiler 
at Rice tests every pair of statements inside nested loops for dependences. T h e  G C D  
test and Banerjee’s inequality are used to test for subscript analysis. Subscript analysis 
is done one subscript at the time, which is similar to what we do. 

Dataflow analysis for the RIultiflo\v compiler” is done on a ‘demand’ basis: when 
the scheduler wants to know whether two references can interfere, it asks a special 
disambiguation module. T h e  user can give hints to help the disambiguator. 

Our implementation of the dataflow algorithm presented in this paper detects data 
dependence information that is similar to the information derived in for example PFC 
and Parafrase. 

In some cases our information is less accurate because our algorithm to disambiguate 
index expressions is very simple. For example, in the case of step sizes different from 
one, we make the worst-case assumption. !Ye found that the simple algorithm was 
sufficient for the applications that are used in our environment (mainly low-level vision 
applications). Our algorithm could support a more detailed analysis, for example by 
supporting more general regions such as ‘sparse rectangles’. We decided not to do this 
because it would make our data structures more complex and it would slow down the 
analysis, whereas the payoff would be marginal. 

In other cases our information is more accurate. For example, we also detect interloop 
dependences, and we do not only detect the presence of a data dependence, but also 
have accurate information on what loop indices or parts of the array the dependence 
applies to. This information is probably of limited use when vectorizing, but it is 
useful when scheduling instructions for a pipelined or for a parallel architecture with 
multiple parallel functional units. For example, it makes it possible to overlap the 
epilogue of one loop with the prologue of the following loop. 

ation. 

Comparison 
In addition to the benefits obtained from treating scalars and arrays uniformly for 

global dataflow analysis, there are other reasons that make computation of global 
dependencies based on program flow (as an alternative to a loop-by-loop analysis) 
attractive for an optimizing compiler. 

First, since the dependency information is based on flow analysis, the compiler can 
in some cases determine that an array element is not initialized and issue a warning. 
This feature is probably- of limited use for big programs with many paths through the 
source code, since a compiler must use approximations and cannot compute an exact 
solution to the dataflow equations. But we have experienced the usefulness of such 
warnings in compiling library programs of moderate size where the compiler alerted 
the user. 
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Secondly, a data dependency module that is based on flow analysis can conveniently 
compute interloop dependences (see Figure 3). Those dependences are important 
whenever the compiler attempts to overlap the epilogue of one loop with the prologue 
of the next. The  compiler also needs to know about these dependences whenever an 
action outside the loop can influence the code generated for the loop body. For example, 
on machines with deep pipelines, an operation 0 that is started outside the loop affects 
the schedule of the body. Given interloop dependences, the compiler can try to find 
operations that do not use the result of operation 0. If interloop dependences are not 
available, the compiler has to make a worst-case assumption, possibly resulting in a 
worse code sequence. 

Furthermore, computing data dependences based on the flow graph of a program 
can actually require less work than comparing all definitions of an array variable with 
all uses of this variable in a set of nested loops. For example, there are two definitions 
and two references in the loop body depicted in the following code fragment: 

(block i) 
. _  := a[i] I* ref 1 * /  

(block j) 
a[i] : = .. /* def 1 */ 

(block k) 
. .  := a[;] I* ref 2 "I 

(block I) 
a[i] : =  I" def 2 *I 

A straightforward comparison would compare each reference with each definition, 
whereas a flow-based computation of dependences eliminates half of the comparisons 
in this example. 

Use of the information 
The W2 compiler for Warp has been extensively used for three years in applications 

such as low-level vision for robot vehicle navigation, image and signal processing, and 
scientific c ~ m p u t i n g . ~ '  Many of the programs in these applications are intrinsically 
parallel, and the global flow analyser can often detect the available parallelism in the 
code. Many of the loop optimizations such as dead code removal and loop invariant 
removal have been implemented. However, source-to-source transformations commonly 
found in vectorizing compilers, such as loop interchange or loop jamming, have 
not been implemented, although the information for such optimizations is available. 
Currently, we rely on users or high-level program generators to apply such optimiza- 
tions. 

Since a machine with a wide instruction word offers the code scheduler numerous 
choices, the code scheduler in the back-end is the principal user of the global flow 
information. Using this information, the scheduler often produces near-optimal, and 
sometimes even optimal code. The  speed-up obtained by the global dataflow analyser 
and the scheduling techniques for a set of 72 programs, collected from the applications 
developed at Carnegie Mellon, has been reported elsewhere.", 32 The performance was 
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compared with that obtained by local compaction only, and a speed-up of 50 to 250 
per cent was observed. 

For example, in loop 4 of Figure 1, with the dependence arcs as depicted in Figure 
4, it is clear to the code generator that Ref 4 of iteration M must follow Def 4 and Def 
5 of iteration M - 2. However, there are no restrictions regarding Ref 4 of iteration 
M and Def 4 and Def 5 of iteration M - 1 ,  and a possible order of execution is: 

Ref %iteration M 
Ref +iteration M + 1 
Def +iteration M 
Def 5-iteration M 
Def +iteration M + 1 
Def 5-iteration M + 1 

Of course, the loop body would now be executed only 1012 times, to adjust for the 
fact that code for two iterations has been generated. 

cost 

There are two types of cost associated with computing the global dependences: the 
implementation cost (to design, implement and maintain the dependency analyser 
module) as well as the execution cost ( to  obtain the dependency information for the 
compilation of a program). 

T h e  dataflow analysis described here has been implemented in Common Lisp. This  
implementation is extreniel! compact ; the complete module is contained in about 9000 
lines of source code. One of the reasons for this Compactness is the nice property of 
interval analysis that it treats reaching and killing definitions symmetrically, and one 
set of routines can be used to obtain both fonvard arid backward flow information. 
About 1.5 man-years Lvere spent on the implementation. T h e  compactness of the 
implementation was essential to the success of the implementation ; a single person was 
able to handle the implementation. 

Separating the analysis from the use of the flow information proved to be very 
beneficial for the engineering and management of the compiler. T h e  representation 
described earlier is the sole interface between the code generator and the flow analysis 
module. This  organization keeps both modules manageable. It also makes the global 
flow analysis machine-independent, \\'hen bve retargeted the code generator for the 
Integrated Warp System (a single-chip YLSI implementation of the Warp cell with a 
completely different architecture), the flow analyser required no changes and is shared 
by both conipilers.33, '' 

Interval analysis is an attracti1.e method for global flow analysis since the number of 
times each basic block is visited is fixed and is independent of the operations in that 
basic block. T o  assess the practical relevance of this method, we obtained compilation 
metrics for a collection consisting of 35 image-processing programs. These are programs 
from the SPIDER image processing lihraryji that were recorded for the Warp 
m a ~ h i n e . ~ "  For these programs, \ye measured that global flow analysis takes between 
5 and 30 per cent of the total compilation time, and 16.7 per cent on average. 
(Compilation time eslcudes any preprocessor or macro-expander time and also excludes 
assembly and linking.) 
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T o  allow the user a comparison with other implementations, Table I provides 
information regarding the compilation of sample programs to solve some well-known 
problems. The  second column contains the CPU time .for the compilation, the third 
column indicates what percentage of that time is due to the computation of the global 
dependences. These data were obtained on a 20MHz SUN-3 workstation using the 
Lucid Common Lisp compiler (Release 3.0.1) and represent the average of multiple 
compilations. As above, the measured compilation time excludes preprocessor, 
assembler and linker time. 

When comparing Table I with other results, three points must be kept in mind. 
First, the choice of implementation language (Common Lisp in our case) and the 
quality of its compiler significantly affect the total compilation time. Secondly, the 
Warp compiler was developed as part of a research project at Carnegie Mellon University 
and has never been rewritten or tuned for compilation speed. Thirdly, the cost of using 
the global flow information to optimize the user program is charged against the code 
generator in our compiler; other implementations often consider dataflow analysis and 
optimization together. In summary, in this implementation less than 20 per cent of 
the total compilation time is spent in the global dataflow module, and we consider this 
to be acceptable for an optimizing compiler. 

CONCLUDING REMARKS 
This paper has described a systematic approach to analysing the flow information on 
array elements. Our global flow analyser is based on an extension of interval analysis. 
By qualifying the use and definitions of array variables with ‘regions’, the information 
is accurate up to the array element level to the extent that the regions precisely capture 
the array elements affected. The global flow information is propagated over the nesting 
levels of the program, using the structure of the program to organize the gathering of 
the information. After the information has been collected, the nodes in the flow graph 
are annotated to present the global dependences in a form that is suitable for use by 
the back-end code generator. 

The approach described in this paper has several advantages. Since it is based on 
interval analysis, the implementation of a flow analysis module is extremely compact, 
without sacrificing capabilities. The same flow analysis module solves both forward 
(reaching definitions) and backward (killing definitions) problems without increase in 

Table 1.  Compilation cost 

Program Compilation time (s) Global dataflow (7e)  

Discrete cosine transform (DCT) 
Dynamic programming 
Fast Fourier transform 
Inverse D C T  
Mandelbrot set 
Matrix multiplication 
Singular value decomposition 
Successive overrelaxation 

476.3 
256.2 
666.1 
419.4 
197.5 
114.8 
486.9 
123.5 

11.9 
19.5 
10.8 
12.7 
6.5 
6.1 

10.1 
4.7 
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code size. The information collected by this flow analysis tool is sufficient for the 
applications typical of our environment. 

The second major advantage of this approach is that comprehensive flow information 
is obtained and represented uniformly for both scalar and array variables. This infor- 
mation is critical to modern scheduling techniques, such as hierarchical reduction and 
software pipelining. Treating scalars and arrays uniformly simplifies the interface 
between flow analysis and the back-end code generator. 

The separation of the generation and use of the dataflow information and the 
representation of the information in the general dependence graph have proven to be 
beneficial. The  code generator is in the best position to make decisions on which 
optimizations to apply but is not burdened with the task of analyzing the program; 
this task is performed separately. This compiler structure conveniently addresses 
software engineering concerns; only one analyser needs to be written for different 
compiler back-ends (code generator), and the information generated can be used for 
different optimizations. 

ACKNOWLEDGEMENTS 

The research was supported in part by the U.S. Defense Advanced Research Projects 
Agency (DOD) monitored by the Space and Naval Fl’arfare Systems Command under 
Contract N00039-87-C-0251, and in part by the U.S. Office of Naval Research under 
Contracts NOOOl4-87-K-0385 and NOOO14-87-K-0533. 

REFERENCES 

1. A.  V .  .4ho, R. Sethi and J .  D .  Ullman, (’otirpilers, Addison-LVesley, 1986. 
2. F. E. Allen, ‘Control flow analysis’, .-1(YI SIGPL-LV .Yotkes, 5 ,  (7),  1-19 (1970) 
3. K .  Kennedy, ‘A survey of data flow analysis techniques’, in S. S. hluchnick and N .  D .  Jones (eds), 

Piogruni Flow .-lnalysis, Prentice-Hall, New Jersey, 1981, pp. 1-54, chap. 1 .  
4. J .  Cocke, ’Global common subexpression elimination’, .4C.\J SIGPLAV .Yotires, 5 ,  (7), 2&24 (1970). 
5. J. R. Allen, ‘Dependence analysis for subscripted variables and its application to program transforma- 

6. R I .  J .  LVolfe, ‘Optimizing supercompilers for supercomputers’, f’h.11. cfisse~-tntioii, University of 

7. I,. Lamport, ‘The  parallel execution of D O  loops’, ( i ) r i i r i i .  .A(’.\[, 17, (2), 83-93 (1974). 
8. D. J .  Kuck, R. 11. Kuhn ,  D .  .I. Padua, B. Leasure and X I .  \\‘olfe, ‘Dependence graphs and compiler 

optimizations’, Corzf. Record of the 8th .41111u(il .1(‘.11 .S~~rrrposiiorr oi i  Pririciples of Pt-oginniniing 
Lnnguages, ,\Chi, \Villiamsburg, January 1981, pp. 207-218. 

9. C .  Banerjee, ‘Data dependence in ordinary programs’, Tech. wpoi-t C 7 (  -(’I)(’S-K-76-837, University 
of Illinois at Crbana-Champaign, Department of Computer Science, Xovember 1976. 

10. D. A. Padua, D. A .  Kuck and D. H. Lawrie, ‘High-speed multiprocessors and compilation techniques’, 
IEEE Trans. Cbmprcters, C-29, 763-776 (1980). 

11. D. Kuck, R. Kuhn,  B. Leasure and X1. \\‘olfe, ‘The  structure of an advanced vectarizer for pipelined 
processors’, f‘ruc. /FEE 4th Iiitei.rrcitionnl ~‘O.IIP.S:\( ’, IEEE,  Chicago, 1980, pp. 709-715. 

12. J .  R .  Allen and K .  Kennedy, ‘ .htomatic loop interchange’, PI-oc. .A(W SIGPL-LY ’84 Syzposiuni oiz 
(’ontpilet CfJi2StilICtl~I1, ACRI SIGPL.AN, hfontreal, June 1984, pp. 233-246. 

13. R. G. Scarborough and H. G .  Kolsky, ‘-4 vecturizing I;ORTR.Ih’ compiler’, IBA11J. /<a. Dez~elop.,  

14. Randy .411en, ‘Unifying vectorization, parallelization, and optimization : the Ardent compiler’, Pmc. 
Third h t .  Cot$ on Supercornpihig, International Supercomputing Institute, Inc. ,  1988, pp. 176185 

15. J .  .I. Fisher, J .  R .  Ellis, J .  C. Ruttenberg and :I. Kicolau, ‘Pa<allel processing: a smart compiler & 

tions’, Ph.D. disse,-/ntiutr, Rice L-niversity, .Ipril 1983. 

Illinois at Urbana-Champaign, October 1982. 

30, (2), 163-171 (1986). 

(Vol. 11). 



S T R U C T U R E D  DATAFLOW ANALYSIS FOR ARRAYS 155 

a dumb machine’, Prof. A ( Y I  SIGP1A.Y ’84 Sjwposiuni on Coiiipilet- Cb~isti-rrctioii, .AChI, hlontreal, 
June 1984, pp.37-47. 

16. K. Kennedy, ‘A global flow analysis algorithm’, Internntioiial Joiiriial of (’omputei- .\fa/heiiiutic.s, 3, 

17. hl .  S. Hecht, Flozc AualTsis of Computer Programs, Elsevier North-Holland, Programming Languages 

18. J.  D. Ullman, ‘Fast algorithms for the elimination of common subexpressions’, rlcta Iilformuticu, 2, 

19. R. E. Tarjan, ‘Solving path problems on directed graphs’, Tech. Report C’S-528, Stanford University, 
October 1975. 

20. S. Graham and M .  Wegman, ‘A fast and usually linear algorithm for global flow analysis’, -7. .A(’.\[, 
23, ( l ) ,  172-202 (1976). 

21. F. Allen and J. Cocke, ‘A program data flow analysis procedure’, Cbmm. .4(*.1/, 19, ( 3 ) ,  137-147 
(1976). 

22. R. Triolet, F. Irigoin and P. Feautrier, ‘Direct parallelization of call statements’, Pivc. .4(:21 SfGPZA\ 
’86 Symposium 012 (binpiker C o t i ~ t r z t i ~ t i ~ ~ i ,  ACM SIGPLAN, Palo Alto, June 1986, pp. 176-186. 

23. D. Callahan and K .  Kennedy, ‘Analysis of inter-procedural side effects i n  a parallel programming 
environment’, Proc. First Iirt. (’or$ on Siipcrcomputiiig, Springer, Athens, Greece, June 1987, pp.  

24. nI. hnnaratone, E. .2rnould, T. Gross, €1. T .  Kung, hl. S. Lam, 0. hlenzilcioglu and J. A. \$‘ebb, 
‘The Warp machine: architecture, implementation and performance’, IEEE Ti-cliis. (‘oniputeis, C-36. 
(12), 1523-1538 (1987). 

25. T .  Gross and M. Lam, ‘Compilation for a high-performance systolic array’, /’~-oc. .4(’~1/ SIG‘PL-L\ 
’86 S y ~ i i p o ~ i ~ t ~ i  O I I  Compiler- ( ’ /~ i i s tmcf io~ i ,  ACnI SIGPLAN, Palo Alto, June 1986, pp. 27-38. 

26. D. ’4. Padua and bl. Wolfe, ‘Advanced compiler optimizations for supercomputers’, ( ’oiiriii.  :l(’.l/, 

27. U. Banerjee, S. Chen, D. Kuck and R.  Towle, ‘Time and parallel processor hounds for FORTRAN- 
like loops’, IEEE Truns. Computers, C-28, (9), 6 6 M 7 0  (1979). 

28. R. Allen and K. Kennedy, ‘Automatic translation of FORTRAN programs to vector form’, A(’.\/ 
Tlnns. Pmgrnmming Languages und S3jstems, 9, (4), 491-542 (1987). 

29. R. P. Colwell, R .  P. Nix, J .  J .  O’Donnell, D. B. Papworth and P. K. Rodman, ‘A VLI \Y  architecture 
for a trace scheduling compiler’, / / X E  Trans. (bmputri-s, C-37, (8), 967-979 (1988). 

30. M. .\nnaratone, F.  Bitz, E. Clune, €1. T .  Kung, P. Maulik, ti. Ribas, P. Tseng and J .  \\'ebb, 
‘.Applications and algorithm partitioning an Warp’, P i w .  (’ompcon Spiiug 87, IEEE Computer Society, 
Sari Francisco, February 1987, pp. 272-275. 

31.  Nl. S. Lam, ‘A systolic array optimizing compiler’, Ph.L). ciisser-tntioiz, Carnegie h,Iellon Universit! , 
May 1987. 

32. M. Lam, ‘Software pipelining: an effective scheduling technique for VI,IW machines’, Pi-01.. .4(’.lf 
SIL‘PL4.Y ’88 Cot$ 011 Proginminirig Lunguuge Desigtr and IiiipleiIieiitati(~II, June 1988, pp. 3 18-328. 

33. S. Borkar, R. Cohn, G.  Cox, S. Gleason, T. Gross, H. T. Kung, h l .  Lam, B. Moore, C. Peterson, 
J .  Pieper, L.  Rankin, P. S. Tseng, J .  Sutton, J .  Urbanski and J .  b‘ebb, ‘iWarp: An integrated 
solution to high-speed parallel computing’, Pioceerfiigs Supe~-cn,irputbzg ’88, IEEE Computer Society 
and .ACM SIGARCH, Orlando, Florida, November 1988, pp. 330-339. 

34. R. Cohn, T .  Gross, hl. Lam and P. S. Tseng, ‘Architecture and conipiler tradeoffs for a wide 
instruction word microprocessor’, PIW. Thii-11. Int .  Cur$ on ;Ii-chitectural Suppoi-t .for- f’iugmititiiing 
Laiigirnges a i d  Operating Systems (ASPLOSIII), ACM/IEEE, Boston, .4pril 1989, pp. 2-14. 

35. H. Tamura, S. Sakane, F. Tomita, N .  Yokoya, K.  Sakaue and N.  Kaneko, Joint System Developmcrtt 
Corp., SPfLlER L’sers’ il.Iaiutul, Tokyo, 1983. 

36. T .  Kanade and J. Webb, ‘End of year report for parallel vision algorithm design SC implementation’, 
Tech. Report, CMU, 1987. 

5-15 (1971). 

Series, 1977. 

191-213 (1973). 

1 38- 1 7 1. 

29, (12), 1184-1201 (1986). 




