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Summary

The Sprite operating system allows executing processes to be moved between hc- ts Lt any

time. We use this proceJa migration mechzn_m to omoad work onto idle my.hines ud also
to evict migrated processes when idle workstations are reclaimed by their owmers Spzlte's

migration mechanism provides • high de•tee of transl_rency both for migrated proce_ _s and for
users. Idle machines •re identified, and eviction is invoked, •utom_ticnlly by dlLe.mo• _rocemes.

On Sprite it takes up to • few hundred milliseconds on SPARCstation 1 workstations :- , perform

• remote e=ec, while evictions typically occur in • few seconds. The pmake program _s remote
invoc,tion to invoke tasks concurrently. Compi/Ltions commonly obtain speedup h_L_rS in the

range of three to six; they are I/mlted primarily by contention for cent•d/zeal resourc_ much u
file servers. CPU-bound tasks such u simulations cLn make more effective m_ of _ Ue hosts,

obtaining ns much ns eight-fold speedup over • period of hours. Proems migration bs bee• in
regular service for over two years.

Keywords: Process migration, Load sharing, Operatin s systems, Distributed System: , Experi-

ence

Introduction

In a network of personal workstations, many machines are typically idle st _ y given time.

These idle hosts represent a substantial pool of processing power, many times gre_ _er than what

is available on any user's personal machine in isolation. In recent years • number -.f mechanisms

have bee_ proposed or implemented to harness idle processors (e.g., References 1 2, 3, 4). We

have implemented process migration in the Sprite operating system for this purpo_ _his paper is •

description of our implementation and our experiences using it.

By "process migration w we mean the ability to move • process'8 execution site at any time from

• :owrce machine to a de•fin•rio|, (or fa_ef) machine of the _m¢ srchitecture. In p: tctice, process

migration in Sprite usually occurs at two psrticular times. Most often, migration ha_. ,ens ss part of

• This work w-. ,_pported in part by Ibe Delete Advlmced Research Projects Agency under co_ act NO0039-SS-
C-0_69 and in part by the N:ticmsl Sckmce Fo_md_ion Imder grant ECS-S381961.

tAuthor's pr_ent _]drmm: Vrije UDJvenJte/t, Dept. ¢drMathematics and Computer Science, De _ >ek.lmm 1081_,
1081 HV An_terdsm. The Neth_. ]mtm-net: do_,]i_cs.vu.uL



the ceec system call when a resource-lntensive program is about to be initiated. Ezec-time migration

is particularly convenient because the process's virtual memory is reinitiadised by the ezee system

call and thus need not be transferred from the source to the target macJ_e. The second common

occurrence of migration is when a user returns to a workstation when procemes have been migrated

to it. At that time all the foreign procemes Jure automatically ev/_ed back to their home machines

to minimize their impact en the returning user's interactive _sponae-

Sprite's process migration mechanism provides an unusual degree of transparency. Process mi-

gration is almost completely invisible both to procemes and to usorL In Sprite, trmmpa_ncy is

defined relative to the/_ome msd,/ae for • process, which is the _e where the process won]d

have executed if there had been no migration at all A remofe pv'oeu, (one that has been migrated

to a machine other than its home) has exactly the same access to virtual memory, files, devices,

and nearly all other system resources that it would have if it were executing on its home machine.

Furthermore, the process appears to users as if it were still executing on it, home machin_ its

process identifier does not change, it appears in process Iktinp on the home machine, and it may

be stopped, restarted, and killed just llke other processes. The only obvious sign that a process hem

migrated is that the load on the source machine suddenly drops and the load on the destination

machine suddenly increase_

Although many experimental procem migration mechanisms have been implemented, Sprite's

is one of only a few to receive extensive practical use (other notable examples lure LOCUS s and

MOSIX e). Sprite's misration facility has been in regular nse for over two year_ Our version of the

make utility T uses process migration automatically so that compilations of different files, and other

activities controlled by make, are performed concurt_..ntly. The speed-up born migration depends

on the number of idle machines and the amount of paralle]km in the task to be performed, but we

commonly see speed-up factors of two or three in compnations and we occ_ional]y obtain speed-ups

as high as five or si_ In our environment, about 30% of all user activity is performed by p_s

that are not executing on their home machine.

In designing Sprite's migration mechanism, many alternatives were available to u_ Our choke

amon$ those alternatives consisted of • tradeoff among four factor_ transparency, residual depen-

dencies, performance, and complexity. A high degree of transparency imp]ks that procemes and

users need not act differently after migration occurs than before. If a migration mechanism leaves

re.iJual dependemcie. (also known as "residual host dependencies" s, s), the source machine must

continue to provide some services for • process even after the proems hu misrated •ws_ from it.

Residual dependencies are generally undesirable, since they impact the performance of the murce

machine and make the protein vulnerable to failures of the murk. By performance, we mean that

the act of migration should be efficient and that remote processes should (ideally) execute with the

same efficiency as if they hadn't migrated. Lastly, complexity is an important factor because process

migration tends to affect virtually every major piece of an operating system kernel If the migration

mechanism is to be maintainable, it is important to limit this impact as much as pomible.

Unfortunately, these four factors are in conflkt with each other. For example, highly-transparent

migration mechanisms are likely to be more complkated and caaec residual dependencies. High-

performance migration mechanisms may transfer processes quickly at the cmt of residual dependen-

cies that degrade the performance of remote processes. A practical implementation of migration
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must make trsdeoffs among the factors to fit the needs of its particular environme t. As will be

seen in the sections below, we emphasized transparency and performance, but accept d residual de-

pendencies in some situations. (See Reference 9 for another discussion of the tradeo_ in migration,

with a somewhat different result.)

A broad spectrum of alternatives also exists for the policy decision- that determi_ ; what, when,

and where to migrate. For Sprite we chose a semi-automatic approech. The system hl Ips to identify

idle hosts, but it does not automatically migrate processes except for eviction. = reread, • few

application programs like pmake identify long-running processes (perhaps with user _ mistance) and

arrange for them to be migrated to idle machines. When users return to their macL inca, • system

program automatically evicts any processes that had been migrated onto those macl nes.

The Sprite Environment

Sprite is an operating system for • collection of personal workstation- and fil servers on a

local area network. I° Sprite's kernel-call interface is much like that of 4.3 BSD UNL , but Sprite's

implementation is a new one that provides a high degree of network integration. For • ample, all the

hosts on the network share a common high-performance file systen_ Processes nm;_ access files or

devices on any host, and Sprite allows file data to be cached around the network wh_ _guaranteeing

the consistency of shared access to files.f1 Each host runs • distinct copy of the Sp. te kernel, but

the kernek work closely together n.ing • remote-procedure.call (RPC) mechanism imilar to that

described by Birren and Nelson. 12

Four aspects of our environment were particularly important i_ the design of _ )rite's process

migration faci_ ty:

Idle hosts are plentiful. Since our environment consists prinm_y of personal mack nes, it seemed

likely to us that many machines would be idle at any given time. For exa_ Iple, Theimer

reported that one-third of all machines were typically |die in a similar environ lent; s Nichols

reported that 50-70 workstations were typically idle during the day in an en_ _ronment with

350 workstations total; I and our own measurements below show 66-?8% me &_ workstations

idle on average. The availability of many idle machines suggests that simple _Igorithnm can

be used for selecting where to migrat_ there is no need to make complex :hoices among

partiaily-losded machineL

Users "own" their workstations. A user who is _tting in front of • worksta_ _n expects to

receive the full resources of that workstation. For migration to be accepted _ y our users, it

seemed essential that migrated processes not degrade interactive response. _ J suggests that

a machine should only be used ms • target for migration if it is known to be idle, and that

foreign processes should be evicted if the _ _.turns before they finish.

Sprite uses kernel calls. Most other implementation, ofproceas migration sre in _ emage.passing

systems where all communication between s process and the rest of the world _.cum through

message chsnnelL In these systems, many of the transparency aspects of _ gration can be

handled simply by redirecting message cormnunication to follow processes _ they migrate.
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In contrast, Sprite procemm ate like UNIX processe, in tht system cab and other forms of

interprocese communication are invoked by making protected procedure calk into the kernel.

In such a system the solution to the transparency problem is not as obvious; in the worst cue,

every kernel cad/might have to be specially coded to handle remote processes differently than

local ones. We consider this imue in grea_r depth below.

Sprite already provides network support. We were able to capitalise an existing mechanisnm

in Sprite to simplify the implementation of process migration. For example, Sprite m/re&dy

provided remote access to files and devices, and it has a single network-wide space of process

identifiers; these features and othere made it much rainier to provide tr_ncy in the mi-

grafion mechm2ism. In addition, process migration was able to use the same kernel-to-kernel

remote procedure call f6cility that is used for the network file system and many other purposes.

On SPARCststion 1 workstotiou (roughly 10 MIPS) runnins on • 10 megnbits/second Ether-

net, the minimum round-trip latency of a remote procedure call is about 1.6 milliseconds and

the throughput is 480-660 Kbytes/second. Much o( the efficiency of our migration mechanism

can be •ttrlbuted to the efficiency of the underlying RPC mechanknL

To summarize our environmental conslderstion_ we wished to ofliond work to mmchines whose

users are gone, and to do it in a way that would not be noticed by those users when they returned.

We also wanted the migration mechanism to work within the mdstin s Sprite kernel structure, which

had one potential disadvantage (kernel calk) and several potential advantages (network-trot

facilities and • fast KPC mechanism).

Why Migration?

Much simpler mechanisms than migration are already availsble for invoking operations on other

machines. In order to understand why migration might be useful, consider the _ command, which

provides an extremely simple form of remote invocation under the BSD versions of UNIX. PJA takes

as arguments the name of • machine and • command, and causes the given command to be executed

on the given remote machine, ss

Ra_ has the advantages of being simple and readily 8wu3able, but it lacks four important festures:

transparency, eviction, performance, and automatic selection. First, • process cresZed by _ does

not run in the same environment as the parent proces_ the current directory may be different,

environment varisbles are not transmitted to the remote process, and in many systems the remote

proccu will not have accem to the same files and devices as the parent process. In addition, the user

has no direct access to remote processes crented by t_A: the procemm do not appear in Iktinp of

the user's proceeses and they cannot be manipulated unless the user ]oKs in to the remote _e.

We felt thst s mechanism witb greater transparency than rIA would be rainier to u_

The second problem with rJA is that it does not permit eviction. A process started by raA c4mnot

be moved once it haw begun execution. If • user returns to • machine with _-generated procemes,

then either the user must tolerate degraded response until the foreign proceme8 complete, o_ the

foreign processes must be killed, which causes work to be lost and annoyance to the user who owns

the foreign processes. Nichok' bwtler system terminates foreign processes after warning the user and



providing the procemes with the opportunity to save their state, but Nichols noted t

to migrate exmtin 8 processes would make butler "much more pleasant to use." 1 A

is to run foreign processes st low priority so that a returning user receives sccept_

response, but this would slow down the execution of the foreign procemes. It seer-

severs] opportunities for annoyance could be • "luninsted, both fog the user whose j_

and for the user whose workstation is borrowed, by evictin s foreign procemes when th__

user returns.

The third problem with _A is performance. P_k trees standard netwcek protocol

at the ability

_other option

]e interactive

_d us to thst

are oflloaded

worlu_tstion's

with no par-

ticuiar kernel support; the overhead of establishing eonnectiom_ checking _x_se pe mimions, and

establishing an execution environment may result in delays of severs] secondL "f_k makes rtA

impractical for short-lived jobs and limits the speed-ups that can be obtained using i .

The fins] problem with r,A is that it requires the user to pick a suitable destinsti_ _ machine for

ofl]oading. In order to make offlosding as convenient as possible for users, we decide_ to provide an

automatic mechani_n to keep track of idle m_chines and select destinations for migr tion.

Of course, it is unfs]r to make comparisons with r_A, since some of its disad_ mtages could

be ellrr_ated without resorting to f_H-fledged process migration. For example, i_ ichois' butler

layers an automatic selection mechanism on top of • rsk-like remote execution fa ility. Severs]

remote execution mechanisms, including buffer, preserve the current directory an envirmm_ent

vsriables. Some UNIX systems even provide a "checkpoint/resta,'t w facility that pe_ _its • process

to be terminated and later recreated as a different process with the same address _?ace and open

files. 14 A combination of these approaches, providing remote invocation and ch_ _pointing but

not process migr&tion, would offer significant functionality without the complexity _ • full-fledged

process migration facility.

The justification for process migration, above and beyond remote invocation, is t to-fold. First,

process migration provides additions] flexibility that • system with only remote in, _tion lacks.

Checkpointing and restarting • long-running process is not always possible, especially: if the process

interacts with other processes; ultinuttely, the user would have to decide whether a process can

be checkpointed or not. With transparent process migration, the system need not restrict which

processes make use of load-shsrin& Second, migration is only moderately more co_ pllcsted than

transparent remote invocation. Much of the complexity in remote execution arises e _ m if processes

can only move in conjunction with program invocation. In iugticular, if remote exe_ ,tion k trans-

parent it turns shared state into rlittributed shared gate, which is much more di_ ]t to mmutge.

The access position of a file is oue example of this elect, as described below in the st tion on trans-

ferring open files. Many of the other issues about main_ trsnslm_ncy during re_ rote execution

would also remain. Permitting s process to migrate at other times during its lifetil, e requires the

system to transfer additions] state, such u the protein's address space, but is not s/t.

complicated.

Thus we decided to take an extreme approach and implement s migration mecha_

processes to be moved st any time, to make that mechsalsm as transparent as possib

mate the selection of idle machines. We felt that this combination offeatures would en

of migration. We also recognized that our mechanism would probably be much mor_

rsh. As a result, one of our key criteria in choosing among implementation s]ternstive_

Jficantly more

,m that allows

:, and to auto-

_ursse the use

complex than

eas _mplicity.
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The Overall Problem: Managing State

The techniques used to migrate s process depend on the _ste smociated with the process being

migrated. If there existed such a thing as a stateless process, then migrating such a process would

be trivial. In reality processes have large remounts d state, and both the amount and variety of state

seem to be increasing ms operating systems evolve. The more state, the more complex the migration

mechanism is likely to be. Process state typically includes the following:.

• Virtual memory. In terms of bytes, the greatest amount of state mmociated with s process

is likely to be the memory that it seeeme8. Thus the time to migrate a process is limited by

the speed of transferring virtual memory.

• Open files. If the process is manipulating files or devices, then there wi]] be state usociated

with these open channels, both in the virtual memory of the process and also in the operating

system kerners memory. The state for an open file includes the internal identifier for the

file, the current access position, and possibly cached file b]oc]uL The cached file blocks may

represent a substantial amount of storage" in some cues greater than the procem's virtmd

memory.

• Message channels. In a message-based operating system such as Mach zs or V,lestate of this

form would exist in place of open files. (In such a system message channels would be used to

access files, whereas in Sprite. file-like channeb are used for interprocem communication.) The

state associated with a message channel includes buffered messqes plus information about

senders and receivers.

• Execution state. This consists of information that the kernel saves and restores during a

context switch, such ms register values and condition codes.

• Other kernel state. Operating systens typical]y store other data associated with a process,

such as the process's identifier, a user identifier, a current working directory, signal masks and

handlers, resource usage statistics, references to the proceas's parent and children, and so on.

The overal] problem in migration is to maintain a proceM's access to its state after it migrsteL

For each portion of state, the system must do one of three thinp during migration: transfer the

state, arrsnse for forwarding, or ignore the state sad sacrifice tr_y. To transfer a piece

of state, it must be extracted f:om its environment on the source machine, trnm,nitted to the

destination machine, and reinstated in the process's new environment on that machine. For state

that is private to the process, such as its execution state, state transfer is relatively straightforward.

Other state, such as internal kernel state distributed among complex data structures, may be much

more difficult to extract and reinstate. An example of "diflicu]t mstate in Sprite is information about

open files--particularly these being accessed on remote file servers--u described below. Lastly,

some state may be impossible to transfer. Such state is usually sssoclated with physical devices on

the source machine. For example, the frame buffer uso¢iated with a display must remain on the

machine containing the display; if a process with access to the frame buffer migrates, it will not be

possible to transfer the frame buffer.



Thesecondoptionfor eachpieceofstatek to arrangeforforwardin&Rather th_ _ tramsfer the

state to stay with the procen, the system may leave the state where it is and forw_ rd operations

back and forth between the state and the procesL For example, I/O devices cannot _ • trsusferred,

but the operating system can strange for output requests to be passed back from the )rocees to the

device, and for input data to be forwarded from the device's machine to the process. _ the case of

message channels, arranging for forwarding _Kht consist of changing sender and rec_ cer addresses

so that messages to and from the channel can find their way from and to the pr_ :esL Ideally,

forwarding should be implemented transparently, so that it is not obvious outside he operating

system whether the state was transferred or forwarding wl arranged.

The third option, sacrificing transparency, is a last resort: if neither state transfer : or forwarding

is feasible, then one can ignore the state on the source machine and simply use the _rrespanding

state on the target machine. The only situgtioa in Sprite where neither state transfer or forwarding

seemed reasonable is for memory-mapped l/O devices such u frame buffers, as s]]ud_ I to above. In

our current implementation, we disallow migration for processes using these devices.

In a few rare cases, lack of transparency may be desirable. For example, a proce_ that requests

the amount of physics] memory available should obtain information about its curre: t host rather

than its home machine. For Sprite, a few special-purpose kernel cs]k, such as to read h_ :trumentation

counters in the kernel, are s]so intentions]Jy non-trausp_ent with respect to migrat] n. In general,

though, it would be unfortunate if a process behaved differently after migration thax_ before.

On the surface, it might appear that mesnge-tmsed systems like Accent, 17 Chs_ otte, ° or V Is

simplify many of the state-management problemL In these systems all of a proce_ s interactions

with the rest of the world occur in a uniform fashion through message channels, c_nce the basic

execution state of a process has been migrated, it would seem that -I] of the remaini_ g issues could

be so|red simply by forwarding messages on tbe proceas's message channels. The rnes_ .ge forwarding

could be done in a uniform fashion, independent of the servers being communicate with or their

state about the migrated process.

In contrast, state management might ecem more dii_cu]t in a system llke Spri_ that is based

on kernel calls. In such a system most of a proceas's services must be provided b the kernel of

the machine where the process executes. This requires that the state for each servic_ be transferred

during migration. The state for each service will be different, su this approach wo Id seem to be

much more complicated than the uniform measage-forwarding approach.

It turns out that neither of these initial impressions is correct. For ¢0uunp]e, it wc dd be possible

to implement forwarding in a kernel-call-based system by leaving d! of the kernel sta:., on the home

machine and using remote procedure call to forward home every kernel call. s4 This 'ould result in

something very similar to forwarding messages, and we initially used an approach lik_ this in Sprite.

Unfortunately, an approach based entirely on forwarding kernel calls or forwsrdin_ memqes will

not work in practice, for two reuonL The first problem is that some services mus_ necemarHy be

provided on the machine where s process is executins. If s process invokes a kernel _ to allocate

virtual memory (or flit sends a meassge to s memory server to sl]oca_ vlrtud rrmno_), the request

muat be processed by the kernel or server _ the m_hine where the process exec_ tea, since only

that kernel or server has control over the machine's page tables. Forwarding is not - viable option

for such machine-specific functions: state for these operations must be migrated rith processes.



Thesecondproblemwith forw_rdins iscost.It will o/tenbemuchmoreexpensiveto forwardan
operationto someothermachinethanto processit Joc_y. If & service is &ratable Jocally on a

migrsted process's new machine, it will be more efficient to use the local service than to forward

operations back to the service on the process's old machine.

Thus, in practice 81] sys_mo must transfer substantial amounts of state as part of process mi-

gration. Mess_e-bssed systems make migration somewhat easier than kerneJ-ca]/-hased systems,

because some of the state that is maintained by the kernel in a kernel-call-based system is main-

tained in a process's address space in a messqe-based system. This state is tranderred implicitly

with the address space of the process. For other state, both types of system must address the same

issues.

Mechanics of Migration

This section describes how Sprite deals with the various components of process state during

migration. The solution for each component consists of some combination of transferring state sad

arranging for forwsrding.

Virtual Memory Transfer

Virtual memory transfer is the aspect of migration that has been discussed the most in the liter-

sture, perhal_ because it is generally believed to be the limiting factor in the speed of migration 1T

One simple method for transferring virtual memory is to send the procem's entire memory in_e to

the target machine st miKrstion time, as in Charlotte e sad LOCUS. s This approach is simple but

it has two disadvantages. First, the transfer can take many asconds_ during which time the process

is/rvzen: it cannot execute on either the source or destination machine. For some processes, partic-

ularly those with re2d-time need_ long freeze times may be unacceptable. The second disadvsatage

of a monolithic virtual memory transfer is that it may result in wasted work for portions of the

virtual memory that are not used by the process after it migrsteL The extra work is particularly

unfortunate (and costly) if it requires old pages to be read from secondary storage. For these re&-

sons, severs] other approaches have been used to reduce the overhead of virtual memory trsnder;

the mechanisms are diagrammed in Figure I and described in the paragraphs below.

In the V System, long freeze times could have resulted in timeouts for processes trying to com-

municate with a migrating process. To address this problem, Theimer used a method ca/led pre-

eopuing._ 8 Rather than freezing s process st the beginning of misrstion, V allows the process to

continue executing while its address space is transferred. In the original implementation of migrLtion

in V, the entire memory of the process was tranderred directly to the target; Theimer also proposed

an implementation that would use virtual memory to write modified pages to a shared shacking

storage server" on the network. In either case, some pages could be modified on the source machine

after they have been copied elsewhere, so V then freezes the process sad copies the pages that have

been modified. Theimer showed that pre-copying reduces freeze times substantially. However, it his

the disadvantage of copying some pages twice, which increases the total amount of work to migrate

a process. Pre-copying seems most useful in an environment like V where processes have real-time

response requirement&



VM Transfer Techniques
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(a) LOCUS, Charloue
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_ tm1_t

(b)V

_///AIII I II I l I source

,. W41_r_F_///AE3r//'////A_. _

(C) Accent

_ l_il l l| l l fileservcr

(d)Sprite

process execuW.s

transfer vimud manory
residual dependencies end

Figure 1: DiDerent tec.hn/qu_ toe tran_]e,','/ng ¢/rtua/memorlf. (a) shows the scheme used n LOCUS ud

Ch_lotte, where the ent/re address spsce is cop/ed &t the time • proce_ misrates. (b) shows _he pre-copying

scheme used in V, where the virtual memory is transferred during migration but the proc_s continues to

execute during most of the transfer. (c) shows Accent's levy-copying Lpprosch, where pe_-_8 _ retrieTed

from the souree machine u they are referenced on the target. Residual dependencies in Accent eros hut for

the life of the migrated proces_ (d) shows Spr/te's spprosch, where dirty ix_es Lre lushe/_- to • ele server

during migration and the t_Ket retrieves ImSes hum the IRe eerve_ as they 8_e re_ereneed In the case of

eviction, there are no residual dependencies on the source after migration. When • proc_- migrates •w_y

fzom its home machine, it hu residual dependencies on its home throughout its lifetime.

z
= _--

Z_
=



The Accent system uses a lazy copldnl approach to reduce the cost of process migrstion. _ s7

When a process migrates in Accent, its virtual memory pqes are left on the source machine until

they are actually referenced on the target machine. Pages are copied to the target when they are

referenced for the first time. This approach allows a procem to begin execution on the target with

mininud freeze time but introduces smmy short det_ys later u pages are retrieved from the source

machine. Overall, lazy copying reduces the cost of migration becanse p84_ that are not used are

never copied at all Zayss found that for typical programs only rose-quarter to cme-half d a procem's

allocated memory needed to be transferred. One disadvant_e o/" lazy copying is that it leaves

residual dependencies on the source mschin_ the source must store the unreferenced pages and

provide them on demand to the target. In the worst cus, • process that migrates several times

could leave virtual memory dependencies on any or all d the hosts on which it ever executed.

Sprite's migration facility uses a different form oflssy copying that takes advantage ofour existing

network services while providing some of the advantages of issy copying. In Sprite, aJ in the proposed

implementation for V, backing storage for virtual memm7 is implemented using ordinary files. Since

these backing flies are stored in the network file systen_ they are accessible throughout the network.

During migration the source machine freezes the process, flushes its dirty pages to backing fries, and

discards its address space. On the target machine, the process starts executing with no rmident

l_ges and uses the standard paging mechanisms to load pages from backing files as they are needed.

In most cases no disk operations &re required to flush dirty l_ges in Sprite. This is bee•rose

the backing files are stored on network file servers and the file servers use their memories to cache

recently-used file data. When the source machine flushes a dirty page it is simply transferred over

the network to the server's main-memory file cache. If the destination machine accemes the page

then it is retrieved from the cache. Disk operations will mdy occur if the server's cache overflows.

Sprite's virtual memory transfer mechanism wu simple to impiement because it uses preexisting

mechanisms both for flushing dirty pages on the source sad for handling page faults on the target. It

has some of the benefits of the Accent lazy-copying approach since only dirty pages incur overhead st

migration time; other pages are sent to the target machine when they are referenced. Our approach

will require more total work than Accent's, though, since dirty pages may be transferred over the

network twice: once to a file server during flushing, and once later to the destination machine.

The Sprite approach to virtual memory transfer fits well with the way migration is typically used

in Sprite. Process migration occurs most often during an ezec system _ which completely replaces

the process's address space. If migration occurs during an ceec, the new address space iJ _ted

on the destination machine so there is no virtual memory to transfer. As others have observed

(e.g., LOCUS s), the performance of virtmd memory transfer for ezee-time migration is not an issue.

Virtual memory transfer /a in irene, however, when misration is used to evict •procem from •

machine whose user hm retumecL In this situa_,ion the most importer consideration is to remove

the process from its source mschlne qul¢]dy, in order to minimise any performance degradation for

the returning user. Sprites approach works well in this reprd since (•) It doe8 the _ut possible

work to free up the source's memory, and (b) the source need not retain pages or respond to later

paging requests as in Accent. It would have been more efficient overall to transfer the dirty pages

directly to the target machine instead of• file server, but this appronch would have added complexity

to the migration mechanism so we decided against it.
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Virtualmemory transfer becomes much more complicated if the process to be mig ,ted is sharing

writable virtual memory with some other process on the source machine. In prin_p] _ it is possible

to maintain the shared virtual memory even after one of the shszin s processes migr_ tea) s but this

changes the cost of shared mccemes so dram_icsl]y that it seemed unreasonable o us. Shared

writable virtua/memory almost never occurs in Sprite right now, so we simply di_ _ow migration

for processes using it. A better long-term soluti_ k probably to migrate all the shy'inS processes

together, but even this may be hnprsct/cal if there m comp|ex patterus of sbsr/; _ that involve

many processes.

Migrating Open Files

]t turned out to be particularly difficult in Sprite to migrate the state smoch- ed with open

fileL This was surprising to us, because Sprite already provided a h/ghly trsuspa_ _t network file

system that supports remote access to files and devices; it also allows files to be _ched and to

be accessed concurrently on different workstation_ Thus, we expected that the n_ _rstinn of file-

related information would mostly be a matter of reusin s existing mechanisms. Unfortu:_e]y, process

migration introduced new problems in managing the distributed state of open files. _[igration also

made it l_msible for a tile's current access position to become shared among several _achin_.

The migration mechanism would have been much simpler if we had chosen t]_ _. "arrange for

forwarding" approach for open files instead of the "transfer state I approach. T _ is would have

implied that all file-related kernel calls be forwarded back to the machine where the _ _e was opened,

so that the state associated with the file could have stayed on that machine. Because __the frequency

of file.related kernel calls and the cost of forwarding a kernel call over the network, _ e felt that this

approach would be unacceptable both because it would slow down the remote proo I and because

it would load the machine that stores the file state. Sprite workstations are typica y disklem and

files are accessed remotely from file servers, so the forwarding approach would have 2- eant that each

file request would be passed over the network once to the machine where the file v m opened, and

possibly a second time to the server. Instead, we decided to transfer open-file eta e along with a

migrating process and then use the norms] mechanisms to access the file (i.e., cornn_., nicate diroctly

with the file's server).

There are three main components of the state associated with an open fil_ stile re ,.renceq caching

information, and an access position. Each of these components introduced problen_ for misration.

The tile reference indicates where the file is stored, and also provides a guarantee that the file exits

(as required by UNIX semantics): if a file is deleted while open then the deletion :_ deferred until

the file is closed. Our first attempt at migrating files simply closed the file on the ource machine

and reopened it on the target. Unfortunately, this approach caused files to disapp-sr if they were

deleted before the reopen completed. Thk is such a common occurrence in UNIX p_ 1Fares that file

transfer had to be changed to move the reference from source to target without eve.- closing the file.

The second conq>onent of the state of an open file k caching information- Sp_ ite permits the

data me s file to be cached in the memory of'one or more machines, w_th file servere respous/ble/_or

guaranteeing "consistent access" to the cached data. ss The server for s file keeps trs_ _of which hosts

have the tile open for reading sad writing. If a file is open on more than one host am st least one of
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them is writing it, then caching is disabled: all hosts must forward their read and write requests for

that file to the server so they can be serialized. In our second attempt at migrating files, the server

was notified of the file's use on the target machine before being told that the _ was no longer in use

on the source; this made the file 8ppe_ to be write4hseed and caused the server to disable caching

for the file unneceseseily. To solve both this problem and the reference problem above we built

8peciaJ server code just for migrating files, so that the transfer frmn source to destination is made

atomically. Migration can stm cause cach_ to be disabled for a file, but only [/'the file k also in use

by some other process on the source machine; if the cm]y use b by the migrating procas_ then the

file will be cacheable on the target machine. In the current implementation, once caching is disabled

for a file. it remains disabled until no process has the file open (even if al] procemee accessing the

file migrate to the same machine); however, in practice, caching is disabled infrequently enough that

an optimization to reensble caching of uncacheable _es hue not been a high priority.

When an open file is transferred during migration, the file cache on the source machine may

contain modified blocks for the file. These blocks see flushed to the file's server machine during

migration, so that after migration the target machine can retrieve the blocks from the file server

without involving the source. This approach is similar to the mechankm for virtual memory transfer

and thus has the same advantages and disadvantages. It is also similar to what happens in Sprite

for shared file access without migration: if a file is opened, modified, and closed on one machine,

then opened on another machine, the modified blocks see flushed from the first machine's cache to

the server at the time of the second open.

The third component of the state of an open file is an access position, which indicates where

in the file the next read or write operation will occur. Unfortunately the access position for a file

may be shared between two or more processes. This happens, for example, when a procem opens

a file and then forks a child proce_ the child inherits both the open file and the _eceas position.

Under normal circunutances all of the procemes sharing a single accem position win reside on the

same machine, but migration can move one of the processes without the others, so that the access

position becomes shared between machineL After several false starts we eventually dealt with this

problem in a fashion similar to caching: if an aecem position becormm shared between nmchinm,

then neither machine stores the sccem position (nor do they cache the file); instead, the file's server

maintains the access position and all operations on the file are forwarded to the server.

Another possible approach to shared file offi,ets is the one used in LOCUS. s If procese migration

causes a file access position to be shseed between machines, LOCUS ]eta the sharing nmchines take

turns managing the accese pmition. In order to perform I/O on • file with a shared aecem pusition,

a machine must acquire the "access position token" for the file. While s machine has the accem

position token it caches the acceas position and no other machine may accem the file. The token

rotates among machines at needed to give each machine aczem to the file in turn. This approach is

similar to the approach LOCUS uses/'or managing s shared file, where clienta take turn- caching the

file and pare read and write tokens around to ensure cache consistency. We chose not to use the Locus

approach because the token-passlng approach iJ more complex than the disab]e-caehing approach,

and because the disable-ca_ing approach meshed better with the exletLug Sprite file _tem.

Figure 2 shows the mechanism currently used by Sprite/'or migrating open flle_ The key part

of this mechanism occurs in a late phase of migration when the target machine requests that the
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Transferring Open Files

Network

Figure 2." Tmr_)_'ring open j_ea. (I) The source passes informLt/ou about in open R]_ to the tarset.

(2) For each _e, the target notifies the server thLt the open Rle has been moved; (3) dul aS thil call the

server communicates •aLia with the source to release its state s_eciLted with the ale s_ad t¢ Jbts_ the most
recent 0tare auoc/Lted with the file.

A

server update its internal t_bles to reflect that the file k now in use on the targel instead of the

source. The server in turn ca/Is the source machine to retrieve information about ! Lefile, euch as

the file's access position and whether the file is in use by other processes on the i ,urce machine.

This two-level remote procedure _ synchronizes the three machines (source, targ _t, and server)

and provides a convenient point for updating state about the open file.

The Process Control Block

Aside'from virtual memory and open files, the main remaking ksue is how t_ deal with the

process control block (PCB) for the mist•tins process: should it be left on the soc_ce machine or

transferred with the migrating process? For Sprite we use • combination of both _ ?roaches. The

home machine for • process (the one where it would execute ifthere were no m]srat: ,n) must assist

in some operations on the process, IN)it alw_ malnta/as • PC"B for the proces_ _ detail- of this

interaction are described in the next section. In _ddit_on, the current machine for • _ roce_ also has

s PCB for it. If • process is migrated, then most of the information about the proc_ is kept in the

PCB on its current machine; the PCB on the home machine serves primarily to lc_ _te the process

and most of its fields are unused.

z:
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The other elements of process state besides virtual memory sad open files are much e_ier to

transfer than virtmd memory and open file_ since they are not as bulky as virtual memory sad they

don't involve distributed state like open files. At present the other state consists almost entirely of

fields from the process control block. In general, all that needs to be done is to transfer these fields

to the target machine sad reinstote them in the process control block on the target.

Supporting Transparency: Home Machines

As wu mentioned previously, transparency was one of our most importsat goab in implementing

migration. By "transparency _ we mean two things in particular. First, a procem's behavior should

not be affected by migration. Its execution environment should appear the ume, it should have the

same access to system resources such as files sad devices, sad it ,honld produce exactly the same

results as if it hadn't migrated. Second, a procem's appearance to the rest of the world should •or

be affected by migration. To the rest of the world the procem should appear as if it •ever left its

original machine, And any operation that i, pomible on an unmigrated process (such as stopping

or signalling) should be possible on a migrated procesL Sprite provides both of these forms of

transparency; we know of no other implementation of process migration that provides transparency

to the same degree.

In Sprite the two upects of transparency are defined with respect to & procem's [_ome machine,

which is the machine where it would execute if there were no migration at alL Even after migration,

everything should appear as if the process were still executing on its home machine. In order to

achieve transparency, Sprite uses four different techniques, which are described in the pars4Faphs

below.

The most desirable approach i, to make kernel calb location-independent; Sprite has been grad-

ual]y evolving in this direction. For examp]e, in the early versions of the system we permitted

different machines to have different views of the file system name sps_. This required open and

several other kernel calls to be forwarded home after migration, imposing shout a 20% penalty on

the performance of remote compilstionL In order to simplify migration (sad for several other good

reasons also), we changed the file system so that every machine in the network ,ees the same name

space. This made the open kernel call iocation-independe•t, so no extra effort was •ecesury to

snake open work transparently for remote proceme&

Our second technique was to transfer state from the source machine to the target at migration

time as described above, so that normal kernel caUs may be used after migration. We used the

state-transfer approach for virtual memory, open files, process sad u,er ldentiflersl resource usage

statistics, and a variety ofotber th/nsL

Our third technique was to forward kernel calls home. This technique was originally ueed for

a large •umber of kernel calls, but we have gradual]y replaced moet use, of forwarding with trsas-

psrency or state trsasfer. At present there are only • few kernel calb that cannot be implemented

transparently and for which we cannot e_Uy transfer state. The mcet important such kernel call ia

eeffimeo]day, which returns the current tim_ Clocks sre not synchronized between Sprite mschines,

so for remote processes Sprite forwards the leffimeofdsl kernel cnll back to the home machine. This

guaremtees that time advances monotonically even for remote processes, but incurs s performance
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penaltyforprocessesthatreadthetimefrequently.
Forwardingalso occurs from the home machine to a remote process's current __hine. For

example, when a process is sign,riled (e.#., when some other process specifies its idenL_er in the kill

kernel call), the signal operation is sent initiany to the process's home machine. If the _rocess is not

executing on the home machine, then the home machine forwards the operation on t, the process's

current machine. The performance of such operations could be improved by retainS. _g a cache on

each machine of recently-used procem identifiers and their last known execution site_ _ approach

iJ used in LOCUS and V and allows many operations to be sent directly to a remote p: _cess without

passing through another host. An incorrect execution site is detected the next time it is used and

correct information is found by sending s message to the host on which the proce_ _ wan crested

(LOCUS) or by multi-casting (V).

The fourth "approach" is really just a set of ad Aoe teclm]ques for a few kernel _ _is that must

update state on both a process's current execution site and its home machine. C _e example of

such a kernel ca//is fork, which creates a new process. Process identifiers in Spr_ • consist of a

home machine identifier and an index of s process within that machine. Managen nt of process

identifiers, including allocation and deal]ocation, is the responsibility of the home mac_ Jaes named in

the identi_ers. If a remote process/on_s, the child process must have the same home :aachine as the

parent, which requires that the home machine allocate the new process identifier. Ft=thermore, the

home machine must initialize its own copy of the process control block for the proce_, as described

previously. Thus, even though the child process win execute remotely on the ss_ :e machine as

its parent, both its current machine and its home machine must update state. Si nilar kinds of

cooperation occur for ¢z/f, which is invoked by a process to terminate itself, and _i_ which is used

by a parent to wait for one of its children to terminate. There are several potential ice cooditions

between a process exiting, its parent waiting for it to exit, and one or both processe_ migcating; we

found it easier to synchronize these operations by keeping all the state for the lesif-, ._f rendezvous

on a single machine (the home). LOCUS similarly uses the site on which a proce_ k created to

synchronize operations on the process.

Residual Dependencies

We define a residaa! dependeacl as An on-going need for a host to maintain dat: structures or

provide functionality for a process even after the process migrates away, from the hos_ Oue example

of a residual dependency occurs in Accent, where a process's virtual memory paget are left on the

source machine until they are referenced on the target. Another exan_le occurs L Sprite, where

the home machine must participate whenever a remote procem forks or exits.

Residual dependencies are undesirable for three reasow: reliability, performance, _ _d complexity.

Residual dependencies decrease reliability by allowing the failure of one hog to _ Tect processes

on other hostL Residual dependencies decrease performance for the remote proc_, because they

require remote operations where local ones would otherwise have _afF_l. Residu_ dependencies

also add to the load of the host that is depended upon, thereby reducing the perfo_ ramce of other

processes executing on that host. Lastly, residual dependencies complicate the systerr by distributing

a process's state around the network instead of concentrating it on a single host; s I trticularly bad
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scenarioisonewhere• proce_ c•.u migrate several times, leaving residual dependencies on every

host it has visited.

Despite the disadvantages of residual dependencies, it my be impr_-tical to eliminate them alL

In some cases dependencies are inherent, such as when • process is using a device on • specific host;

these dependencies cannot be eliminated without changing the behavior of the process. In other

cases, dependencies are necmury or convenient to maintain transparency, such as the home machine

knowing •bout all process creations and terminations. Lastly, residual dependencies may actually

improve performance in some cases, such as lazy copying in Accent, by deferring state trander until

it is absolutely necessary.

In Sprite we were much more concerned about transparency than about reliability, so we per-

mitted some residual dependencies on the home machine where those dependencies made it easier

to implement transparency. As described above in the section on transparency, there are only •

few situations where the home machine must participate so the performance impact is minimal

Measurements of the overhead of remote execution are reported below.

Although Sprite permits residual dependencies on the home machine, it does not leave depen-

dencies on any other machines. If • process migrates to a machine and is then evicted or migrates

away for any other reason, there will be no residual dependencies on that machine. This provides

yet another assurance that procem migration will not impact users' response when they return to

their workstations. The only noticeable long-term effect of foreign processes is the resources they

may have utilized during their execution: in particular, the tu_r's virtual memory working set may

have to be demand-paged back into memory upon the user's return.

The greatest drawback of residual dependencies on the home machine is the inability of users

to migrate processes in order to survive the failure of their home machine. We are considering a

nontransparent variant of process migration, which would change the home machine of • process

when it migrates and break all dependencies on its previous host.

Migration Policies

Until now we have focussed our discussion on the meckn/sms for transferring processes and

supporting remote execution. This section considers the polieieJ that determine how migration is

usecL Migration policy decisions fall into four _tegoricE

What. Which processes should be migrated?. Should all processes be considered candidates for mi-

gration, or only • few particularly CPU-intensive processes? How are CPU-intemdve processes

to be identified?

When. Should processes only be migrated at the time they are initiated, or may processes also be

migrated after they have been running?

Vc'here. What criteria shotdd be treed to select the machines that will be the targets of migration?

Who. Who makes s]] of the •l>ove deelsions? How much should be decided by the user and how

much should be automated in system soi_wsre?
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At oneendofthepolicyspectrum lies the pool o/proee_or, model In this model '.-,e processors

of the system are treated ss & shared pool and all of the above decisions are made , utomatically

by system software. Users submit jobs to the system without any idea of where the._ will execute.

The system assigns jobs to processors dynamically, and ff process migration is aw fable it may

move processes during execution to balance the loads of the processors in the pool _)SIX s is one

example of the "pool of proceesore _ model-- processors are shared equally by all proc ,sea and the

system dynamically balances the load throughout the system, using process migratio_

At the other end of the policy spectrum lies rlb, which provides no policy suppo: whatsoever.

In this model individual users are responsible for locating idle machines, negotiating _ h other users

over the use of those machines, and deciding which processes to ofi]ead.

For Sprite we chose sn intermediate approach where the oe]ectlon ofld]e hosts is ft- ly automated

but the other policy decisions are only partially automated. There were two reasons fo: this decision.

First, our environment consists of permna] workstations. Users are happy running ahr st all of their

processes locally on their own persona] workstations, and they expect to have coml_ :te control of

their workstations. Users do not think of their workstations as "shared _. Second, the: ynamic pool-

of-processors approach appeared to us to involve considerable additional complex/ty and we were

not convinced that the benefits would justify the implementation difficulties. For

processes in a UNIX-like environment are so short-llved that migration will not produ_

benefit and may even slow things down. Eager eta]. provide additional evidence tht_

only useful under particular conditions, l° Thus, for Sprite we decided to make migr_

case rather than the normal case.

The Sprite kernels provide no particular support for any of the migration policy

user-level applications provide assistance in four forms: idle-host selection, the pm_

mio shell command, and eviction. These are discussed in the following subsections.

_mple, moat

.'s noticeable
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:ion a special
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e program, a

Selecting Idle Hosts

Each Sprite machine runs a background process called the losd-aveeaoe daemon, _ hich monitors

the usage of that machine. When the workstation appears to be idle, the load-average _ ,croon notifies

the centrel mioration ,erver that the machine is ready to accept migrated procea _ Programs

that invoke migration, such as pmake and mif described below, call a standard lib_ try procedure

Mig_RequestldleHos_, to obtain the identifiers for one or more idle hosts, which the • then pass to

the kernel when they invoke migration. Normally only one process may be amign_ t to any host

at any one time, in order to avoid contention for processor time; however, procem_, that request

idle hosts can indicate that they will be executing long-running processes and the ce_ _a] server will

permit shorter tasks to execute on these hosts as welL

MaintAining the database of idle hosts can be a challenging problem in • dist_ rated system,

particularly if the system is very large in size or if there are no shared facilities ava_ ble for storing

]ond information. A number of distributed a]goritlmm have been proposed to solw this problem,

such as disseminating load information among hosts periodioslly, s querying other h st0 at_rt_k_m

to find an idle one, _° or multicasting and accepting a response from any host that _dic_tee avail-

ability, s
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In Spritewehaveusedcentralizedapproachesforstoringtheidle-hostdatabase.Centralized

techniques are genera]]y simpler, they permit better decision_ by keeping all the information up-

to-date in a single place, and they can scale to systems with hundreds of workstations without

contention problems for the esntralized

We initially stored the datatmse in a lingle file in the file systen_ The load-average daemons

set flags in the file when their hosts became idle, and the Mil.lge_,utltlleEortJ library procedure

selected idle hosts st random from the file, marking the selected hosts so that no one else would

select ther_ Standard file-locking primitives were used to synchronize acceN to the file.

We later switched to a server-hosed approach, where a single server process keeps the

in its virtual memory. The load-average daemons and the Mil_RecmetildleHostt procedure commu-

nicate with the server using a message protocol The server approach has & number of advantages

over the file-based approach. It is more efficient, becmu_ only a single remote operation is required

to select an idle machine; the file-based approach required severs] remote operations to open the

file, lock it, read it, etc. The server approach makes it easy to retain state from request to request;

we use this, for example, to provide fair al]ocation of idle hosts when there ate more would-be users

than idle rrmchines. Although some of these features could have been implemented with a shared

file, they would incur a high overhead from repeated cornmunic-,tion with & file server. Lastly, the

server approach provides better protection of the database inform_ion (in the shared-file approach

the file had to be readable and writable by all users).

We initially chose a conservative set of criteria for determining whether a machine is "idle _. The

load-average daemon originai]y considered a host to be idle only if (a) it had had no keyboard or

mouse input for at least five minutes, and (b) there were fewer runnable proceu_ than processors,

on average. In choosing these criteria we wanted to be certain not to inconvenience active users

or delay background processm they might have left running. We assumed that there would usually

be plenty of idle machines to go around, so we were less concerned about using them efficiently.

After experience with the five-minute threshold, we reduced the threshold for input to 30 seconds;

this increased the pool of available nmchines without any noticeable impact on the owners of those

machines.

Pmake and Mig

Sprite provides two convenient ways to use migration. The most common use of process migration

is by the pmake program. Pmake is similar in f_mction to the make UNIX utility Ir and is used,

for example, to detect when source files have changed and recompUe the corresponding object

Make performs its compilations and other actions serially; in contrast, pmake uses proceu migration

to invoke as many commands in parallel as there are idle hosts avaHabk. _ use of procem

migration is completely transparent to users and results in nl_tantlal speed-ups in many |dtuations,

as shown below. Other systems besides Sprite have abo benefitted from parallel make facilitieg tee

References 21 and 2 for examples.

The approach used by pmake has at le_t one advantage over a fully-automatic 'Lprocemor pool"

approach where all the migration decisions are made centrally. Because pma]¢e makes the choice of

processes to ofl]oad, and knows how many hosts ere available, it can scale its paral]ellsm to match
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the number of idle hosts. If the ofl]oading choice were made by some other agent, _nake might

overload the system by creAtlng more processes than could be accommodated eflici ntly. Pma/_e

also provides a degree of flexibility by permitting the user to specify that cert2_ tas_ s should not

be ofl]oaded if they are poorly suited for remote execution.

The second easy way to use migration is with a program called mig, which take_ as argument

a shell command. Mil will select an idle machine nain$ the mechanism described • _ve and use

process migration to execute the given command on that machine. M/I may also be tu d to migrate

an existing proce_

z

Eviction

The final form of system support for migration is eviction. The load-average d_ mona detect

when a user returns. On the first keystroke or monse-motlon invoked by the user, th load-average

daemon will check for foreign processes and evict thew- When an eviction occurs, for ign processes

are migrated back to their home machines, and the procem that obtained the host L: notified that

the host has been reclaimed. That process is free to remigrate the evicted processes Dr to suspend

them if there is no new host available. To date, pmake is the only application that utomatica]]y

rerrdgrat_s processes, but other applications (such am miO) couid remigrate pr_ i well.

Evictions also occur when s host is reclaimed from one process in order to allocate it to another.

If the centralized server receives a request for an idle host when no idle hosts are av8 able. and one

process has been allocated more than its fair share d hosts, the server reclairrm o_ _ of the hosts

being used by that process. It grants that host to the process that had received le_ _ than its fair

share. The process that lost the host must reduce its parallelism until it can obtain a_ ditional hosts

again.

A p<mible optimization for evictions would be to permit an evicted process to mig_ _te directly to

a new idle host rather them to its home m_chine. In practice, halfof the evictions th_-_ occur in the

system take place due to fairness considerations rather than because a user has retu _ed to an idle

workstation. 22 Permitting direct migration between two remote hosts would benefit _he other half

of the evictions that occur, but would complicate the implementation: it would requi e a three-way

communication between the two remote hosts and the home machine, which always k ows where its

processes execute. Thus far, this optimization has not seemed to be warranted.

Performance and Usage Patterns

We evaluated process migration in Sprite by takin s three sets of measurementL the next sub-

sections discuss particular operations in imlatio_ such as the time to migrate a t_ ial process or

invoke a remote command; the performance improvement of preslde using parallel re_ _te execution;

and empirical measurements of Sprite's process migratioo facility over a period ofse; _ral weeks, in-

cluding the extent to which migration is used, the cost and frequency ofevlctlon, and he avaliabillty

of idle hosts.

- =
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Select& release idle host

Action

Migrate "nun" process
Transfer info for open files
Flush modified file blocks

Flush modified pages

Transfer ezec arguments

Fork, ezec null process with migration, wait for child to exit
Fork, ezec null process locally, wait for child to exit

36 milliseconds

76 milliseconds

9.4 mllfiseconds/_]e

480 Kbytm/Ncond
Kbytm/sec, md

480 Kbytm/second
81 milliseconds

4e milliseconds

Table 1: Costa auociated ,ruth process migrutL=n. All mensurements were performed on SPARC4tLtion 1

workstations. Host selection may be amortized across eevend migrations if'applications such ns pmdce reuse

idle hosts. The time to migrate L procem depends on bow many open Ales the procem has mad bow many
modified blocks for those Ales t.re osched Jooslly (these must be 4rushed to the server). ]/'the migration is not
done st ezec-time, modified virtual memory paSes must be 4rushed u well ][/'done at eweothne, the process's

arguments nnd environment variables are transferred. The esecs were performed with no open Alet The
bLudwidtb of the RPC system is 480 Kbytcs/second mdng • single channel, ud 060 Kbytes/second mdns
multiple RPC connections in parallel for the virtmd memory system.

Migration Overhead

Table I summarizes the costs associated with migration. Host R]ection on SPARCstation I

workstations takes an average of 36 millisecondL Procem transfer is a function of some fixed over-

head, plus variable overhead in proportion to the number of modified virtual memory pages and file

blocks copied over the network and the number of files the process has open. If a process ezecs at

the time of migration, m is normally the case, no virtual memory is tranderred.

The costs in Table I reflect the latency and bandwidth of Sprite's remote procedure call mecha-

hiss. For example, the cost of transferring open files is dominated by RPC latency (3 RPC's at I ms

latency each), and the speed of transferring virtual memory pages and file blocks is determined by

RPC bandwidth (480-660 Kbytes/second). All things considered, it takes about s tenth c_ s second

to select an idle host and start a new procem en it, not counting any time needed to transfer open

files or flush modified file blocks to servers. Empirically, the average time to perform an ezec-time

migration in our system is about 330 milliseconds. =2 This latency may be too great to warrant run-

ning trivial progrsnn remotely, but it is substantially less than the time needed to compile typical

source programs, run text formatters, or do any number o( other CPU-bound task_

After a process migrates awq from its borne machine, it may aster from the overhead d for-

warding system _ The degradation due to remote execution depends on the ratio of location-

dependent system calls to other operations, such as computation and file I/O. Figure 3 shows the

total execution time to run several progrmm, listed in Table 2, both entirely locally and entirely

on a single remote host. Applications that communicate frequently with the home machine suffered

considerable degradation. Two of the benchmarks, fork and leffime, are contrived examples of the

type of degradation a process might experience if it performed many location-dependent system calls

without much user-level computation. The rcp benchmark is a more realistic example of the penal-

ties processes can encounter:, it copies data using TCP, and TCP operations are sent to & user-level
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Name _ Description

pmake [ recompile pmake source sequentially using pmake [

LATEX run' LATEX on a draft of thk grtk.le '

rcp copy s I Mbyte file to mio_er host u_ng TCP }

fork fork sad wait for child, 1000 times ]
gettime get the time of day 10000 times |

Table 2: Work/end ]or compar/#one between/ocd and remo_ ezee_ion.
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TCP server on the home machine. Forwarding these TCP operations causes rcp to perform about

40% more slowly when run remotely than locally. As may be seen in Figure 3, however, applications

such as compilations and text formatting show little degradation due to remote execution.

Application Performance

The benchmarks in the previous section measured the component coats of misration. This section

measures the overs/] benefits of migration using pmzke. We measured the performance improvements

obtained by parallel compilations and simulation.

The first benchmark consists of compiling 276 Sprite kernel source files, then llnklng the resulting

object files into a single file. Each pmake command (compi/in$ or linking) is performed on a remote

host using ezec-time migration. Once a host is obtained from the pool of available hosts, it is reused

until pmake finishes or the host is no longer available.

Figure 4 shows the total elapsed time to compile and link the Sprite kernel using &varying number

of machines in parallel, as well as the performance improvement obtained. In this environment,

pmalce is able to make effective use of about three-fourths of each hoot it uses up to a point (4-6

hosts), but it uses only half the processing power available to it once additional hosts are used.

The "compile and link" curve in Figure 4(b) shows a speed-up factor of 5 using 12 hosts. Clearly,

there is a significant difference between the speed-ups obtained for the "normalized compile" bench-

mark and the "compile and Unk" benchmark. The difference is partly attributable to the sequential

parts of running pmake: determining file dependencies and Iinkln$ object files all must be done on a

single host. More importantly, file caching affects speed-up sul_tantially. As described above, when

a host opens a file for which another host is caching modified blocks, the host with the modified

blocks transfers them to the server that stores the file. Thus, if pmake uses many hosU to compile

different files in parallel, and then a sinsle host links the rem_tin s object files tosether, that host

must wait for each of the other hosts to flush the object files they cre_ted. It then must obtain the

object files from the server. In this case, ]inking the files together when they have all been crested

on a single host takes only 56 seconds, but the link step takes 65-69 seconds when multiple hosts

are used for the compilations.

In practice, we don't even obtain the five-fold speed-up indicated by this benchmark, because

we compile and link each kernel module separately and link the modules together afterwards. Each

]ink step is an additional synchronization point that may be performed by only one host at s time.

In our development environment, we typically see three to four times speed-up when rebuilding

a kernel from scratch. Table 3 presents some examples of typical pms_e speed-ups. These times

are representative of the performance improvements seen in day-to-day use. Figure 5 shows the

correspondins speedup curves for each set of compilations when the number of hosts used varies

from 1 to 12. In each case, the marsinal improvement of additional boats decreases as more boats

are added.

The speedup curves in Figure 4(b) and Figure 5 show that the marginal improvement from

using additional hosts is significantly less than the procemins power of the hosts would susgest.

The poor improvement is due to bottlenecks on both the file server and the workstation running
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Number of
Program Files I Links

gremlin 24 1

36 1
pmake 49 3

kernel 276 1

Sequential Time Parallel Time

180 41

259 48 5.42

162 55 2.95

1971 453 4.35

Speed-Up

4.43

Table 3: Ezamp/ee otpms_ke pertorman_e. Sequential execution is done on s lingle heat; lxmdlel execution

uses migration to execute up to 22 t_ks ia peh-ullel. E_ch measurement gives the time to compile the indiented

number of fdes tnd link the resulting object Ales together in one or more steps. When multiple _epe Lre

required, their sequenti_lity reduces the speed-up that may be obtained; pm_e, for ezsanple, is orglnized

into two directories thLt nre comp'ded sad linked sel_rstely, sad then the two linked object files s_re linked

together.
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Figure 5: Speedup olcomp//ation, using a mr/ob/e number o]hoet_. This graph shows the speedup relative

to running pmake on one host (i.e., without migration). The speedup obtained depends on the extent that

hosts can be kept busy, the amount of ptndlelizntion syllable to pmake, Lad system bottlenecks.
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Figure 6: Proc_jor and network uti//zot_m during the IS-Boy pmske. Both the file serve Lad the client

workstation running pm_e were mturLted.

Freaks. Figure 6 shows the utilization d the processors on the file server and client • ,rkltaXion over

5-second intervals during the 12-way kernel pmeke. It shows that the pmake pro< as uses nearly

100% ofs SPARCstation processor while it determ/nes dependenc/es and starts to m-_ate processes

to perform compUstionL Then the Sun-4/280 file server's processor becomes a bott]_ neck as the 12

hosts performing compilations open files and write back cached object files. The net_ _¢k utilization,

also shown in Figure 6, averaged around 20% sad is thus not yet a problevr_ Howev_, as the server

and client processors get faster, the network may easily become the next bottleneck

Though migration has been used in Sprite to perform compilations for nearly t_ _ years, it has

only recently been used for more wlde-ranging applicaticms. Excluding compitatio s, simulations

are the prlmary application for Spri_e's process _'&tJOn far._ty. It is now com_ .a for _ers to

use pmake to run up to one hundred simulations, letting pmal_e control the psrslleli_ _ The length

and parallelism of simulations results in more frequent evictions thsa occur with too, compilations,

and pmalce automatically remigrates or suspends processes subsequent to eviction.
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Host Tot_l CPU Time Remote CPU Time Fraction Remote

garlic 314,218 sees 228,641 see8 72.77 %
crackle 172,355 14,451 8.38 %

sassafras 158,515 138,821 87.58 %
burble 151,117 2,352

vagrancy 107,853 81,343
buzz 96,402 280

92,003 32,525

1.56 %

75.42 %

0.27 %
35.33 %

kvetchin 8 01,611 28,765 29.22 %

jaywalk 75,394 24,017 31.86 %

joyride 58,231 6,233 10.70 %

I 120,727[ Others 857,532 14.1%

Toted 2,175,291 676,135 31.08 %

Table 4: Remote proceuin 9 u_e over • one-mon_ perioK T_e tea hosts with the greatest total p_r

usage are shown individually. Sprite hosts performed roughly $0% of user activity _ prece_ mist•t/on.
The stLndard deviation of the friction of remote ue wu 25%.

In addition to having a longer average execution time, simulations also sometimes differ from

compilations in their use of the file systen_ While some simulators are quite I/O intensive, others

are completely limited by processor time. Because they perform minima] interaction with _e servers

and use little network bandwidth, they can scale better than parallel compilations do. One set of

simulations obtained over 800% effective proceasor utilization--eisht minutes of proce_ing time per

minute of elapsed time--over the course of an hour, ulin 8 all idle hosts on the system (up to 10-15

hosts of the same architecture).

Usage Patterns

We instrumented Sprite to keep track of remote execution, migration_ evictions, and the avail-

ability of idle hosts. First, when a process exited, the total time durin 8 which it executed was added

to a global counter; if the process had been executing remotely, its time was added to a separate

counter as well. (These counters therefore excluded some Ions-running processes that did not exit

before a host rebonted; however, these processes were daemons, display servers, and other processes

that would normally be unsuitable for migration.) Over • typical one-month period, remote pro-

eesses accounted for about 31% of all procem_g done on Sprite. One host ran applications that

made much greater use of remote execution, executing as much as 88% of u_r cyc]m on other hosts.

Table 4 lists some sample processor wage over th_ period.

During the same time frame, we recorded the frequency of eJee-time misrations and full misra-

tions in order to determine the most common usage of the migratlon facility. Since full m]grations

require that virtual memory be copied, the choice of a virtual memory trand'er method would be

important if full migrations occurred relatively often. In the one-month period studied, ¢ze©-time

migrations occurred at a rate of 1.70/hour/host over that period, constituting 86% of all migratiol_&

Second, we recorded each time a host changed from idle to ,,etive, indicating that foreign pro-

cesses would be evicted if they exist, and we counted the number of times evictions actually occured.
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Use
Time Frame In Use Idle for _v_igration

weekdays 31% 66 % 3 %
off-hours 20 % 78 % 2 %

m

total [ 2s % 75 %[ 2 %

Table S: Host avaaob_it_. Weekdays s_e MondLy throu&h Friday from 9:00 A.M. to S:00 _ M. Of-hours
Lre all other times.

To date, evictions have been extremely rare. On the averqe, each host changed to t]_ Ictive state

only once every 26 minutes, and very few of these transitions actually resulted in pr ceases being

evicted (0.12 processes per hour per host in a collection of more than 25 hosts). T_ infrequency

of evictions has been due primarily to the policy M for allocating hosts: hosts ar aasiped in

decreasing order of idle time, so that the hosts that have been idle the longest are us d most often

for migration. The average time that hosts had been idle prior to being allocated fo remote exe-

cution wss 17 hours, but the average idle time of those hosts that later evicted processes was only

4 minutes. (One may therefore a_ume that if hosts were allocated randomly, rather _han in order

of idle time, evictions would be considerably more frequent.) Finally, when evictions -id occur, the

time needed to evict varied considerably, with a mean of 3.0 seconds and s standard* deviation of

3.1 seconds to migrate an average of 3.3 processeL An average of 37 4-Kbyte pag_ were written

per process that migrated, with a standard deviation of 6.5 from host to host.

Third, over the course of over a year, we periodically recorded the state of ever host (active,

idle, or hosting foreign processes) in s log file. A surprisingly large number (66-7g_ j of hosts are

available for migration at any time, even during the day on weekdays. This is par_ y due to our

environment, in which sever al users own both a Sun and a DECstation and use o_ ly one or the

other st a time. Some workstations are available for public use and are not used on _ regular basis.

However, after discounting for extra workstations, we still find a sizable fraction of _ _ Available,

concurring with Theimer, Nichols, and others. Table 5 summarizes the availability of \oats in Sprite

over this period.

To further study the availability of idle hosts, we recorded information about re luests for idle

hosts over a 2S-day period. During this period, over 17,000 processes requested oL _.or more idle

hosts, and 86% of those processes obtained as many hosts u they requested. Only 2 _ of processes

were unable to obtain any hosts st all Processes requested an average of 2.6 hosts, _th a standard

deviation of 4.58 hosts and 76% of processes requesting st most one host st a time. S_ce there were

typically I0 or more idle machines available for each machine type, one would expect procemes that

request few hosts to be Able to obtain them; more interestinsly , however, over 80_ of thcee hosts

requesting at least I0 hosts were able to obtain I0 hosts. F_ure T shows the fracti .,n of procmses

during this period that received ss many hosts as requested, as a eumulatlve fimct|o_ of the number

of hosts requested.
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Figure T: Distribution ot hoJt vevue.tJ and NtiaJaction wtu. For s given number of hosts, shown on the
X-ax_s, the line l_beled regueJti_7 shows the fraction of proosmm that requested Lt least thLt many hosts.
The line labeled eat_d shows, out of those processes that requested nt least that number of hosts, the
fraction of processes that RccessfuUy obtained that muy hosts. Thus, 98% of edl processes were able to
obtain st leut one host, ud over 80% of processes that requested at leut ten hosts obtained 10 hostL Only
24% of proce_es requested more t]u_ one host.

Observations

Based on our experience, as well as those of others (V 8 Charlotte, s and Accent IT), we have

observed the following:

• The overall improvement from using idle hosts can be substantial, depending upon the degree

of parallelism in an application.

• Remote execution current accounts for a sizable fraction of all processing on Sprite. Even so,

idle hosts are plentiful. Our use of idle hosts is currently limited more by a lack of applications

(other than pma&¢) than by a lark of hosts.

• The cost of ezec-time migration is high by comparison to the cost of local process creation,

but it is relatively small compared to times that are noticeable by humanL Furtherm_e, the

overhead of providing trantparent remote execution in Sprite is neKli_'ble for most cJam_ of

processes. The system may therefore be liberal about placing processes on other hosts at ezec

time, as long as the likelihood of eviction is rel_ively low.

• The cost of transferring a procem's address space and flushing modified fl]e blocks dominat_

the cost of migrating lons-running processes, thereby limiting the effectiveness of a dynamic

"pool of processors _ approa_. AIthoush there are other environments in which such an ap-

proach could have many favorable aspects, given our assumptions above about host availability

and workstation "ownership _, using process migration to balance the load among all Sprite

hosts would likely be both unnecessary and undesirable.
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History and Experience

The greatest lesson we have learned from our experience with process migration i_ ;he old adage

"use it or lose it." Although an experimental version of migration was operational in _ D86,as it took

another two years to make migration a useful utility. Part of the problem was that a _ w important

mechanisms weren't implemented initially (e.g._ there was no automatic host selection, xigration was

not integrated with pmake, and process migration did not des] gracefully with ma_ine crashes).

But the main problem was that migration continually broke due to other changes _n the Sprite

kernel. Without regular use, problems with migration weren't noticed and tended _. accumulate.

As a result, migration was only used for occasional experiments. Before each exper* nent s major

effort was required to fix the accumulated problems, and migration quickly broke _ ;sin alter the

experiment was finished.

By the fall of 1988 we were beginning to suspect that migration was too fragile to be naintsinsble.

Before abandoning it we decided to make one last push to make process migration cozr.:,letely usable,

integrate it with the pma_e program, and use it for long enough to understand its bex fits as well as

its drawbacks. This was a fortunate decision. Within one week after migration becm • available in

prnake, other members of the Sprite project were happily using it and achieving spee_ -up factors of

two to five in compilations. Because of its complex interactions with the rest of the ke 2el, migration

is still more fragile than we would like and it occasionally breaks in response to ot! er changes in

the kernel. However, it is used so frequently that problems are detected immediate_: and they can

nsua]ly be fixed quickly. The maintenance load is still higher for migration than f_ many other

parts of the kernel, but only slightly. Today we consider migration to be an indisp_ Isable part of

the Sprite systerrL

We are not the only ones to have had difllcnlties keeping process migration runnin : for example,

Theimer reported similar experiences with his implementation in V. s The proble i seems to be

inherent in migration, since it interacts with many other parts of the kernel In _ ,rite the most

complicated aspects of migration were those related to migrating open fdes. In par cnlar, locking

and updating the data structures for an open file on multiple hosts provided numero_ opportunities

for distributed deadlocks, race conditions, and inconsistent reference counts. It is w_ rth reiterating

that these problenm would have been present even if we had chosen to implement s uE _pler _ remote

invocation facility without proccm migration.

Conclusions

Process migration is now taken for granted as an essential part of the Sprite syc en_ It is used

hundreds of times dally and provides substantial speed-up6 for applications that _ e Amenable to

coarse-grain parallel processing, such as compilation and simulation. The transp_ ency provided

by the migration mechanism makes it easy to use migration_ and eviction keeps

bothering the people whose machines are borrowecL Collectively, remote ¢xecutio_

sizable portion of all user activity on Sprite.

We were originally very conservative in our use of migration, in order to gain ac.

our users. As time has passed, our users have become accustomed to their worksta
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for migration and they have gained confidence in the eviction mechanism. We have gradually become

more liberal about using idle machines, and we are experimenting with new system-wide migration

tools, such as command shells that automatically migrate some tasks (e.f., jobs run in background).

So far our users have appreciated the additional opportunities for migration and have not perceived

any degradation in their interactive response.

From the outset we expected migration to be di_cult to build and maintain. Even m, we were

surprised at the complexity of the interactions between process migration and the rest of the kernel,

particularly where distributed state was involved as with open files. It was interesting that Sprite's

network file system both simplified migration (by providing transparent remote ace.ms to files and

devices) and complicated it (because of the file sye-tem's complex distributed state). We believe that

our implementation has now reached a stable and maintainable state, but it has taken us a long

time to get there.

For us, the bottom line is that process migration is too useful to pass up. We encourage others

to make process migration avnilsble in their systems, but to beware of the implementation pitfalls.
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