
Mockup-driven Fast-prototyping Methodology
for Web Application Development

 Jia Zhang Jen-Yao Chung
 infiNET Solutions IBM Watson Research
 Buffalo Grove, IL 60089 Yorktown Heights, New York 10598
 jiazhangchicago@yahoo.com jychung@us.ibm.com

Abstract

Web application development can be very complicated without an appropriate framework, architecture and

application model. A good implementation model can help application developers communicate with

clients, consolidate the design before starting the development, speed up the development, and make the

code highly reusable. This paper proposes a mockup-driven fast prototyping methodology (MODFM) for

the development of web applications. It is built on the most recent web technologies: EJB, JSP, Servlet,

XML, Struts, and web application server. A two-tier Model-View-Controller (MVC) architecture is

proposed as the underline backbone and a supporting environment is tailored specifically in order to enable

development. Two basic supporting tools are provided: the dynamic menu generator and the generic code

generator, which produce code for front-end, back-end and database schemas. MODFM helps to generate

fully functional mockup systems for the client to review at an early analysis stage, and continues to provide

guidance throughout follow-on development phases. Real-life experiences on the use of this methodology

in industry are presented as examples.

Keywords

prototyping of web applications, generator, architecture, supporting environment, mockup

1. Introduction

In the broadest sense, a web application is an application combining computing and networking

technologies to facilitate communication through the Internet. One can envision a web application as a

traditional client/server application published on the web with a web interface. Embracing many

 1

disciplines, the development of a web application can become a very complex, costly and time-consuming

task, if not supported by a practical methodology [1]. According to Sommervill, one of the key concepts in

software engineering is client-centrism [2]. It is software engineers’ responsibility to ensure clients’

confidence on an ongoing project; and clients would normally gain more confidence about a designed

application if they could visualize it. In addition, given that user interaction in web applications is through

web browsers, the design of appropriate user interfaces is of paramount importance. Therefore, the concept

of prototyping is extremely appealing for web applications.

Szekely states that prototyping involves constructing a small-scale version of a complicated system in order

to acquire the critical knowledge required to build a full system [3]. Often a prototype will only contain

user interface and partial functionality. Using Bochicchio’s definition, prototyping in web applications

means a fast, cheap, and reliable development of a mockup of the final application system [4]. According

to The American Heritage Dictionary, a mockup is “a usually full-sized scale model of a structure, used for

demonstration, study or testing” [5]. A mockup can not only provide clients a complete picture of what the

final product will be, but also facilitates design checking, testing, discussion, and revision. Building a

mockup has several apparent advantages. First, a mockup exhibits to customers the current requirements

gathered. It enables customers to evaluate the requirements, refine the requirements, elicit new

requirements, and finalize the requirements. Second, the iterative process of mockup constructions and

revisions reveals to customers an outlook of the final system; therefore, customers would be confident of

the application being built. Third, since a mockup will become the skeleton of the final system for the

development, no work will be thrown away. Fourth, a mockup helps finalize the system requirements; thus

no backward rework needs to be done after a mockup is accepted by clients. A mockup minimizes the risk

of wasting valuable development efforts because of ambiguous or incomplete requirement specifications.

Fifth, a mockup can be reused by other similar applications since it does not involve much business logic.

In this paper, we define a development methodology for the development of web applications, which is

referred to as web engineering [6][7]. The methodology is called MOckup-Driven Fast-prototyping

Methodology or MODFM. MODFM comes in play in the web engineering life cycle when a primitive

 2

analysis document has already been produced from the initial requirements analysis. Our methodology has

several goals. First, we seek to expedite the development of web applications by exploiting automatic

program generation techniques. Second, we wish to include customer feedback early in the development

process. Requirements for web applications are often fluid and changeable. By involving customers early

on, we minimize the risk of wasting valuable development efforts because of ambiguous or incomplete

specifications. Finally, we seek to facilitate software maintenance. Web applications must often be

modified quickly in response to evolving user requirements.

We accomplish our goals in several ways. First, MODFM incorporates techniques for automatic code

generation in order to expedite application development. The Web Generation (WebGen) toolset contains

two code generators. The Generic Generator (GG) tool automatically generates a skeleton application (i.e.,

a mockup) that contains the interface, but not the full functionality, of the finished application. The Menu

System Generator (MSG) tool automatically generates the menu displays of the application. Second, we

define software architecture suitable for a broad variety of J2EE-compatible web applications. Our

software architecture divides a web application into two main components, a front-end subsystem and a

back-end subsystem. Our methodology and tools lead to the creation of web applications conforming to

this architecture. Third, MODFM proposes a systematic procedure to guide web application development.

Fourth, MODFM seamlessly integrates cutting-edge technologies for web development, such as J2EE and

XML, with established development methodologies, including rapid prototyping and automatic code

generation. Utilizing well-tried concepts, such as client-centric development [2] and rapid prototyping [3],

MODFM seeks to gain customer feedback at early stages of development in order to avoid wasting

development efforts because of incorrect or incomplete specifications. Through an automatically generated

mockup, customers can glean the functionality of the finished application early in the development cycle.

In addition, MODFM relies on the Model-View-Controller (MVC) paradigm [8] for the design of the front-

end and back-end subsystems; this paradigm is known to facilitate maintenance by separating the code for

modeling the application domain from GUI code.

 3

The rest of this paper is organized as follows. In section 2, related work is discussed. In section 3, we

present the web code generator. In section 4, we introduce a two-tier MVC architecture. In section 5, we

describe a supporting environment tailored for the architecture. In section 6, we propose our mockup-

driven fast-prototyping methodology. In section 7, we discuss the development of a real-world application,

as an example to explain how to construct a mockup system using MODFM. In section 8, we summarize

the contribution and innovation of MODFM, discuss assessments, and describe future work.

2. Related Work

Model-driven methodology has been used to simplify and automate the development of web applications.

Among the abundant efforts, HDM [9] proposes a popular model descended from Entity-Relationship

Model [10] for hypermedia application design, which divides conceptual schema into two categories:

structural and navigational. Autoweb [1] utilizes a variant notation of HDM called HDM-lite, by adding a

presentation schema, to conceptually design the web application, and store the conceptual schema together

with data content in the database. Jweb [4] provides a design/prototyping environment, integrating XML

technology with HDM to help design the conceptual schema. UML has been popular to model software

applications. Conallen [11] extends UML notation to model web specific elements, thus makes it possible

to model the whole web application with UML. RMM [12] is a database-driven methodology for

structured hypermedia design. Its principle idea is to provide a visual representation of the system in order

to facilitate design discussions. It also suggests an iterative process to decompose visual components to

database relationships. Gaedke [7] utilizes WebComposition and WebComposition Markup Language

(WCML) [13] to present a systematic approach for code reuse in component-based web applications. IIPS

[14] models navigational structure, compositional structure, and user interface through ontology, and

provides tools for code generation. Web Modeling Language [15] is a notation of designing a complicated

web site at the conceptual level, which defines a web site along five dimensions: data content, page

composition, navigation links, page presentation, and customization features. All these efforts define

techniques and tools to speed up the design and development of the web applications. Compared to them,

our tools can help to generate a running web application from a set of XML configurations. These

 4

techniques and tools were designed for developers who wish to structure their thinking, other than for

clients who wish to see the interface. Therefore, existing techniques do not intend to yield a running

mockup system to gather client’s feedback at the early phase. Furthermore, these techniques pay little

attention to software maintenance. Little work addresses how to efficiently maintain the current code when

it needs to be modified due to the client’s feedback.

Although object-oriented methods are dominant in software development in recent years, they do not

provide step-by-step guidelines for decomposing a system [16]. Meanwhile, structured analysis is natural to

human’s way of thinking. Moreover, in the real world, structured analysis is extensively utilized to

partition the system into reasonably small subsystems before applying OO methodology. Functional

decomposition is the essential technique in structured analysis serving to analyze complicated software

applications. Its most famous representatives include Ed Yourdon’s [17] data-flow diagrams of top-down

decomposition technique in the past, and its utilization in UML in the recent years. UML [18] has been

widely believed to be the industry-standard design language [19] for specifying, visualizing, constructing,

and documenting the artifacts of software systems. Among its diagrams, the use case diagram and

sequence diagram can actually be considered typical structured analysis methods. We will use functional

decomposition at the beginning of a web project to partition a system into subsystems organized by a

hierarchical menu.

An application server is a middle tier of enterprise software that brings together business logic and

corporate data that reside in back-end systems and databases, and serves it up to the user at the front-end.

Adopting an application server can avoid tedious coding of system level utilities, such as security, load

balancing, and transaction integrity. Most of the available commercial application servers are based on

Java 2 Platform, Enterprise Edition (J2EE) [20]. Struts [21] provides an open source unified front-end

MVC [8] framework for web applications. There are three major components in Struts framework: a

servlet controller that is provided by Struts itself, JSP pages or the "views", and the application's business

logic or the "model". The servlet controller delegates HTTP requests to an appropriate handler, which is

defined as an action object. The model represents an application's business logic or state and each handler

is tied to a model. Control is then handed back through the controller to the appropriate view, usually

 5

through a form bean that holds the information for the page. We adopted Struts to be the basis of our front-

end model. This decision was driven by three factors. First, Struts combines Servlets and JSP techniques

to provide a mature MVC implementation in web applications. Second, Struts is an open source software.

Struts belong to the well-known Jakarta project, and detailed information can be found at

http://jakarta.apache.org/struts. Third, Struts has been developed in the recent years with active developers

and user communities.

3. Web Code Generator

Automatic code generation is becoming increasingly common and useful in software development, a result

of the need to hide complexity from the software developers and the acceptance of various standards and de

facto standard application programming interfaces. By using a code generator one can automate the

process of some tedious, repetitive, and error-prone coding tasks. Thus, it will greatly reduce developers’

coding time and debugging time. As a result, software developers can concentrate on business logic and

the development cycle can be greatly shortened. Furthermore, a code generator can be a timesaving tool

that increases bug-free code quality, and introduces a more formal and automated approach to the

development cycle.

J2EE has already been widely accepted as the essential infrastructure for web development. The

formalized interfaces of its techniques make it extremely suitable for code generation. There are several

code generation products and tools aiming at accelerating the development process of web applications

[22]. Torrisoft is an on-going environment aiming at helping web site development utilizing Web

Modeling Language [15]. IIPS [23] provides a set of visual tools supporting web site generation from the

conceptual design model. Some generation tools aim to help generate specific parts of a web application.

CodeCharge [24] helps to generate front-end codes in selected languages such as ASP, JSP, and

ColdFusion; KoolFrog [25] helps to generate PL/SQL routines from Oracle database; EJBGen [26] helps

generating EJB 2.0 code. Visual Code-Generator [27] helps to generate code from ASP style scripts.

Tekadence [28] offers a point-and-click programming interface and visual design tool to help build up Java

 6

http://jakarta.apache.org/struts

applications. GslGen [29] is a generic-purpose code generator from XML file and schema file using

general-purpose schema language (GSL). Tekadence and GslGen generators are bound to specific script

languages. JeeWiz [30] is a product that provides an environment to help generate code for J2EE-based

web applications, such as EJB beans and deployment descriptor. Combining data and configuration in the

same XML file makes JeeWiz less flexible to changes. It helps generate a skeleton code for middle-tier,

but not for front-end and back-end artifacts such as JSP page and database schemas. Furthermore, JeeWiz

does not contain a framework to link together different components generated, thus it is not suitable to

generate a running application.

We are proposing here is a web code generator called WebGen. Compared to other code generators,

WebGen provides a template system, specific to web applications, to generate a complete web system. In

this paper, the term template is interchangeable with the term schema that is normally known in XML

domain [31], in that they both describe a class of documents. We adopted the term template simply to

emphasize that our template files are patterns of J2EE-compatible components. Second, underlying

architecture provides a theoretical basis to group generated codes to become a running web application –

we will discuss the architecture in detail in later sections. Third, the decoupling of data and configuration

information makes the generation script easy to read and modify, and makes the data script highly reusable.

Fourth, ample configurable features make WebGen powerful for generating code for extensive purposes.

The separation of generated portion and immutable portion in one file provides the flexibility of

regenerating a file without touching embedded business logic. Fifth, its menu system generator makes it

possible to generate a completed mockup system. Sixth, WebGen is an automatic code generation tool

integrated with XML technology, which is the universal format for structured documents and data on the

web [31]. It accepts user input data information in XML format to generate target files. Seventh, WebGen

can be used to generate many kinds of source code, including Java code, XML code, HTML code, JSP

code, etc. Eighth, WebGen is not only efficient but also very easy to learn. The author taught a developer

to use GG tool in 15 minutes and the person was then able to write GG scripts to generate code.

3.1 Generic Code Generator

 7

Figure 1. Relationship among components in GG generator

Configuration File

m:n
Template FileData File m:n

WebGen contains two code generators: generic code generator (GG) and menu system generator (MSG).

GG generator comprises an essential class: GenericGenerator with a single public static method:

generateCode(), and some utility classes. GG generator parses the following information provided by

developers to generate code to the specified directories as desired: a list of template files; a list of XML

data files; and an XML configuration file. The relationship between these three types of files is that, data

file defines the data models that can be applied to template files to generate target file(s), and configuration

files specifies the many-to-many relationship between them, together with some generation criteria. This

relationship is shown in Figure 1. GG allows developers to provide template files, in accordance with

common J2EE-required components, for the generation of web applications.

3.1.1 Data file

A data file is an XML file that describes the content of a data model to be merged into template files.

Every data file is applied to template files to generate corresponding code. Figure 2 is an example of a

data file that defines a data model of StudentGrade. As shown in Figure 2, for every item of the

corresponding data model, one can define its name and data type. StudentGrade contains four data items:

student id, year, term, and grade information. All four items have the same data type as “String”. The

attribute Key is utilized to store the primary key internally. In addition, any aspect can be specified as an

attribute of an item. For instance, as illustrated in Figure 2, the attribute Unique is utilized to specify

whether the particular item can be treated uniquely or not; and attribute Valid is utilized to specify whether

the corresponding validation code needs to be embedded into the generated files.

 8

3.1.2 Tem

A template

correspondi

be used to g

setters. GG

a single tag,

<ATYPE> i

is a tag in th

tag <ABC>

pattern is an

constructor

</PATTERN

patterns as o

semantics is

generated fi

A data file c

files. Wh

[=PATTERN

configuratio

<genericGenerator>
 <OBJ NAME="StudentGrade">
 <ATTR ATNAME="Key" ATYPE="String" UNIQ="YES"/>
 <ATTR ATNAME="StudentId" ATYPE="String" UNIQUE="NO"/>
 <ATTR ATNAME="Year" ATYPE="String" UNIQUE="NO"/>
 <ATTR ATNAME="Term" ATYPE="String" UNIQUE="NO" VALID=”YES”/>
 <ATTR ATNAME="GradeInfo" ATYPE="String" UNIQUE="NO"/>
 </OBJ>
</genericGenerator>

Figure 2. A simple example of a data file StudentGrade.xml
plate file

file itself is a code file, which contains tags that must be replaced at generation time by the

ng values from the data files. Figure 3 is a simplified template file for a Java bean class. It can

enerate a fully functional Java class file, which comprises a constructor and a set of getters and

 defines three categories of tags: simple tag, repeating pattern, and conditional. A simple tag is

 which will be replaced by the corresponding value defined in the data file. For example, tag

n Figure 3 can be replaced by “String” defined in data file in Figure 2. A variant of simple tag

e format of <_ABC>, which informs the GG processor that the first character of the value of

will be changed to small case before replacing tag <_ABC> in the generated file. A repeating

 area that will repeat the pattern once per element of a list of data, such as the method body of

in Figure 3. The syntax of a repeating pattern is: <*PATTERNNAME> …pattern…

NAME>. Simple tags can be contained in the pattern. A conditional provides different

ptions to choose from. The syntax of conditional is: <?VAL1=VAL2> …pattern… </?>. The

 that, if VAL1 equals to VAL2, then the pattern contained in the tag will appear in the

le, otherwise it will not.

an be applied to multiple template files, and a template file can also be applied to different data

en GG generator encounters a template file named in the format of

NAME=DESC=…], it will look for all data files named PATTERNNAME in the

n file, and create one file for each using value of DESC to replace “=PATTERNNAME=DESC

9

/**
 * This class is to hold the contents of entity bean
 */
public class <NAME>Bean implements Serializable {

 /**
 * Constructor
 */
 public <NAME>Bean() {
<*ATTR> _<_ATNAME> = new <ATYPE>();
</ATTR>
 }

<*ATTR>
 /**
 * This method retrieves the attribute of <ATNAME>
 * @returns <ATYPE> - <ATNAME>
 */
 public <ATYPE> get<ATNAME>() {
 return _<_ATNAME>;
 }

 /**
 * This method sets the attribute of <ATNAME>
 * @param <ATYPE> - <ATNAME>
 */
 public void set<ATNAME>(<ATYPE> <_ATNAME>) {
 _<_ATNAME> = <_ATNAME>;
 }
</ATTR>

 /**
 * Private attributes
 */
<*ATTR> private <ATYPE> _<_ATNAME>; </ATTR>
}

Figure 3. A Java class template file =DATA=NAME=Bean.java

=”. Using Figure 3 as an example, GG will generate one java bean file for every data file. If a data file is

named StudentGrade.xml, then the generated java bean file will be named as StudentGradeBean.java.

3.1.3 Configuration file

A configuration file provides the GG generator information, such as style and criteria of generation, in

XML format. It acts as a link between data files and template files. It is separated from data files to

improve reusability of data files. There are two types of information that a configuration file normally

needs to provide to GG. First, it is necessary to tell the generator where to output the generated files. It can

be configured in a way that the generated files are stored in hierarchical directories. Second, a

configuration file needs to inform the generator about the relationships between template files and data

files. This relationship is a many-to-many relationship. For instance, one data file can be used to generate

business object files, database table schemas, entity bean files, etc. Developers will be able to decide

whether the target file will be completely regenerated, or partly replaced, by specifying the value of

 10

attribute Change to be All or Part respectively. If it is specified as All, the target file will be completely

regenerated every time the generator is invoked. Otherwise generator will first search for the target file. If

this file is not found, the generator will create a new code file. However, if a target file is found, the

generator will search for the corresponding portion in the target file and replace it if this portion exists, or

will add a new part if this portion does not exist. The rest of the portions of the file will be kept untouched.

The separation of a generated portion and an immutable portion in one file enables regenerating a file

without removing embedded business logic. Since changes to data models are inevitable during design and

implementation, this feature can improve the flexibility of the code generated.

3.2. Menu System Generator (MSG)

Menu system is a valuable approach to represent hierarchy of an application [32], and a menu can be used

as a starting point for a top-down development of a software system. The data structure of a menu system

as a menu tree is discussed in detail in MGEN [33]. A lot of early work concentrates on the GUI features

of a menu system. Java Swing [34] uses OO technology to summarize all of the features a menu system

can have, and represents them in corresponding classes. A menu system built from Swing classes can be

easily updated and reused. However, the menu system can only be shown in Swing environment.

Our purpose is to integrate Servlet, JSP and XML technologies to build up an automatic menu system

generator. As a result, since the description of a menu system is configured in an XML file, “visual

designers” can assert their ideas by modifying the menu system independent of the coding of the system.

Further, programmers do not need to do any coding of the menu system. The menu system generator

(MSG) is part of WebGen. As illustrated in Figure 4, MSG is composed of four parts: menu system

storage, menu system controller, menu tag, and XML reader. XML reader can utilize any XML parsers,

such as Apache’s Crimson, Xerces, and Xalan [35]. Crimson was used in our implementation. Menu

system controller is a Servlet that handles the display of the menu system and is provided by MSG. Menu

tag is a JSP customer tag that MSG provides to let developers specify menu system in JSP pages.

 11

Figure 4. Architecture of MSG and data flow

MSG

menu system
 html code

menu tag

menu system
 controller

XML reader

menu system.
 storage

menu system
configuration
 file

A menu system storage is composed of five types of components, as shown in Figure 5. A menu controller

Servlet handles the loading of the menu system, input of user choice and corresponding menu item

highlighting. A menu template holds the hierarchy of the menu system, and generic information of a menu

system such as background color, header, and footer. A menu is a menu bar that contains multiple menu

items. A menu item defines all the display settings, links, and relationships with other menu or menu

items. A menu item image describes features of an image that can be contained in a menu item, such as the

file name of the image, mouse on/off images, icon size, etc. The attribute settings of components of menu

and a menu item follow those of Swing.

Figure 4 also shows the data flow of MSG. MSG accepts configurations of a menu system from an XML

file. A developer only needs to specify the attributes of each component and their relationships in an XML

configuration file. Figure 5 shows a piece of a menu system configuration file. A menu bar is defined with

the name StudentRecords. It contains several menu items and one of them is called ViewGrades. This item

displays the text “View Grades”. It contains no image, and holds a link to “/app/viewGrades.do”. This

menu item is visible and selectable. Initially, it is not selected by default, so that it is not highlighted, and

this menu item does not contain any other menu bars. The configuration also defines the size of the menu

item, together with the alignment features. We can see that Cascading Style Sheets (CSS) [36] can also be

specified to a menu item. For example, menuLinkColor is specified as a style sheet. With the help of XML

reader, MSG translates menu system configurations into a menu tree structure and stores it in menu system

 12

Figure 5. Components of a menu system storage and configuration

<menu name=”studentRecords”>
 <menuItem name=”viewGrades” text=”View Grades”
 image=”null” url=”/app/viewGrades.do”
 bgrdColor=”green” visible=”y” enabled=”y”
 selected=”n” container=”studentRecords”
 child=”null” width=”76” height=”20”
 align=”center” valign=”top”
 linkClass="menuLinkColor"
 selectedLinkClass="menuActiveLinkColor">
 </menuItem>
…//other menu items
</menu>

MenuItemImage

MenuItem

Menu

MenuTemplate

MenuControllerServlet

storage classes. A developer can use a menu tag to call up the menu system in JSP file, and HTML code is

automatically generated.

4. Two-tier MVC Architecture for Web Applications

Building on top of the Struts technique, we propose a two-tier MVC architecture for web applications, as

shown in Figure 6. We use this architecture as the backbone to design the template files for GG generator

to generate a running application. A web application system is divided into two layers, front-end and back-

end, and each layer is organized into a MVC architecture. The front-end tier includes JSP pages, Servlets

and Struts engine, while the back-end tier comprises all EJB engines and database. Comparing to usually

called three-tier architecture that is mostly popular as distributed object architecture [37][38], our front-end

tier can be considered a normal front-tier, while our back-end tier contains the normal middle-tier and back-

JSP Page

form bean

Struts
Servlet

Pre-action

Post-action

View Controller Model

Service EJBs

View Controller Model

Database

Frontend

Backend

Figure 6. Two-tier MVC architecture

 13

end-tier. We adopt this architecture because the most recent middle-tier tools (e.g., EJBs) effectively

incorporate the database while hiding the details of database organization from the front-end tier [37]. An

entity bean represents persistent storage and session bean represents business logic, and both of them are

integrated in EJB framework. Therefore, the use of EJB leads to a simplified architecture in which the

middle tier and back-end tier typical of traditional web applications are merged.

In the front-end tier, we formalize the Struts framework as follows. Every JSP page represents a view,

together with a form bean that holds the contents for the page. We can see that this relationship also shows

a tiny MVC pattern: the JSP is a view, the form bean is the model, and the Struts engine maintains the one-

to-one mapping between them acts as the controller. The controller is a servlet that inherits its features

from Struts servlet.. Two action classes act as the model. We use a (pre-, post-) action pair to emulate the

data flow of web pages. Pre- action prepares the contents for the JSP view, while post- action gathers user

input from the JSP page and performs some operations. For every page shown on the web, there is always

a JSP page, a form bean, and two actions. The advantage of this formalization is to capture the essential

scheme under every web page. We prepare the content for display, and then catch the feedback to change

the state of the system. We regulate these two kinds of operations in pre-and post-actions respectively, so

the data flow is clear.

Actions act not only as a model of the front-end tier, but also enable a view of the back-end tier. The

purpose of the back-end tier is to provide system state information to the front-end. Thus we can consider

actions as agents providing different ways to present back-end states to the front-end. We construct a

service layer to serve as the controller, which deals with all the business logic. EJB or other data objects

act as the model, and hide all database details.

This architecture clearly identifies an object-oriented component-layered structure for a web application. It

integrates front-end framework with back-end technology. This model provides a reasonable backbone for

web applications, so that we can easily construct a corresponding template system for GG generator to

build a running mockup system. According to this architecture, any module in a web application, when

 14

decomposed with small enough granularity, can be realized by a composition of JSPs, form beans, servlets,

pre- actions, post- actions, service methods, EJB components and database schemas. In other words, if we

want to develop a unit function in a system, we could develop the seven categories of code artifacts as

discussed above.

5. Supporting Environment (MODFMEnv)

Based on the two-tier MVC architecture, we construct what we refer to as MODFMEnv, a tailored

environment to support design and prototyping of web applications. The overall picture is shown in Figure

7. MODFMEnv is built on top of an application server, which in turn is on top of a database.

MODFMEnv consists of five components: generic code generator (GG), GG editor, menu system

generator (MSG), framework, and web application template system (WATS).

The framework maintains the relationships between different web pages throughout the menu system. The

framework divides every web page into two parts: menu part and content part as a JSP page. The Menu

part is fully handled by the menu system as long as it is generated by a menu system generator. It loads the

Figure 7. MODFM Environment

MODFMEnv
GG Editor GG Generator

Menu System
Generator

Web Application
Template System

Framework

Application Server

Database

 15

corresponding JSP page according to a user’s choice. This separation provides a loose coupling between

different pages. Developers can configure the linkages between pages in an XML file, and update it

afterwards. The framework also provides authentication control, security control, and other utility

functionalities. The framework provides support to both the GG generator and the MSG. The GG editor is

a tailored editor that helps users prepare data files and configuration files for code generation; it is the

component users directly interact with in this environment.

WATS is a specific application server oriented to support a template system designed to provide a skeleton

for sets of files to be generated. The GG generator, combined with this template system, can be used to

automatically generate the whole structure of a web system, with the exception of business algorithms.

Most of the templates in a template system can be fully reused if another application server is adopted.

Generally, only the EJB deployment descriptor template needs to be replaced, conditional on the

application server used. The menu system generator is separated to generate a hierarchical menu system,

Figure 8. WebGen template system

Session
Bean
Impl.

Entity
Bean
Impl.

Deployment
Descriptor

JSP Form Bean

Pre-action Post-action

Java Bean

Database
Schema

Entity
Bean
Home

Interface

Entity
Bean

Remote
Interface

Session
Bean
Home

Interface

Session
Bean

Remote
Interface

Service Layer

WebGen
Template
System

 16

and provides an easy way to register web pages to the corresponding menu items. The difference between

WATS and other code generators lie in the following aspects. First, WATS is tailored to an underlying

software architecture that we described in the previous section. Second, based on the architecture, WATS

provides a complete set of template systems to generate a fully functioning running system. Third, a

template system is highly reusable on different web application servers.

As illustrated in Figure 8, WATS comprises 14 templates for web applications. Providing code templates

from the front-end to the back-end of a web system, these template files (as shown in Figure 3), are applied

to data files (as shown in Figure 2), to generate target files. Let us have a more detailed discussion on what

files will be generated based on one data file. We make an assumption that every attribute in a data file is

shown on screen in a text field, where it can be easily changed to other display widgets later on. Therefore,

JSP Template File (TF) helps to generate a JSP page including all fields of the data file, while the form

bean TF helps generate a form bean file containing all information for the JSP page. Pre-action and post-

action TFs contain templates to generate actions to prepare for and gather information from respective web

pages, while the code for data exchange with back-end are left as dummy pieces. Java bean TF contains

templates of generating business data objects. The entity bean home interface, remote interface, and

implementation TFs contain templates for generating an EJB entity bean. The session bean home interface,

remote interface, and implementation TFs contain templates for generating an EJB session bean. The

deployment descriptor TF contains templates to generate deployment descriptor pieces for corresponding

entity beans and session beans. Service layer TF contains templates to generate service method signatures.

Database schema TF contains templates to generate corresponding database SQL queries for creating and

deleting tables in the database. Thus, with the template system, a developer merely needs to provide a data

model along with some defining criteria and WebGen will generate a running web system.

6. Mockup-driven Fast-prototyping Methodology (MODFM)

On the basis of MODFMEnv, we propose a mockup-driven fast-prototyping methodology (MODFM) for

web applications. MODFM comes to play in the web engineering life cycle when a primitive analysis

 17

1. Functional decompose the system to hierarchical menu items.
2. Call menu generator to generate the menu system to client.
3. Design web pages for each menu item, to get a set of pages.
4. Design data model.
5. Call generator system to generate all types of codes.
6. Map pages with menu system to get mockup system to client.
7. Gather user feedback and go back to step 3. to do modifications.
8. Add business logic to service methods, to get a running system.

Figure 9. Mockup-driven fast-prototyping methodology

document has already been produced from initial requirements analysis. The procedure is summarized as

eight steps in Figure 9. An assumption is that the primary project analysis document is prepared as the

starting point of MODFM. In this section we discuss the process in detail. In Figure 10, actions are

illustrated as text and arrows annotated with numbers; shapes show the results of actions; ovals show the

deliverables submitted to clients. For example, the first action of MODFM is the functional decomposition

of a primary project analysis document. The result of this functional decomposition is a set of menu items

from which a generated menu system is created and is subsequently submitted to the clients as the first

deliverable.

Step 1: is to treat the entire system as one functional module, specify relative scenarios at high level, then

use functional decomposition to divide the system into modules and sub-modules, and then organize the

modules into hierarchical menu items.

Step 2: is to use the menu generator to generate a hierarchical menu system, which is submitted to the client

to review. This will become the first demo for the client. Normally the client will give feedback very

quickly, since this decomposition can be usually mapped to the division of functional departments or

offices in the real world. This menu system is the first milestone of the project. If some modifications are

desired, these are first reflected in a project analysis document, where system requirements are refined.

Then the next action is to go back to step 1. The iteration in this loop ensures high-level requirements

refinement and revision to a large degree.

 18

 JSP
Page

Form
Bean

 Pre-
Action

 Post-
Action

Database
Schemas

 EJBs

 Service
Methods

 1.functional
decomposition

3.design
pages

 Set of
 Pages

 Data
Model

4.design

 6.map with
menu system

5.generate

2.generate

Client

Client

 7.user
feedback

8.add
businss
logic to
service
methods

Ready for
testing

 Menu
 Items

 Menu
System

 Mockups Running
 System

 Project
Analysis

Document

2.5 requirements
 refinement

Figure 10. MODFM procedure

Step 3: is to design web pages for each menu item. For some of the menu items, only one page is

necessary. For example, if a menu item is to display some results based on the user id, only one page will

be designed. For some other menu items, however, there might be several pages associated. For instance,

let us consider a scenario behind a menu item: gather input from the user, retrieve information back, let

user do some modifications, and then change the system status accordingly. In this example it is reasonable

to adopt several continuous pages. As a result, we may get a set of pages at this step.

Step 4: is to design the data models based on the pages specified. In general, these pages provide a good

guideline for identifying data models. For example, if a page contains information on a person’s address,

an address class might be an appropriate data model. The data model is stored in XML files. It is natural

to use any traditional OO methodology to help identify data models here, since this activity is analog to

identifying entities in the real world as so called class-oriented decomposition.

 19

Step 5: is to utilize code generator GG to generate all codes associated with each identified page. MODFM

environment already provides a set of pre-defined web application template files, as illuminated in Figure

8. What a developer needs to do is to prepare a configuration file which links each data model to the group

of template files as required. One can also specify additional criteria to the generator, following the

discussion in the previous section. Seven main categories of codes are automatically generated: JSP page,

form bean, pre- action, post-action, service method skeleton, EJBs including entity beans and session

beans, and database schema. Some other utility codes are also be generated, such as codes for Struts

mapping, and utility codes for validation error messages.

Step 6: is to map pages to every menu item. This is as simple as registering the corresponding pre- actions

of the page to the relative menu item in an XML configuration file. The menu generator and the

framework package will handle the rest of the work. At this point, we can get a fully functional running

mockup system, which has all the user interfaces that will appear in the final system, and is ready to be

present to the client. This mockup system is the second demo for the client.

Step 7: is to gather the client’s feedback from the delivered mockup. If changes are required, the procedure

goes back to step 3, and this process iterates until the client accepts the mockup. Otherwise, a new

milestone is generated, called “approved mockup”, and the procedure goes to Step 8. These iterations can

be conducted easily, since all of the code can be regenerated automatically based on the updated data model

XML files. For modifications such as rewording edits that are irrelevant to the generated code, change

flags can be set to part in the configuration files, which will prevent these modifications from being

overwritten. At this stage, every mockup page becomes a use case. Discussion with the clients will

finalize the underlying business scenarios, thus in turn will also finalize the data models.

After the mockup is accepted, the only thing left is step 8, to integrate business logic into the corresponding

service methods. Portions of code implementing business logic are inserted into the related method body of

the generated files. Before the development of this code, analysis documentation and project solution

 20

package selections need to be approved by the client, so as to ensure the correctness of the business

scenario to be implemented. After this step is finished, a complete system is ready for the testing phase.

7. An Example Application: e-University Suite

Figure 11. Snapshot of the e-University suite

One of the projects where MODFM is actually being used is the design and development of an e-University

suite. Figure 11 is a snapshot of the running system. We will describe how we use MODFM to build up a

mockup system. Based on functional analysis, we decompose the system into seven modules: student

records, admissions, staff, registration, financial aid, financial services, and faculty. Each module can be in

turn decomposed into sub-modules, as shown in Figure 12 as a two-layer menu. This menu was the first

submission to the client.

 21

Figure 12. Menu system of e-University suite

Student Records Admissions Financial Aid FInancial Services Registration Staff Faculty

View Transcript

Transcript Request

View Grades

View/Change Address

 On-line
Application

Financial Aid
Availability

Financial Aid
 Application

View Taxpayer
 Relief Act
 Information

View 1098-T
 Form
View Account
 Information

Add Class

Drop Class
View Student
 Schedule

View Course
 Schedule
Academic
 Catalog
 Student
Evaluation

View Student
 Transcript
View Student
 Grades
View/Change
 Student
 Address

View Student
Taxpayer Relief
Act Information
View Student
1098-T Form
View Student
Account
Information
View Student
Schedule
View Student
Evaluation
View Syllabus

Grade Entry

Syllabus

The second step was designing mockup pages for each menu item. Some of the menu items include only

one mockup page, such as “View Transcript” item under “Student Records” module, and “Student

Evaluation” item under “Registration” module. These pages display the results of some queries. Some

other menu items include multiple mockup pages, such as “View/Change Address” item under “Student

Records” module. The first page shows the address of the student in a view-only mode. A button allows

the student to edit the address. Thus the second page is the student address in edit mode. Another example

is “On-line Application” item under “Admissions” module. The application form is usually very long, so it

is appropriate to divide the form into several pages according to the related sections.

The third step was designing the data model for each mockup page. Using “View Address” page for

instance, the page holds a student’s address information, so it is natural to design an address class as the

data model. Normally a page contains one data model that maps to a table in the database. But for some

pages, the data model contained is very complicated so it needs to map to several tables in the database.

We will give an example of this later.

The fourth step was generating the code. We used each data model to generate JSP page, form bean, pre-

and post- actions, mapping in struts-config.xml, entity bean, deployment descriptor, session bean, service

method, and database schema. We summarize this generated work in Figure 13.

 22

 <template name="=OBJ=NAME=ejb-jar.xml" outputDir="JRun\servers\univ\WEB-INF\META-INF" change="PART"/>
 <template name="=OBJ=NAME=.jsp" outputDir="JRun\servers\univ" change="PART"/>
 <template name="=OBJ=NAME=Form.java" outputDir="forms" change="ALL"/>
 <template name="Pre=OBJ=NAME=Action.java" outputDir="actions" change="ALL"/>
 <template name="Post=OBJ=NAME=Action.java" outputDir="actions" change="ALL"/>
 <template name="struts-config.xml" outputDir="JRun\servers\univ\WEB-INF" change="PART"/>
 <template name="ApplicationResources.properties"
outputDir="JRun\servers\univ\WEB-INF\classes" change="PART"/>
 </CODE>
</genericGenerator>

Figure 13. Piece of configuration file for e-University suite

<genericGenerator>
 <Data NAME="StudentAddress" TNAME="student_address">
 <ATTR ATNAME="key" ATYPE="String" UNIQ="NO" VALID="NO"/>
 <ATTR ATNAME="StudentId" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="AddressLine1" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="AddressLine2" ATYPE="String" UNIQ="NO" VALID="NO"/>
 <ATTR ATNAME="City" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="State" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="Country" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="ZipCode" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="HomePHoneNumber" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="WorkPhoneNumber" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="Fax" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="Email" ATYPE="String" UNIQ="NO" VALID="YES"/>
 <ATTR ATNAME="OtherContact" ATYPE="String" UNIQ="NO" VALID="NO"/>
 </Data>
</genericGenerator>
<genericGenerator outputDir ="univ" data="studentAddress">
 <CODE NAME="StudentAddress">
 <template name="=OBJ=NAME=Bean.java" outputDir="businessObject" change="ALL"/>
 <template name="=OBJ=NAME=EJB.java" outputDir="ejb\entity" change="ALL"/>
 <template name="=OBJ=NAME=EJBHome.java" outputDir="ejb\entity" change="ALL"/>
 <template name="=OBJ=NAME=EJBImpl.java" outputDir="ejb\entity" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJB.java" outputDir="ejb\session" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJBHome.java" outputDir="ejb\session" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJBImpl.java" outputDir="ejb\session" change="PART"/>
 <template name="=OBJ=NAME=Service.java" outputDir="ejb\service" change="PART"/>

Let us take a closer look at Figure 13. The first part is the XML definition for data model StudentAddress.

GG generator uses keyword Data to verify the section of data model, Name to verify the name of the data

model, and TNAME to verify the table to be generated in the database. Inside of the pair of Data tag is the

description of the data model. Each attribute is defined in one line, by the definition of name, data type,

whether it is unique, and whether it needs validation when inputted.

The second part is the XML definition of criteria for the codes to be generated. We first defined the output

root directory and the data model to be used. We defined how to generate every type of file, e.g., each in

one line. A template file needs to be provided, an output directory under the root directory is optional, and

a change tag is used to define whether the whole file needs to be regenerated or only the specific part will

be replaced by regenerated codes. As we discussed before, the generated file name will be decided based

on the template file name, and replace the “=OBJ=NAME=” part with the name of the data model.

 23

After running the GG generator, we produced the following generated files:

• mapping for StudentAddress in univ\Jrun\servers\univ\WEB-INF\Struts-config.xml;

• univ\Jrun\servers\univ\StudentAddress.jsp;

• univ\app\forms\ StudentAddressForm.java;

• univ\app\actions\PreStudentAddressAction.java and PostStudentAddressAction.java

• univ\app\businesObjects\StudentAddress.java

• univ\app\ejb\entity\StudentAddressEJB.java, StudentAddressEJBHome.java, and

StudentAddressEJBImpl.java

• deployment description part in univ\Jrun\servers\univ\WEB-INF\META-INF\ejb-jar.xml

• univ\app\ejb\session\StudentAddressSession.java, StudentAddressSessionEJBHome.java, and

StudentAddressEJBImpl.java

• error message pieces in univ\Jrun\servers\univ\WEB-INF\classes\ApplicationResources.properties

• all method skeletons in univ\app\StudentRecordsService.java

As we mentioned earlier, some pages contain a data model that is complicated enough to break into

mapping to several tables in the database. As an example refer to ContactInfo, as shown in Figure 14.

Every leaf node maps to a table in the database. The corresponding configuration code for generation is

also shown in Figure 14. One might notice that ContactInfo includes StudentAddress. Thus we do not

need to repeat the generation configuration piece for StudentAddress, and the same concept is applied to

other similar leaf nodes, such as Name, and AddressType. We can see that no entity beans will be

generated, nor any table and deployment descriptor pieces. Applying the same method to all data models,

we got a running mockup for the project, which was ready for the client to view. After delivering the

mockup to the client, the client was satisfied with the contents, with the exception of minor wording edits

in the pages. . To perform these changes we simply went to the corresponding JSP pages to make the

modification and delivered the updated mockup to the client. After the client agreed with the final mockup,

the only work needed was to embed the business logic into the corresponding service layer, that is, to

 24

Address

PersonalContact
Address address
String dayPhone
String eveningPhone

AdditionalContact
String contactId
String contactName
String contactNumber

EmergencyContact
Name name
Address address
String phone

ContactInfo
Collection addressUsages
Collection additionalContacts
EmergencyContact emergencyContact

AddressUsage
AddressType addressType
PersonalContact addressInfo

AddressType
String addressCode
String addressName
boolean viewable
boolean updatable
boolean datesRequired

Address

 Name

<genericGenerator outputDir ="univ" data="ContactInfo">
 <CODE NAME="ContactInfo">
 <template name="=OBJ=NAME=Bean.java" outputDir="businessObject" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJB.java" outputDir="ejb\session" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJBHome.java" outputDir="ejb\session" change="ALL"/>
 <template name="=OBJ=NAME=SessionEJBImpl.java" outputDir="ejb\session" change="PART"/>
 <template name="=OBJ=NAME=Service.java" outputDir="ejb\service" change="PART"/>
 <template name="=OBJ=NAME=.jsp" outputDir="JRun\servers\univ" change="PART"/>
 <template name="=OBJ=NAME=Form.java" outputDir="forms" change="ALL"/>
 <template name="Pre=OBJ=NAME=Action.java" outputDir="actions" change="ALL"/>
 <template name="Post=OBJ=NAME=Action.java" outputDir="actions" change="ALL"/>
 <template name="struts-config.xml" outputDir="JRun\servers\univ\WEB-INF" change="PART"/>
 <template name="ApplicationResources.properties"
outputDir="JRun\servers\univ\WEB-INF\classes" change="PART"/>
 </CODE>
</genericGenerator>

<genericGenerator>
 <Data NAME="ContactInfo">
 <ATTR ATNAME="AddressUsages" ATYPE="Collection" UNIQ="NO"/>
 <ATTR ATNAME="AdditionalContact" ATYPE="Collection" UNIQ="NO"/>
 <ATTR ATNAME="EmergencyContact" ATYPE="EmergencyContact" UNIQ="NO"/>
 </Data>
</genericGenerator>

Figure 14. Example of configuration for ContactInfo Data Model

replace the dummy method body with the real business scenario. All other code and interfaces required no

additional modification.

After the whole application was delivered, the code was examined for analysis. We found that only 9.62%

of the final code was eventually coded by developers; while 90.38% of the system was automatically

generated. As a result, since over 90% of the code was automatically generated, the code quality was

guaranteed, the development process was greatly shortened, and the subsequent test phase shortened. As a

matter of fact, the project was originally assigned to a team of four full-time developers with time frame of

four months. With the adoption of WebGen, the project was accomplished by one a full-time developer

(the first author of this article) together with a part-time JSP designer and programmer. Our initial

 25

experience with this system indicates that WebGen can provide improvements in development speed while

enhancing the reliability of the resulting applications.

After the project was delivered, the university requested to deploy the system to another environment that

required significant changes, ranging from data model to front-end interface modifications. However, the

overall business logic and scenarios remained the same. Since WebGen provides the flexibility to

regenerate portions of a file that relate to corresponding template files, the base system was highly reused.

All template files and configuration files remained unchanged, while only data files were modified if as

required. Therefore, the developer spent three days with the clients accumulating change requests and

completing a new requirements document and then spent only one-day modifying data files so as to reflect

change requests. Afterwards, WebGen was invoked again, and a new complete system was constructed.

The developer did not manually update any regenerated Java code. The only thing left to do was to ask the

visual designer to adjust JSP pages according to the client’s requests. Our empirical experience on this

project demonstrates the reusability of our WebGen tool.

There were also issues that arose from our experiment. One of the most important advantages of using

MODFM is that our WebGen could automatically generate code from the front-end to the back-end.

However, we require that the mappings between the front-end JSP pages and business objects that relate to

the back-end system cannot be too complicated. Therefore, a senior-level architect is required to

decompose and design the object model for big-scale complex systems. Overall, we feel that more

WebGen internal facilities should be provided to enhance the ability of MODFM to support large-scale

complicated web applications.

8. Conclusions and Future Work

MODFM is an architecture-based methodology that guides developers to quickly construct a prototype of a

web application. MODFM applies a top-down approach to functionally decompose a system into web

pages organized in menu system, while generating all the code, the from front-end all the way to the back-

 26

end, integrating it into a running mockup system. While analysis efforts are unavoidable in any

development cycle, MODFM reduces this effort by loosely coupling the analysis phase and development

phase. The key idea is to construct a mockup system as early stage as possible. A mockup system can

often be the best communication media with a client to elicit, validate, and finalize the requirements at the

user interface level. Early mockup systems offer clients an opportunity to participate in the design and

direction of the system at a very early stage. It facilitates the discussion of analysis phase. It gives a client

a real feeling of how the system will look and feel. It also offers clients’ confidence and avoids last minute

project re-engineering.

Architecture-based code generation helps to build a running mockup system with minimal development

effort. Furthermore, a mockup system can be easily regenerated based on modifications from client

feedback. This automatic generation engine offers easy iterative versions of mockup system. Business

logic is embedded in methods in the service layer only and all other layers are automatically generated from

the template system and data model. Template system can be reused in other web applications using the

same technologies. Different applications modify the data model thus get a different mockup system

generated. Business logic can also be reused with other methods. MODFMEnv not only provides a fast-

prototyping environment, but also provides a highly reusable development environment. MODFM can be

applied to any size of web application development and it is especially efficient for large and complex web

applications. Even without MODFMEnv, the methodology is still applicable for web design and

development, but MODFMEnv provides powerful code generators to help construct mockup systems easily

and quickly.

Our future work will include an Integrated Development Environment (IDE) to support MODFM.

Currently, developers need to set up data models and configurations in a set of XML files. Although

developers’ programming work has already been decreased significantly, we would like to build a GUI

based IDE environment to help developers construct and organize required XML files resulting in even

faster generation of a mockup system.

 27

Acknowledgements

We would like to acknowledge our appreciation to David Flaxer for proof reading our manuscript.

References

[1] P. Fraternali and P. Paolini, “Model-driven Development of Web Applications: the AutoWeb System”,

ACM Transactions on Information Systems (TOIS), Vol. 18, Iss. 4, Oct. 2000, pp. 323-382.

[2] I. Sommerville, Software Engineering, Addison-Wesley Pub Co; ISBN: 020139815X; 6th edition.

[3] P. Szekely, User Interface Prototyping: Tools and Techniques, USC/Information Sciences Institute,

1994.

[4] M. Bochicchio and R. Palano, “Prototyping Web Applications”, Proceedings of the 2000 ACM

Symposium on Applied Computing, 2000, Como, Italy, pp. 978-983.

[5] The American Heritage Dictionary of the English Language, 4th edition, Houghton Mifflin Company,

2000.

[6] A. Ginige and S. Murugesan, “The Essence of Web Engineering – Managing the Diversity and

Complexity of Web Application Development”, IEEE Multimedia, Apr. 2001, pp. 22-25.

[7] M. Gaedke and J. Rehse, “Supporting Compositional Reuse in Component-Based Web Engineering’,

Proceedings of the 2000 ACM Symposium on Applied Computing, Como, Italy, pp. 927-933.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Addison Wesley 1994.

[9] F. Garzotto, P. Paolini, and D. Schwabe, “HDM – A Model Based Approach to Hypermedia

Application Design”, ACM Transactions on Information Systems, Vol. 11, Iss. 1, Jan. 93, pp. 1-26.

[10] P.P. Chen, “The Entity-Relationship Model: Toward a Unified View of Data”, ACM TODS, Vol. 1,

Iss. 1, 1976, pp. 9-36.

[11] J. Conallen, ”Modeling Web application architectures with UML”, Communications of the ACM, Vol.

42, Iss. 10, Oct. 1999, pp. 63-70.

[12] T. Isakowitz, A. Stohr, and E. Balasubramanian, “RMM: A Methodology for Structured Hypermedia

Design”, Communications of the ACM, Vol. 38, Iss. 8, Aug. 1995, pp. 34-44.

 28

http://portal.acm.org/toc.cfm?id=338407&type=proceeding&coll=portal&dl=ACM&CFID=3104405&CFTOKEN=99091849

[13] M. Gaedke, D. Schempf, and H.W. Gellersen, “WCML: An Enabling Technology for the Reuse in

Object-Oriented Web Engineering”, Poster-Session at the 8th International World-Wide Web Conference

(WWW8), 1999, Toronto, Ontario, Canada.

[14] Y. Lei, E. Motta, and J. Domingue, “IIPS: An Intelligent Information Presentation System”,

Proceedings of the 7th International Conference on Intelligent User Interfaces, 2002, San Francisco, CA,

USA, pp. 200-201.

[15] S. Ceri, P. Fraternali, and A, Bongio, “Web Modeling Language (WebML): A Modeling Language for

Designing Web Sites”, the 9th International World Wide Web Conference, Amsterdam, Netherlands, May

2000, pp. 15-19.

[16] R. Wieringa, “A Survey of Structured and Object-Oriented Specification Methods and Techniques”,

ACM Computing Surveys, Dec. 1998, pp. 459-527.

[17] E. Yourdon, Modern Structured Analysis, Yourdon Press, Upper Saddle River, N.J., 1989.

[18] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling Language User Guide, Addison-

Wesley, Reading, MA, 1998.

[19] N. Medvidovic et al., “Modeling software architectures in the Unified Modeling Language”, ACM

Transactions on Software Engineering and Methodology (TOSEM), Vol. 11, Iss. 1, Jan. 2002, pp. 2-57.

[20] http://java.sun.com/j2ee.

[21] http://jakarta.apache.org/struts.

[22] http://www.jostraca.org/links.html.

[23] Y. Lei, E. Motta and J. Domingue, "An Ontology-Driven Approach to Web Site Genenration and

Maintenance", Proceedings of 13th International Conference on Knowledge Engineering and Management,

Sigüenza, Spain, October 1-4, 2002, pp. 219-234.

[24] http://www.kapitec.com/Produits/CodeCharge/en/codecharge_std.htm.

[25] http://www.koolfrog.com.

[26] http://www.beust.com/cedric/ejbgen/#introduction.

[27] http://www.code-generator.com/.

[28] http://industry.java.sun.com/solutions/products/by_product/0,2348,ejb-5791-28,00.html.

[29] http://www.imatix.com/html/gslgen/index.htm.

 29

http://java.sun.com/j2ee
http://jakarta.apache.org/struts
http://www.jostraca.org/links.html
http://www.kapitec.com/Produits/CodeCharge/en/codecharge_std.htm
http://www.koolfrog.com/
http://www.beust.com/cedric/ejbgen/
http://www.code-generator.com/
http://industry.java.sun.com/solutions/products/by_product/0,2348,ejb-5791-28,00.html
http://www.imatix.com/html/gslgen/index.htm

[30] http://www.jeewiz.co.uk/index.html.

[31] .B. McLaughlin and M. Loukides, “Java and XML”, O’Reilly Java Tools, 2001.

[32] J. Sigle, “Structured Development of Menu-Driven Application Systems”, Proceedings of the

International conference on APL:part 1, New York, NY, USA, 1979, pp. 188-195.

[33] B. Friman, “MGEN – A Generator for Menu Driven Programs”, Proceedings of the 7th International

Conference on Software engineering, Orlando, FL, USA, 1984, pp. 198-206.

[34] http://java.sun.com/docs/books/tutorial/uiswing/mini/index.html.

[35] http://xml.apache.org.

[36] http://java.sun.com/j2se/1.4.1/docs/api/index.html.

[37] R. Monson-Haefel, Enterprise JavaBeans, O’Reilly & Associates, Inc. ISBN: 0-596-00226-2, 3rd

edition, 2001.

[38] A. Thomas, “Enterprise JavaBeans Server Component Model for Java”, prepared for Sun

Microsystems by Patricia Seybold Group, 1997, http://java.sun.com/products/ejb/white_paper.html.

 30

http://www.jeewiz.co.uk/index.html
http://java.sun.com/docs/books/tutorial/uiswing/mini/index.html
http://xml.apache.org/
http://java.sun.com/j2se/1.4.1/docs/api/index.html

