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SUMMARY

The core of the Microsoft .NET platform includes a new virtual machine (VM), the Common Intermediate
Language, also known as MSIL. Unlike most other VMs, including the Java VM, MSIL is specifically
designed to support a wide range of languages. While it is designed primarily for type-safe, object-
oriented languages, it also has facilities that support both low-level languages and very high-level
languages. For example, it accommodates unsafe pointer arithmetic and tail calls. This paper describes
the implementation of a MSIL back end for lcc, a retargetable compiler for Standard C. C is at one end of
the range of languages that MSIL intends to support and lcc is just about the simplest ‘real’ C compiler that
is widely available. Porting lcc to MSIL thus provides a realistic test of how well MSIL supports this class of
languages and provides a glimpse at its performance costs. This effort succeeded, but static initializations,
function pointers, separate compilation and address arithmetic were major problem areas. These problems
also suggested improvements to lcc’s code-generation interface and they exposed a long-standing error in
the lcc front end. Preliminary measurements suggest that programs compiled by the MSIL back end run
two to three times slower than those compiled by lcc native Intel x86 back end, but the MSIL programs
have some important diagnostic benefits. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: virtual machine; .NET Common Intermediate Language; lcc; code generation; retargetable
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INTRODUCTION

The Microsoft .NET platform includes tools, technologies and methodologies for writing Internet
applications [1]. It includes new programming languages, tools that support XML Web services and
new infrastructure for writing HTML pages and Windows applications. Its core components are a new
virtual machine (VM) and runtime environment.

The VM, called the .NET Common Intermediate Language or MSIL for short, provides a low-
level, executable, type-safe program representation that can be verified before execution, in much
the same way as the Java VM [2] provides a verifiable representation for Java programs. Unlike the
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Java VM, however, MSIL is designed to support multiple languages, from type-unsafe imperative
languages to very high-level functional languages. Its multi-language design ambitions are close to
those of UNCOL [3], but its target machines are limited to modern processors with byte-addressing,
two’s-complement integer arithmetic and IEEE 754 floating-point arithmetic. MSIL and the runtime
environment are nearing acceptance as an ECMA standard [4].

While MSIL is intended to support nearly any language, the Microsoft languages Visual Basic .NET,
C# [5] and Managed C++, a type-safe version of C++ similar in spirit to the design described in [6],
are the only supported languages in wide use at the present time.

Language implementors are often eager to target their favorite language to a new VM, particularly
one that is likely to be used widely. There are many efforts underway to target MSIL for a wide variety
of languages, from COBOL to Haskell. Component Pascal [7] is perhaps the best-documented effort
to date.

This paper describes the design and implementation of an MSIL back end for lcc [8], a retargetable
compiler for Standard C. MSIL is class-based; that is, it supports classes and packages functions only
in classes. Consequently, it is best suited for object-oriented languages. It does, however, have the usual
set of imperative instructions abstracted from modern processors, which makes it possible to handle any
language, at least in theory. Interestingly, C’s lack of classes and objects, its unsafe features (such as
pointer arithmetic) and its use of separate compilation, put it at one end of the language spectrum
for MSIL.

lcc is about the simplest ‘real’ C compiler available and is well documented. Targeting MSIL thus
helps pinpoint the low end of this language spectrum and identifies some of the implementation
problems for similar languages. As with all retargeting efforts, doing yet another target can expose
flaws in the retargeting technology, e.g. in lcc’s code-generation interface. More interestingly,
retargeting to a VM can expose design flaws in the VM itself.

Targeting lcc to MSIL amounts to writing a new back end for lcc that emits MSIL and using the .NET
tools to generate the appropriate .NET executable file. Writing the back end requires understanding of
both MSIL and the lcc code-generation interface.

In summary, lcc’s MSIL back end—dubbed lcc.NET—supports all of Standard C except setjmp
and longjmp and some uses of pointers to functions without prototypes. A new MSIL ‘linker’
was required to cope with initialization and separate compilation, but this tool also helps detect
programming errors. lcc.NET also exposed some weak points in the lcc code-generation interface.

THE COMMON INTERMEDIATE LANGUAGE

MSIL is a stack-based VM. While it is possible to interpret MSIL programs, there is no supported
MSIL interpreter. Programs are translated into machine code by a just-in-time (JIT) code generator that
is built into the .NET runtime system. MSIL programs are verified to be type-safe before execution,
unless security settings are set otherwise.

MSIL supports the data types summarized in Table I. The second column shows the corresponding
C type. Managed pointers point to garbage-collectible objects and arrays and to their fields and
elements. Transient pointers point to, for example, local variables and only exist on the evaluation
stack. C pointers are, of course, represented by unmanaged pointers. The I, U and R types denote the
native integral and floating-point types. While lcc does not use values of these types explicitly, such
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Table I. MSIL types.

Type code C types Details

I, U Signed/unsigned native integer of
unspecified size

I1, I2, I4, I8 signed char, short, int, long, Signed/unsigned integers of specific sizes
U1, U2, U4, U8 unsigned char, short, int, long
R4, R8, R8 float, double, long double Floating-point values of specific sizes
F Native floating-point with precision ≥ R8
U T * Unmanaged pointers
& Managed pointers
O Opaque object references

values do appear on the evaluation stack as intermediate results, which impacts the code generator as
detailed below.

There are 255 instructions divided roughly into two groups: basic instructions, which are abstractions
of the instructions found on most modern processors, and object-oriented instructions, which perform
target-independent object manipulation. There are also instructions for object creation and initialization
and for exception handling. Table III in Appendix A lists all of the MSIL instructions.

Unlike the Java VM, MSIL does not have type-specific instructions for most of its operations,
e.g. add, because the JIT code generator can determine the type from the contents of the evaluation
stack.

Predictably, few of the object-oriented instructions are needed for implementing C. Indeed, MSIL’s
support for unmanaged pointers, arithmetic types of specified sizes and indirect addressing makes it
possible to implement unsafe languages like C.

THE lcc CODE-GENERATION INTERFACE

lcc is distributed with back ends for SPARC, MIPS, X86 and ALPHA for several platforms, and others
have written back ends for additional platforms. lcc is, by design, a monolithic compiler: its back ends
are loaded with the front end to form a single executable. A small code-generation interface defines
the interaction between lcc’s target-independent front end and its target-dependent back ends [8,9].
This interface consists of a few shared data structures, a 33-operator tree intermediate representation
(IR) that represents executable code and 18 functions that manipulate and modify the shared data
structures.

The shared data structures include tree nodes (Node), symbol-table entries (Symbol) and types
(Type). The 33 tree IR operators are listed in Figure 1 and are explained in detail in [9]. Each generic
operator can be specialized by appending an operand type suffix and a size in bytes. The six type
suffixes are:

F float P pointer
I integer V void
U unsigned B ‘block’ (aggregate).

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:265–286



268 D. R. HANSON

CNST ARG ASGN INDIR CVF CVI CVP CVU
NEG CALL RET ADDRG ADDRF ADDRL ADD SUB
LSH MOD RSH BAND BCOM BOR BXOR DIV
MUL EQ GE GT LE LT NE JUMP LABEL

Figure 1. lcc tree IR generic operators.

void progbeg(int, char *[]) initialize the back end
void progend(void) finalize the back end
void defsymbol(Symbol) initialize a symbol-table entry
void export(Symbol) export a symbol
void import(Symbol) import a symbol
void global(Symbol) define a global
void local(Symbol) define a local
void address(Symbol, Symbol, long) define an address relative to a symbol
void blockbeg(Env *) open a block-level scope
void blockend(Env *) close a block-level scope
void function(Symbol, Symbol [], Symbol [], int) define a function body
void gen(Node) generate code
void emit(Node) emit code
void defconst(int, int, Value) initialize an arithmetic constant
void defaddress(Symbol) initialize an address constant
void defstring(int, char *) initialize a string constant
void space(int) define an uninitialized block
void segment(int) switch logical segments

Figure 2. lcc code-generation functions.

There can be up to 9 sizes. For example, ADDF4 denotes a 4-byte floating addition and CVII2
denotes a conversion from an integer to a 2-byte integer. Not all of the 33 × 6 × 9 = 1782 operator
combinations are meaningful and the number of sizes on most targets is limited. On 32-bit targets,
there are 130 type- and size-specific operators. Conversions on 32-bit targets, for instance, convert only
between 4- and 4- or 8-byte floats, or widen or narrow between three sizes of integers. Some operators
have only one or a few valid suffixes; for instance, the address operators (ADDRL, ADDRF, ADDRG)
can have only the P type suffix and whatever size is the size of a pointer on the target. Back ends only
need to accommodate those type- and size-specific operators that are meaningful on their target.

Figure 2 summarizes the 18 code-generation functions. On most targets, many of these routines are
very short, perhaps only a few calls to printf, because they simply emit assembly language. Most of
the work is done in gen, emit and function, which collaborate to generate and emit code for a
function.

For a given target, type sizes and pointers to the interface functions are packaged in an ‘interface
record’, which is selected at runtime by a command-line option. lcc is thus a cross compiler, since it
can emit code for any of the resident back ends. MSIL is just another back end to lcc. More details
on lcc’s packaging are given in [10] and the complete specification of the code-generation interface is
given in [9].
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Figure 3. The lcc compilation pipeline in traditional environments.

COMPILATION PIPELINE

In traditional environments, the lcc driver compiles a C program by preprocessing the source, compiling
the preprocessed source into the assembly language and calling the assembler to generate object code.
As shown in Figure 3, a linker combines object files and optional libraries into an executable file
(Figure 3 omits the preprocessor). For example, in Microsoft Windows, the command

lcc -o hello.exe main.c hello.c

runs the equivalent of the following commands.

cpp ... main.c main.i
rcc -target=x86/win32 main.i main.asm
ml ... -Fomain.obj main.asm
cpp ... hello.c hello.i
rcc -target=x86/win32 hello.i hello.asm
ml ... -Fohello.obj hello.asm
link ... main.obj hello.obj -OUT:hello.exe liblcc.lib libc.lib

cpp is the preprocessor, rcc is the compiler proper, ml is the assembler and link is the linker.
Also, readable names are used for the intermediate files above; in practice, the lcc driver generates
temporary files.

There are no object files in .NET. A .NET executable program is packaged as an assembly
that holds the MSIL code and metadata, which contains the version, type, dependency, locale and
cryptographic information. Assemblies often exist as single executable files or a dynamically linked
library, but multi-file assemblies are possible. lcc.NET generates only single-file assemblies. Figure 4
shows the lcc.NET compilation pipeline. The lcc command shown above runs the following commands.
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Figure 4. lcc.NET compilation pipeline.

cpp ... main.c main.i preprocess main.c
rcc ... -target=msil/win32 main.i main.il compile main.i
cpp ... hello.c hello.i preprocess hello.c
rcc ... -target=msil/win32 hello.i hello.il compile hello.i
illink ... main.il hello.il -l lcclib.dll -l mscvrt.dll link, search libraries

lcclib.dll
and msvcrt.dll,
generate _assembly.il

ilasm ... -out:hello.exe main.il hello.il _assembly.il assemble and emit executable

Here, the compilation ends with MSIL assembly language files, but these are unsuitable for execution
because, for example, they can contain unresolved references. The lcc.NET linker, illink, reads
these files, resolves references, performs some additional code-generation tasks (as detailed below)
and writes an ‘entry point’ file, named _assembly.il above, which contains assembly information
and the main program. The .NET assembler, ilasm [11], functions both as an assembler and as
a traditional linker. It reads the same MSIL files as illink along with the generated entry point
file and emits an assembly as a .NET executable program. lcc.NET relies on a small library of lcc-
specific functions (lcclib.dll) and on the Standard C library that comes with Visual C .NET
(msvcrt.dll).

MAPPING C ONTO MSIL

MSIL only supports classes, and classes contain static and instance members, which include fields and
methods. For example, the following complete MSIL program prints ‘Hello world’:

.assembly hello {}

.class public Hello {
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.method static public void Main() cil managed {
.entrypoint
.maxstack 1
ldstr "Hello world!"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}

The .assembly declaration declares the name of this assembly. The .class declaration defines the
class Hello and opens a scope in which to define its members. The .method declaration defines
the static method Main and .entrypoint stipulates that this method is the entry point. Methods
must specify, using .maxstack, the maximum number of evaluation stack slots they use. The next
three MSIL instructions push the Unicode string Hello world! on the stack, calls the WriteLine
method in the .NET Frameworks library, and returns. Italic keywords are shown only for completeness
and may otherwise be ignored.
ilasm supports a single, unnamed global class whose members are those fields and methods defined

outside of any class scope. Only static members are permitted. lcc maps C globals onto static global
fields and C functions onto static global methods. C parameters and locals are mapped to method
parameters and locals. Most of C’s data types map directly onto the corresponding MSIL data types as
shown in Table I, with two exceptions. The built-in MSIL array type cannot be used for C-style arrays
because MSIL arrays are allocated in a managed heap. MSIL supports only Unicode strings that are
also heap allocated and are not terminated by null characters. lcc uses ‘value classes’ of the appropriate
number of bytes for arrays and for strings of 8-bit characters. A value class is a class whose instances
appear only on the evaluation stack or as the value of fields in objects allocated dynamically.

Although ilasm reads multiple MSIL files, it treats them logically as a single input that defines
classes and their members. Consequently, there is a single name space for top-level names. The names
of C globals can be used as-is, but statics, including compiler-generated constants, must have globally
unique names. For each separately compiled input, lcc generates a unique prefix from the current time
and process number and inserts this prefix at the beginning of those names. Another alternative would
be to use the nested class facility to encapsulate the names from each compilation unit, but this approach
would still require a unique name for the outer class and would require that class name in references
to globals from other compilation units, which complicates linking because the linker would have to
rewrite its input MSIL files.

For the prototypical C program

#include <stdio.h>
void main(void) { printf("Hello world!\n"); }

lcc emits

.class private value explicit ansi sealed ’int8[]’ {.pack 1 .size 14}

.method public hidebysig static void ’main’() cil managed

.maxstack 2
ldsflda valuetype ’int8[]’ $3dc1b116_d70__2
call vararg int32 ’printf’(void*)
pop
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$L1:
ret
}
.field public static valuetype ’int8[]’ $3dc1b116_d70__2 at $3dc1b116_d70_4
.data $3dc1b116_d70_4 = {
bytearray ( 48 65 6c 6c 6f 20 77 6f 72 6c 64 21 a 0 )
}

The .class declaration defines the type of the constant "Hello world!\n", which is just a
14-byte sequence. The type name—int8[]—could be anything, but lcc uses C-like declarations for
type names to make the generated code easier to decipher for MSIL programmers. Also, the size of
the value type, 14 in the example above, is not part of the type. So, the class int8[] can be used as
the type for all character arrays, including those allocated in the heap at runtime; similar comments
apply to other array types. The .field and .data declarations collaborate to define a static field
and initialize it to "Hello world!\n". The unique prefix is 3dc1b116_d70_, which appears
in the field name and in the .data label. The method for main loads the address of the constant
(ldsflda), calls printf (call), discards printf’s return value (pop) and returns (ret).

Note that the MSIL call instruction requires a full type signature—argument types and return
type—for the callee. For functions with prototypes, lcc emits the appropriate signature; for those
without prototypes, lcc fabricates a signature from the promoted types of the actual arguments.
For example, if the actual argument is a char, the promoted type is int, etc. A similar procedure
is used when compiling function definitions into method declarations. Signatures are also required
in the definitions of fields and locals and in all instructions for which the operand type cannot be
determined from context, such as loads and stores; the signature of the ldsflda instruction above is
an example. Perhaps a quarter of the code in the MSIL back end is devoted to forming and emitting
type signatures.

Most of the interface functions and the instruction selection code for the MSIL back end are
straightforward. Many of the lcc IR operators map directly onto corresponding MSIL instructions.
Static initialization, function pointers, address arithmetic, floating-point operators and variable length
argument lists proved to be the trouble spots.

Static initialization

As the example above shows, MSIL supports the static initialization of scalars and of sequences of
scalars; it is also possible to initialize pointers, e.g. for the input

int x, *p = &x;

lcc emits

.field public static void* ’p’ at $p

.data $p = {
&($x)
}
.field public static int32 ’x’ at $x
.data $x = { ... }

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:265–286



lcc.NET 273

The unique prefix and the type declarations are omitted in this and in subsequent displays to make them
more readable. Address arithmetic can appear in constant pointer initializations. For instance,

int x[10], *p[2] = { 0, &x[5] };

initializes p[1] to the address of the sixth element of x. For constant address arithmetic of the form
x + n, where x is a location and n is a byte offset, lcc generates a symbol to represent the location.
It calls the address code-generation function (see Figure 2) with the new, partially initialized symbol
x, n, and the back end completes the target-dependent initialization of the new symbol. For x[5], the
Intel x86 back end just sets the symbol name to ‘x+20’, which the assembler accepts and computes
the address intended.

MSIL and ilasm do not have a similar facility. The only way to initialize such pointers is at
execution time, so the code-generation function defaddress in the MSIL back end generates an
initialization method that contains the appropriate address computations and assignments. For the
initialization of p[1] above, lcc emits the following data and initialization method. The line numbers
are for explanatory purposes and are not part of the emitted code.

.field public static valuetype ’void*[]’ ’p’ at $p

.data $p = {
int32 (0),
int32 (0)
}
.field public static valuetype ’int32[]’ ’x’ at $x
.data $x = { ... }
...

1 .method public hidebysig static void $$_init() cil managed {
2 .maxstack 3
3 ldsflda valuetype ’void*[]’ ’p’
4 ldc.i4 4
5 add
6 ldsflda valuetype ’int32[]’ ’x’
7 ldc.i4 20
8 add
9 stind.i4

10 ret
}

11 //$$INIT call void $$_init()

The initialization method appears in lines 1–10. Lines 3–5 compute the address of p[1], lines 6–8
compute &x[5] and line 9 uses indirection to store that value into p[1]. Line 11 directs illink to
arrange for the initialization method to be called at program startup as detailed below.

This initialization problem forced the only change in the lcc code-generation interface.
The address code generation function is optional. If omitted, lcc’s front end generates code for
address computations. This change is upward compatible with existing lcc back ends, so only the front
end was modified.

Function pointers

Initializations for function pointers cause simpler problems—emitting explicit assignments is the only
way to initialize them. For example, given the code
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static int say(const char *msg) { printf(msg); }
int (*hello)(const char *) = say;

lcc emits the assignment into the initialization method:

.method public hidebysig static int32 $1_say(void*) cil managed {

...
}
.field public static method int32 *(void*) ’hello’ at $hello
.data $hello = {
int32 (0)
}
.method public hidebysig static void $$_init() cil managed {
.maxstack 3

1 ldsflda method int32 *(void*) ’hello’
2 ldftn int32 $1_say(void*)
3 stind.i4
ret
}
//$$INIT call void $$_init()

Lines 1–3 stores the address of the say method indirectly into the hello field.
One of .NET’s strong suits is interoperability. It has built-in support for calls from managed

code written in MSIL to unmanaged code in C or other languages that compile to native code and
vice versa. The runtime system handles argument marshalling and calling sequence conversion on-the-
fly when necessary. This facility makes it possible for lcc.NET to use the Microsoft Standard C library.
Function pointers, however, are not fully supported, so the MSIL back end must do extra work.

In the general case, lcc must know if a function pointer is the address of a managed method or
an unmanaged function. To simplify the implementation, lcc assumes that all function pointers are
to managed code and converts those that might point to unmanaged code to managed equivalents at
runtime. For example, if the code above is changed to

int (*hello)(const char *) = puts;

the body of the initialization method becomes

1 ldsflda method int32 *(void*) ’hello’
2 ldftn int32 ’puts’(void*)
3 ldsfld int8 __is_unmanaged_puts
4 brfalse $L1
5 call void* __getMUThunk(void*)
6 $L1:
7 stind.i4

Lines 3–6 determine if puts is in unmanaged code during execution. The address of puts passed
to __getMUThunk if __is_unmanaged_puts is true. __getMUThunk generates a ‘transition
thunk’ on-the-fly at runtime to handle calls to puts from managed code and returns a pointer to this
thunk. Function pointers returned by unmanaged functions are also filtered through __getMUThunk.

There is also a __getUMThunk, which generates transition thunks at runtime for indirect calls from
unmanaged code back to managed code. Calls to the Standard C library function qsort exemplify this
variant of the problem. Consider
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int compare(const void *x, const void *y) {
return *(int*)x - *(int*)y;

}
...
qsort(array, elemsize, nelems, compare);
...

When the call to qsort is compiled, lcc cannot determine if qsort is managed or unmanaged code,
but it does know that compare is managed code. lcc generates the following code for the call to
qsort:

1 ldsflda valuetype ’int32[]’ ’array’
...

4 ldftn int32 ’compare’(void*,void*)
5 ldsfld int8 __is_unmanaged_qsort
6 brfalse $L16
7 call void* __getUMThunk(void*)
8 $L16:
9 call void ’qsort’(void*,int32,int32,method int32 *(void*,void*))

Lines 5–8 cause the pointer to compare to be passed to __getUMThunk if __is_unmanaged_
qsort is true. __getUMThunk generates and returns the address of a thunk that makes it possible to
call the managed compare from unmanaged code. Using these functions and flags, lcc ensures that
only unmanaged function pointers are passed to unmanaged code and likewise for managed code.
__getMUThunk and __getUMThunk cache thunks so each thunk is generated only once.

These short functions (80 lines) are part of lcclib.dll, the small lcc-specific library, which is
written in C.

Function-pointer support in lcc.NET has two limitations. C permits pointers to functions without
prototypes to be assigned to pointers with prototypes, e.g.

extern int puts();
int (*hello)(const char *) = puts;

is valid. In .NET, however, method ‘names’ include signatures, so the name of puts is actually
’puts’(), which will not match ’puts’(void*) and thus causes an undefined reference
diagnostic during linking. The second, more serious, limitation is that the transition thunks cannot
handle pointers to unmanaged functions with a variable number of arguments, because there is no way
to determine reliably the number of actual arguments. Thus printf cannot be used in place of puts
in the examples above, for instance. Fortunately, these limitations rarely occur in practice with Standard
C code.

Linking

lcc emits a MSIL assembly language file for each input source file. It cannot, however, determine
if external functions refer to functions defined in other MSIL modules or in unmanaged native-code
libraries. As suggested in Figure 4, the linker illink consumes MSIL files and names of libraries,
determines which externals refer to unmanaged library functions and writes an ‘entry-point’ MSIL file,
named _assembly.il in the examples above, that contains the appropriate declarations. In addition,
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1 .assembly ’a.exe’ {}
2 .method public hidebysig static void $$INIT() cil managed {
3 call void $$_init()
4 ret

}
5 .method public hidebysig static void $Main(string[] argv) cil managed {
6 .entrypoint
7 .maxstack 3
8 call void $$INIT()
9 call void ’main’()

10 ldc.i4 0
11 call void exit(int32)
12 ret

}
13 .method public hidebysig static pinvokeimpl("msvcrt.dll" ansi cdecl)

void ’exit’(int32) native unmanaged preservesig {}
14 .method public hidebysig static pinvokeimpl("msvcrt.dll" ansi cdecl)

int32 ’printf’(void*) native unmanaged preservesig {}
Figure 5. Entry-point file generated by illink.

illink emits into this file the assembly packaging required in the .NET environment, which includes
the program entry point. The input MSIL files and the generated entry-point file are then passed to
ilasm, which writes the final executable. Given the two files,

main.c:
void main(void) {

extern int (*hello)(char *);
(*hello)("Hello world!\n");

}
hello.c:

static int say(const char *msg) { printf(msg); }
int (*hello)(const char *) = say;

the command shown above,

lcc -o hello.exe main.c hello.c

generates the entry-point file shown in Figure 5.
illink is a simple variant of the machine-independent linker described in [12]. It builds and

manipulates three sets of symbols. Direct method calls and ldftn instructions contribute symbols to
R, the set of functions referenced, and method definitions contribute symbols to D, the set of functions
defined. Libraries are searched for symbols in R–D; those that are found are added to D and to E, the
set of external functions defined in unmanaged code. Thus, the placement of libraries in the illink
command line is important, because searching a library can change both R and D.

At the end of linking, illink emits a method declaration for each symbol in E as exemplified
by lines 13 and 14 in Figure 5. Line 14, for example, specifies that printf is an external static
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function defined in msvcrt.dll, the C runtime library. The pinvokeimpl attribute specifies
that printf must be invoked using a platform-specific calling sequence, specifically, the C calling
sequence (cdecl).
illink also collaborates with lcc to generate initialization functions; it collects comment lines of

the form

//$$name instruction

and emits instruction into the definition for the method $$name and arranges to call $$name before
main. As explained above, lcc emits per-file initialization functions and lines like

//$$INIT call void $$__init()

which causes the initialization functions to be called at program start-up when $$INIT is called.
In Figure 5, lines 2–4 define $$INIT and it is called in line 8.

Finally, illink defines and initializes the __is_unmanaged_name flags emitted by lcc.
It collects the flags as it reads the MSIL inputs and emits initialized field definitions for them into
the entry-point file. For example, when qsort comes from the C library, illink emits

.field public static int8 __is_unmanaged_qsort at $_qsort

.data $_qsort = int8 (1)

Of course, illink could rewrite the MSIL code to avoid the runtime tests and to move the
initialization code into the entry file, but in the current design, illink only reads the MSIL files
generated by lcc; it does not write them.

Floating point

Storage locations that hold floating-point values are of fixed size, either 4 or 8 bytes (see Table I).
Floating-point arguments, locals, return values and values on the evaluation stack are represented using
the internal F type. The precision of this ‘native’ floating-point type is unspecified, but it must be at least
that of R8. The F type allows a .NET implementation to use the most natural and efficient representation
for floating-point numbers, e.g. the 80-bit extended precision on the Intel x86.

This design avoids some of the criticisms leveled at Java’s floating-point semantics [13], which does
not give the programmer full control of floating-point operations as specified by the IEEE 754 Standard.
However, the .NET design also complicates the back end. lcc maps C arguments and locals onto MSIL
arguments and locals. The JIT code generator may assign registers to some of these variables, which
forces the back end to emit explicit conversions to insure that the precision of the values matches those
of the types of the variables. The following C program illustrates the potential pitfall:

void main(void) {
float temp = 0.0F, one = 1.0F, delta = 1.0F;
while(temp != one) {

temp = one + delta;
printf(".");
delta = delta/2.0F;

}
printf("%e is the least number that can be added to 1.0F\n",delta*4.0F);

}
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This program computes and prints the smallest floating-point number that can be added to 1.0F, which
is 1.192093 × 10−7. For the assignment to temp, lcc might emit

.locals ([0] float32 ’delta’)

.locals ([1] float32 ’temp’)

.locals ([2] float32 ’one’)

...
ldloc 2 temp = one + delta
ldloc 0
add
stloc 1

This program works—most of the time. If, however, the emboldened call to printf is removed,
the program prints 2.220 446 × 10−16. The Intel x86 JIT code generator assigns temp to a floating-
point register, which holds an 80-bit value. The call to printf causes this register to be spilled to
memory and this spill includes a narrowing from 80 to 32 bits, changing the precision of the result.
Without the call, temp is never narrowed to 32 bits, and the loop does not terminate at the proper point.
lcc must inject explicit narrowing operations to ensure that variables have their declared precision; for
the example above, lcc must emit

ldloc 2 temp = one + delta
ldloc 0
add
conv.r4
stloc 1

The conv.r4 instruction narrows the sum to 32 bits before it is stored in temp and the program works
with or without the call to printf. lcc injects these kinds of conversions when passing arguments,
for assignments to locals and formals and for return values.

Variable length argument lists

MSIL has instructions designed specifically for dealing with variable length argument lists. While these
instructions complicate the back end a bit, they also provide an important diagnostic benefit.
For example,

#include <stdio.h>
#include <stdarg.h>
void print(char *fmt, ...) {

va_list ap; __va_list ap
va_start(ap, fmt); __va_start(&ap)
{ int x = va_arg(ap, int); *(int*)__va_arg(&ap,__typecode(int))
double y = va_arg(ap, double); ... similar translation ...
printf(fmt, x, y, va_arg(ap, char *)); } ... similar translation ...
va_end(ap); ((void)0)

}
void main(void) {

print("%d %e%s", 1, 2.3, \n");
}
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prints 1 2.300000e+000. If, say, 23 is passed in place of the emboldened 2.3, a runtime errors
occurs, because the .NET runtime detects that the actual argument, 23, is not a double. Conventional
C environments do not detect these kinds of common errors and usually print gibberish, because they
simply interpret the incoming bit pattern as a double. Invalid pointer arguments in variable length
argument lists usually cause unannounced crashes. The .NET runtime also provides stack traces for all
errors, so even dereferencing a null pointer is announced with a trace.

The MSIL back end collaborates with the macros va_list, va_start, va_arg and
va_end defined in stdarg.h to emit the appropriate MSIL instructions. The italicized fragments
on the right above show the result of the non-trivial expansions; the expansions for the other two uses
of va_arg are similar to the one shown. The MSIL back end recognizes the __va names as special
built-in functions and emits inline code for them. The compile-time built-in __typecode returns the
internal lcc code for its argument type. Standard C reserves the underscore prefix for exactly these
kinds of uses. For the three lines annotated above, lcc emits

1 .locals ([0] valuetype [mscorlib]System.ArgIterator ’ap’)__va_list ap
.locals ([1] int32 ’x’)
.locals ([3] void* ’1’)
...

2 ldloca 0 __va_start(&ap)
3 arglist
4 call instance void [mscorlib]System.ArgIterator::

.ctor(valuetype [mscorlib]System.RuntimeArgumentHandle)
5 ldloca 0 intx =*(int*)__va_arg(&ap,__typecode(int))
6 call instance typedref [mscorlib]System.ArgIterator::GetNextArg()
7 refanyval int32
8 stloc 3
9 ldloc 3

10 ldind.i4
11 stloc 1

Line 1 declares ap as an instance of the runtime system’s argument-list type, ArgIterator, and
lines 2–4 initialize ap to print’s argument list. The arglist instruction is one of the special MSIL
instructions for variable length argument lists; it retrieves a ‘handle’ to the argument list of the method
in which it appears. Lines 5 and 6 fetch the address of the next argument as a ‘typed reference’, which
is essentially a typed pointer, and the refanyval instruction in line 7 retrieves the actual address
of the argument and verifies that the referent is of the indicated type. The refanyval instruction is
where type errors like the one mentioned above are detected. Lines 8–11 store the actual address in a
temporary, fetch it again, load the integer at that address and store it in x.

The MSIL interoperability facilities supports the passing of argument list handles between managed
and unmanaged code, so the three statements surrounded by braces in print above can be replaced
by

vprintf(fmt, ap);

and an appropriate unmanaged va_list value is passed to vprintf in the C library.
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Table II. Sample execution times in seconds for
lcc and lcc.NET on a 7277-line input.

Target lcc lcc.NET

null 0.22 s 0.43 + 0.31 = 0.74 s
x86/win32 0.44 s 0.69 + 0.77 = 1.46 s
msil/win32 1.07 s 0.42 + 1.32 = 1.74 s

MEASUREMENTS

While performance was a secondary goal in lcc.NET, preliminary measurements do give an estimate
of the execution costs of using MSIL. lcc compiles itself and it emits similar code on all its
targets, except for minor target-specific details in the back ends. It thus provides an apples-to-apples
comparison: lcc compiled by lcc to a native executable compared to lcc compiled by lcc to MSIL
in a .NET executable. Table II shows the execution speeds for these two instances of lcc compiling
combine.c, a 7277-line module from GCC, the GNU C compiler. Numerous other inputs of varying
sizes gave similar ratios of the execution times. The second column is the time for the native lcc
and the third column is the time for lcc.NET given as JIT code generation time plus execution
time. The JIT times were obtained from a sampling profiler. These times are only for running the
compiler proper and were taken on a 933 MHz Intel Pentium III with 512 MB of memory running
Windows XP Professional Service Pack 1 and the retail version (build 3705) of the Microsoft .NET
Framework.

The first column is the target option: the null target emits no output and the x86/win32 and
msil/win32 targets emit Intel x86 assembly language and MSIL. The null target only executes code
in the front end and has no output and so gives a lower bound on lcc’s execution speed. Once the MSIL
is turned into x86 code by the JIT code generator, lcc.NET is just under twice as slow as the native
version and this ratio remains essentially the same when emitting x86 assembly language. The MSIL
back end must buffer the output of data initializations, which it does using lists of formatted strings.
It thus uses more memory than the other back ends, which perhaps explains the smaller performance
difference between the two compilers when emitting MSIL.

Including the JIT time, which cannot be avoided, makes lcc.NET about three times as slow as the
native version. The x86/win32 JIT time is much longer than the msil/win32 JIT time because the
x86/win32 back end is much bigger—over 5600 lines compared to 842 lines. Most of the x86/win32
back end is generated automatically [8] and includes over 1400 lines of static initializations and one
3300-line function.

Typical back ends for lcc are small, at least when compared to other compilers. The MSIL back
end itself is small, but it is only part of the solution. The number of non-blank, non-comment lines in
lcc.NET components are as follows:

842 MSIL back end (C)
461 illink (C#)
125 Source for lcclib.dll (C)
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46 MSIL-specific part of the lcc driver
118 MSIL-specific library header files

DISCUSSION

Most VMs are designed to support only one language or perhaps a family of languages. The Java VM is
perhaps the most recent design best known, but using VMs in programming language implementations
has a long history [14]. MSIL is designed to support a wide range of languages, but is clearly aimed
more directly at modern, type-safe, object-oriented languages. lcc.NET does demonstrate success
at one end of that range, but it also exposes some MSIL weaknesses. Other languages with static
initializations, address arithmetic and separate compilation are likely to have porting problems similar
to lcc, because these areas caused the most problems.

There are other areas that the lcc port does not stress but that may cause problems for some
languages, particularly functional languages. For example, there is no facility in MSIL for the direct
manipulation of stack frames or return addresses, which complicate porting languages with coroutines,
continuations or language-level threads, for example. This omission is also why lcc.NET cannot
support setjmp and longjmp. MSIL does support tail calls, which helps languages like Scheme that
require them. While MSIL takes multi-language support further than other VM, it is not a complete
solution to the language half of the UNCOL problem.

lcc’s code-generation interface can claim some of the blame for the problems porting lcc to MSIL.
This interface—now over a decade old—is spartan by design and was designed to use the capabilities
of typical assemblers. Wherever possible, the lcc front end does extra work if the result simplified
the code-generation interface. Likewise, there are few options in the interface; choice was traded for
simplicity at every turn. Switch statements are an example. lcc compiles a switch statement into a
binary search of dense branch tables [8]. It emits code for the binary search and static tables of labels for
the branch tables. MSIL has no facility for branch tables, so lcc.NET cannot emit them. Luckily, lcc can
emit degenerate branch tables, which amounts to a binary search. MSIL does have a switch instruction,
but lcc cannot use it, because there is no code-generation interface function for switch statements.
A more flexible, but complicated, interface design might include an optional switch statement interface
function and use the current approach when it was omitted.

Static initializations are another example. The C Standard does not require static initialization, it
only requires that initialization occur before execution begins. The lcc front end could generate code to
perform the initializations much in the same way as the MSIL back does, but in a target-independent
fashion. The code-generation interface could include an option to select this approach, for example.
Doing so would simplify the MSIL port and ports to other targets with similar restrictions or limited
assemblers.

Ports to ‘exotic’ targets are valuable, in part, because they often expose errors in well-established
interfaces, and lcc is no exception; for example, modifying lcc to emit ASDL files exposed symbol-
management errors [10]. lcc can generate target-independent code to detect null pointer dereferences
and to accumulate execution counts for performance monitoring. Selecting any of these options caused
the front end to call code-generation functions in the wrong order; specifically, it called defsymbol
before progbeg, which must be called first to initialize the back end (see Figure 2). lcc’s production
back ends have only trivial progends, which were unaffected by this error, but the MSIL back end
creates some tables that are queried by its other functions, including defsymbol.
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APPENDIX. MSIL INSTRUCTIONS

Table III lists all of the MSIL instructions. The second column gives the stack transition for each
instruction; the top of the stack is to the right of each list.

Table III. MSIL instructions.

Instruction Stack transition Operation

add . . . , value1, value2 ⇒ . . . , value1 + value2 Addition
add.ovf Checked addition
add.ovr.un Checked unsigned addition

and . . . , value1, value2 ⇒ . . . , value1&value2 Bitwise AND

arglist . . . , ⇒ . . . , handle Get argument list handle

beq target . . . , value1, value2 ⇒ . . . Branch if equal
bge target Branch if greater than or equal
bge.un target Branch if greater than or equal

unsigned
bgt target Branch if greater than
bgt.un target Branch if greater than unsigned
ble target Branch if less than or equal
ble.un target Branch if less than or equal

unsigned
blt target Branch if less than
blt.un target Branch if less than unsigned
bne.un target Branch if not equal unsigned

box type . . . , address ⇒ . . . , object Box value type

br target . . . ⇒ . . . Unconditional branch

break . . . ⇒ . . . Breakpoint

brfalse target . . . , value ⇒ . . . Branch if zero
brtrue target Branch if nonzero

call method . . . , arg1 . . . argn ⇒ . . . , value Call
calli signature . . . , arg1 . . . argn , address ⇒ . . . , value Call indirect

callvirt method . . . , object, arg1 . . . argn ⇒ . . . , value Call virtual method

castclass type . . . , object ⇒ . . . , object Cast object

ceq . . . , value1, value2 ⇒ . . . , 0 or 1 Compare equal
cgt Compare greater than
cgt.un Compare greater than unsigned
clt Compare less than
clt.un Compare less than unsigned

ckfinite . . . , value ⇒ . . . , value Check if finite
conv.i . . . , value ⇒ . . . , result Convert to I, push I
conv.i1 Convert to I1, push I4
conv.i2 Convert to I2, push I4
conv.i4 Convert to I4, push I4
conv.i8 Convert to I8, push I4
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Table III. Continued.

Instruction Stack transition Operation

conv.r.un Convert unsigned to F, push F
conv.r4 Convert to R4, push F
conv.r8 Convert to R8, push F
conv.u Convert to U, push U
conv.u1 Convert to U1, push U4
conv.u2 Convert to U2, push U4
conv.u4 Convert to U4, push U4
conv.u8 Convert to U8, push U8

conv.ovf.i . . . , value ⇒ . . . , result Checked conversions (see above)
conv.ovf.i1
conv.ovf.i2
conv.ovf.i4
conv.ovf.i8
conv.ovf.u
conv.ovf.u1
conv.ovf.u2
conv.ovf.u4
conv.ovf.u8

. . . , value ⇒ . . . , result Checked conversion from unsigned
(see above)

conv.ovf.i1.un
conv.ovf.i2.un
conv.ovf.i4.un
conv.ovf.i8.un
conv.ovf.u.un
conv.ovf.u1.un
conv.ovf.u2.un
conv.ovf.u4.un
conv.ovf.u8.un

cpblk . . . , dstaddress, srcaddress, size ⇒ . . . Copy memory

cpobj type . . . , dstaddress, srcaddress ⇒ . . . Copy value type

div . . . , value1, value2 ⇒ . . . , value1 / value2 Division
div.un Unsigned division

dup . . . , value ⇒ . . . , value, value Duplicate

endfilter . . . , value ⇒ . . . End of exception handling filter

endfinally . . . ⇒ . . . End of finally clause

initblk . . . , address, value, size ⇒ . . . Initialize memory
initobj type . . . , address ⇒ . . . Initialize a value type

isinst type . . . , object ⇒ . . . , object or null Type test and cast

jmp method . . . ⇒ . . . Jump to method

ldarg n . . . ⇒ . . . , value Push argument

ldarga n . . . ⇒ . . . , address Push argument address

ldc.i4 constant . . . ⇒ . . . , value Push constant
ldc.i8 constant
ldc.r4 constant
ldc.r8 constant

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:265–286



284 D. R. HANSON

Table III. Continued.

Instruction Stack transition Operation

ldelem.i . . . , object, index ⇒ . . . , value Push array element
ldelem.i1
ldelem.i2
ldelem.i4
ldelem.i8
ldelem.r4
ldelem.r8
ldelem.ref
ldelem.u1
ldelem.u2

ldelema type . . . , object, index ⇒ . . . , address Push array element address

ldfld field . . . , object ⇒ . . . , value Push instance field

ldflda field . . . , object ⇒ . . . , address Push field address

ldftn method . . . ⇒ . . . , address Push method address

ldind.i . . . , address ⇒ . . . , value Push indirect
ldind.i1
ldind.i2
ldind.i4
ldind.i8
ldind.r4
ldind.r8
ldind.ref
ldind.u1
ldind.u2
ldind.u4

ldlen . . . , address ⇒ . . . , value Push array length

ldloc n . . . ⇒ . . . , value Push local variable

ldloca n . . . ⇒ . . . , address Push local variable address
ldnull . . . ⇒ . . . , null Push null

ldobj type . . . , address ⇒ . . . , value Push value type

ldsfld field . . . ⇒ . . . , value Push static field

ldsflda field . . . ⇒ . . . , address Push static field address

ldstr string . . . ⇒ . . . , object Push literal string

ldtoken token . . . ⇒ . . . , handler Push metadata handler

ldvirtftn method . . . ⇒ . . . , address Push virtual method address

leave target . . . ⇒ . . . Branch out of protected region

localloc . . . , size ⇒ . . . , address Allocate local storage

mkrefany type . . . , address ⇒ . . . , typed reference Push typed reference

mul . . . , value1, value2 ⇒ . . . , value1 ∗ value2 Multiplication
mul.ovf Checked multiplication
mul.ovf.un Checked unsigned multiplication
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Table III. Continued.

Instruction Stack transition Operation

neg . . . , value ⇒ . . . , −value Negation

newarr type . . . , size ⇒ . . . , object Create array

newobj method . . . , arg1 . . . arg1 ⇒ . . . , object Create object and call constructor

nop . . . ⇒ . . . No operation

not . . . , value ⇒ . . . ,¬ value Bitwise complement

or . . . , value1, value2 ⇒ . . . , value1 | value2 Bitwise inclusive OR

pop . . . , value ⇒ . . . Discard value

refanytype . . . , typed reference ⇒ . . . , type Retrieve type token from
typed reference

refanyval . . . , typed reference ⇒ . . . , address Retrieve address from
typed reference

rem . . . , value1, value2 ⇒ . . . , value1%value2 Remainder
rem.un Unsigned remainder

ret . . . ⇒ . . . Return
. . . , value (callee) ⇒ . . . , value(caller)

rethrow . . . ⇒ . . . Rethrow exception

shl . . . , value1, value2 ⇒ . . . , value1 << value2 Left shift

shr . . . , value1, value2 ⇒ . . . , value1 >> value2 Arithmetic right shift
shr.un Logical right shift

sizeof type . . . , ⇒ . . . , size Push size of value type
starg n . . . , value ⇒ . . . Store to argument

stelem.i . . . , object, index, value ⇒ . . . Store to array element
stelem.i1
stelem.i2
stelem.i4
stelem.i8
stelem.r4
stelem.ref
stelem.r8

stfld field . . . , object, value ⇒ . . . Store to instance field

stind.i . . . , address, value ⇒ . . . Store indirect
stind.i1
stind.i2
stind.i4
stind.i8
stind.r4
stind.r8
stind.ref

stloc n . . . , value ⇒ . . . Store to local variable

stobj type . . . , address, value ⇒ . . . Store value type

stsfld field . . . , value ⇒ . . . Store to static field
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Table III. Continued.

Instruction Stack transition Operation

sub . . . , value1, value2 ⇒ . . . , value1 − value2 Subtraction
sub.ovf Checked subtraction
sub.ovf.un Checked unsigned subtraction

switch n, off 1, . . . , off n . . . , value ⇒ . . . Computed branch

tail. . . . ⇒ . . . Next call is a tail call

throw . . . , object ⇒ . . . Throw exception

unaligned. . . . , address ⇒ . . . , address Next instruction uses
unaligned address

unbox type . . . , object ⇒ . . . , address Unbox value type

volatile. . . . , address ⇒ . . . , address Next instruction uses
volatile address

xor . . . , value1, value2 ⇒ . . . , value1 ˆ value2 Bitwise exclusive OR
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