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Abstract

Traditional tracing mechanisms were usually developed for use in a single-computer envi-
ronment. Moreover, they are bound to a speci�c programming language. Today's highly dis-
tributed and heterogeneous computing environments require new tracing methodologies. The
paper addresses this problem by reviewing ways how the middleware might�and should�
support tracing. In particular, CORBA meta-objects that can be applied for tracing, are
studied. One of them, namely the interceptor concept is presented in more depth, followed by
a detailed description of an interceptor-based tracing architecture for CORBA applications.
Implementation details and evaluation experience is given.

1 Introduction

As computers are more and more interconnected, the target of software development also becomes
a distributed, heterogeneous system, rather than a single computer [1]. As a result, new techniques,
methodologies and tools are required to facilitate the development of distributed software. Also,
as components of di�erent platform, architecture and programming language are interconnected,
integration becomes a major challenge. Since the object-oriented paradigm has provided a very
good integration scheme, object-oriented distributed systems enjoy great prosperity. This is why
we focus mainly on the tracing of object-oriented distributed systems and particularly on CORBA
(Common Object Request Broker Architecture [2]), being the most widely used middleware system.

Besides these�rather technical�arguments, there are also some other factors to consider.
The �rst is the wide spread of e-business, bringing along a boom for CORBA and similar middle-
ware technologies as well. Another, not so widely recognized, but equally important fact is the
emergence of embedded distributed systems. The idea of using standard middleware solutions in
embedded environments is gaining popularity. Just consider the various intelligent electronic units
that can be found on an airplane: a complex distributed system, where the individual components
may communicate and co-operate using CORBA for instance. Obviously, tracing is a vital and
complicated task in such an environment [3].

A third issue is the ever-growing competition on the market. Software development companies
are supposed to create complex and reliable distributed systems. Parallel to these requirements,
the time-to-market pressure also keeps growing. This, too, results in the need for methods and
tools to make distributed software development an easier and quicker task, rendering tracing
indispensable.

The aim of this paper is to investigate from a practical point of view the tracing possibilities
for heterogeneous, distributed, object-oriented systems.

∗This paper was published in Software: Practice and Experience, volume 34, issue 8, pages 727 - 755, Wiley,

2004.

1



By tracing, we mean a step-by-step execution of a software system, conducted in order to gain
extra information�i.e. information that is not part of the output in a normal execution�or insight
on how the system works.

Some notes on this de�nition:

• According to this de�nition, tracing is not the same as event recording.

• In the de�nition, it is not speci�ed what a step in 'step-by-step execution' is. This is by
intent so in order to make the de�nition scalable: steps may be very low-level (e.g. machine
code instructions) but may also be high-level (e.g. communication events or messages in a
distributed application).

• It is not speci�ed either by whom tracing is carried out. This might be a human or a
computer program. Note also that this entity does not participate usually in the normal
execution of the system, at least not with this functionality.

• Although the de�nition allows arbitrary steps, in this paper we will regard communication
events as the boundaries of steps. The reasons will be explained later in detail.

• Step-by-step execution does not necessarily mean that the system has to be stopped after
each step, although it should be possible to stop it.

Tracing is sometimes used as a synonym for debugging. However, we consider it as a more
general concept. Possible purposes of tracing include:

1. Checking of correct behavior. This is the most obvious usage: the programmer simply
wants to make sure that the software does what it is supposed to do. Therefore, he or she
runs the program step by step and looks at its output and internal state.

2. Locating bugs. If the software does not do what it is supposed to do, then again, tracing
can help in identifying the nature and the location of the error.

3. Monitoring crucial applications. Even if the system seems to do correctly what it is
supposed to, this will just not be enough in mission-critical applications. For instance, a
power plant regulating software will have to be monitored constantly.

4. Better understanding how the system works. Running the software step by step
can also serve demonstration purposes and thus be used in e.g. university lectures or other
courses. Also, if a programmer, developing a new module for a complex software, would like
to obtain a coarse picture of how the system works (e.g. how existing modules co-operate
and communicate), they can use tracing.

5. Extracting documentation. There are some tools that can extract static documentation
from the source code of the software. For instance, such tools can be used to extract an
inheritance graph from the source code of object-oriented software. On the other hand,
tracing could be used to extract dynamic documentation, e.g. a communication diagram,
while the system is running.

6. Performance analysis (also known as pro�ling). In this case, it can usually be assumed
that the software behaves correctly, but slowly. Therefore, the programmer�or a perfor-
mance specialist�runs the system and at the same time measures the elapsed time in certain
functions of the program, or more generally, the elapsed time between certain events. Typi-
cally, the goal is not a precise measurement but rather to identify bottlenecks.

7. Detecting vulnerabilities. An interesting application of execution monitoring was sug-
gested in [4]. The idea is to use execution monitoring to automatically detect vulnerabilities
of privileged programs by recognizing program states that exhibit potential danger for the
integrity or security of the system.
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8. Aspect-oriented programming (AOP). Events generated by a tracing tool may be used
to trigger the invocation of aspects (i.e. code implementing cross-cutting functionality that
does not �t into any particular module of the system). Thus, tracing can be regarded as a
mean for dynamic weaving of aspects (for more information, see [5]).

As shown later, all these aims can�and should�be provided for with essentially the same
tracing architecture. Also, the usability of a tracing tool should be measured on how well it
ful�lls the requirements presented by the above aims. However, it has to be noted that the above
scenarios need slightly di�erent usage of the underlying tracing architecture. Therefore, a tracing
tool should support several modes of operation. For example, the �rst four use cases may require
some on-line user interaction, while the last four do not. It follows that tracing tools should
provide at least an interactive and a non-interactive mode. Of course other distinctions are also
possible. A variety of modes will be presented in section 4.4.

The paper is organized as follows. First we review the basics of tracing in distributed systems.
Then, we survey several methods for the implementation of tracing, including meta-objects pro-
vided by the middleware (i.e. CORBA, in our case). The main contribution of the paper is the
description of a tracing architecture based on one of the meta-objects, interceptors. We report
on our experience with the implemented tracing tool as well as empirical results on the overhead
caused by tracing. The paper is �nished with a section on related work and our conclusions.

2 Distributed tracing model

In this section, we introduce the basic issues of tracing in a distributed, heterogeneous, object-
oriented system: main di�culties, solution framework, and the role of the middleware. But �rst,
the basic terminology has to be de�ned.

2.1 Terminology

With distributed system, we mean a software system that is distributed over a network of au-
tonomous computing units (nodes or computers). The computers are interconnected through
communication channels. A piece of software is running on each computer, and these pieces in-
teract, co-operate and communicate in order to solve a given task or set of tasks. The distributed
system is made up of components. A component is the smallest part of the system that can run on
a separate computer. In the simplest case, each component runs on a di�erent computer. However,
some components can be colocated on the same node. Nevertheless, they could run on di�erent
computers, so their communication is logically location-independent.

Each component works on a sub-task of the system. Moreover, each component may consist
of several processes, which work on sub-tasks of the task of the component. Note that the terms
'component' and 'process' are used in many other contexts as well, which are not relevant here.
In particular, the sense in which we use the term 'component' is di�erent from that of component-
based software engineering. Similarly, the sense in which we use the term 'process' is di�erent
from that of operating system processes. In our terminology, a 'process' is a purely logical unit.
It might be implemented for instance as an object (in the sense of OOP), an operating system
thread or even an operating system process.

Note also that components may run in parallel and their operation is independent except
for explicit communication and synchronization. Whether or not individual processes inside a
component are also concurrent, does not matter from our point of view.

Enabling the co-operation of distributed components involves some common tasks, which are
largely orthogonal to the business logic of the actual application. Such tasks include: client-
server connectivity, platform and network transparency, remote method invocations, name-to-
address translation, dynamic server invocation, locating services, load balancing, security, fault
tolerance, etc. In modern distributed systems, there is usually a special layer of software�called
middleware�that delivers this functionality [6, 7].
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2.2 Di�culties of tracing in a distributed environment

Just as the design and implementation of distributed applications is more complex than that of
applications for one computer, tracing is also much more challenging in a distributed system.

First of all, the place where trace information is created and the place where it is needed are
generally not the same. Therefore, the following processes must be arranged separately, but not
independently:

• Extraction of trace information

• Transport of trace information

• Processing and combining trace information

• Displaying trace information

This may also cause certain anomalies. For example, since the communication delays in the
distributed system may vary over space and time, it is possible that the information that com-
ponent B obtained a message from component A, becomes available earlier to an observer than
the information that component A sent a message to component B. This phenomenon is called
tachyon.

It is also possible that some components of the distributed system stop working correctly or
stop working at all. Transitional network failures can also cause some trace information, that is
just on its way, to be lost.

Time and time-related (such as performance) measurements are made di�cult by the usual
lack of a global clock.

If the system is not only distributed but also heterogeneous, this poses an even bigger challenge.
Namely, traditional tracing facilities are usually provided by programming environments and are
bound to a particular programming language. This is quite natural because the programming
language is exactly the level of abstraction that serves for the interaction of the programmer with
the computer. So tracing, too, is best performed at that level. However, if the components of
the system are implemented in di�erent programming languages, then tracing solutions that are
bound to a speci�c programming language are not appropriate.

2.3 Solution framework

In our work, we used the following framework for tracing distributed systems (see �gure 1):

• In every component of the distributed system, a new process is installed which gathers trace
information. More speci�cally, it intercepts incoming and outgoing calls.

• There is an additional component which is responsible for collecting trace information from
the other components, as well as for displaying it appropriately (denoted as tracer).

• Collecting trace information may either be implemented in a push or in a pull model. In any
case, communication may either be arranged using the common channels of the distributed
system or through dedicated channels. If it is possible to use dedicated channels for tracing,
this is the best solution because this way the communication load of the system is not
increased, thus enabling more realistic performance measurements. However, such dedicated
channels are often not available. In such cases, the in�uence of tracing should be minimized;
we will investigate this issue later in more detail.

From a software engineering point of view, it is vital to have a central tracer component. It
encapsulates all details concerning the tracing mode, the level of verbosity, the output format,
output device speci�c information etc. Otherwise (that is, if trace information were also output
in a distributed way) the output of trace information could easily become inconsistent.
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Figure 1: The distributed tracing model

From the other di�culties mentioned in section 2.2, we are going to address the problem of
causality and that of global time-stamping. The problem of network and computer failures is
beyond the scope of this paper.

Another vital aspect is the scope of tracing: it is logical to lay emphasis on system-level
communication. The reason is that standard tracing techniques can well be used to trace execution
inside a component. For that, it is still the particular programming language that was used to
implement the component in question, that can provide the best tracing facility. The real challenge
in tracing distributed applications is to trace the communication between the components. For
this reason, we are only interested in tracing communication events. Nevertheless, it is an open
problem how to combine tracing information on the operation inside the components (produced
by conventional tools) with tracing information on system-level communication. Moreover, non-
determinism of distributed systems makes complete traceability hard if not impossible in general.
Currently, we only know about some ad-hoc solutions [8, 9], so that developing a systematic
solution to this problem remains an important task for future research.

2.4 Instrumentation

One of the key issues in building a tracing system such as the one depicted in �gure 1 is, how
to gather trace information. The process of adding this new feature to existing code is called
instrumentation.

The most widely used solution is manual instrumentation. This means that the programmer
has to add extra pieces of code in order to notify the tracer about what is going on. Typically, the
tracer provides speci�c functions for this. So the programmer will insert calls to these functions at
every point in the software that is potentially critical. Usually this means that the tracer needs
to be noti�ed just before and just after every function call of the original code, and/or at the
beginning and end of each function. (This is important so that�if necessary�the complete trace
information can be displayed. Of course it is possible that only a subset of it is really interesting;
the amount and verbosity of the trace output should be adjustable in the tracer.) The noti�cation
should include information of the call, such as the initiator and the target, parameters, return value
etc., since this information is an important part of the tracer output.

Assume, for instance, that the original code contains the following call (using C++ syntax):

result=server->do("Joe",42);
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After instrumentation, the code becomes something like this:

tracer->before(this,server,"do","Joe",42);

result=server->do("Joe",42);

tracer->after(this,server,"do","Joe",42,result);

(Note that other events can also be traced; however, we only focus on tracing remote method
invocations in this paper.)

As can be seen, manual instrumentation is tedious and error-prone. Moreover, it is necessary
for manual instrumentation to possess the source code. Therefore, our goal is automatic instru-
mentation, meaning that the programmer's extra work should be minimized (ideally eliminated).
In the next sections it is explored how this can be supported by the middleware.

2.5 The role of the middleware

As already mentioned, traditional tracing solutions are speci�c to particular programming lan-
guages, because the programming language is the very level of abstraction on which the program-
mer handles the computer, and so it is the programming environment itself that can provide the
best tracing facilities.

When moving on to distributed systems, an additional, higher level of abstraction appears,
namely that of system-level communication, supported by the middleware. In some cases, this also
results in the introduction of a higher-level language, e.g. Interface De�nition Language (IDL) in
the case of CORBA. The same way that speci�c programming environments can provide the best
traditional tracing solutions, it is the middleware itself that may�and should�provide the best
solutions for system-level tracing.

If the whole distributed system is developed in a single programming environment, then this
environment will be capable of providing tracing solutions for multiple abstraction levels, not only
for system-level communication. Examples for such systems include Grade [10] and Guide [11].
However, this kind of distributed software development is not typical, largely because middleware
systems have to be able to integrate legacy applications as well, which were implemented on other
platforms.

The di�culties of distributed tracing (mentioned earlier) are typical tasks of the middleware.
So it is again the middleware itself that can provide the best support for message delivery, time-
stamping, event handling etc.

In the next section, this idea is illustrated on the example of CORBA: we present mechanisms
that can be used to provide automatic instrumentation for CORBA applications and thus achieving
tracing of system-level communication. But �rst, a short introduction to CORBA is given.

2.6 Introduction to CORBA

Since there is a number of good books on CORBA (see e.g. [12]), we only cover here those aspects
that are vital for the understanding of the next sections.

CORBA enables a client to invoke methods of servants that may reside on remote computers
with possibly di�erent hardware platforms and operating systems and may even be implemented
in di�erent programming languages. For this purpose, the interface of the servant is de�ned
in OMG IDL (Interface De�nition Language). Based on the IDL description, an IDL compiler
generates code that will handle communication between client and server transparently. The piece
of generated code on the client side is called proxy or stub, whereas on the server side it is called
skeleton.

The proxy o�ers the same interface as the servant, so that the client can call the methods of
the proxy without knowing where and how the real servant is implemented. (See �gure 2.) The
proxy uses the services of the ORB (Object Request Broker) to locate the servant, to marshal
the parameters of the invocation, and to send the resulting message to the servant using low-
level communication primitives. On the server side, the skeleton decodes the received message,
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Figure 2: Remote method invocation in CORBA. The dashed line indicates the logical invocation,
whereas the solid line shows the real �ow of control. The dotted arrows show the process of IDL
compilation

unmarshals the parameters, and calls the appropriate method of the servant with the appropriate
parameters.

Server-side processing is further mediated by the object adapter, which is responsible for ac-
tivating and deactivating servants. As object adapter, typically the Portable Object Adapter
(POA) is used, which can be �exibly con�gured to use di�erent policies for the mapping of object
interfaces to servants. There can also be multiple POAs on the server, building a hierarchical
namespace.

The protocol for the communication between di�erent ORB instances, called General Inter-
ORB Protocol (GIOP), was also standardized by the OMG. Its most widely used implementation
is the Internet Inter-ORB Protocol (IIOP), which works on top of TCP/IP.

CORBA object implementations are identi�ed using so-called Interoperable Object References
(IORs). An IOR contains all information with which the ORB can uniquely identify it. In the
case of IIOP, the IOR consists of the name or IP address of the machine the object resides on, the
TCP port, path to a POA, the ID of the object relative to the POA, and the IIOP version, plus
optionally other information pertinent to some speci�c services.

The current version of the CORBA speci�cation is 3.0.2. However, at the time of writing, most
available ORB implementations comply with CORBA version 2.4�2.5. ORB implementations
include commercial products, such as VisiBroker from Inprise or Orbix from IONA, and also free,
or open-source products, such as MICO, TAO, or JacORB. The ORB used in this work was TAO
(The ACE ORB, [13]).

3 Instrumenting CORBA applications

In this section, we survey the pros and cons of several possibilities for the automatic instrumenta-
tion of CORBA applications. First, we review solutions that do not need any special support from
the middleware. In the second half of the section, CORBA meta-objects will be described, which
can e�ectively facilitate tracing. The section is concluded with a comparison of the presented
methods.

3.1 Methods without middleware support

3.1.1 Preprocessing

The most obvious idea for automatic instrumentation is to try to automate the insertion of the lines
of code to inform the tracer before and after every method invocation. This can be achieved using
relatively well-known techniques: lexical and syntactic analysis to �nd the locations of interest in
the source code as well as the pieces of information that have to be sent to the tracer.
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On the other hand, this method also has several disadvantages. First of all, the automation
method is programming language dependent. That is, a di�erent automation tool has to be
realized for every used programming language. Moreover, in order for this method to work, it is
absolutely necessary to possess and to change the source code.

3.1.2 Tracing at the GIOP level

Another family of tracing approaches deals with tracing the communication between the compo-
nents, and focuses on the network. Intercepting the messages on the network and decoding them
based on knowledge of the inter-ORB protocol (GIOP-IIOP [14]) makes it possible to deduce the
method invocations. The major advantage of this approach is that it is completely independent of
the used programming languages, and the source code as well. However, it involves very low-level
and tedious work, and results in a solution that is not really portable.

3.1.3 Instrumenting communication libraries

In the case of open-source middleware (such as, for instance, the TAO ORB) it is also possible to
instrument the communication subsystem of the middleware instead of the application code. This
way, arbitrary tracing solutions can be implemented without needing to change or even recompile
the application.

On the other hand, such a solution depends heavily on the ORB. For example, if a large system
makes use of multiple ORB implementations (for instance, to accommodate multiple programming
languages), then the instrumentation of all ORBs has to be carried out, and this may be very
di�erent for the individual ORBs. Moreover, the e�orts and costs of changing to another ORB
greatly increase. Also, this approach excludes the use of non-open-source ORBs. In brief, while
this method might be a quick solution in the short run, it hurts the standards-based philosophy
of CORBA, and can thus become very costly in the long run.

3.2 CORBA meta-objects

Now let us examine ways how the CORBA middleware itself can facilitate tracing.
The core CORBA speci�cation did not really support tracing in any way. It seems that

although CORBA has from the beginning on provided quite a number of re�ection-like features
(such as the interface repository), tracing was not considered. Fortunately, there are some recent
additions to CORBA that make tracing and automatic instrumentation possible.

The idea behind these extensions is to regard one of the objects along the standard CORBA
invocation path (client � stub � network � skeleton � servant) as a meta-object, that can either be
changed to a proprietary implementation or extended through prede�ned hook methods [15, 16].
In the following paragraphs, these possibilities are described in more detail.

3.2.1 Smart proxy

Smart proxies, as the name suggests, override the default proxy (stub) object generated by the
IDL compiler, in order to provide additional functionality. In order to construct smart proxies,
a smart proxy factory has to be created and registered as such. Of course the functionality of
the default stub, namely that it sends the requests of the client to the servant (and marshals the
parameters and demarshals the return value) is still needed, so the smart proxy will probably also
delegate this task to the default proxy. For instance in TAO, this is achieved in the following way:
the IDL compiler can be instructed to generate (besides the default proxy) a smart proxy base
class that does the delegation, and a default proxy factory. After that, the smart proxy class can
be extended with the necessary additional functionality. (See �gure 3.)

It follows from the role of the proxy that it only participates in the communication between
a particular client and a particular servant. Therefore, a smart proxy might be used to trace
communication of that particular pair of objects.
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The smart proxy has relatively little freedom in modifying any details of the call. The only
thing it can do is provide additional data or throw an exception. This way, it might be used for
instance to provide a security framework: it can add authentication information on the client side
(without a need to modify the client itself) that can be checked on the server side. Alternatively,
it can check authentication of the server and throw an exception in the case of a problem, thus
prohibiting insecure communication.

3.2.2 Pluggable protocol

Pluggable protocols [15] are meta-objects that make it possible to separate the component ar-
chitecture and the communication protocol of the ORB. In order to achieve this, the component
architecture and the high-level CORBA services access the communication protocol using the
facade design pattern [17], which makes the communication protocol relatively easy to replace.

Unfortunately though, creating a new protocol is quite tedious and error-prone. This is exactly
the kind of low-level programming task that middleware solutions usually save the programmers
from. But in this case of course the middleware cannot help. Another problem is that at the level
of the communication protocol it is not easy to recognize parts of the original high-level message.

3.2.3 Servant manager

Servant managers, as their name suggests, reside on the server side [16]. They receive control just
before a call reaches the servant, at a moment when parameters are already demarshalled. There
are two kinds of servant managers: servant activators and servant locators. The servant activator
is invoked the �rst time a servant is accessed. The servant locator is invoked every time a request
is made to the servant. Thus, the servant locator may choose dynamically a servant for processing
the request. It is also possible that it actually creates the servant on the �y (see Figure 4).

This mechanism is especially useful for load balancing or fault tolerance schemes, since it
enables the simultaneous existence of many parallel servants from which the servant manager may
choose transparently. It can also be used for tracing, most notably if only the access to a speci�c
server is to be traced.

3.2.4 Interceptor

Interceptors are objects implementing the Interceptor interface, which is�in contrast to smart
proxies and pluggable protocols�de�ned in the CORBA speci�cation [2]. There are three kinds of
interceptors: IORInterceptors, ServerRequestInterceptors and ClientRequestInterceptors.
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Table 1: Comparison of the presented possibilities for instrumentation

Method Language
indepen-
dence

ORB-
independence

Source code
indepen-
dence

General ap-
plicability

Cost-
e�ectiveness

1. Preprocessing � + � + �
2. GIOP-tracing + + + + �
3. Instrumenting

comm. libraries
+ � + + �

4. Smart proxy + � + � +
5. Pluggable protocol + � + + �
6. Servant manager + + + � +
7. Interceptor + + + + +

IORInterceptors are invoked during the creation of IORs. They can be used to insert service-
speci�c information into the IOR.

In the following, we will only deal with ServerRequestInterceptors and ClientRequest-

Interceptors, because they can be used for the purposes of tracing method invocations. Both
interfaces de�ne callback methods that are invoked by the ORB at speci�c points of a CORBA call.
More speci�cally, the ServerRequestInterceptor de�nes the interception points receive_request
and send_reply, whereas the ClientRequestInterceptor de�nes the interception points send_request
and receive_reply. Using these four interception points it is possible to trace the four most im-
portant events connected to a remote method invocation: when the client sends the request, when
the request reaches the server, when the server sends its reply, and when the reply reaches the
client. More information of interceptors is given in the next Section.

3.3 Comparison

Table 1 presents a summary of the pros and cons of the presented methods for the instrumentation
of CORBA applications. Figure 5 shows the places of the CORBA invocation that the individual
instrumentation mechanisms target. The numbers in Figure 5 correspond to the numbering in
Table 1.

We used interceptors for our tracing system because interceptors are much more general than
smart proxies or servant managers (interceptors are not speci�c to a particular client or servant)
and provide at the same time a much higher level of abstraction than pluggable protocols. More-
over, interceptors do not depend on the particular programming language or ORB implementation
as do preprocessing or instrumentation of ORB communication libraries.
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Figure 5: Instrumentation possibilities during a CORBA invocation

4 Tracing using interceptors

This section presents a tracing architecture based on interceptors. First, the operation of inter-
ceptors is described in more detail, as well as the history of the interceptor speci�cation. Then we
present in detail how interceptors can be used for tracing. In particular, we analyze the practi-
cal applicability of several possibilities for modes of operation, timestamping, and indenti�cation
mechanisms. An empirical evaluation of this tracing architecture and the particular design choices
is the subject of the next section.

4.1 Interceptors in more detail

Interceptors must be registered with the ORB, that is, the interceptors are registered with a local
ORB object, in a speci�c name space. After that, the ServerRequestInterceptor will intercept
all incoming requests and outgoing replies, whereas the ClientRequestInterceptor will intercept
all outgoing requests and incoming replies. This way, all inter-component communication can be
traced. (See �gure 6 for the �ow of control.)

The interceptor interfaces de�ne 10 hook methods, not just those four that can be seen in
�gure 6. The remaining six are used for very special purposes, including Time-Independent Invo-
cations (TII, [2]) and oneway calls. The full list is given below:

• Before sending the request: send_poll in the case of TII, and send_request otherwise.

• When the request reaches the server side, but before calling the servant manager: receive_request_service_contexts.
At this point, the service contexts are already available, but parameters are not demarshalled
yet.

• Before the request reaches the servant: receive_request. At this point, all information
about the invocation is available.

• Before sending the reply: send_exception if the servant throws an exception, send_reply
for normal execution, and send_other in all other cases, e.g. if the call is redirected, or in
the case of a oneway call.

• Before the reply reaches the client: receive_exception, receive_reply, and receive_other,
accordingly.
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The interceptors obtain information concerning the current call in a RequestInfo object.
This includes a reference to the target of the call, the name of the invoked operation, the list of
parameters, the return value (if already available), a�possibly empty�list of thrown exceptions,
and a list of so-called service contexts. Service contexts can be used for out-of-band communication
between interceptors in di�erent components: an interceptor may add extra information to a
service context, which can in turn be accessed later by another interceptor.

Interceptors may not alter the information contained in the RequestInfo object. However, an
interceptor might redirect the call by throwing a ForwardRequest exception. This way, load bal-
ancing or fault tolerance schemes can be integrated into an existing application, without modifying
its actual source code. Also, interceptors can be used for security purposes, e.g. for transparent
authentication [15]. These are probably the goals that interceptors were actually developed for.
But, as we can see, they can also be used for tracing.

It is also possible to register more than one ServerRequestInterceptor and/or more than one
ClientRequestInterceptor in the same component. In this case, CORBA provides no means
with which the interceptors can communicate with each other, in fact, they do not even know
about each other. Restrictions on the order in which the interceptors are executed are not speci�ed
either. However, it is speci�ed that both kinds of interceptors are executed in a stack-�ow model.
This means for example in the case of ClientRequestInterceptors that their send_request

methods are invoked one after the other, and after having invoked the send_request method of
an interceptor, the ORB pushes it onto a stack. When the reply arrives, the interceptors are
popped o� the stack, and their receive_reply method is invoked, but this time in the opposite
order. This model also guarantees that the same interceptors intercept the request and the reply.
(If an exception is thrown, then this may be only a subset of all registered interceptors.) It must
be mentioned however, that the stack-�ow model is only a logical model used in the speci�cation.
ORB implementations are free to use other data structures, not necessarily a stack.

12



4.2 History of interceptors

Interceptors were �rst de�ned in CORBA 2.2 in February 1998 [18]. However, the �rst de�ni-
tion was quite under-speci�ed. This resulted in a number of proprietary solutions from di�erent
vendors. The problem was soon recognized by the OMG, which issued a Request For Proposals
in September 1998 [19]. After some iterations of proposals and discussions, the leading vendors
of the �eld came to an agreement, and handed in their Joint Submission in December 1999 [20].
The architecture described in this submission was considered the de facto standard afterwards. It
has become a part of the CORBA speci�cation with only slight modi�cations in CORBA 2.5 in
2001 [21]. To di�erentiate the new, fully standardized interceptor speci�cation from the old one,
it was given the name 'Portable Interceptors'. For simplicity however, we will refer to the portable
interceptors simply as interceptors.

Since the Joint Submission is available, vendors are working on their interceptor implementa-
tion to make it conform to the speci�cation. The ORB used in this work, TAO [13], was one of
the �rst to introduce support for interceptors; however, also in a proprietary way:

• There were less interception points than de�ned by the current speci�cation; moreover, the
names and parameters of the corresponding hook methods were di�erent.

• There was no support for multiple interceptors per component.

• The arguments and return value of the original invocation were not accessible.

• 'Cookies' were used to pass information among interceptors in di�erent components.

There have been a number of changes of TAO since then, bringing also its interceptor support
closer to the speci�cation. At the time of writing, the latest version is 1.3.3, released in June 2003.
The interceptor support of this version almost fully complies with the standard, with the following
de�ciencies [22]:

• The interception point send_poll is not implemented since it is used for intercepting TII
invocations, and TII is not implemented in TAO at all.

• The standard service context slot ID allocation mechanism has not been implemented yet.

• Interceptors are not invoked for calls using the Dynamic Invocation Interface or the Dy-
namic Skeleton Interface (DII/DSI). Moreover, although they are invoked for Asynchronous
Messaging Invocations, the arguments and the return value are not available in this case.

4.3 Tracing architecture

From the above it should be clear that although interceptors were not designed speci�cally for
tracing purposes, they can indeed be used to trace CORBA applications. For this, only a subset
of their functionality is needed, namely that they are informed of every CORBA call.

In order to trace every call, a ServerRequestInterceptor and a ClientRequestInterceptor
must be registered in every component. Each interceptor sends the trace information to the central
tracer object through the usual communication channels of the system, i.e. using CORBA calls.
In other words, the tracer has to be implemented as a CORBA servant, its noti�cation methods
de�ned in IDL.

This way, every normal remote method invocation generates four events: (i) when the client
issues a request; (ii) when the request reaches the server; (iii) when the server sends its reply; and
(iv) when the reply arrives back at the client. If needed, all this information can be displayed. On
the other hand, the user interface of the tracer should be con�gurable so that, say, only one event
is shown for each remote method invocation. Since this is controlled centrally, the consistency of
the output is guaranteed.

When interceptors themselves issue calls, care must be taken to avoid in�nite loops. Namely,
the interceptor will also intercept the calls it issued itself, and if it makes a call again, this results
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Figure 7: Duration of a remote method invocation

in an in�nite recursion. To avoid this, the interceptors must check whether the target of the
intercepted call is the tracer, and if it is, they should do nothing.

Note that local calls, i.e. calls within a component are not traced. This is due to the fact that
interceptors are called by the ORB in the case of a CORBA call. The ORB does not even know
about local calls, so consequently it cannot invoke the interceptors. On the other hand this is
not a problem since the aim was to trace system-level communication between the components
anyway.

4.4 Modes of operation

It has already been mentioned that the tracer should provide at least two modes of operation:
interactive and non-interactive mode. In interactive mode, the tracer waits for user input inside the
noti�cation methods, thus blocking the system; in non-interactive mode the trace information is
just displayed and the noti�cation methods return immediately. Either way, the trace information
can be directed to the display or to a �le (textual or as a communication diagram). The output
should be con�gurable, e.g. it can be speci�ed whether to display all events or just certain kinds
of events, if timestamps should also be displayed or not etc.

However, these modes of operation cause non-negligible overhead, which makes their usage
for performance measurements problematic. Now our �rst aim is to derive an estimate on the
overhead caused by the above modes, and then to elaborate other modes of operation causing less
overhead.

Assuming that the participating computers are much faster than the network connecting them,
the overhead can be roughly calculated as the additional time caused by additional network tra�c.
Let tc denote the average time needed for a call through the network, and ts the server-side
processing time of a particular remote method invocation. (Usually, it cannot be assumed�even
under the above assumption�that ts ≈ 0, because the server-side processing may also involve
calls to other servants.) It follows that the duration of the whole invocation is T = 2tc + ts (see
�gure 7).

Now consider the case in which interceptors are also present and they notify the tracer about
every event. That is, an overhead of 2tc + tt is induced at every event�where tt denotes the
time consumed in the interceptors and the tracer�for the same reason as above and as �gure 7
shows, with the only di�erence that the processing time is now tt instead of ts. Since there are
four interception points, this sums up to T ′ = T + 4(2tc + tt) = 10tc + ts + 4tt. Thus, the relative
overhead is

r =
T ′ − T

T
=

8tc + 4tt
2tc + ts

(1)

Since this is monotonously decreasing in ts, the worst case is when ts = 0, i.e. when server-side
processing is not time-consuming compared to communication:

rwc =
8tc + 4tt

2tc
= 4 + 2

tt
tc

(2)
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Consequently, the relative overhead can be even more than 4 in the worst case, yielding a more
than 5 times slow-down. The amount by which the relative overhead exceeds 4 depends on the
amount of time spent in the interceptors and in the tracer. Most notably, if the tracer has to
refresh some complicated GUI, this might take considerable time. Thus, tt can be relatively high
even in the case of non-interactive operation.

Of course, the situation is much better if the time needed for server-side processing is not
negligible. It can be seen from (1) that if ts is high enough, the overhead can become arbitrarily
small.

It has to be noted that the above model can also be used if the whole 'distributed' system
is actually located on the same computer. In this case, too, inter-component communication is
the most time-consuming since it involves context switches which are known to be very costly on
modern processors.

When tracing is used to perform performance-related measurements, this overhead can be
much too large. At the architecture level, we can help by introducing new modes of operation
(beside interactive and non-interactive mode):

• In oneway mode, the services of the tracer are declared as oneway. Thus, the messages
towards the tracer do not block the interceptors, and this way the system does not have to
wait until the noti�cation reaches the tracer, which does the necessary processing, and the
call returns.

• Local mode represents another solution: if tracing is used for time-related measurements,
interceptors generate no additional network tra�c by notifying the tracer about every event,
but write out every collected information (including timestamps) to local �les. Normally, it
can be assumed that when it comes to performance analysis, the system is already behaving
correctly. Thus, caching can be used to further decrease the overhead. Caching is usually
provided by the operating system by default but of course proprietary caching policies can
also be implemented. However, if the system is not reliable enough, this should be switched
o� (so that no events are lost in the case of a crash); this way, the trade-o� between speed and
reliability can be tuned. If, for some reason, the overall communication scenario of the system
is needed, this may be assembled afterwards from the individual log �les with the help of the
timestamps and communication IDs (see later). Care has to be taken if multiple components
reside on the same computer to make sure that every component writes to a separate �le.
Note that in local mode the responsibility of the tracer is limited to distributing trace-
policy information (e.g. to inform every component that local mode is in e�ect) and IDs
(see later) among the components.

• In bu�ered mode, the tracer is not noti�ed directly after each communication event, but
events are bu�ered locally in each component's name space. When the number of bu�ered
events exceeds a given limit, or when the component is destructed, the bu�ered events are
propagated to the tracer in a batch. (Oneway call is reasonable for this purpose as well.)
This is advantageous because the bandwidth of the same network is usually much higher in
the case of few large bursts than it is in the case of more short ones. On the other hand,
large bursts can transiently corrupt performance measurements. However, if the measure-
ments tolerate such transient errors, for instance because only the average performance is
important, then it does not pose any problem. Of course this method is fastest in the case
when the system to be traced works only for a limited time and the bu�ers can be large
enough so that the tracer is only noti�ed after the operation of the distributed system.

Of course, the overhead introduced by tracing can never be fully eliminated. But the easily
implementable methods we introduced above can signi�cantly reduce the overhead. Which of
them works best, depends on the application and on the performance measures we are interested
in. Some empirical results will be presented in section 5.

Note however that these modes of operation can be used only if the tracer does not have
to return anything on the traced events. Note also that these modes of operation do not allow
stopping the traced system (which is not a problem in the case of performance measurement).
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4.5 Identi�cation mechanisms

Since emphasis is laid on tracing high-level communication between components of the distributed
system, the components have to be identi�ed using unique IDs. Similarly, communication events
should also be identi�ed using IDs unique to a particular remote method invocation, so that the
tracer can recognize events belonging to the same invocation and group them appropriately.

Note that IORs cannot be used as component IDs, because IORs identify CORBA object im-
plementations. Hence, for instance, a client that does not implement any CORBA object, does not
have an IOR either. Moreover, a component may contain several CORBA object implementations,
and may consequently be associated with multiple IORs. Therefore, the IDs have to be generated.

IDs can be created either in a centralized or in a decentralized fashion. In the centralized case,
there is one special component in charge of distributing the IDs. For instance, this component
maintains a counter, and each time a new ID is needed, it increases the counter and returns its
current value. Of course the bit length of the variable to store the counter has to be large enough
so that no over�ow will happen. To guarantee the uniqueness of the IDs, care has to be taken to
synchronize access to this component, so that increasing the counter and returning its value are
together an atomic step. Since there are common ways (semaphores, monitors, etc.) to achieve
atomicity, we can conclude that implementing a centralized ID distribution scheme is fairly simple.

For the creation of component IDs, this is certainly the method of choice. Its only disadvantage
is the overhead it generates, but this is negligible because it occurs only once per component. We
could try to avoid or decrease this overhead by generating IDs locally, for instance based on IP
addresses; however, such methods are less reliable, so it seems there is no point in using a more
sophisticated generation method for component IDs.

In our case, it is reasonable to assign the role of ID distribution also to the tracer. So in practice
the generation and usage of component IDs works as follows. At startup, or the �rst time that a
communication event occurs, every component registers itself with the tracer, whereupon it gets
an unique ID, together with some policy information. Later on, when a call is issued from this
component, the request is intercepted by the corresponding ClientRequestInterceptor, which
in turn packs the ID of the component into a service context and adds it to the call. When the
request arrives at the server side, and is intercepted by the ServerRequestInterceptor, the ID
of the caller is extracted. At this point the ServerRequestInterceptor knows both the ID of the
caller and its own ID, which is now the ID of the callee. Similarly, at the third event, i.e. when the
ServerRequestInterceptor intercepts the outgoing reply, it adds its own ID in a service context
to the call, so that this information is also known at the fourth event. Note that at the �rst event,
only the ID of the caller is known, but at all later events, both the ID of the caller and that of
callee can be passed to the tracer.

The above way of embedding IDs in service contexts is very similar to the way that source
and destination IDs are added in layered protocol stacks, such as the Open Systems Interconnect
(OSI) model of the International Standards Organization (ISO).

Communication IDs, too, can be generated centrally. This means that when �rst noti�ed of a
remote method invocation, the tracer generates and returns an unique communication ID. This
ID is then also added to the call in a service context and included in later noti�cations to the
tracer.

However, this is not possible in oneway mode, because the �rst noti�cation to the tracer
returns something (the communication ID), but oneway calls cannot have return values. So either
the �rst noti�cation cannot be oneway, resulting in an overhead for every method invocation,
or distributed ID generation is needed. Fortunately, generating unique communication IDs in a
distributed way is not di�cult because unique component IDs are already available. So at the
�rst interception point, the ClientRequestInterceptor generates a locally unique communication
ID, and combines it with the globally unique component ID of the client component to obtain a
globally unique communication ID. This way, oneway tracing can be fully used, and the generation
of communication IDs causes minimal overhead.
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4.6 Sorting and time-stamping mechanisms

Based on communication IDs, the tracer can group the events belonging to the same remote
method invocation. Ideally, the events should be displayed (either textually or graphically) in
chronological order. However, as already noted, this is a non-trivial task in a distributed system
because of the lack of a global clock and the varying and non-deterministic communication delays.
This intrinsic problem of distributed systems has been known for a long time, and many solutions
have been suggested (see, for instance [23, 24, 8, 11] and references therein). Here we just sketch
some of them that can be applied easily in practice:

• Synchronized physical clocks. We can simply use the physical clocks of the participating
computers for time-stamping events, provided that the clocks are synchronized with some
external synchronization mechanism. This can be achieved for instance using the Network
Time Protocol (NTP, [25]).

• CORBA Time Service. Since the problem of inconsistent local clocks arises in many dis-
tributed applications, the OMG de�ned the CORBA Time Service, which can be used to
obtain consistent time stamps along with error estimates [26]. Unfortunately, the Time
Service is implemented only in a fraction of the ORB implementations.

• Logical clock. Even if there is no global physical clock, a global logical clock can be imple-
mented with a distributed algorithm. The clock is logical, because it has no connection with
the real time; but it is guaranteed to be consistent with the partial order de�ned by the rela-
tion of logical precedence (also called 'happened-before' relation or causality). That is, there
are no tachyons. The key of such algorithms is that every component maintains a counter (a
local logical clock) and increases it at every event it participates in. Also, the current value
of the counter is sent along with every message. (This can be easily implemented in our
case using service contexts.) If the receiver's counter has a smaller value than the received
value�which would mean a tachyon,� then the receiver increases its own counter so that
it is now higher than the received value, and so the tachyon is avoided.

• Physical clocks with logical correction. A possible combination of physical and logical clocks
is the following: mainly the physical clocks are used for time-stamping, but they are also
sent along with every message. Just as with logical clocks, the receiver can check if a tachyon
would be generated, and it can be avoided by setting the receiver's physical clock accord-
ingly. (If the receiver does not have the permissions to change the system clock, it should
just maintain a displacement, which is at the beginning 0, and update the displacement in
such cases.) Although the time-stamps do not re�ect the physical time precisely, today's
computers are usually equipped with clocks of high precision so that in practice, time-stamps
generated this way provide a good approximation of the physical time. (Actually, in this
scheme the fastest clock in the system will determine the �ow of time.) This approach com-
bines the bene�ts of physical and logical clocks in that tachyons are avoided, and the time
spent between events can also be measured (which is not the case with logical clocks). Also
note that clocks never have to be set back which would lead to anomalous behaviour.

4.7 Startup and automation

Lastly, let us examine to what extent instrumentation can be automated using interceptors.
Clearly, after the interceptors are initialized and registered, they intercept all remote method
invocations, so that instrumentation is fully automatic. The only remaining issue is the initializa-
tion and registration of interceptors. Unfortunately, this mechanism is not the same for all ORB
implementations, and even the standard is not programming language independent at this point.
The problem is that interceptors actually become part of the ORB, so that their initialization is
strongly connected to that of the ORB, which is not completely standardized.

The standard de�nes the ORBInitializer interface for this purpose. This interface has two
methods: pre_init and post_init, both of them obtain an ORBInitInfo object as parameter.
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The ORBInitInfo provides methods for the registration of interceptors. Consequently, in order to
register our interceptors, we have to create a class that implements the ORBInitializer interface,
and either in its pre_init or post_init method, we instantiate our interceptors and register
them using the appropriate methods of ORBInitInfo. (The only di�erence between pre_init

and post_init is that at the former not all ORB services are available.)
So far, so good. However, it remains to be clari�ed how our ORBInitializer should be regis-

tered, and this is the point where the speci�cation is di�erent for di�erent programming languages.
In the case of C++, the method register_orb_initializer is de�ned in the PortableInterceptor
name space for this purpose. For Java however, no corresponding method is de�ned for security
reasons, but the ORBInitializer is registered by means of Java ORB properties that can be
provided for instance using command-line arguments.

Consequently, Java programs can be instrumented with no modi�cations whatsoever to the
source code. In the case of other languages though, one line of code has to be inserted into every
component to register the ORBInitializer (at the startup code of the component, before its call
to ORB_init).

Inserting one line of code per component (actually, one per component type) is not much.
However, it can pose a serious problem if the source code is not available. Fortunately, some non-
Java ORBs also provide (proprietary) mechanisms to specify an ORBInitializer at the command-
line, for instance in the form of a library. Another possible work-around is, when using an open-
source ORB implementation, to slightly change the startup code of the ORB so that it loads our
ORBInitializer automatically. (We tried this in the case of TAO, and it proved to be fairly
simple.) If the application is linked against the ORB dynamically, then not even a re-link is
necessary afterwards.

We believe that this part of the interceptor speci�cation is not yet mature and it will change
in the future. Note also that the automatic loading of interceptors (without any source code
modi�cation) has some security implications as well, since this way malicious code may become
part of the ORB.

5 Practical evaluation of interceptor-based tracing

As a proof of concept, we have implemented the features described above in a tracing tool. The
software was implemented in C++, using TAO, and has been tested on Windows NT and Linux
workstations. The program currently supports three output modes: textual description of the
communication events on screen and in �le, as well as communication diagrams in PostScript
format.

Figure 8 shows a simpli�ed static diagram of the system. The �gure consists of two parts:
the right-hand part shows the classes that build the tracer component, whereas the left-hand
part shows the classes that e�ectively become part of every other component. The dashed arrows
between the two parts illustrate CORBA calls.
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Tracer
-components[MAX_NR_OF_COMPONENTS]: char *
-nr_of_components: int
-tracing_mode: int
-buffer_size: int
+Tracer()
+~Tracer()
+register_component(component_name:char *): int
+get_tracing_mode(): int
+rmi_client_begin(client:int,communication_id:int,operation:char *,timestamp:int)
+rmi_server_begin(client:int,server:int,communication_id:int,operation:char *,timestamp:int)
+rmi_server_end(client:int,server:int,communication_id:int,operation:char *,timestamp:int)
+rmi_client_end(client:int,server:int,communication_id:int,operation:char *,timestamp:int)
+init(argc:int,argv[]:char *): int
+run(): int
-obtain_rmi(client:int,communication_id:int,operation:char *): RMI *
-redraw()
-parse_args(argc:int,argv[]:char *): int

Figure 9: The Tracer class

RMI
-client: int
-server: int
-communication_id: int
-operation: char *
-timestamp1: int
-timestamp2: int
-timestamp3: int
-timestamp4: int
-next: RMI *
+RMI(client:int,communication_id:int,operation:int,next:RMI *)
+~RMI()
+client_begin(timestamp:int)
+server_begin(server:int,timestamp:int)
+server_end(server:int,timestamp:int)
+client_end(server:int,timestamp:int)
+get_client(): int
+get_communication_id(): int
+get_next(): RMI *
+draw(ps_writer:PS_writer *)

Figure 10: The RMI class

PS_writer
-ps_file: FILE *
-maxx: int
-maxy: int
+PS_writer(ps_file_name:char *)
+~PS_writer()
+start_draw()
+end_draw()
+draw_arrow(x1:int,y1:int,x2:int,y2:int,mode:int,operation:char *)
+draw_lifeline(nr:int,name:char *)
-transform_x(x:int): int
-transform_y(y:int): int

Figure 11: The PS_writer class
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Tracing_helper
-tracer_ior: char *
-name: char *
-component_id: int
-tracer: Tracer_var
-tracer_obtained: bool
-clock: int
-tracing_mode: int
-buffer_size: int
-trace_file: FILE *
+Tracing_helper(name:char *)
+~Tracing_helper()
+get_name(): char *
+get_component_id(): int
+get_tracer_ior(): char *
+obtain_tracer(): Tracer_var
+get_clock(): int
+synchronize_clock(other_clock:int)
+incr_clock()
+get_tracing_mode(): int
+write_trace(string:char *)
-open_trace_file()

Figure 12: The Tracing_helper class

As can be seen, the tracer component consists of three main classes. The Tracer class (see
�gure 9) implements the Tracer interface that is de�ned in IDL, so that the interceptors can notify
it. The information obtained from the interceptors is stored in RMI objects1 (see �gure 10), which
are stored in a linked list. The PS_writer class (see �gure 11) is used to produce communication
diagrams in PostScript format.

The other part contains the classes that are needed for gathering trace information. The inter-
ceptors and the ORBInitializer classes exhibit the interfaces speci�ed by the CORBA standard.
The Tracing_helper class (see �gure 12) is used to store component-speci�c information that
is relevant for tracing. It also provides some helper functions for the communication with the
tracer.

The implemented software performed very well in the tests, thus proving three important
claims:

• The aims of tracing, as de�ned earlier, can all be provided for with essentially the same
tracing architecture;

• The interceptor mechanism of CORBA provides a suitable framework for such a tracing
architecture;

• In general, the middleware can provide powerful support for tracing in the form of meta-
objects.

We evaluated the tracing tool on some small test programs and on a more complex application,
which is a distributed stock information system, based on the Callback Quoter from [13]. This
application consists of three components: the consumer, the noti�er, and the supplier. The
consumer is interested in selling stocks, provided that their price exceeds a given limit. Therefore,
it registers itself with the noti�er, also specifying the name of the stocks it is interested in, and
the price limit. The supplier is connected to a database, and sends stock information periodically
to the noti�er. Every time the noti�er receives a new bunch of stock information, it informs the
registered consumers, provided that the information is relevant to them.

An example for a communication diagram generated by our tracing tool can be seen in �g-
ure 13. Note that�in contrast to standard UML-style communication diagrams�the arrows are
not horizontal in this diagram. This way, the duration of the invocations as well as possibly
concurrent activities can be better visualized.

We have also conducted some empirical measurements using the implemented tracing tool. A
detailed evaluation is beyond the scope of this paper; here just the worst-case and some more

1RMI is just the abbreviation of remote method invocation; it does not refer to Java RMI.
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unregister_callback

return from unregister_callback

push

return from push

market_status

return from market_status

market_status

return from market_status

register_callback

return from register_callback

Figure 13: An example trace output

Table 2: Relative overhead in % caused by tracing

Mode Worst-case [%] Real application [%]

Non-interactive mode 549 7
Local mode, without caching 41 <1.5
Local mode with caching 15 <1.5
Oneway mode 37 <1.5
Bu�ered mode with transfer 29 <1.5
Bu�ered mode without transfer 13 <1.5
No tracing, just interceptors 11 <1.5

typical �gures are presented for each working mode. The tests were performed on the stock
information system and on a simple test application with an empty function on the server side
(speci�cally for testing the worst-case scenario, i.e. when ts = 0, see section 4.4), which the client
called 10.000 times. Table 2 contains the relative overhead caused by the di�erent modes of
operation in the case of the two test applications. Each result is the average of 5 measurements
performed on a PII/300 PC, under Microsoft Windows NT 4.0.

In the case of the stock information system, we estimated the precision of our measurements,
based on the experienced deviation of the results� to be around 1.5%. Within this error range, we
found the results of all tracing modes except for non-interactive mode to be equal. Consequently,
the overhead generated by them is not more than 1.5%. On the other hand, even non-interactive
mode generated an overhead of just 7%. It follows that the actual overhead of the other modes is
far less than 1.5%. Additional measurements would be needed to determine the overhead of the
other modes precisely; however, this is beyond the scope of this paper. Nevertheless, the measured
values clearly show the applicability of the method, which was our primary goal.

Concerning the worst case, the �gures of table 2 clearly justify our previous estimates and show
that non-interactive mode (which in the worst case generated a more than 6 times slow-down) is
not usable for time-related measurements. However, both local mode with caching and bu�ered
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mode without transfer presented a worst-case overhead of at most 15%, which is low enough to
enable measurements aiming at �nding performance bottlenecks, even concerning the worst case.

6 Related work

Xab [27] was one of the �rst tracing tools for distributed systems. Its purpose is run-time mon-
itoring and debugging of PVM programs. Instrumentation is achieved in the form of a modi�ed
library. Consequently, instrumentation requires re-linking the software; moreover, the instrumen-
tation process is programming language dependent. The instrumentation of C programs also
requires the inclusion of additional header �les, so that the source code is absolutely necessary.
Xab is also di�erent from our solution in that it does not focus on communication only, but gen-
erally on calls to the PVM library. A more recent work on the tracing of PVM applications can
be found in [28, 29], which describes the adaptation of a general visualization tool (called Poet)
to PVM.

Tracing of COM applications was extensively studied in [30]. That work is similar to ours con-
cerning the aims; however, the methods are di�erent. Since COM de�nes binary interoperability
only, instrumentation requires low-level modi�cations to the COM library and/or the application.
Another problem is the strict decoupling of interfaces and objects. It seems though that introduc-
ing interceptor-like meta-objects to COM would largely ease the tracing of COM applications as
well.

An interesting approach for debugging RMI applications is presented in [31]. The idea is to
unify server and client components to a single component for debugging. This means that each
server has to provide two modes of operation: stand-alone and in-process server mode. Clearly,
this is a workaround that may help in a given situation, rather than a general solution.

A similar, yet more general solution was presented in [32], and implemented in the EMUNET
system. It aims at debugging TCP/IP-based distributed systems, and works by substituting
the networking API with proprietary routines. This way, the distributed system becomes a uni-
processor program, in which the original components become threads communicating through
shared memory. The EMUNET library is constructed in such a way that this transition can be
made without modifying the original application source code, only by adding extra source code
and relinking.

The MODIMOS system (Managed Object-based Distributed Monitoring System, [33]) is a
framework for monitoring tools for distributed systems. It de�nes a layered architecture for the
co-operation of local and global monitors; however, it does not address instrumentation explicitly,
but assumes a suitable instrumentation mechanism. The authors also developed such an instru-
mentation mechanism speci�cally for CORBA, which is described in [34]. Their solution monitors
remote method invocations using Orbix �lters; however, also process and object life cycle events
(creation and destruction) are monitored. On the other hand, their method has the following
disadvantages: (i) it does not address automation of the instrumentation process; (ii) the source
code of the application is necessary; (iii) the instrumentation mechanism is speci�c to a partic-
ular programming language (C++) and ORB (Orbix); (iv) the overhead is very high and quite
unpredictable, in some reported cases more than 800%.

Distributed tracing is considered from the point of view of global predicate detection in [8].
This work aims at detecting speci�c states of a distributed application (e.g. a deadlock situation),
which can be characterized as the conjunction of local predicates. Tracing is used to identify
consistent snapshots of the system. Thus, communication is traced in order to uncover causal
relationships between events. An implementation is also reported based on CORBA interceptors
and the Java Debugging Interface. The author also reports on the di�culties of the interoperation
of these two solutions. It remains an open question how this approach can be generalized to other
programming languages.

A similarly general view is described in [35], which surveys possibilities for observation and
control in distributed systems, and claims that debugging can be implemented based on these two.
However, no practical evaluation is provided.
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[36] deals with tracing the order of messages in a parallel program based on the message passing
paradigm. The aim is to trace the minimum number of messages, using which the execution can
be replayed deterministically. The method suggested by authors is based on run-time decisions on
which messages to trace, and is proven to be optimal for a class of message-passing programs.

Speci�cally object-oriented distributed systems were considered in [11]. That work de�ned
four di�erent causality relations for object-oriented distributed systems: sequential program or-
dering, threads fork and join, synchronization, and transaction ordering. Moreover, a prototype
implementation of a post-mortem analysis tool is presented based on these orderings for the Guide
system.

Very similar results were reported in [9]. This work, too, de�nes several partial orders based on
causality in a distributed object-oriented environment. Moreover, an implementation is presented
for CORBA and Java. Instrumentation is achieved using a re�ective language (OpenJava, which
is an extension of Java). In a re�ective language, meta-level classes can manipulate base-level
classes, and thus can be used to insert tracing instructions.

Debugging in embedded systems is considered in [3] and in [37]. Speci�cally, [3] is only con-
cerned with surveying the problems that may arise during tracing of distributed embedded systems,
while [37] proposes a solution for the cyclic debugging of embedded real-time systems consisting
of multiple processors. It is based on recording the events during the operation of the system, and
later using this information to enable deterministic replay of the execution. This method may be
combined with virtually any instrumentation technique for the recording phase.

An architecture for the supervision of CORBA applications was proposed in [38]. This ar-
chitecture consists of a heavily modi�ed ORB which is used to emit events, a modi�ed GIOP
transport layer for event multicast, and some supervision servers for collecting the events. The
supervision servers build up a heavy-weight object-oriented model of the execution.

[39] presents details on the development of GLADE, the part of an ADA95 compiler that is
responsible among others for tracing and replaying distributed ADA programs. In trace mode,
inter-component messages are logged, which can be replayed later, in a consecutive execution of
the system in replay mode. Thus, each component can be tested separately by simulating external
events. Since the presented tracing facility is part of the ADA compiler, instrumentation is not
an issue. Of course the solution is limited to ADA programs.

In recent years another promising research direction has emerged, which is mostly comple-
mentary to our approach: integration architectures for parallel programming tools [40, 41, 42].
The resulting interfaces enable di�erent programming tools (e.g. debugger, checkpoint inserter,
visualizer, pro�ler) to interact in order to show the programmer the most useful view on the
software.

7 Conclusion

This paper has addressed the increasingly important problem of tracing distributed, heterogeneous
applications. The most important contributions are:

• It has been shown that interceptors can be used to trace CORBA applications.

• The resulting tracing architecture can provide for all of the identi�ed uses of tracing.

• A new tool for tracing CORBA applications, which was found useful in empirical evaluations.

• The overhead generated by interceptors and by tracing can be kept low enough to enable
performance measurements.

Our future plans include the implementation of more advanced features in our tracing tool, as
well as its integration with other, conventional tracing tools.
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