
Symmetry Partition Sort*

(Preliminary Draft)

Jing-Chao Chen
Email: chen-jc@dhu.edu.cn

School of informatics, DongHua University
1882 Yan-an West Road, Shanghai, 200051, P.R. China

(June 1, 2007)

SUMMARY

In this paper, we propose a useful replacement for quicksort-style utility functions. The replacement is
called Symmetry Partition Sort, which has essentially the same principle as Proportion Extend Sort. The
maximal difference between them is that the new algorithm always places already partially sorted inputs
(used as a basis for the proportional extension) on both ends when entering the partition routine. This is
advantageous to speeding up the partition routine. The library function based on the new algorithm is more
attractive than Psort which is a library function introduced in 2004. Its implementation mechanism is
simple. The source code is clearer. The speed is faster, with O(n log n) performance guarantee. Both the
robustness and adaptivity are better. As a library function, it is competitive.

KEYWORDS: Proportion extend sort; High performance sorting; Algorithm design and implementation;
Library sort functions.

INTRODUCTION

It has been all along one of the studied problems how to devise a better library sort function. A large amount
of library sort functions have been proposed. Most of them were derived from Quicksort [1] due to Hoare.
The Seventh Edition [9] and the 1983 Berkeley function in Unix are the early library function based on
Quicksort. The late one is Bentley and McIlroy’s Quicksort (BM qsort, for short) [2] proposed in 1993.
Whether the early one or the late one, in theory, they consume possibly quadratic time [2,11].
 Let W(n) and A(n) denote the number of comparisons in the worst case and on the average, respectively.
Table 1 shows the number of comparisons required by some practical sorting algorithms. The Psort [5]
shown in Table 1 is a library function recently developed by Chen, which is based on Proportion Extend
Sort (PEsort, for short) [3]. Although Psort is a variant of PEsort, no theoretical evidence shows that the two
algorithms have the same time behavior. This is still an open problem. Therefore, it is nothing but
conjecture that W(n) of Psort is θ(n log n). Full Sample Sort (Fsort, for short) [7] is also a practical
algorithm, which is of some features similar to PEsort. Like PEsort, its number of comparions both in the
worst case and on the average is bounded by O(n log n) [3,7,8]. Their worst case numbers of exchanges
both are bounded by O(n lg2 n) [7 8]. In practice, both Psort and Fsort are faster, more robust and more
adaptive than functions based on Quicksort. However, in some particular cases, they are not the fastest. For
example, for sorting random integers, the best-of-three version of Quicksort with an extra storage [10] could
run faster than they. Also, their code is not very clear. This needs to be improved further.

Table 1. The number of comparisons
Algorithms W(n) A(n) References

Proportion Extend Sort θ(n log n) n log n + O(n) 3, 7, 8
Psort unknown n log n + O(n) (observed) 5
Full Sample Sort θ(n log2 n) n log n + O(n) 7
BM qsort θ(n2) 1.1n log n + O(n)(observed) 2, 11

 The paper introduces a new algorithm that has the same time complexity as PEsort. But the algorithmic
mechanism is different. The new algorithm is referred to as Symmetry Partition Sort. Its symmetry is mainly
reflected in the partition portion. When entering the partition routine, it always ensures that the already
sorted small and large items are collected in two ends of the items to be split, respectively, so that the
partition routine needs not consider the border test of index variables. The advantage of this partition
scheme is that it can simplify the “fat partition” routine, and outperform the best-of-three version of

* This work was partially supported by the National Natural Science Foundation of China grant 60473013

Quicksort in any case, even in a case favourable to Quicksort. Compared with the library function Psort, the
code of this algorithm is clearer. To speed up the algorithm, besides using some traditional tricks such as
sorting small array by insertion sort, we remove the tail recursions. To enhance adaptive performance, we
get the longest initial sorted sequences by extracting the sorted items prior to entering the sort. Empirical
results show that the resulting library function is faster and more robust than both Psort and Fsort. In terms
of Rem-adaptivity (its definition will appear below), it has good behavior. In some cases, it can achieve even
the adaptive performance of McIlroy’s Mergesort with Exponential Search (MSES for short) [13]. Like
PEsort, it can be guaranteed theoretically to require O(n log n) comparisons in the worst case, and n log n
+O(n) comparisons on the average case. Symmetry Partition Sort is also an algorithm with Quicksort
flavour. Consequently, it has also excellent caching behaviour like Quicksort.

THE ALGORITHM

Symmetry Partition Sort is based on PEsort. First we review briefly PEsort before describing Symmetry
Partition Sort. In PEsort, a sort is considered as the sort of such a partially sorted array: the portion to the
left, S, is sorted; the remainder, U, is unsorted. Below we describe a call (S, U) to PEsort in a pseudo-code.

 Define V as

 where p and β are a constant.
 We sort a partially sorted subarray (S, V) in such a way:

Partition V into VL and VR by the median m of S such that max (VL) < m < min (VR).
Let SL be the left half of S, SR the right half of S. Namely, S is viewed as SLmSR.
Swap the blocks mSR and VL, preserving the order of items in mSR
Sort recursively the subarrays (SL, VL) and (SR, VR), respectively.

 Finally, we sort array (S', U − V) recursively, where S' is the sort of SV.

Unlike PEsort, Symmetry Partition Sort can complete the sort of not only left partially sorted arrays, but
also right partially sorted arrays. Here, an array is said to be a left partially sorted array if the portion to its
left is sorted. Similarly for a right partially sorted array. The algorithm assumes that the input is of the form

S U
or

U S

where S and U denote the sorted and unsorted subarray, respectively. By a vector left or right move, we
transform it into four:

L V R

where LR=S and the size of V is defined as before. Using the last item m of L, i.e., the median of S, we
partition V into two parts to yield:

L ≤ m ≥ m R
VL VR

Now sort recursively the subarrays (L, VL) and (VR, R) to get the state with a longer sorted sequence S' like

S' U'

Finally, we sort recursively the array (S', U') to complete the sort of the whole array. Next we formalize the
algorithm in a pseudo-code.

procedure SymmetryPartitionSort (S, U, sign)
if U is empty then return
Let S = LR with |L|=|S|/2
if sign = −1 then transform US to LVRU' by vector left move operations
else transform SU to LVRU' by a vector right move operation
Partition V into VL and VR by the last item m of L such that max (VL) ≤ m ≤ min (VR)
SymmetryPartitionSort (L, VL, 1)
SymmetryPartitionSort (R, VR, −1)
SymmetryPartitionSort (S', U', 1), where S' is the output of the previous two recursive calls

end procedure



 ≤

=
otherwise

 if ofleft theto size ofsubarray the
U

SUSU Sp
V

β

 The parameter sign is used to indicate whether the sorted subarray S is to the left of U or to the right of U.
That is, S is to the right of U when sign = −1, and to the left of U otherwise. In the concrete implementation,
parameters S and sign can be merged into one parameter. Let s be the size of the sorted subarray plus a sign.
When S is to the left of U, s is set to |S|. And when S is to the right of U, s is set to −|S|. The significant
difference between PEsort and Symmetry Partition Sort is that the former completes the block swap after
partitioning V, while the latter does prior to partitioning V. This is advantageous to speeding up the partition
routine. When partitioning V, both ends of V are occupied by the sorted items. Thus, we can view the last
sorted item to the left and the first sorted item to the right as sentinels. The end-sentinel partitioning is more
efficient than the other partitioning, since it can ignore the computation on whether an index reaches the end
of the array. Let L = a[0..v1], V = a[v1+1..v2], R = a[v2+1..r] and the function of swap(a+i, b+j) be to
exchange the values in a[i] and b[j]. The following is the C code for partitioning V with a sentinel-end
partitioning technique.

 i =v1+1; j = v2;
 do { while (a[i] < a[v1]) i++;
 if (i >= j) break;
 while (a[j] > a[v1]) j--;
 if(i >= j) break;
 swap(a+i, a+j); i++; j--;
 } while (i <= j);

If L = φ or R = φ, this partitioning technique will fail. However, this can be avoided easily, since we can
create the sorted subarray S with three items by sorting the first, middle, and last items, and setting the first,
middle items to L and last item to R. Using this technique, this algorithm can outperform the best-of-three
version of Quicksort with an extra storage even on random integers. The symmetry of this algorithm is
mainly reflected in this portion.

VARIOUS OPTIMIZATIONS

The algorithm given in the previous section is the basic version of Symmetry Partition Sort. Directly
implementing it will detract its many practical merits. Therefore, we improve on it as follows.

 1. Sort a small array by insertion sort. This trick has been used widely by BM qsort, Psort etc. For its
implementation details, see Appendix and References [2] and [5].

 2. Speed up the algorithm on nonrandom inputs by a uniform sampling technique.
 3. To avoid slowdown efficiently on some reasonable inputs, such as many identical items, we use the

same partitioning scheme as Psort. Its goal is to divide a sequence three subsequences: small items,
equal items and large items. For details, see Appendix and Ref. [5].

 4. Eliminate the tail recursions.
 5. Tune the values of p and β. Based on empirical results, the optimal value of p is 16. The optimal value

of β is 512 when |S| ≤ 2, and 256 otherwise.
 6. Create the longest possible sorted subarray as the initial inputs. This strategy is used to improve the

adaptivity of the algorithm.

Below we expand the details of some tricks above-mentioned.
 The core of our uniform sampling technique is to extract sampling items evenly (at equal space intervals)
from the unsorted subarray U, and place them into V prior to sorting the partially sorted subarray LV. The
sampling space is set to n/v, where n is the number of items to be sorted, and v =|V|. Let U = a[u1..u2]. The
following is a C program for extracting v − u1 sampling items.

 int i, j;
 for(i = j = u1; i < v; i++, j = j + n/v) swap(a+i, a+j);

The timing to invoke the program depends on whether the input satisfies the balanced (random) property.
This is done by testing if |U| = |V| or not. That is, whenever |U|≠|V| (this is considered as a nonrandom
input), we call this program. Incorporating this technique can beat the number of comparisons down to
n log n for sorted inputs.
 As has been seen before, the algorithm is described in a recursive way. In general, a recursive call needs
maintain some local variables. Nevertheless, this is not cheap. However, implementing the Symmetry

Partition Sort in a full non-recursive way is also expensive. Based on our observation, we found that a
hybrid fashion is more efficient than any pure fashion. In the realistic implementation, we replace the last
recursive call with an unrolling way, keep other recursive calls unchanged. In the appendix, one will see that
the third recursive call SymPartitionSort(a, v, n, es, cmp) is replaced with the structure:
 while (1){

 o o o
 s=v;
 }
When v = n, the second recursive call becomes the last recursive call. At this time, this recursive call is
removed also. For details, see Appendix. Additionally, in order to reduce the number of recursive calls, we
add a test to ask whether the set of the unsorted items is empty before each recursive call.
 A non-random sequence is often one formed by interleaving a sorted subsequence and a random
subsequence. This is a common phenomenon in updating data bases. How to speed up the sort on this class
of inputs is the problem we address here. The feature of the algorithm is that the longer the initial sorted
subarray, the fewer the number of comparisons required. This is similar to the algorithm in [6]. Therefore,
we decide to use a similar way to [6] to collect sorted items together to the left end as an initial input, and
then invoke Symmetry Partition Sort. The resulting algorithm will be adaptive. The collection proceeds as
follows.

 (1) Find the first run (we say that a subsequence is a run if it is ordered (increasing or decreasing)).
 (2) Find the next run.
 (3) Concatenate the current run and its left run it into a longer run.
 (4) Repeat (2) and (3) until all items are scanned.

 This is actually a simplified “natural mergesort”. Problems to be addressed here are how to find a
required run and how to concatenate two runs efficiently. As a possible solution to the first problem, we take
the 1st item as the start of a run, and then find its tail from left to right. If the length of the run found is not
sufficiently long, say less than 4, we abort it, and then re-find a run with the 2nd item as a start. The process
is repeated until a run is found, or all items are scanned. This method is simple but inefficient. For this
reason, we modify it as follows. Take some item (which is 10 items away from the previous run) as the
middle of the series to be scanned, find backward the start of a run, and find forward the tail. If the run
length is not enough, we abort it, take the next 10-th item as the start of a new scan, and resume the process.
 We concatenate two runs together by a head-tail-elimination strategy. The first step to find two knots
where two runs can be tied in a longer run by scanning backward the 1st run and forward the 2nd run. The
second step is to bring the right portion (from the 2nd knot to the end) of the 2nd run to the right end of the 1st

knot to obtain a longer run. For example, given the 1st run=<1,3,5,20,21> and the 2nd run=< 2,4,9,10,11>,
then the 1st and 2nd knots found are items 5 and 9. The merged longer run is <1,3,5, 9,10,11>.
 The preprocess for extracting a sorted sequence from an input is harmful to a random input. To reduce
this harm, we detect the nature of an input by counting inversions and non-inversions on a sample set, which
is formed by taking an item every 97 (this is an empirical result) items. Given an input a[0..n-1]. The
following C code is to compute the difference D_inv of inversions and non-inversions in array a.

for (D_inv=0, i=0; i < n; i+=97) if (a[i-1] < a[i]) D_inv++; else D_inv--;

If |D_inv| is small, say |D_inv| < n/512, the input is possibly random. In this case, we abort the preprocess.
Otherwise, we continue to the search and merge of runs.
 Based on the above ideas, the resulting adaptive algorithm may be summarized in a pseudo-code as

follows.

 procedure AdaptiveSymmetryPartitionSort (A[1.. n])
 find the 1st run S
 if the input A is a non-random then
 i ← (pointer to the tail of S) +10
 while i < n do
 find next run T backward and forward from the i-the item in A
 merge S and T into S by head-tail-elimination strategy
 i ← (pointer to the tail of T) +10
 end while
 end if
 if S is reverse then reverse(S)
 SymmetryPartitionSort (S, A − S, 1)

end procedure

 The appendix presents the C codes of an optimized Symmetry Partition Sort and an adaptive Symmetry
Partition Sort, which support an interface identical to the C library function qsort. They are named as
SymPartitionSort and Adp_SymPsort, respectively.

EMPIRICAL STUDIES

In this paper, we conducted the experiments about running times with two personal computers: Celeron
CPU 700MHz and Pentium IV CPU 2.66GHz. All the programs were coded in C and adopted an interface
identical to the C library sort function

sort (char * A, int s, int n, int length, int (cmp)(const void *, const void *)),

where A points to the start of an array to be sorted; n is the number of items in A ; length is the size in bytes
of each item; cmp is a comparison function which returns an integer that is negative, zero or positive,
depending on the comparing result of its two arguments.

Figure 1. Comparison counts per item to sort a non-random input X of n =100000 items, plotted as a
function of log Rem(X)

 We evaluated the proposed sorting algorithm with such performance metrics as adaptivity, running time,
comparison count, exchange count, robustness etc. Various measures of presortedness have been proposed.
An important measure is Rem, which is defined as the number of items that must be eliminated to leave a
sorted sequence. Let X is some n-sequence to be sorted. The definition is formalized as

0

2

4

6

8

10

12

14

16

18

6 7 8 9 10 11 12 13 14 15 16

log Rem(X)

C
o
m
p
a
r
i
s
o
n

c
o
u
n
t
s

p
e
r

i
t
e
m

BM qsort
Psort
MSES
Splaysort
Adp SymPsort

(a) Nearly sorted inputs

0

2

4

6

8

10

12

14

16

18

6 7 8 9 10 11 12 13 14 15 16

log Rem(X)

C
o
m
p
a
r
i
s
o
n

c
o
u
n
t
s

p
e
r

i
t
e
m

BM qsort
Psort
MSES
Splaysort
Adp SymPsort

(b) Reverse nearly sorted inputs

 Rem(X) = n – max{k : X has an ordered subsequence of size k}.
The lower the value, the more ordered the sequence. Rem(X) = 0 implies that the sequence X is a sorted or
reverse sorted one. In real data applications, it is one of the most appealing measures.
 We generate a nearly ascending sequence X with Rem(X) = k in such a way: create first the ascending x1 <
x2 < , …,<xn, and then randomly choose k indexes and replace integers pointed to by them with k random
integers such that for each replaced integer xi+1, xi > xi+1 or xi+1> xi+2. In a similar way, we generate a nearly
descending sequence X with Rem(X) = k.
 Figure 1 shows average comparison counts per item required to sort an incompletely shuffled input of
n=100000 items as a function of log Rem(X) for five sorting algorithms. Throughout this paper, we provided
20 different inputs for each problem. Each algorithm was run on the same collection of inputs. Adp
SymPsort refers to the adaptive Symmetry Partition Sort given in the Appendix. Contrasting Figure 1 (a) to
Figure 1 (b), we noted that these algorithms, on nearly sorted inputs or on reverse nearly sorted inputs, have
the same behaviour with respect to Rem. For small values of log Rem(X), Adp SymPsort achieves the same
Rem-adaptivity as Merge Sort with Exponential Search (MSES for short)† due to McIlroy [13]. For large
values of log Rem(X), the situation is a little different. The best was still MSES, but the second best was
Splaysort†† [12], followed by Adp SymPsort. BM qsort is not Rem-adaptive in any way.
 Figure 2 shows average times (ms) taken to sort an input X of 100000 items on Pentium IV 2.66GHz as a
function of log Rem(X). Each item contained a 4-byte pointer to an 8-byte floating integer used as a key.
Unexpectedly, Adp SymPsort was almost consistently faster than MSES in this experiment. When the order
of items is close to randomization, MSES was slower than even BM qsort. Splaysort run very slow also,
especially for large values of Rem(X). This is why both MSES and Splaysort have poorer cache performance
and heavy data movements so that they were very slow in many cases, especially for random inputs.

Figure 2. Time in microseconds to sort an incompletely shuffled input X of n =100000 4-byte pointers to 8-
byte floats, plotted as a function of log Rem(X)

 An another appealing measure of presortedness is Inv, which is defined as the number of pairwise
inversions,

Inv (X) = |{(i, j) : 1 ≤ i < j ≤ n and xi > xi+1}|
To conduct experiments with Inv, we generated sequences with kn/2 or fewer inversions in such a way:
Starting with a sorted sequence, the n items were divided into blocks of size k and the items in each block
were permuted so that each block had at most k2/2 inversions and the total Inv(X) was less than kn/2. With
respect to Inv, Adp SymPsort has the same performance as BM qsort. Both are not Inv-adaptive. Figure 3
shows average comparison counts per item required to sort an incompletely random input X of n=100000
items as a function of log (2Inv(X)/n). This measure had a significant impact on Psort, but not on Adp
SymPsort. Except for Inv(X)<n/2, Adp SymPsort made the same comparisons as on the completely random
input, and was a little better than BM qsort. This shows that Adp SymPsort is still robust.

† The C code for MSES is available from http://gcov.php.net/PHP_5_2/lcov_html/main/mergesort.c.gcov.php
†† The C code for Splaysort is available from http://www.cs.mu.oz.au/~alistair/splaysort.c

0
5

10
15
20
25
30
35
40
45
50
55
60

6 7 8 9 10 11 12 13 14 15 16

log Rem(X)

A
v
e
r
a
g
e

r
un

n
i
n
g

t
i
m
e
s

i
n

m
s

BM qsort
Psort
MSES
Splaysort
Adp SymPsort

Figure 3. Comparison counts per item to sort an input sequence X of n =100000 items, plotted as a
function of log k, where 2Inv(X) < kn.

 Table 2 shows the average time (ms) taken to sort n 4-byte integers on Pentium IV 2.66GHz. In this
experiment, the key comparing was set to be the following typical integer comparison function

 int cmp(const void * i, const void *j) { return *(int *)i - *(int *)j; }

which is the cheapest. In Table 2, column, distinct, presents the time taken to sort n randomly permuted
distinct integer, while column, mod n, presents the time taken to sort n random integers taken modulo n.
Algorithms Adp Psort and Adp Fsort are one obtained by replacing SymPartitionSort in Adp_SymPsort
with Psort [5] and Fsort [7], respectively. Besides this substitution, we eliminate the adaptive process within
Psort to speed up Adp Psort. In Figures 1~3, we did not list the empirical results of Adp Psort and Adp
Fsort, since they had the same adaptivity as Adp SymPsort. Whether on distinct integers or integers taken
modulo n, Adp SymPsort was the fast, and 3 ~ 5 per cent faster than BM qsort. An interesting phenomenon
is that Adp SymPsort was always faster in case “mod n” than in case “distinct”, while Adp Psort and Adp
Fsort was converse. This may be due to that shifting the sorted subarray prior to partitioning favors
simplifying the subsequent equal-items movement. Because MSES is not a competitor for random inputs,
Table 2 does not give its empirical result, for which, the interested reader is referred to [5]. The reason why
Psort was not chosen as a reference point is that the performance of Adp Psort is better than that of it.

Table 2. The average time in ms to sort n integers (Pentium IV 2.66GHz)
Adp SymPsort Adp Psort BM qsort Adp Fsortn distinct mod n distinct mod n distinct mod n distinct mod n

25000 5.884 5.777 6.103 6.131 6.155 6.068 6.050 6.104
50000 12.49 12.28 12.96 13.01 13.11 12.90 12.87 12.97

100000 26.61 26.16 27.51 27.59 27.81 27.40 27.32 27.49
500000 153.25 150.90 155.93 156.73 157.98 155.95 155.93 158.18

1000000 320.05 316.45 327.40 329.10 331.05 327.45 331.60 333.80
2000000 672.30 665.30 686.40 689.30 693.60 687.00 695.80 700.20

 As shown in Table 3, in terms of the number of comparisons, the fewest was Adp SymPsort, which was
consistently better than other three algorithms Adp Fsort, Adp Fsort and BM qsort. In terms of the number
of swaps, it was a little poorer than the three algorithms. This is reflected in Table 4. The model where
swapping is expensive does not favors Adp SymPsort. This can be avoided by reducing the number of
swaps with a “ripple swap” trick introduced in [4]. Though, in the general case, this strategy is not
necessary. Table 5 shows the average time (ms) taken to sort 100000 distinct items with each key a 4-byte
integer for different item sizes on Celeron 700MHz and Pentium IV 2.66GHz. The purpose of this
experiment is to gauge the influence of movement operations on the performance. When the number of
bytes in each item is less than or equal to 9, Adp SymPsort, whether on Celeron 700MHz or Pentium IV
2.66GHz, was the fast. As the number of bytes in each item increases, its advantage disappears. When the
number of bytes per item is equal to 13, Adp SymPsort was slower than Adp Psort on Pentium IV 2.66GHz.

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

log (2Inv(X)/n)

C
o
m
p
a
r
i
s
o
n

c
o
u
n
t
s

p
e
r

i
te

m

BM qsort
Psort
MSES
Splaysort
Adp SymPsort

However, if each item is word-aligned, swapping becomes cheap, so that Adp SymPsort was the fast until
the number of bytes per item reaches 52. Celeron 700MHz seems to advantage Adp SymPsort, since the
result reported in Table 5 is that it was always faster than other algorithms on this machine, but was not so
on another machine.

Table 3. The average number of comparisons on n distinct random items
n Adp SymPsort Adp Psort BM qsort Adp Fsort
1000 9653 10305 9952 9941

25000 355220 367980 375074 360364
50000 766785 786760 803076 770541

100000 1639944 1688635 1718466 1641247
500000 9267453 9538272 9861301 9401153

1000000 19703924 20168360 20871158 19799318
2000000 41441219 42532145 43934867 41606187

Table 4. The average number of swaps on n distinct random items
n Adp SymPsort Adp Psort BM qsort Adp Fsort
1000 3201 2781 2835 2832

25000 110155 100413 98891 102405
50000 227656 211967 210072 218161

100000 479511 445392 443949 463513
500000 2768386 2562361 2502998 2629568

1000000 5651452 5321372 5243871 5530168
2000000 11810531 11078900 10975299 11604469

Table 5. The average time in ms to sort 100000 distinct items
Adp SymPsort Adp Psort BM qsort Adp FsortBytes per

item 700MHz 2.66GHz 700MHz 2.66GHz 700MHz 2.66GHz 700MHz 2.66GHz
9 148.8 45.07 149.9 45.12 153.1 45.56 152.7 46.41

13 191.8 54.14 194.6 53.10 201.1 54.15 196.4 58.58
14 202.6 55.94 203.5 54.63 207.8 55.86 207.2 60.32
52 535.3 57.20 538.5 57.38 544.5 59.16 547.8 58.82
80 763.0 83.38 764.5 82.48 763.0 85.20 788.0 83.72

Table 6. The average number of comparisons on n=100000 random integers taken modulo k
k Adp SymPsort Adp Psort BM qsort Adp Fsort

2 150995 151528 150077 151062
10 291261 296038 306123 291146

100 588794 589991 622491 583492
1000 941066 940736 982405 927783

10000 1309552 1330522 1368386 1297330
100000 1577997 1616587 1645520 1566716

 Each algorithm listed in Tables 6 and 7 contained the fat partition technique, which is used to improve the
repeated key adaptivity of algorithms. As shown Tables 6 and 7, Adp SymPsort was the best with respect to
repeated key adaptivity, and took not only fewer comparisons, but also fewer swaps, on the average in
almost all cases, except for modulo n, in which, it took more swaps. In fact, the case modulo n is almost
identical to that of distinct random items, since in the case there is almost no equal item.

Ref. [5] showed a testbed for certifying performance, which was introduced first by Bentley and McIlroy
[2]. The testbed is very representative and covers broadly various plausible inputs such as sawtooth,
random, flat, shuffled, dither, sorted, reverse sorted etc. For its detailed pseudocode, please see Figure 1 in
Ref. [5]. Here we used also it to certify the robustness of algorithms. Table 8 shows the worst case number
of comparisons required to sort n items on the testbed. For different n, the number of input instances
generated is different, and varies from 510 to 660. The algorithm, Adp SymPsort, proved empirically to be
the most robust. The number of comparisons never exceeded 1.2n log n. The worst case was consistently
better than that of BM qsort. The cases in which the number of comparisons exceeds 1.1n lg n were fewer
than 0.6%. Table 9 shows the worst case number of swaps required to sort n items on the testbed. In the
worst case, the number of swap required by our algorithm was more than BM qsort, and fewer than Adp
Psort. But the number never exceeded 0.45n log n.

Table 7. The average number of swaps on n=100000 random integers taken modulo k
k Adp SymPsort Adp Psort BM qsort Adp Fsort

2 64674 114313 149857 141865
10 148946 196379 194200 207636

100 230114 272776 268262 293337
1000 312837 335710 347476 379142

10000 394765 397514 421214 455642
100000 462840 436790 434450 461609

Table 8. The worst case comparisons on the testbed shown in Fig. 1 of Ref. [5]
The worst case number of comparisons % over 1.1n log n

n Instance
Adp

SymPsort Adp Psort BM qsort Adp Fsort Adp
SymPsort

Adp
Psort

BM
qsort

Adp
Fsort

50000 510 916020 913430 920167 912099 0.6 2.2 2.9 0.2
1000000 630 22933715 26369317 23927787 23504806 0.5 1.9 3.5 0.8
2000000 660 45327892 55614163 49855553 49549883 0 1.7 3.8 0.8

Table 9. The worst case number of swaps on the testbed shown in Fig. 1 of Ref. [5]
n Instance # Adp SymPsort Adp Psort BM qsort Adp Fsort

50000 510 343656 351922 217260 322076
1000000 630 8877398 8950155 5302093 8439380
2000000 660 18695152 18895316 11061038 17823754

CONCLUSIONS

In the paper, we have presented a practical sorting algorithm as an alternative to PEsort. Surprisingly, this
algorithm has not only simpler implementation, but also better performance. A series of experiments proved
that this algorithm is robust, efficient and equally cache-friendly to Quicksort for an in-cache phase of
cache-aware sorting. How to use efficiently cache in modern machines has received extensively attention
[14]. In the sense, this algorithm should be useful. Although theoretically this algorithm has a case of n
log2n exchanges as PEsort [8], this can be easily avoided, if we use an in-place merging strategy when the
size of the sorted subarray is greater than that of the unsorted subarray. Is it necessary to add the strategy to
this algorithm? This will be a problem deserving of studying.

ACKNOWLEDGEMENTS

The author is grateful to A. Mycroft and M. Richards for their helpful discussions while visiting University
of Cambridge.

APPENDIX: THE C CODE OF ADAPTIVE SYMMETRY PARTITION SORT

The C source code listed below is available from
http://cist.dhu.edu.cn/professors/AdpSymmetryPSort.cpp

Before the C code for Adaptive Symmetry Partition Sort, we give several macros. The swap strategies of
items depend on the value of variable swaptype, which is set by the following macro:

#define SWAPINIT(a,es) swaptype = \
 (a - (char *) 0) % sizeof(long) || es % sizeof(long) ? 2 : \
 es == sizeof(long) ? 0 : 1

Using the variable swaptype, we classify three kinds of swaps: zero for swapping single long integers, one
for multiple long integers, and two for strings of chars.
 Swapping two vectors, each of which is a sequence of n bytes which are aligned, is done by the following
macro:

#define swapvector(TYPE,pi,pj,n) \

 do { \
 TYPE t= *(TYPE *) (pi); \
 *(TYPE *) (pi) = *(TYPE *) (pj); \
 *(TYPE *) (pj) = t; \
 pi+=sizeof(TYPE); pj+=sizeof(TYPE); \
 n-=sizeof(TYPE); \
 } while (n > 0);

An efficient function for swapping two n-byte sequences is constructed as follows:

void swapfunc(char *a, char *b, int n, int swaptype)
{ if (swaptype <=1) swapvector(long,a,b,n)
 else swapvector(char,a,b,n)
}

 The following macro means swapping two long-size objects in line, and invoking the swapfunc function
for other cases:

#define swap(a,b) \
 if (swaptype == 0) { \
 long t = * (long *) (a); \
 * (long *) (a) = * (long *) (b); \
 * (long *) (b) = t; \
 } \
 else swapfunc(a,b,es,swaptype)

The following is the definitions for constants p, β1 and β2:
#define p 16
#define beta1 256
#define beta2 512

The SymPartitionSort function is an optimized Symmetry Partition Sort, which will be called by Adaptive
This function sorts a partially sorted array a. Several interface parameters are defined as follows. s: the
number of the initial sorted items, n : the number of items to be sorted, es : the size in bytes of each item,
cmp : comparator.

void SymPartitionSort(char *a, int s, int n, int es, int (*cmp)(const void *,const void *))
{ char *pm,*pb,*pc,*pi,*pj;
 int i,v,vL,m,left,right,swaptype,sp,eq,ineq,rc;

 SWAPINIT(a,es);
 while(1){
 if(n < 8){ //Insertion sort on small arraysInsertion sort on small arraysInsertion sort on small arraysInsertion sort on small arrays
 for (s=1; s < n; s++)
 for (pb = a+s*es; cmp(pb-es,pb) > 0;) {
 swap(pb,pb-es); pb-=es;
 if(pb <= a) break;
 }
 return;
 }
 m= s<0 ? -s:s;
 if(m <= 2){ //First,middle,last items are ordered and placed 1st,2nd and lastFirst,middle,last items are ordered and placed 1st,2nd and lastFirst,middle,last items are ordered and placed 1st,2nd and lastFirst,middle,last items are ordered and placed 1st,2nd and last
 v = beta2 > n ? n : 63;
 pc=a+(v-1)*es;
 pm=a+es;
 swap(pm,a+(v/2)*es);
 if(cmp(a, pm) > 0) swap(a,pm);
 if((cmp(pm, pc) > 0)) {
 swap(pm,pc);
 if((cmp(a, pm) > 0)) swap(a,pm);
 }

 left=right=1; pc-=es;
 }
 else{
 v=m > n/beta1 ? n : p*m-1;
 if(s < 0) { //Move sorted items to left endMove sorted items to left endMove sorted items to left endMove sorted items to left end
 if(v<n) {left=m; s=-s;}
 else {left=(m+1)/2; right=m/2;}
 swapfunc(a, a+(n-m)*es, left*es, swaptype);
 left--;
 }
 if(s>0){
 pb=a+m*es; pc=a+v*es;
 if(v < n){ //Extract sampling itemsExtract sampling itemsExtract sampling itemsExtract sampling items
 sp=(n/v)*es; pj=pb; pi=pb;
 for(; pi < pc; pi+=es, pj+=sp) swap(pi,pj);
 }
 i=right=m/2; //Right move sorted itemsRight move sorted itemsRight move sorted itemsRight move sorted items
 do{ pb-=es; pc-=es; swap(pb,pc); i--;} while (i);
 left=(m-1)/2;
 }
 pm=a+left*es; pc=pm+(v-m)*es;
 }
//Fat partition beginsFat partition beginsFat partition beginsFat partition begins
 pb=pi=pm+es;
 do {
 while ((rc=cmp(pb,pm)) < 0) pb+=es;
 if(pb >= pc) break;
 if(rc==0){
 if(pi!=pb) swap(pb,pi);
 pi+=es; pb+=es;
 continue;
 }
 while ((rc=cmp(pc,pm)) > 0) pc-=es;
 if(pb >= pc) break;
 swap(pb,pc);
 if(rc==0){
 if(pi!=pb) swap(pb,pi);
 pi+=es;
 }
 pb+=es; pc-=es;
 } while (pb <= pc);
//Move equal-key itemsMove equal-key itemsMove equal-key itemsMove equal-key items
 eq=pi-pm, ineq=pb-pi;
 if(ineq < eq) pi=pm+ineq;
 pc=pb;
 while (pm < pi) { pc-=es; swap(pc,pm); pm+=es;}
//Fat partition endsFat partition endsFat partition endsFat partition ends
 vL=(pb-a)/es;
 if(right < v-vL) SymPartitionSort(pb, -right, v-vL, es, cmp);
 vL=vL-eq/es;
 if(v < n){
 if(left < vL) SymPartitionSort(a, left,vL,es,cmp);
 s=v; //Remove tail recursionRemove tail recursionRemove tail recursionRemove tail recursion
 }
 else{
 if(left >= vL) return;
 s=left; n=vL; //Remove tail recursionRemove tail recursionRemove tail recursionRemove tail recursion
 }
 }
}

The Adp_SymPsort function is an Adaptive Symmetry Partition Sort supporting an interface identical to
the C library function qsort. This function sorts the specified sequence into ascending order. Interface
parameters are defined as follows. a : pointer to the array to be sorted, n : the number of items to be sorted,
es : the size in bytes of each item, cmp : comparator.

#define lambda 512
#define gamma 97
void Adp_SymPsort(char *a, int n, int es, int (*cmp)(const void *,const void *))
{ char *pb,*pc,*pi,*pj;
 int swaptype,i,j,ne,rc,D_inv,left,m,Rev=0;

 SWAPINIT(a,es);
//Find 1st runFind 1st runFind 1st runFind 1st run
 ne = n * es;
 for (i=es; i < ne; i+=es){
 if((rc=cmp(a+i-es,a+i)) != 0){
 if(Rev==0) Rev= rc < 0 ? 1 : -1; //Rev=1: increasing, -1: decreasingRev=1: increasing, -1: decreasingRev=1: increasing, -1: decreasingRev=1: increasing, -1: decreasing
 else if(rc*Rev > 0) break;
 }
 }
 D_inv= Rev*(i/es); //D_inv: difference of inversions & ordersD_inv: difference of inversions & ordersD_inv: difference of inversions & ordersD_inv: difference of inversions & orders
 for(j=i+es; j < ne; j+=(gamma *es)){
 if((rc=cmp(a+j-es,a+j)) < 0) D_inv++;
 if(rc>0) D_inv--;
 }
 pb=a+i-es;
 if(abs(D_inv) > n/ lambda) {
 if(Rev*D_inv < 0) {pb=a; Rev=-Rev;} //If 1st run is reverse, re-find itIf 1st run is reverse, re-find itIf 1st run is reverse, re-find itIf 1st run is reverse, re-find it
 pc=a+n*es; pj=pb;
 while(1){
 pj=pj+10*es; pi=pj-es;
 if(pj >= pc) break;
 while (pj < pc && Rev*cmp(pj-es, pj) <=0) pj+=es; //Find next run forwardFind next run forwardFind next run forwardFind next run forward
 while (pi > pb && Rev*cmp(pi-es, pi) <=0) pi-=es; //Find next run backwardFind next run backwardFind next run backwardFind next run backward
 if(pj-pi < 4*es) continue;
 if(pb!=a) { //Find knots in 1st and 2nd runFind knots in 1st and 2nd runFind knots in 1st and 2nd runFind knots in 1st and 2nd run
 j=((pj-pi)/es)/2;
 m=((pb-a)/es)/4;
 if (j > m) j=m;
 for(i=0; i<j; i++) if(Rev*cmp(pb-i*es,pi+i*es) <= 0) break;
 if(i>=j) continue;
 pb=pb+(1-i)*es; pi=pi+i*es;
 }
 // Merge two runs by moving 2nd knot to 1st knotMerge two runs by moving 2nd knot to 1st knotMerge two runs by moving 2nd knot to 1st knotMerge two runs by moving 2nd knot to 1st knot
 if(pi!=pb) while(pi < pj) { swap(pb,pi); pb+=es; pi+=es;}
 else pb=pj;
 pb-=es;
 }
 }
 left=(pb-a)/es+1;
 if(Rev==-1){ //IIIIf the longest run f the longest run f the longest run f the longest run is is is is reverse, reverse itreverse, reverse itreverse, reverse itreverse, reverse it
 pc=a;
 while(pc < pb) {swap(pc,pb); pc+=es; pb-=es; }
 }
 if(left < n) SymPartitionSort(a, left, n, es, cmp);
}

REFERENCES

1. C. A. R. Hoare, Quicksort, Computer Journal 5, (1), 10-15 (1962).
2. J. L. Bentley and M. D. McIlroy, Engineering a sort function, Software-Practice and Experience, 23,

1249−1265 (1993).
3. J. C. Chen, Proportion extend sort, SIAM Journal on Computing, Vol.31, No.1,323-330 (2001).
4. J. C. Chen, Proportion split sort, Nordic J. Comput., 3, 271-279 (1996).
5. J. C. Chen, Building a new sort function for a C library, Software-Practice and Experience, 34, 8, 777-

795, (2004).
6. J. C. Chen, Practical, robust and adaptive Sorting, In Proc. of the 8th World Multi-Conference on

Systemics, Cybernetics and Informatics (SCI2004), Orlando, Florida, (2004).
7. J.C. Chen, Efficient sample sort and the average case analysis of PEsort, Theoretical Computer

Science,Vol.369, pp.44-46,2006, available online from http://www.sciencedirect.com/.
8. R. Cole and D. C. Kandathil, The average case analysis of partition sorts, in Proc. of European

Symposium on Algorithms, Bergen, Norway, (2004).
9. B.W. Kernighan and M. D. McIlroy (eds), UNIX Programmer’s Manual, 7th Edition, Bell Telephone

Laboratories, Murray Hill, NJ (1979).
10. Ted Billard, Quicksort :Introduction, available online from

http://www.sci.csuhayward.edu/~billard/cs3240/node32.html.
11. M. D. McIlroy, A killer adversary for quicksort, Software-Practice and Experience, 29, 1-4, (1999).
12. A. Moffat, G. Eddy and O. Petersson, Splaysort: Fast, Versatile, Practical, Software-Practice and

Experience, Vol. 26(7), 781-797 (1996).
13. P. McIlroy, Optimistic sorting and information theoretic complexity, In Proc. ACM-SIAM Symposium on

Discrete Algorithms, Austin, Texas, 467-474, (1993).
14. C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, D. Lomet, AlphaSort: A RISC Machine Sort, Proc.

SIGMOD 1994, 233-242

	SUMMARY
	THE ALGORITHM
	VARIOUS OPTIMIZATIONS

