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SUMMARY

In this paper, we introduce Audlib, an extendable tool for generating security-relevant information on Unix
systems. Audlib is a wrapper environment that generates application level audit information from existing
executable programs. Audlib is not a detection system, instead it is designed to supplement existing audit
systems and work transparently with them. Audlib records information that is not presently available
from existing kernel-level audit sources. Here, we describe the design of the Audlib framework and the
information it provides. We compare auditing the actions of a web server with Audlib to existing kernel
audit sources and show that we have 2–4 times the throughput of Linux auditd and less than half the
performance overhead of Solaris BSM while collecting detailed information about the server’s execution.
Although Audlib is focused on recording security information, this technique can be used to collect data
for a wide variety of purposes including profiling, dependency analysis, and debugging. Copyright q
2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

AUDLIB is an extensible tool for capturing security-relevant information on Unix systems. AUDLIB

is a wrapper environment that generates application level audit information from existing executable
files. It can be applied to specific programs, or used to instrument an entire system. It is designed to
supplement existing audit systems and work transparently with them. AUDLIB collects information
at the application level and is therefore able to obtain information not normally provided by existing
kernel level audit sources (e.g. [1, 2]).

AUDLIB is not a detection system. Instead, it is a tool designed to improve both the quality of
audit information produced on a system and the information generated to be used by various forms
of detection systems. We are augmenting the information produced rather than introducing a new
detection technique. This will allow for more accurate detection and a reduction in the number
of false alarms generated. We have included a few proof-of-concept detectors to demonstrate how
the audit records can be used for detection purposes.

The remainder of the paper is structured as follows: Section 2 describes the overall design of
AUDLIB, Section 3 discusses the past and related work, Section 4 covers our various experimental
results, Section 5 describes the use of this technique outside of security, and Section 6 contains
our conclusions and plans for future work.
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†E-mail: Benjamin.Kuperman@oberlin.edu
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2. AUDLIB DESIGN

AUDLIB is designed as a ‘wrapper’ for existing programs on Unix-like operating systems without
requiring either recompilation of programs or the addition of new features to the kernel. It is
intended to not interfere with the operations of the operating system or the programs themselves.
Audit information is collected from the application level allowing AUDLIB to report information
not currently available from the existing kernel-based audit systems. By collecting information
from the application level, we can provide better and more accurate information than existing audit
sources. It is also desirable that the overhead of using AUDLIB is not too great—at least compared
with existing audit systems. A small change in the performance of an application is almost always
justified when there is a need for additional security auditing.

2.1. Interposition

Based on past experience [3], we knew that it was possible to meet our goals through the use of a
technique known as library interposition. Interposition is the ‘process of placing a new or different
library function between the application and its reference to a library function’ [4]. This technique
allows a programmer to intercept function calls to code located in shared libraries by directing
the run-time dynamic linker to first attempt to reference a function definition in a specified set of
libraries before consulting the normal library search path.

Essentially, programmers need to create their own library containing functions that have the
same name (and signature) as the library calls they wish to intercept. Then, by either setting the
environment variable LD PRELOAD or modifying /etc/ld.so.preload, the dynamic linker
ld.so will examine the specified library first before searching the default library search path
(Figure 1).

To make our audit library transparent to the operation of the system, we collect the information
we need, log it, and then tell the dynamic linker to continue searching and to invoke the next
version of this library call it finds. Our library then waits for that call to return, logs additional
information if needed, and passes the return value back up the call stack. If we have only a single
interposing library, then the next version of the call will be the actual one. However, if we have
more than one interposing library, it will go through all of those in sequence before calling the
normal version. This allows our library to be able to compose multiple audit libraries into a single
system. More information about library interposition and the construction of interposable libraries
can be found in [5–7].

2.2. Goals of detection/data recorded

The current version of AUDLIB consists of three stand-alone interposable libraries, each focused
on producing information relevant to a particular class of security event. These three categories are
attacks, intrusions, and computer misuse. In this section, we briefly explain each goal of detection

/*other code */

printf(...);

/* continues */

Main Program

printf(...) {
    /* ... */
}

libaudlib_attack.so

via ld.so

return

printf(...) {
    /* ... */
}

libc.so

via ld.so

return

audit data

Interposed Execution

/*other code */

printf(...);

/* continues */
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printf(...) {
    /* ... */
}

libc.so
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Normal Execution

Figure 1. The execution of a call to printf() in a dynamically linked executable.
The left side shows the normal execution sequence and the right shows how a

transparently interposed library such as AUDLIB changes the control flow.
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and list the events we monitor. We note that other libraries could be constructed for additional
classes of information.

For each audit record, AUDLIB records a header containing the following:

• The size of the record.
• The library and call that generated it.
• The timestamp when the record was created.
• The timestamp when the event was recorded.
• The PID (process id) and parent PID.
• Additional information specified below.

Each audited event includes function-specific information after this common header. There are
over 100 audited events. We list these items in Appendix A and in this section use some samples
from each category to illustrate the contents.

In addition to the auditing of function calls, each library contains initialization and finalization
routines that are invoked on program start and exit. These are used to initialize and shut down
communication channels needed for transmitting audit information, and they also serve as data
collection points for information used over the duration of the program run.

2.2.1. Attacks. Attacks are attempts to exploit a vulnerability in a computer system. These include
buffer overflow attacks, format string attacks, and race conditions. These are the actions that most
current IDSes attempt to detect.

To allow for the detection of buffer overflow attacks, AUDLIB monitors all unbounded string
copy functions (strcpy(), gets(), etc.) and reports:

• Where each buffer is located in memory (stack, heap, data, etc.) and if that location is set to
be executable by the OS.

• The size, address, and payload of the source buffer.
• The size and address of the destination buffer.

For format string attacks, we record the size, location, and content of the format field of the
printf() family. Note that neither the buffer information nor the format strings are available
from typical kernel-level audit sources.

For race conditions, we record all symbolic file accesses (access(), open(), etc.) as well
as operations that change the meaning of symbolic file names (chdir(), chroot(), etc.). This
information is not available from kernel audit sources because they record the actual files accessed,
not what the program requested. A successful attack would show two different files, but the program
would be using the same symbolic names.

The initialization function also logs real, effective, and saved UID and GID for the process;
the current working directory; the complete command line; and the complete set of environment
strings.

2.2.2. Intrusion. For the detection of intrusions, we provide information for detection systems
modeled after [8, 9], which use command sequences to determine whenever an impostor is
masquerading as a legitimate user. In addition, we augment the audit record with information that
can be used for basic anomalous behavior detection as proposed by Denning [10].

This information includes the real, effective, and saved UIDs and GIDs at both the start and end
of the program; the login name of the user; the name of the executable as invoked by the user; the
complete set of command line arguments; the stat() of the binary itself as well as any possible
symbolic link used by the user to invoke the program; the amount of user and system CPU time
used by the process; and the amount of user and system CPU time used by all children processes.

2.2.3. Computer misuse. The types of potential computer misuse activities that AUDLIB moni-
tors includes file accesses that a kernel level audit system might be able to supply information
about (such as the accessing of files belonging to another user). We include this information for
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completeness, anticipating that one might deploy AUDLIB to do all auditing. We audit all library
functions that access or modify the file system from access() to mknod() to truncate().
This allows for a coarse-grained (file level) of monitoring.

In addition to those operations, we also log every read() or write() request made by the
targeted program. Neither BSM nor the Linux audit daemon auditd enable logging of these
actions in their default configurations: their documentation indicates that the performance cost is
prohibitive. However, even with these logging options enabled, we outperform the current audit
sources.

By collecting information on reads and writes at the application level, it is possible to construct
monitoring systems that can perform detection based on which portions of a file were accessed,
rather than simply assuming that anything (and thus, everything) within might have been accessed.
It is possible to record the contents of reads and writes, and the audit trail can be augmented to also
report file offsets, if desired. In Section 4.4 we briefly describe a system that uses the fine-grained
functionality of our computer misuse monitoring system to track and log all changes made by a
system administrator when handling a trouble ticket.

2.3. Configuration

AUDLIB uses a central configuration file to control the audit library logging behavior. An example
of this file is shown in Figure 2. Program Name can be either a full path (/bin/ls) or only
the program name (ps) to match on any path. Function Name is the interposed function name
complete with library indicator A, I, or M; a function name of all can be used to refer to
everything in the library. M:all would refer to all events in the Misuse library and A:printf
is simply the printf() function in the Attack library. It is also possible to specify the inclusion
of items that are Common to all libraries with C.

The same audit configuration applies to all descendant processes unless they are covered by
another configuration entry that takes precedence. When wrapping a program from the command
line instead of /etc/ld.so.preload, a different configuration file can be specified for the
execution of a program.

2.4. Audlib deployment

The interposing libraries that perform the audit data generation and collection are a set of shared
objects (e.g. libaudlib attack.so) that are typically installed in a system library location
such as /usr/local/lib with the standard ownership and permissions—owned by root with

Figure 2. The layout of the AUDLIB configuration file.
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read and execute permissions. There are three ways in which AUDLIB might be used to monitor
a system:

1. Full system monitoring.
2. Targeted application monitoring.
3. Directly linked to an executable.

2.4.1. Full system monitoring. To use AUDLIB to monitor an entire system, the administrator
needs to add entries for these libraries into /etc/ld.so.preload. AUDLIB will monitor every
program, and the configuration file will be used to determine what information, if any, is to be
collected from that process. The system can be configured to audit everything by default and then
have exceptions for specific programs to not generate records, or have nothing audited by default
and then only target particular programs.

In this mode, AUDLIB will be applied to the execution of all dynamically linked executables,
including those that might be uploaded or created by users. This mode gives the greatest coverage
and is the most difficult for an attacker to evade or disable.

2.4.2. Targeted application monitoring. AUDLIB can also be used to only monitor a subset of
processes running on the system via the aud run wrapper (or using LD PRELOAD) when starting
a program. In this mode, only the initial process and all of its descendant processes will be
monitored. An administrator might use this to gather more security audit information about the
web server (or FTP, SMTP, SSH, etc.), but not generate information from the rest of the system.
Targeted monitoring can be applied to more than one service on the same system, without causing
any interaction problems.

When used in this manner, it is possible for a program to disable auditing by unsetting the
LD PRELOAD environment variable and then calling exec(). AUDLIB will no longer monitor
that subprocess or its descendants. Additionally, if a program is not run with LD PRELOAD set, it
will not be monitored, hence, programs run by users or outsiders will not be audited.

2.4.3. Directly linked to an executable. The final way in which AUDLIB might be used is somewhat
non-standard and not recommended as a deployment choice. It is possible to directly link a compiled
program against one of the AUDLIB shared libraries. This usage scenario will result in a program
that cannot be run without being audited, but none of its subprocesses will be monitored if they
execute executables not linked against AUDLIB. As with the targeted technique, programs run by
users or outsiders will not be monitored.

2.5. Additional tools

We supply additional tools that facilitate the use of AUDLIB.

• audlogread: There is a log parser called audlogread that is capable of parsing one
or more AUDLIB audit records and re-displaying the log records. Some basic filtering can
be performed. Output can be either in a detailed ‘human readable’ format or in a parseable
format with one entry per line.

• aud run: We include a script called aud run that allows execution of a command sequence
under AUDLIB monitoring. It also supports features for further AUDLIB development including
the ability to test a program under different successive configurations.

Finally, we include a sample of proof-of-concept security monitoring scripts. These scripts take
as input the parseable format of AUDLIB logs and demonstrate the detection of buffer overflows,
race conditions, and format string attacks.

2.6. Extending the library

We are releasing AUDLIB under an open-source license and want to encourage community devel-
opment and extension. It is a straightforward process to add monitoring for a new library call.
As an example, the complete code for the attack library monitoring of the strcpy() function
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is shown in Figure 3 on the facing page. Using the macros and functions provided by AUDLIB,
adding a new function only requires knowledge of the name and function signature. The log entry
should contain relevant information, and we have included support for many standard C variable
types. The sequence of tokens must also be recorded in the file used to compile audlogread.

The audit information collected and recorded by AUDLIB is not restricted to what is present
in the current implementation. AUDLIB’s audit data could be extended to support a wide variety of
additional information. For example, a mobile device might query and record GPS information for
certain events, checksums or digital signatures could be regenerated and checked before allowing
certainevents toproceed, thestateofnetworkconnectionscouldbemonitoredor recorded,etc.Further-
more, extendingAUDLIB canbedonewithout touchingeither thekernel or themonitored applications.

3. PAST WORK

3.1. Current audit systems

Many, if not most, modern computer audit data generation systems are descended from the US
Department of Defense’s documents on trusted systems (often referred to as the ‘rainbow series’

Figure 3. An example of an interposing function in an AUDLIB library.
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because of their bright covers). The Orange Book [11] describes the necessary characteristics for
certifying the ‘trust level’ of an operating system. Together with the Guide to Understanding Audit
in Trusted Systems (the Tan Book [12]), these documents describe the necessary characteristics for
auditing and audit data generation in a trusted system‡.

To be eligible for purchase and use by governmental organizations, commercial operating systems
were augmented with audit systems based on the specifications and testing methodologies outlined
in the Orange Book. One such system is the SunSHIELD Basic Security Module or BSM [1]. In
GNU/Linux, there have been a number of projects to bring BSM-style auditing to the platform
including [15–17]. Starting with the 2.6.× kernel, the Linux Audit System [18] is now a standard
feature. In the BSD family, there is now OpenBSM [19], and a similar system exists in Apple’s
OS X [20].

These systems focus on collecting information at the kernel level. This is useful for
verification/enforcement of a Bell-LaPadula style policy (for document confidentiality), but as has
been pointed out by others [21, 22], there is a desire or need for more information from a higher
level in the system, and that existing audit information is insufficient [23]. Skilled attackers can
hide their behavior in these trails of system calls [24], hence, we need better audit information.

One approach has been to do a ‘deep inspection’ of network packets and their contents (e.g. [25]).
However, this requires us to potentially monitor a large amount of network traffic and attempt to
infer which portions are going to be received by what programs. Our AUDLIB technique moves
such responsibilities to the host and allows us to examine only the actual data/behavior of a
program as well as the ability to monitor incidents that occur entirely on the host itself.

3.2. Related work

One similar project to AUDLIB is Janus [26, 27]. Janus uses the Solaris debugging facility to
intercept all system calls performed by an executable. These are then compared against a policy
file to determine their acceptability (Janus is intended to sandbox applications). If found to
be in violation, either the call is prevented, an alert is raised, or both. This is a system that
performs an interception of program behavior similar to ours, however it is restricted to system
calls, which means that the information available will be similar to those from existing audit
systems.

Yongzheng and Yap’s monitor framework [28] requires a kernel modification for data collection
and reporting, and a user-level API to allow configuration. The ‘user-level’ component is the
configuration interface; the information collected is still at the kernel level.

Another related project is libsafe [29, 30]. Similar to AUDLIB, libsafe uses library interposition to
intercept library calls that might result in a stack buffer overflow or a format string attack. However,
it is narrowly focused on these two types of attacks, and is focused on detection/prevention rather
than the generation of new audit data.

Finally, there are the network sniffers such as tcpdump/libpcap [31] that promiscuously
collect network traffic. When these systems are monitoring a high-traffic network, they cannot
process or receive the packets fast enough and end up ‘dropping’ packets and cannot process
them. Analysis engines using this type of data (such as Snort [32]) sometimes have a high false
alarm rate because they must infer that a potentially malicious payload will reach a vulnerable
program. Additionally, they cannot monitor application-to-application interactions on a single
host.

There are a number of variations on these types of systems—using debugging or kernel resources
to monitor sequences of system calls, prevention of targeted application behaviors, or collection
of network traffic. However, we are not aware of any system other than AUDLIB that is designed
to collect and record application level audit data for use in security monitoring.

‡While the Orange Book was officially retired in 2000, these requirements were ported to the Common Criteria
framework as CAPP [13] and LSPP [14].
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4. EXPERIMENTAL RESULTS

In this section we will detail the various testing that was performed on AUDLIB. For an audit
system such as AUDLIB to be useful, it must be transparent to the normal operation of the audited
programs. In Section 4.1, we describe our examination of interaction effects. Additionally, the
audit system should not unduly degrade the performance of the computer on which it is deployed.
In Section 4.2, we describe the performance impact of the system and compare our results against
those from the Linux audit system auditd [2, 18] and Solaris BSM [1]. Finally, we verified that
the information generated can actually be used to detect attacks, intrusions, and computer misuses.
In Section 4.3, we describe our basic tests of the utility of information. Specifically, we verify that
AUDLIB information can be used to detect various security-related events.

4.1. Non-interference testing

Previous experience with writing and deploying interposable libraries has shown that faults may
be caused by interactions between an application and an interposing library, as well as interactions
between multiple libraries being interposed simultaneously. (For example, an early prototype of
our system encountered difficulties when the bash shell was started, as it attempted to close all
possible file descriptors including the ones we had opened for logging.) We selected a number
of non-trivial applications and verified that their behavior was not negatively impacted and that
appropriate audit data was generated.

Additionally, we wanted to ensure that there were no interactions between the three libraries
that make up AUDLIB, and that the order in which the libraries were applied did not matter. We set
up a script (aud run) that would repeatedly run a program using all combinations and orderings
of the AUDLIB libraries and tested with the maximum amount of logging enabled.

The programs we tested with AUDLIB included the following:

• Quake3 • The GIMP • GCC (Linux kernel
• Firefox • Inkscape compile)
• Eclipse • OpenOffice • Apache web server

We also configured our X sessions and all child processes to be audited by AUDLIB and
performed several days of development in this state with no observed problems. While we cannot
state definitively that there will be no negative interactions, considering the complexity of our test
programs and the results of our longer-term deployment test, we believe that AUDLIB will not
interfere with the normal operations of the vast majority of applications.

4.2. Performance testing

The next area of concern is the performance impact of enabling auditing. We ran our application
benchmarks and then examined the specific sources of performance overhead by running a system
benchmark against various configurations of auditing systems. These measurements were taken
on Linux systems equipped with 3.20GHz Intel Pentium 4 processors with 1GB RAM running a
Linux 2.6 kernel. The machines were in a closed lab with limited system processes and no external
network activity.

To generate upper bound figures for performance cost, AUDLIB was configured to record all
monitored events from all programs without any filtering. The numbers below thus represent the
worst-case performance scenario. Through configuration and filtering, these costs can be markedly
reduced.

4.2.1. Linux—Quake3. Our first performance test was ‘demo 4’ inside the timedemo system of
Quake3. This is a pre-recorded sequence of moves through a level in the game. Once started,
it operates without user interaction moving the character as fast as possible. The end result is
the average number of frames per second (FPS) able to be rendered. While this score is heavily
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Table I. The average number of pages per second able to be served by an Apache web
server on Linux under various auditing conditions.

auditd auditd

Baseline Audlib (blocking) (non-block)

Pages/s 3464.58 2199.97 356.75∗ 1016.57∗
% overhead 36.5 89.7 70.7

Shown here are the average response times of 5 sessions each requesting 10 000 pages, up to 10 concurrently.
During the second iteration of 10k page requests, the Linux audit system would begin to dump messages to
the console and freeze/crash the system.∗Only one iteration shown.

dependent on the graphics card, AUDLIB is monitoring the data being used in buffers within the
program itself.

The unmonitored application rendered 204 FPS and under AUDLIB, it was 204.7 FPS. This
slight performance improvement is an anomaly we have previously noticed and believe it may be
caused by caching from the use of interposing libraries.

4.2.2. Linux—apache webserver. A more realistic test of the intended deployment of AUDLIB is
the wrapping of a commonly attacked system server application. We installed the Apache web
server package on our Linux system and activated it in the default configuration. We then used
the supplied Apache benchmarking tool ab to take our measurements. This benchmark measures
web server performance by making a sequence of requests as rapidly as possible and reports on
the average number of page fetches performed per second. To avoid affecting results, ab was run
on an identical machine, connected via a hub to the server. Only the web server process and its
children were subjected to auditing.

We compared the performance of AUDLIB with all logging enabled to that of the Linux audit
system (auditd in the charts). The Linux audit system can be configured to operate in a blocking
mode where a process generating an auditable event is suspended until the kernel is ready to record
that record or a non-blocking mode where any audit records not able to be handled by the kernel
are simply dropped and the process continues. We tested against both configurations.

Our tests were up to 10 concurrent page requests with a request size of 10 000 pages. We ran
each test 5 times and calculated the average of all the tests§ . Table I on the next page shows the
results and the percent overhead incurred by each audit system. We also measured the overhead of
AUDLIB on the Apache benchmark for 400 000 and 800 000 page requests. In both configurations,
the results were nearly identical to those above with AUDLIB having a consistent 36.4% overhead.

While AUDLIB has a significant overhead cost, it is at least half the overhead of the existing
audit source in either the blocking or non-blocking modes. Additionally, AUDLIB is supplying
information that can be used to look for buffer overflows and other attacks against the web server
process itself. AUDLIB’s performance cost is likely caused by the recording of all reads and
writes—something Linux’s audit system has disabled by default because of the volume of events.

4.2.3. Solaris—Apache webserver. An earlier version of AUDLIB was deployed to a Sun Microsys-
tems SunFire v100 with 256MB of memory, using Solaris 9 with trusted mode enabled (necessary
for enabling BSM auditing). The Apache server benchmark was run requesting 10 000 pages
non-concurrently under various auditing conditions. Table II on the following page shows the
results.

In this setting, we examined the performance of each individual library against that of the BSM
audit system. Here we can see clearly that the largest overhead is coming from the misuse library.

§ In the middle of the second set of 10 000 page requests, the Linux audit daemon would begin to print console
messages about dropped audit records and then freeze the system. This occurred in both blocking and non-blocking
modes.
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Table II. The average number of pages per second able to be served by an Apache web
server running on Trusted Solaris 9 under various auditing conditions.

Audlib

Baseline Attack Intrusion Misuse BSM

Pages/s 108.9 108.6 108.5 94.9 77.3
% overhead 0.3 0.4 12.8 29.0

Shown here are the average number of page fetches per second over 10 000 requests.

Table III. The baseline component and index score for the BYTEBench 4.1 benchmark.

Audlib Linux auditd

Test Baseline Attack (%) Intr. (%) Misuse (%) All 3 (%) normal (%) w.files (%)

Dhrystone 331.4 99.8 98.9 97.4 99.8 100.2 98.0
Whetstone 140.8 96.7 98.4 96.9 91.5 98.4 93.3
Execl throughput 434.8 37.1 32.5 40.7 21.8 12.3 12.5
File copy 876.3 107.2 106.3 24.2 24.2 1.6 1.6
Pipe throughput 257.3 101.6 101.6 11.7 11.6 1.1 1.1
Concurrent scripts 31.7 94.6 94.6 94.6 94.0 57.7 57.7

Index score 276.7 87.1 81.5 32.9 28.6 7.0 6.9

To the right is the percentage of the baseline that each configuration of audit system received. A higher value
is better.

Once more, the performance overhead of AUDLIB is less than half of the overhead of the existing
kernel level audit source.

4.2.4. Linux—BYTEBench. To get a better idea of what the possible source of performance over-
head is, we tested various auditing configurations under a Unix benchmark suite. We used the
BYTE Unix Benchmark version 4.1 [33] for our measurements. Table III shows the results.

If we first examine the index scores, we see that under AUDLIB the attack library has an overhead
of 12.9%, the intrusion library is 18.5%, and the misuse library is again the largest at 67.1%.
As one might expect, when you combine the three libraries, the overhead of 71.4% is worse than
that any of individual library.

The Linux audit system was configured to monitor only the actions of the benchmark program
and was supposed to record all audit records. To further examine the effect of the monitoring
of reads and writes to files, we also ran measurements against auditd with those system calls
being recorded. This change seemed to have only a minor impact on performance, but a significant
change in the size of audit files generated. While the system did not crash this time, we saw
in the syslog records that auditd was dropping a large number of records both with and
without the filesystem monitoring. Looking at the index scores, we see that auditd has a 93%
overhead—the throughput performance is only one quarter of the slowest AUDLIB configuration.

If we examine the sources of AUDLIB’s overhead, we notice that the execl throughput is
low in all 3 of the monitoring libraries. This test is a program exec()ing itself as rapidly
as possible for 30 seconds. The larger the score of a test in the baseline, the more the index
score is influenced by any performance change. The low scores make sense considering that the
initialization routines from AUDLIB are called for each exec(), and these routines make a number
of system call requests to collect the information reported as well as setup communication channels,
and this causes a number of context switches. The initialization function is probably the most
performance-intensive operation in AUDLIB. As each library is designed to operate on its own,
combining the libraries triples the number of context switches required; this could be reduced with a
redesign.
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The other areas that have a significant performance overhead for the misuse library are the file
copy and pipe throughput tests. In both of these cases, there are a large number of reads and writes,
and AUDLIB is logging each event along with information about the buffer involved. In the case
of the pipe throughput test, we were auditing both sides of the connection resulting in twice as
many events. We reiterate that these results are the worst-case performance (no filtering) under a
pathological test case.

4.3. Detection testing

To verify that information generated by AUDLIB can be used for security monitoring, we needed
to generate audit logs containing events that we wanted to detect and verify that a system with
AUDLIB could detect them.

To generate the attack data, we created a number of sample attacks in the following manner:

• Format string attacks: To test that we were able to supply information needed to detect a
format string attack, we constructed a small, vulnerable program and used a variation of one
of the listed attacks described in [34] to exploit the vulnerability.

• Buffer overflow attacks: To create some buffer overflow attacks, we modified the sample
vulnerable program and exploit from [35] and also tried a number of student submissions
from an assignment in our Information Security course.

• Return to libc: A technique that is used to get around some buffer overflow detection methods
is the return-to-libc attack [36]. To test this, we generated our own vulnerable program
and implemented an exploit against the vulnerability.

• Race conditions: To test TOCTTOU attacks [37], we created a vulnerable program with an
access()–open() race condition, installed it as a setuid program and then wrote a program
to exploit that vulnerability.

We then created a set of scripts that would use audlogread to process AUDLIB logs and then
perform some basic security monitoring. The various buffer overflow and format string attacks
were detected by searching for patterns of shellcode, NOP sleds, and targeted payloads from
the Snort rule set [32]. A simple additive score was calculated based on the size of the buffer,
the payload in the buffer, the destination of the buffer (stack, heap, etc.), and if that memory
was marked as executable. A simple race condition (TOCTTOU) detector was constructed by
monitoring processes for access of the same symbolic pathname. Currently it is only looking for
access()–open() sequences, but can easily be extended to look for more. The intrusion parser
processes the logs and extracts information specified by Lane and Brodley [8], Maxion [9] and
others to be useful in detecting masquerading users. Finally, our misuse parser is set up to report
on any file permission changes or file deletions.

4.4. Audit information utility

As previously mentioned, AUDLIB contains information that is not present in typical kernel-level
audit systems such as BSM. Audit records generated in the kernel contain information as resolved
by the operating system while AUDLIB operates and records information at the application level.
For example, AUDLIB records the symbolic filenames requested by a program while BSM records
the information of the resolved pathnames. Also, AUDLIB is able to observe and record information
about events that never reach the kernel such as string operations.

Portions of a pre-release version of AUDLIB were used as an information source in a system
administration tool named Trackle [38]. It uses components of AUDLIB (mostly the computer
misuse portion) to track the actions of a system administrator while they are correcting some
problem so that these activities can be incorporated within the bug report itself, within the bug
tracking system. All commands executed, including all arguments, are logged. All file changes
made, even as side effects are recorded and are available as diffs within the bug/resolution report
itself. While not strictly a security-focused application, the additional monitoring demonstrates the
usefulness of AUDLIB’s approach.
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4.5. Limitations of interposition

As with any security tool, it is important that users are aware of the limitations of AUDLIB. Because
AUDLIB uses library interposition to intercept function calls, there are a few issues that we wish
to clarify.

First, AUDLIB can only generate data from dynamically linked executables. Statically linked
executables do not use the dynamic linker and therefore will not be fully interposed. Static
linking incorporates the library’s executable code directly into compiled binary, and AUDLIB would
generate no audit record from those calls. However, on modern systems, these appear to occur
infrequently. On our Linux distribution, of the 303 linked programs in /sbin or /usr/sbin,
only 9 of them were statically linked. Most were copies of system tools and named in the fashion
fsck.static. Out of the 1491 linked applications in /usr/bin only 2 were statically linked.
If necessary, a static version of AUDLIB could be linked into any such programs.

Similarly, while AUDLIB generates information about unbounded buffer operations that use
standard library functions, it is not able to report on operations that do not use a library
routine. If a program has implemented its own version of strcpy(), AUDLIB cannot report on
its use.

Finally, when used in the dynamic mode (via the environment variable LD PRELOAD), it
is possible for an application to disable auditing on child processes by changing the value of
that variable before executing. For instance, sudo clears most environment variables before
running the requested command. Using /etc/ld.so.preload is not affected by such evasion
techniques.

4.6. Attacks on AUDLIB itself

Interposed libraries have the capability to dramatically change or subvert the behavior of a program
as they essentially take control of a program for the duration of any interposed call. As such,
it is worth considering the possibility of a malicious actor subverting AUDLIB itself. If installed
as described in Section 2.4, then AUDLIB is subject to the same protections as libc, and any
modifications that might be made to AUDLIB could have been made to any of the shared objects
or even the program itself.

Another avenue of attack that a malicious user might take is to modify the library search path to
cause their own library to be found when our interposing library asks the linker/loader to find the
next copy of a given function. However, their version of the function will either run under their uid
or be ignored. Privileged programs (such as those with the setuid bit set) ignore user-settable library
search paths and only follow the system default set. It is our belief that neither case introduces
any additional vulnerability or threat to the system.

5. APPLICABILITY OF THIS TECHNIQUE OUTSIDE OF SECURITY

While we have used library interposition to collect security-relevant information, this technique can
be applied to a variety of purposes of interest to software developers and system administrators.
We will briefly discuss some of those applications here. Some of these topics are covered in greater
detail in [5–7]; however, we want to give readers a sense of the wide range of possible uses for
this technique.

Interposition is useful for profiling the behavior of applications and libraries. By transparently
interposing a function, a developer can generate a count of the number of times it is called.
By instrumenting the interposing call with timestamps, it is possible to determine the total length of
time spent in a function, and analyze the distribution of service times incurred. The arguments are
also available for examination. Nakhimovsky [5] describes using interposition to create a histogram
of the size of memory blocks requested by malloc() and other dynamic memory allocation
requests.

Another area that is amenable to the use of interposition is that of dependency analysis. Inter-
position can uncover hidden dependencies within a program, some of which might come from
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library calls indirectly accessed by the libraries needed by the program. By interposing calls such
as getenv() and putenv(), one can determine what environment variables are being used by
a program or are being set before the spawning of a subprogram.

Interposition is also useful in debugging. Data fields can be examined as they are passed from
function to function, which allows changes to be monitored as execution continues. In addition
to allowing monitoring of program activity, an interposed library can also dynamically change
the behavior of a program. This can allow a developer to introduce faults into a program. This
can be useful for expanding the range of code covered by test cases, testing and debugging of
error-handling routines, or examining the robustness of systems through the introduction of data
corruption.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new auditing tool called AUDLIB that is able to generate
application-level audit data. Although the general idea of wrapping/interposition has been around
for a number of years, to the best of our knowledge, this is the first implementation of an extendable,
application level audit data source for use in security monitoring.

We have described how this system is able to collect information from existing systems and
operate in a dynamic manner. AUDLIB can be used to monitor an entire system or be targeted to
only a few security-relevant processes. We have explained the design behind the various libraries
and described the information recorded.

We have explained that the application-level information provided contains information not
available from the kernel or network levels such as format strings, actual buffer content information,
and intended file names. AUDLIB does not interfere with the operations of other audit sources and
can be used to augment the overall system audit trail. Furthermore, the system can be extended in
a number of ways without requiring changes to either the kernel or applications being monitored.

We have measured the performance impact of AUDLIB and compared it with that of the existing
audit systems on Linux and Solaris. It is reasonable to expect that a small change in the performance
for a particular application is justified when there is need for extra auditing, and is not likely to be
noticeable by the user. Additional processor speed and caching can often make the difference even
less noticeable. AUDLIB’s throughput performance was 2–4 times that of the Linux audit system
and had half the overhead of Solaris BSM.

Looking forward, we hope to continue improving AUDLIB especially in the areas of configuration
and filtering. With feedback from the security community, we plan on incorporating additional
audit information into the system and port the software to similar systems. Additionally, AUDLIB

or a similar system could be employed to gather additional information from honeypots or VM
systems as logical extensions of them.

While we have used library interposition to collect security-relevant information, this technique
can be applied to a variety of purposes. It allows an administrator to transparently monitor the activ-
ities of a program, and optionally, an interposed library can also dynamically change its behavior.
Furthermore, this technique allows multiple systems to be composed together or used individually,
all without requiring changes to the monitored program or the underlying operating system.

More generally, the design of AUDLIB is general, and it should be possible to extend it to other
systems that use some form of dynamic libraries. Development of some standardized formats for
reporting might even occur, thus allowing some comparison among different versions of software
ported to multiple systems.

7. AVAILABILITY

Audlib will be available for download from http://www.cs.oberlin.edu/∼kuperman/
research/audlib.html and the CERIAS archive at ftp://ftp.cerias.purdue.
edu/; it is being released under an open-source license.
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APPENDIX A: INTERPOSED FUNCTIONS

In this appendix, we briefly list the various functions that are interposed by the components of
AUDLIB. Each of the components have their own individual initialization and finalization routines.
Further, they monitor attempts to close the file descriptor being used for logging and report failure
back to the calling program. For logging purposes, they watch for fork() calls as that will change
their process id. For more information on the general format of the data collected, see Section 2.2.

A.1. Detection of attacks

The initialization routine records the following information:

• Real user id • The current working directory
• Effective user id • The number of command line
• Saved user id arguments
• Real group id • The full command line
• Effective group id • The current environment
• Saved group id

Calls with information useful for the detection of buffer overflow attacks:

• fscanf() • scanf() • strcpy() • vsscanf()
• gets() • sprintf() • vfscanf() • wcpcpy()
• getwd() • sscanf() • vscanf() • wcscat()
• realpath() • strcat() • vsprintf() • wcscpy()

Calls with information useful for the detection of format string attacks:

• fprintf() • snprintf() • vfprintf() • vsnprintf()
• printf() • sprintf() • vprintf() • vsprintf()

Calls with information useful for the detection of TOCTTOU attacks:

• access() • execve() • linkat() • stat()
• acl() • execvp() • lstat() • stat64()
• chdir() • faccessat() • lstat64() • statvfs()
• chmod() • fchmodat() • mknod() • statvfs64()
• chown() • fchownat() • mknodat() • symlink()
• chroot() • fstatat() • mount() • symlinkat()
• creat() • fstatat64() • open() • umount()
• creat64() • futimesat() • open64() • umount2()
• execl() • getcwd() • openat() • unlink()
• execle() • getwd() • openat64() • unlinkat()
• execlp() • lchown() • rename() • utime()
• execv() • link() • renameat() • utimes()

A.2. Detection of intrusions

The initialization routine records the following information:

• The current username • The full command line as specified by
• Real user id the user
• Effective user id • The results of stat() on the
• Saved user id executable
• Real group id • The results of lstat() on the
• Effective group id executable
• Saved group id
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The finalization routine records the following information:

• The current username • The results of lstat() on the
• Real user id executable
• Effective user id • The amount of time spent executing
• Saved user id user instructions
• Real group id • The amount of time spent executing by
• Effective group id the operating system on behalf of the
• Saved group id process
• The full command line as specified by • The sum of the time spent executing
the user user instructions by child processes

• The results of stat() on the • The sum of the time spent executing
executable by the operating system on behalf of

all child processes

Calls with information useful for recording what programs are executed:

• execl() • execlp() • execve()
• execle() • execv() • execvp()

A.3. Detection of computer misuse

The initialization routine records the following information:

• Real user id • Saved group id
• Effective user id • The results of stat() on the
• Saved user id executable
• Real group id • The results of lstat() on the
• Effective group id executable

The finalization routine records the following information:

• Real user id • The amount of time spent executing by
• Effective user id the operating system on behalf of the
• Saved user id process
• Real group id • The sum of the time spent executing
• Effective group id user instructions by child processes
• Saved group id • The sum of the time spent executing
• The amount of time spent executing by the operating system on behalf of
user instructions all child processes

Calls with information useful for recording what files and file contents were accessed:

• open() • fstatat() • rename() • mknodat()
• openat() • fstatat64() • renameat() • statvfs()
• open64() • stat64() • tmpfile() • statvfs64()
• openat64() • lstat() • mktemp() • utime()
• close() • lstat64() • mkstemp() • utimes()
• creat() • fstat() • access() • futimesat()
• creat64() • unlink() • faccessat() • dup2()
• chmod() • unlinkat() • acl() • dup()
• fchmod() • truncate() • execv() • write()
• fchmodat() • ftruncate() • execve() • pwrite()
• chown() • fopen() • execvp() • read()
• fchownat() • fopen64() • facl() • pread()
• lchown() • fclose() • link()
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• fchown() • symlink() • linkat()
• stat() • symlinkat() • mknod()

Additional information regarding the content and specific format of the generated audit records
can be found in Section 2.2 and the documentation for AUDLIB.
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