Automated Metamorphic Testing of Variability Analysis Tools

Sergio Segurd, Amador Duran, Ana B. Sanchez Daniel Le Berré,
Emmanuel Loncaand Antonio Ruiz-Cortés

L ISA research group, Universidad de Sevilla, Spain
2 Faculté des sciences Jean Perrin, Université d’Artois, Lens, France

SUMMARY

Variability determineghe capabilityof softwareapplicationgo be configuredandcustomizedA common
needduring the developmenbf variability—intensivesystemss the automatedanalysisof their underlying
variability models, e.g. detectingcontradictory configurationoptions. The analysisoperationsthat are
performedon variability modelsare often very complex,which hindersthe testing of the corresponding
analysistools and makesdifficult, often infeasible,to determinethe correctnessof their outputs,i.e.
the well-known oracle problemin softwaretesting. In this article, we presenta genericapproachfor
the automateddetectionof faults in variability analysistools overcoming the oracle problem.Our work
enablesthe generationof randomvariability modelstogetherwith the exactset of valid configurations
representedy thesemodels. Thesetestdataare generatd from scratchusing stgp—wisetransformations
andassuringhatcertainconstraintga.k.a.metamorphigelations)hold ateachstep.To showthefeasibility
andgeneralizabilityof our approachjt hasbeenusedto automaticallytestseveralanalysistools in three
variability domains:featuremodels,CUDF documentsand Booleanformulas. Among other results,we
detectedL9 real bugs in Dut of the 15 tools undeest.

KEY WORDS: Metamorphidesting,automatedesting, softwargesting,softwarevariability

1. INTRODUCTION

Modern software applicatiorae increasinglgonfigurabledriven by customedemands and
dynamicbusinessonditions.This leadsto softwaresystemghatneeda high degreeof variability,
i.e. the capabilityo be extended;hanged, customizedr configured to be used in a particular
context[60]. For examplepperatingsystems such as Linux or eCos can be configured by installing
packagese.g.DebianWheezya well-knownLinux distribution,offersmorethan37,000available
packages [22]. Modern software ecosystems and browsers, configurable in terms of plugins or
extensionsare anotherexampleof softwarevariability, e.g. the Eclipse Marketplacecurrently
providesaboutl,650Eclipseplugins[26]. Recently,cloud applicationsarebecomingincreasingly
flexible, e.g. the Amazon Elast€ompute Cloud (EC2) service offers 1,758 differpassible
configurations [30].

Software variability is usually documented ariability models(VMs), which describe all
the possibleconfigurationsof a softwaresystemin termsof composableunits or variants and
constraintsindicating how thosevariantscan be properly combined.Variability canbe modelled

either at theproblemor at thesolutionlevel. At the problem level, variability is managed in terms
of featuresor requirements, using VMs such f&ature model$35], orthogonal variability models
[51] or decision model$59]. At the solution level, variability is modelled using domain—specific
languages such a&configin Linux [8], p2 in Eclipse [39] olWS—-Agreemerih web services [47].

Regardless of the abstraction level of VMs, the number of constraints in VMs is potentially huge.
For instance, the Linux kernel has 6,320 packages and 86% of them are connected by constraints
that restrict their interactions3], something colloquially known as the égendency héllin the
operating system domaif34]. To manage this complexity, automated support is primordial. The
automated analysis of VMs deals with the computer—aided extraction of information from VMs by
means of the so—callethalysis operationd-or a given VM, typical analysis operations would allow
us to know whether the VM isonsistent, i.e. whether it represents at least a valid configuration;
or whether the VM contains any errors, e.g. contradictory configuration options. Tools supporting
the analysis of VMs can be found in most of the software domains where variability management
is considered as a relevant problem. Some examples aFaMa framework P8 and theSPLAR
tool [45,58] in the context of feature models; tRBL [64] andAPT [21] package configurators in
the context of operating systems; or the dependency analysis tool integrated into E3dipse [

Variability analysis tools are complex software systems that have to deal with also complex data
structures and algorithms, e.g. the FaMa framework has more than 20,000 lines of code. Analysis
operations are usually far from trivial and their development is error—prone, increasing development
time and reducing the reliability of analysis tools. In this context, the testing of variability analysis
tools aim at detecting faults that produce unexpected analysis results. Roughly speaking, a test case
in the domain of variability analysis is composed of a VM as the input, and the expected result of the
analysis operation under test as the output. As an example, the feature modelli{S€&igtion2.1)
represents 10 different product configurations, which is the expected result of the analysis operation
NumberOfProduct§7].

Current testing methods on variability analysis tools are either manual or based on redundant
testing. Manual methods rely on the ability of the tester to decide whether the output of an analysis
operation is correct or not. However, this is time—consuming, error—prone and, in most cases,
infeasible due to the combinatorial complexity of the analysis operations. This is known as the
oracle problen{66], i.e. the impossibility to determine the correctness of a test output. On the other
hand, redundant testing is based on the use of alternative implementations of the same analysis
operation to check the correctness of an output. Although feasible, this is a limited solution since it
cannot be guaranteed that such alternative tool exists and that it is error—free.

Metamorphic testing13] was proposed as a way to address the oracle problem. The rationale
behind this technique is to generate new test cases based on existing test data. The expected output
of the new test cases can be checked by using known relations (so—+oaflachorphic relationjs
among two or more input data and their expected outputs. Key benefits of this technique are that it
overcomes the oracle problem, and that it can be highly automated. Metamorphic testing has shown
to be effective in a number of testing domains, including numerical progra#is draph theory
[15] or service—oriented applications?].

Problem description. In previous works $5, 56|, some of the authors presented a metamorphic
testing approach for the automated detection of faults in feature model analysis tools. Feature
models are thele—factostandard for variability modelling in software product lin€$]. For the
evaluation of our work, we introduced hundreds of artificial faults fhetants) into several subject
programs and checked how many were detected by our test data generator. The percentage of
detected faults ranged between 98.7% and 100%, which supported the feasibility of our contribution.
However, despite the promising results obtained, two research questions remain open, namely:

* RQ1. Can metamorphic testing be used as a generic approach for test data generation on
the analysis of variabilitydt is unclear whether our approach could be used to automate
the generation of test data in other variability languages different from feature models.
Generalizing our previous work in that direction would be a major step forward in supporting
automated testing and overcoming the oracle problem in a number of variability analysis

domains.

* RQ2. Is metamorphic testing effective in detecting real bugs in variability analysis tools?
Despite the mutation testing results obtained in our previous works, the capability of our
approach to detect real bugs is still to be assessed. Answering this question is especially
challenging, since the number of available tools for testing is usually limited and it requires a
deep knowledge of the tools under test.

Contribution. In this article, we extend and generalize our previous work into a metamorphic
testing approach for the automated detection of faults in variability analysis tools. Our approach
enables the generation of VMs (i.e. inputs) and the exact set of valid configurations represented by
the models (i.e. expected output). Both, the VMs and their configurations are generated from scratch
using step—wise transformations and assuring that certain constraints (i.e. metamorphic relations)
hold at each step. Complex VMs representing thousands of configurations can be efficiently
generated by applying this process iteratively. Once generated, the configurations of each VM are
automatically inspected to derive the expected output of a number of analysis operations performed
on the VMs. Our approach is fully automated, highly generic, and applicable to any domain with
common variability constraints. Also, our work follows a black—box approach and therefore it is
independent of the internal aspects of the tools under test, e.g. it can be used to test tools written
in different programming languages. In order to answer RQ1 and RQ2, we present an extensive
empirical evaluation of the capability of our approach to automatically detect faults in three different
software variability domains, namely:

» Feature models. These hierarchical VMs are used to describe the products of a software
product line in terms of features and relations among th&sh Five metamorphic relations
for feature models and their corresponding test data generator are presented on this article.
For its evaluation, we automatically tested 19 different analysis operations in 3 feature models
reasoners. We detected 12 faults.

» CUDF documents. These VMs are textual documents used to describe packagé-rbased
and Open Source Softwadistributions R, 61]. We present four metamorphic relations for
CUDF documents and an associated test data generator. For its evaluation, we automatically
tested two analysis operations, including an upgradeability optimization operation, in 3 CUDF
reasoners. We detected 2 faults.

* CNF formulas. Among its applications, Boolean formulasGonjunctive Normal Form
(CNF) are extensively used for variability representation and analysis at a low level of
abstraction. Many VMs such feature models or decision models can be automatically analysed
by translating them into CNF formulas and solving the Boolsatisfiabilityproblem (SAT)
[7, 59]. Also, SAT technology is used to deal with variability management in software
ecosystems such as Eclipse or Lind/[39]. Five metamorphic relations for CNF formulas
and a test data generator relying on them are presented in this article. For its evaluation, we
automatically tested the satisfiability operation in 9 SAT reasoners. We detected 5 faults.

In quantitative terms, this article extends and generalizes our previous works by automating the
detection of faults in two new variability domains, CUDF and CNF formulas. Also, we present
10 new metamorphic relations (out of 14) and a thorough empirical evaluation with more analysis
operations (from 6 to 22), tools (from 2 to 15) and detected faults (from 4 to 19).

The rest of the article is structured as follows: Secfiontroduces the variability languages used
in our empirical evaluation as well as a brief introduction to metamorphic testing. S&giresents
the proposed metamorphic relations for the variability languages under study. Seottooduces
our approach for the automated generation of test data using metamorphic relations. In Section
we evaluate our approach checking the ability of our test data generators to detect faults in a number
of variability analysis tools. Sectiohpresents some guidelines for the application of our approach
to other variability analysis domains. The limitations of our approach are presented in Séction
Section8 presents the threats to validity of our work. The related work is presentbdiscussed
in Section9. Finally, we summarize our conclusions in Sectidn

2. PRELIMINARIES

Variability languages are used to develop VMs describing all the possible configurations of a family
of software systems in terms of variants and constraints restricting how those variants can be
combined. There exists a variety of variability languages spread across multiple software domains.
In the following sections, the three variability languages used to illustrate and evaluate our approach
are presented, followed by a brief introduction to metamorphic testing.

2.1. Feature models

Feature Models(FMs) are commonly used as a compact representation of all the products in

a Software Product Lin€SPL) [35]. An FM is visually represented as a tree—like structure in
which nodes represent features, and connections illustrate the relationships between them. These
relationships constrain the way in which features can be combined to form valid configurations,
i.e. products. For example, the FM in Fid.illustrates how features are used to specify and build
software for Global Position System (GPS) devices. The software loaded in the GPS is determined
by the features that it supports. The root feature (i.e. ‘GPS’) identifies the SPL. The different types
of relationships that constrain how features can be combined in a product are the following:

» Mandatory. If a feature has a mandatory relationship with its parent feature, it must be
included in all the products in which its parent feature appears. Inlkigll GPS products
must provide support foRouting.

» Optional. If a feature has an optional relationship with its parent feature, it can be optionally
included in all the products including its parent feature. For instakeghoardis defined as
an optional feature of the uskterfaceof GPS products.

« Set relationship.A set relationship relates a parent feature with a set of child features using
group cardinalitiesi.e intervals such a:..m) limiting the number of different child features
that can be present in a product in which their parent feature appears. Ih Baftware for
GPS devices can provide support D mapviewing, Auto—reroutingor both of them in the
same product.

Routing Traffic avoiding Interface

<1.2> |

3D Auto- ti | Keyboard Screen
| map || uto-rerouting |<— | ‘ | | o <1“|1>
|

L +Folen] [15

¢ Mandatory 4 Optional An-n> Set

— —» Requires <+ — Excludes

Figure 1. A sample feature model

In addition to hierarchical relationships, FMs can also contaiss—tree constraintbetween
features. These are typically of the form “Featureefyuires feature B” or “Feature Aexcludes
feature B". For example in Figl, GPS devices witAraffic avoidingrequire theAuto—rerouting
feature, whereas those provided wiibuch screemexclude the support forléeyboard.

The automated analysis of FMs deals with the computer—aided extraction of information from
FMs. Catalogues with up to 30 analysis operations on FMs have been publighetygical
analysis operations allow us to know whether an FM is consistent (i.e. it represents at least one
product), what is the number of products represented by an FM, or whether an FM contains any

errors. Common techniques to perform these operations are those based on propositionéb]pgic [
constraint programming [6] or description logic [65]. Also, these analysis capabilities can be found
in a number of commercial and open source tools includindg-#ia framework [28], theFLAME
framework p5] and SPLAR [4558].

2.2. CUDF documents

The Common Upgradeability Description Form&UDF) is a format for describing variability

in package—baseBree and Open Source SoftwafeOSS) distributionsZ, 61]. This format is

one of the outcomes of thancoosiEuropean research project [43], intended to build better and
generic tools for package—based system administration. CUDF combines features of the Red Had
package manager and the Debian packaging systems, and also allows to encode other formats such
as metadata of Eclipse plugindd]. A key benefit of CUDF is that it allows to describe variability
independently of the distribution and the package manager used. Also, the syntax and semantics of
CUDF documents are well documented, something that facilitates the development of independent
analysis tools.

preamble:

package: arduino

version: 6

depends: libantlr-java>4 , openjdk-jdk | sun-java-jdk>=6
installed: true

package: php5-mysq|l

version: 5

depends: libc, libmysqglclient >= 5
conflicts: mysqli

request:
install: apt , apmd , kpdf = 6
remove: php5-mysq|

Figure 2. A sample CUDF document

Fig. 2 depicts a sample CUDF document. As illustrated, it is a text file composed byakever
paragraphs, so—callestanzas, separated by empty lines. Each stanza is composed of set of
properties in the form okey:valuepairs. The document starts with a so—calfgdamble stanza
with meta—information about the document, followed by several consequéitleage stanzas. A
package stanza describes a single package known to the package manager and may include, among
others, the following properties:

» Package. Name of the package, epgp5-mysq|l.

 Version. Version of the package as a positive integer. Version strings'2iléela” are not
accepted since they have no clear cross—distribution semantics. It is assumed that if each set
of versions in a given distribution has a total order, then they could be easily mapped to
positive integers.

» Depends. Set of dependencies indicating the packages that should be installed for this package
to work. Version constraints can be included using the operatots, >, <, >= and <=.
Also, complex dependencies are supported by the use of conjunctions (denoted by ‘) and
disjunctions (denoted by ‘|"). As an example, packagduino in Fig. 2 should be installed
together with a version dibantlr-java greater tham and either any version @penjdk-jdk or
version6 or greater okun-java-jdk.

» Conflicts. Comma—separated list of packages that are incompatible with the current package,
i.e. they cannot be installed at the same time. Package—specific version constraints are also
allowed. In the example, packagkp5-mysql is in conflict with any version ofnysqli.

* Installed. Boolean value indicating whether the package is currently installed in the system
or not. The default value ifalse. In Fig. 2, packagearduino is installed while the package
php5-mysql is not.

The CUDF document concludes with a so—calleguest stanzevhich describes the user request,

i.e. the changes the user wants to perform on the set of installed packages. The request stanza may
include three properties: a list of packages to be installed, a list of packages to be removed and a list
of packages to be upgraded. Version constraints are allowed in all cases. In the example, the user
wishes to install the packagept, apmd andkpdf version6é and remove the packagép5-mysql.

The automated analysis of CUDF documents is mainly intended to solve the so-—called
upgradeability probleni2]. Given a CUDF document, this problem consists in finding a valid
configuration, i.e. a set of packages that fulfils all the constraints of the package stanzas and fulfils
all the requirements expressed in the user request. This problem is often turned into an optimization
problem by searching not only a valid solution but a good solution according to an input optimization
criterion. For instance, the user may wish to perform the request minimizing the number of changes
(i.e. the set of installed and removed packages) or minimizing the number of outdated packages in
the solution.

The analysis of CUDF documents is supported by several tools that meet annuallyliartbeosi
International Solver CompetitioMISC) arranged by the Mancoosi project. In this competition,
CUDF reasoners must analyse a number of CUDF documents using a set of given optimization
functions. CUDF documents are either random or generated from the information obtained in open
source repositories. CUDF reasoners rely on techniques such as answer set prograhjaing [
Pseudo—Boolean optimization][2

2.3. CNF formulas

A Boolean formulaconsists of a set of propositional variables and a set of logical connectives
constraining the values of the variables, e-gA, v, =, <. Boolean SatisfiabilityfSAT) is the
problem of determining if a given Boolean formula is satisfiable, i.e. if there exists a variable
assignment that makes the formula evaluate to true. Among its many applications, Boolean formulas
can be regarded as the canonical representation of variability. Many variability languages such as
feature models or decision models can be automatically analysed by translating them into Boolean
formulas and solving the corresponding SAT probléiygP]. SAT technology is also used to deal

with dependency management in software ecosystems such as Eclipse orddnd&][

A SAT solver is a software package that takes as input a CNF formula and determines if
the formula is satisfiable. Th€onjunctive Normal Fornr{CNF) is a standard form to represent
propositional formulas where only three connectives are alloweds, and v. CNF formulas
consists of the conjunction of a numberalduses; a clause is a disjunctionliéérals; and a literal
is a propositional variable or its negation. As an example, consider the following propositional
formula in CNF form:(a v =b) A (-=a v bV c¢). The formula is composed of two clausesy(ab),
and (-a v bV ¢), and three variables, b andc. A possible solution for this formula is {a=3=0,
¢=1}, i.e. the formula is satisfiable.

There exists a vast array of available SAT solvers as well as SAT benchmarks to measure their
performance. Every two years a competition is held to rank the performance of the participant’s
tools. In the last edition in 2013, 93 solvers took part in the SAT competition

2.4. Metamorphic testing

In software testing, anracleis a procedure by which testers can decide whether the output of a
program is correct or not [66]. In some situations, the oracle is not available or it is too difficult
to apply. For example, consider testing the results of complicated numerical computations such
as the Fourier transform, or processing non-trivial outputs like the code generated by a compiler.

http://www.satcompetition.org

Furthermore, even when the oracle is available, the manual prediction and comparison of the results
are in most cases time—consuming and error—prone. Situations like these are referred dceadethe
problemin the testing literature7[0].

Metamorphic testing13] was proposed as a way to address the oracle problem. The idea behind
this technique is to generate new tests from previous successful test cases. The expected output of
the new test cases can be checked by using so—cak¢amorphic relations.e. known relations
among two or more input data and their expected outputs. For instance, consider a program that
compute the sine function (sir). Suppose the program produces the outp27 when run with
inputz = 12. A mathematical property of the sine function states thatx) = sin(« + 360). Using
this property as a metamorphic relation, we could design a new test case with+ 360 = 372.
Assume the output of the program for this inpu0i875. When comparing both outputs, we could
easily conclude that the program is faulty.

It has been shown that a small number of diverse metamorphic relations has a similar fault—
detection capability to a test oracle, and could therefore help to alleviate the oracle problem [41].
The effectiveness of metamorphic relations has been studied in several guidelines for the selection
of “good” metamorphic relationslp, 44]. Metamorphic testing has been successfully applied to
a number of testing domains including numerical programs [14], graph theory [15] or service—
oriented applicationsl2].

3. METAMORPHIC RELATIONS ON VARIABILITY MODELS

In this section, a set of metamorphic relations between VMs expressed in the variability languages
presented in Sectiofi, and their corresponding set of valid configurations, is presenteceThe
relations are based on the fact that when a variability madeé$ modified, depending on the kind

of modification, the set of valid configurations of the resultirgghbourmodel M/’ can be derived

from the original one and therefore new test cases can be automatically derived.

3.1. Metamorphic relations on feature models

In terms of variability management, in FMs variants are represented as features, and valid
configurations are those feature combinations fireducts) satisfying all the constraints expressed

in the FM. According to this, the identified metamorphic relations between neighbour FMs are
defined as follows.

MR ;: Mandatory. Consider the neighbour FMs and their associated product sets in Hguwiteere
M’ is derived fromM by adding a mandatory featuBeas a child of featur®. According to the
semantics described in secti@rl, the set of products af/’ can be derived by adding the new
mandatory featur® in all the products of\/ where its parent featu® appears.

P1={AC} . P1={AC}
P2={ABC} 7V P2={AB.CD}

Figure 3. Neighbour models after mandatory feature is added

Formally, let f,,, be the mandatory feature addedMf f, its parent feature[I(M) the function
returning the set of products of an FM, agdthe cardinality function on sets. Then, MRan be

definedas follows:

#I(M') = #I1(M) A
Vpell(M) o fép = pell(M') A (MRy)
fpep = (pU{fm})'EH(]\/[/)

MR : Optional. When an optional feature is added to an FM, the derived set of products is formed
by the original set and the new products created by adding the new optional feature to all the
products including its parent feature. Formally, Jgtbe the optional feature ang, its parent
feature. Consider the product selection functién(M, S, E) that returns the set of products of

M including all the selected features $hand excluding all the features ii. Then, MR, can be
defined as follows:

#I(M') = #I(M) + #11,(M,{f,},2) A
(M) ¢ TI(M') A (MRy)
VpéH(M)Ofpépﬁ(pU{fo})EH(M,)

MR 3: Set relationship. When a new set relationship withm, m) cardinality is added to an FM
(see Figuret), the derived set of products is formed by all the original products not contaimng
parent feature of the set relationship, (P Figure4), and the new products created by adding all
the possible combinations of size.m of the child features ({D}, {E}, and {D,E} for the FM in
Figure4) to all the products including the parent feature, (Ps, andP, in Figure4).

M
; =)
El
MR3 P1={A,C}
P1=1{AC} » P2={AB,C,D}
P2={AB,C} v P3 ={AB,C E}

P4 ={AB,CD,E}
Figure 4. Neighbour feature models after adding a set relationship

Formally, let F, be the set of features added to the model by means of a set relationship with a
(n,m) cardinality and a parent featufg. Let also b F; = {S € £F, | n < #S < m} the set of all
possible subsets @f, with cardinality in the(n, m) interval. Then, assuming that< n < m < #F,

MR; canbe defined as follows:

#I(M') = #10,(M,2,{fp}) + #82 Fs- #1(M, {f,},2) A
Vpell(M) ofp¢p:>p€H(M')/\ (MR3)
fpep = VSefP"F, o (puS)ell(M)
MR 4: Requires. When a newf; requires f, constraint is added to an FM, the derived set of

products is the original set except those products contaifiirigut not f>. Formally, MR, can be
defined as follows using the product selection funciipn

I(M") = I(M) N T (M, {f1},{f2}) (MRy)

*#5 denoteshe powerset of theet S, containingll possible subsets of S.

MR 5: Excludes. When a newf; excludesf, constraint is added to an FM, the derived set of
products is the original set except those products containing faathd /. Formally, MR can be
defined as follows:

H(]\/[,) = HU(M7®7{f17f2}) (MR5)

3.2. Metamorphic relations on CUDF documents

From a variability management point of view, CUDF variants correspond to faitg, wherep

is a package identifier angis a version number. A valid configuration is considered as a set of
package pairg (p;,v;) } which can be installed simultaneously satisfying all their dependencies
without conflicts.

Formally, package dependencies and conflicts in CUDF documents can be represented as 5-tuples
(p,v,q,k,8), wherep andq are the identifiers of the depender and dependee packages respectively,
v andk are literal version values, afds a comparison operator. For example, a dependency such as
(arduino2,JDK, 6, >) indicates that version 2 of tr¢duino package depends on tBBK package
version 6 or higher. In this context, we can also defimma—constrainingpackage(p,,., v..) as a
package whose identifier does not appear as dependee @oasiyaint, i.e. dependency or conflict,
in a CUDF document. Formally(p,.., v,.) IS non—constraining in the context of a given CUDF
document iff:

V(p,v,q,k,0) ¢ CUDF documents p,. # q

Complementarily, @onstrainingpackage(p., v.) is a package whose identifidoesappear as
dependee in some constraint, i.e.

3(p,v,q, k,6) e CUDF documents p,. =q

Considering these definitions, it is possible to define the following metamorphic relations
between the valid configurations of neighbour CUDF documents.

MRg¢: New package. When a new non—constraining package is added to a CUDF document, the
derived set of valid configurations is formed by the original set, a configuration containing the new
non—constraining package only, and all the original configurations with the new non—constraining
package added (see Figuie

D D’
package: A package: A
version: 2 version: 2
package: B ’4\ package: B
version: 4 w version: 4

package: C
version: 1
C1=[(A2)]
C2=[(B,4)]
C1=[(A2)] MRe c3=A2){B4}]
C2=1(B,4)] A Ca=[(C1)]
C3=1[(A.2),(B4)] o Cs5=[(A,2),(C,1)]

Cs =[(B,4),(C,1)]
C7=[(A,2),(B,4),(C,1)]

Figure 5. Neighbour CUDF documents after a new non—constraining package is added

Formally, letD’ be the CUDF document created by adding a non—constraining patkage,...)
to another documen®, and ¥ (D) the function returning all the valid configurations of a CUDF

10

document. Then MRcan be defined as follows:
#U(D') = 2-#U(D)+1A
¥(D) c ¥(D') A
{ (Pnes Une) } € \IJ(D,) N
VeeU(D) o cU{ (PnesVne) } € U (D)
Notice that constraining packages are excluded from this rule since they would not allow to
derive the set of configurations of the new CUDF documents from the previdudNseertheless,

this exclusion does not affect the diversity of the CUDF documents that can be generated, it only
affects the order in which the metamorphic relations should be applied (see Skfuratetails).

(MRg)

MR-: Disjunctive dependency set. When a new set of disjunctive dependencies is added to a given
package(p,v) in a CUDF document, the derived set of valid configurations is formed by all the
original configurations in whiclip, v) does not appear, together with all the original configurations
in which (p,v) does appear and at least one of the added disjunctive dependencies is satisfied.

Let A be the set of package dependengiés} of the(p,v) package added to a CUDF document,
andy (¢, §) a predicate that holds if configuratiosatisfies dependendyThen MR can be defined
as follows:

V(D) ={ce¥(D) | (pv)ec = F5ecA o p(c,)} (MR7)

MR g: Conjunctive dependency. When a new conjunctive dependency is added to a given package
(p,v) in a CUDF document, the derived set of valid configurations is formed by all the original
configurations in which(p,v) does not appear, together with all the original configurations in
which (p,v) does appear and the added conjunctive dependency is satisfied. Formallyelet
the conjunctive dependency added to (pev) package in a CUDF document. Then MBan be
defined as follows:

U(D') = {ce¥(D) | (p,v)ec = ¥(cd)} (MRs)

MR : Conflict. When a new conflict is added to a given packdégev) in a CUDF document, the
derived set of valid configurations is formed by all the original configurations in wich) does

not appear, together with all the original configurations in whighv) does appear but are not
affected by the new conflict. Formally, a conflict can be represented as a dependency that must not
hold in a valid configuration. Let be the conflict added to tHe, v) package in a CUDF document.

Then MR, can be defined as follows:

U(D') = {ce¥(D) | (pv)ec = ~v(cr)} (MRy)

3.3. Metamorphic relations on CNF formulas

Considering CNF formulas as a way of expressing variability, variants correspond to variables and
valid configurations correspond to paif®;, V), whereV, = {v;} is the subset of variables set to
true andV; = {v;} are the subset of variables setftdsefor a given satisfiable assignment. The
following metamorphic relations between neighbour Boolean formulas in CNF have been identified.

MR 1¢: Disjunction with a new variable. When a new variable is added to a CNF formula with a
single clause, the derived set of solutions is formed by the original set of solutions duplicated by
adding the new variable to thirue andfalsesets of each solution, and a new solution where the new
variable is set tarue and all the others are setf@se. See Figuré for an example.

$Some configurations, previously discarded for not satisfying a dependency with the new package, would become valid
but, since they were not present in the original set, they could not be derived.

11

C=a C'=avb

MR10

|k oo
ok | o
RG]

Figure 6. Neighbour CNF formulas after adding a disjunctidgtih\a& new variable

Formally, letF’ be the CNF formula created by adding a disjunction with a new varialxe
a one—clause—only CNF formuld, and SAT the function returning all the solutions of a CNF
formula. Then MR, can be defined as:
#SAT(F') = 2-#SAT(F) +1 A
V (Vi, V) e SAT(F) o (V,u{v}, Vy) e SAT(F') A
(Vi, Viu{v}) e SAT(F') A
({v}, ViuVy) e SAT(F)
MR ;: Disjunction with a new negated variable. This metamorphic relation is identical to the
previous one except that in the neighbour formula solutions, the new variable isfalsetand all
the others are set toue. Formally, MR; can be defined as follows:
#SAT(F') = 2-#SAT(F) +1 A
V (Vi,Vy) € SAT(F) o (V,u{v}, Vy) e SAT(F) A
(Vi, Viu{v}) e SAT(F') A
(ViuVy,{v}) e SAT(F")
MR 15: Disjunction with an existing variable. When an existing variable is added to a CNF

formula with a single clause (e.g'=avbandF’ =aVvbv a), the derived set of solutions is the
same as the original one. Formally, MRcan be defined as follows:

SAT(F') = SAT(F) (MR;2)

(MR10)

(MR11)

MR 3: Disjunction with an existing inverted variable. When an existing inverted variable is
added to a CNF formula with a single clause (¢.g= a v bandF’ = a v b v -a), the clause becomes

a tautology, so any variable assignment becomes a solution. Formally, let VAR be the function
returning all the variables in a CNF formula. Then MRan be defined as follows, where the new
solution set if formed by all the pairs of the cartesian product of the powerset of the variables with
itself that form gpartition over the variable set:

SAT(F') = { (V;, V) € PVAR(F) x PVAR(F) | ViuVy =VAR(F) A VinVy =@}
(MR;3)

MR 14: Conjunction with a new clause. When a new clause is added as a conjunction to a CNF
formula with a single clause (e.g. = C; andF’ = C; A Cs), the derived set of solutions is formed

by those combinations of the sets of solutions of both clauses with no contradictions, i.e. without
a given variable set ttrue andfalse simultaneously (see Figuin Section4 for an example).
Formally, if C; andC, are the two CNF clauses to be conjuncted, then;Méan be defined as
follows:

le,Vf'17‘/;52,Vf2 * ((‘/;51 UVQ)ﬂ (Vfl UVfQ)) € SAT(Cl /\CQ) =
((‘/1517Vf1)7 (‘/tzﬂvfz)) € SAT(Cl) XSAT(CQ) A (MR14)
((‘/huvtz) n (Vflquz)) =0

12

D D’ D” D Dm
package: A package: A package: A package: A package: A
version: 2 version: 2 version: 2 version: 2 version: 2

conflicts: C< 2 conflicts: C < 2
package: B package: B package: B Installed: true
version: 4 version: 4 version: 4 package: B

) > A | version: 4 B | package: B
package: C package: C 4 o version: 4
version: 1 version: 1 package: C
depends: B| A>1 version: 1 package: C
depends: B | A version: 1
depends: B | A
C1=[(A2)] C1=[(A2)] C1=[(A2)] C1=[(A,2)]
C2=[(B,4)] C2=[(B,4)] C2=[(B,4)] C2=[(B,4)]
C1=[A2)] MRS C3 = [(A,2),{B.4) MR7 " C3 = [(A,2),(B.4)] MRS C3=[(A2),(B4)] C3=[(A2),(B4)]
C2=((B,4)] . Ca=[(C)] b Ca=HGCH] b CE={A2KGH] h Ce=[(B4).(C1)]
C3=[(A2),(B,4)] 7 Cs=[(A2)(C1)] . Cs5=[(A,2),(C,1)] S Ce=[(B4),(C,1)] .
Ce =[(B,4),(C,1)] Ce =[(B.4).(C,1)] ={(As2)5(B;4);
C7=[(A,2),(B,4),(C,1)] C7=[(A2),(B.4).(C1)]

Figure 7. Random generation of a CUDF document and its sendigemations using metamorphic relations

4. AUTOMATED TEST DATA GENERATION

The semantics of a VM is defined by the set of valid configurations that it represents, and most
analysis operations on VMs can be performed by inspecting this set adequately. Based on this idea,
the two—step process proposed for the automatic generation of test data is presented in this section.

4.1. Variability model generation

The first step of the test data generation is using metamorphic relations, together with model
transformations, in order to generate VMs and their sets of valid configurations. Notice that this is a
singular application of metamorphic testing, i.e. instead of using metamorphic relations to check the
output of different computations, we use them to actually compute the expected output of follow—up
test cases. Fid. illustrates an example of our approach.

The process starts with an input VM whose set of valid configurations is known, seec
This seed can be randomly generated from scratch (as in our approach) or obtained from an
existing test casebp]. A number of step—wise transformations are then applied to the model. Each
transformation produces a neighbour model as well as its corresponding set of valid configurations
according to the metamorphic relations. In the example, docubiéagenerated by adding a new
packageC to documenD. The set of configurations @ is then easily calculated by applying the
metamorphic relation MR

Model transformations can be applied either randomly or using deterministic heuristics, although
in certain cases, the order in which metamorphic relations are applied matters. In CUDF, for
instance, non—constraining packages should be added)(bRore adding constraints depending
on them (MR, MRg and MR)). Similarly, relations MR, and MR 3 (adding disjunctions with
existing variables), cannot be applied until at least one variable is added to the CNF formula.
Notice, however, that this does not affect the diversity of the VMs that can be generated. The
generation process can be stopped after a given number of transformations, or as soon as a VM and
its corresponding set of valid configurations is generated and some desired properties are achieved,
e.g. a certain number of variants or configurations is reached. In the example, configuiafiien C
packageA) is marked as installed at the end of the process to simulate the current status of the
system. Notice that this implies no changes in the set of valid configurations.

4.2. Test data extraction

Once a VM with the desired properties is generated, it is used as a non-trivial input for the test.
Simultaneously, its generated set of valid configurations is automatically inspected to obtain the
output of the analysis operations under test. As an example, consider the CUDF dobDyaerdt

13

5 [3
[B] '
P1={ACF} P1={AC,F} P1={ACF}
MRS b A MR3 py-iaBCDF MR4 pr-iABCDF MRz py—AB.C,DF}
P1={A,C} m p- (A'B .0} P3={AB,C,EF} - P3={AB,C,EF} = P3={AB,C,EF}
P2 ={AB,C} P3=(AYB'C'E}) P4={AB,C,D,E,F} P4={AB,C,D,E,F} L P4={AB,C,D,E,F}
P4 = {A.B.C.D,E} P5 ={A,C,G} Ps={AC.G} P9 = {A,B,C,D,F,H}
Ps = {A,B,C,D,G} Ps-={A,B,C,D,G} P10 = {A,B,C,D,E,F,H}
P7 ={A,B,C,E,G} Pz={A;B,CE,G}
P8 = {A,B,C,D,E,G} Ps={AB,C,D;E,G}

Figure 8. Random generation of a feature model and its sebofugts using metamorphic relations

its set of valid configurations generated in Fig.The expected output of a number of analysis
operations on the document can be obtained by inspecting the set of valid configurations, e.qg.:

* Is Dy consistentes, it represents at least one valid configuration.

» How many different valid configurations ddeg represent? different configurations.

* Is C =[(A,2),(B,4)] a valid configuration ofDy? Yes. It is included in its set of valid
configurations as £

» DoesDy contain anydeadpackage, i.e. a package that cannot be install2dé]P No, all
packages are included in the set of valid configurations.

Let us consider that a request stanza such as “Install: B” is addBg) té.e. the user wishes to
upgrade the current system configuration by installing the pacRadée valid configurations of
Dw fulfilling the user request, those including pack&)éC,, Cs, and G), can be easily obtained
from the set of valid configurations &fy.

More importantly, we can also inspect the set of valid configurations to compute the expected
output of certain optimization operations. For instance, the so—calednoid optimization
criterion [2, 43] is used to search for a configuration that fulfils the request while minimizing the
number of uninstalled packages and, with less priority, the number of total changes, i.e. the number
of installed and uninstalled packages. In our example, upgrading the system according i€
two changes, installing and uninstallingA; opting for G implies one change, installing; and
opting for G requires three changes, uninstallle@nd installingd andC. Therefore, the expected
output for the upgradeability problem using the paranoid optimization criterion is the configuration
Cs. This expected output can be automatically obtained by iterating over the set of configurations
and selecting those that) satisfy the user request,) have a minimum number of uninstalled
packages, anéii) have a minimum number of changes. Notice that upgradeability problems may
have more than one possible solution.

Another example is shown in Fi§, which depicts how our approach is used for the generation
of a sample FM and its set of products. The generation starts from scratch with a trivial FM and
its corresponding set of products. Then, new features and relationships are added to the model in
a step—by-step process. The set of products is updated at each step assuring that the metamorphic
relations defined in Sectidh1 hold. For instanceEM™ is generated frorAM” by adding the cross—
tree constraint “Qequires F”. According to MRy, the new set of products must be the seFif
excluding those products containiGgbut notF. If we consider the modéiMy, obtained as a result
of the process, we can easily find the expected output of most of the FM analysis operations defined
in the literature T] by simply checking its set of products, for instance:

* IsFMy consistentes, its set of products is not empty.
» How many different products doEy, represent® different products.

14

Ci=a Cr'=avb Ci"=avbv-c
| MR10 . 5 | ; MR11 o . o .
oo
BE = 'BERE o o 1]0
1 0|1 0 1 o0 |1
11 | 1 0 1 111 F=C1"/\C2"=(aVbV“C)/\(aVCVa)‘
10 01
10 1|1
11 0|1 0 0 0 0
1 1 11 MR 0 0 1 0
0 1 0 0
}> 0 1 1 1
C2=a C2=ave C"=avcva 1 0 (] 1
1 0 1 1
MR10 MR12 ! ! 0 !
oo = o oo o oo 1 1 1 1
1] 'BERE o 1|1
1 0|1 1 0|1
ERE 1 1]

Figure 9. Random generation of a CNF formula and its set otisolsi using metamorphic relations

Is P ={A,B,F} a valid product ofFMy? No, it is not included in its set of products.

* Which are the core features BMy,, i.e. those included in all product$=atures {A,C}.

What is the commonality of featuB® FeatureB is included in 5 out of the 6 products of the
set. Therefore its commonality i6 = 0.83 (83.3%)

» DoesFMy, contain any dead featureYes. Featurds is dead since it is not included in any of
the products represented Biyly.

Finally, Fig.9 illustrates an example of how metamorphic relations can be used to generate CNF
formulas as input test data and their respective solutions as expected output test data. First, a trivial
clause with a single variable and its corresponding set solutions is created,. Then, the clause
is extended in a set of steps creating successive neighbour CNF formulas. On each step, a new
disjunction is added to the clause, and the set of solutions is updated applying the metamorphic
relations M, to M3 defined in Sectio.3. This process is repeated until obtaining a set of random
clauses, ¢, G, ...C,, and their corresponding set of solutions SATXCSAT(C,) ...SAT(G,).

Then, the final CNF formula is created as a conjunction of the clauses previously created, i.e. F =
CiA Cy...A C,,. The final set of solutions is computed using the metamorphic relatignwhich
obtains the intersection of the set of solutions of the clauses in the formula, i.e. SAT(F) = 3AT(C
SAT(C,) ...n SAT(C,). In the example, F is composed of two claus€sa@d C; three variables,

a, b, andc; and five solutions, i.e. those variable assignments that make the formula evaluate to true.

5. EVALUATION

In this section, we evaluate whether our metamorphic testing approach is able to automate the
generation of test cases in multiple variability analysis domawdgl(. Also, and more importantly,

we explore whether the generated test cases are actually effective in detecting real bugs in variability
analysis tools (RQ2). For the evaluation, we developed three test data generators based on the
metamorphic relations defined in Secti®rThen, we evaluated their ability to automatically detect
faults within a number of analysis tools in the tree domains under study: FMs, CUDF documents
and CNF formulas. The results are reported in the following sections.

15

The experiments were performed by two teams in different execution environments for
compatibility with the tools under test. The specific execution settings are described in a separated
technical report due to space constraift3.|

Most of the reported faults were confirmed by the respective tool developers, the related literature,
or fix reports. For each faulty tool, we contacted their developers (five in total, two of them authors)
by e-mail, sending them information about the detected failures and the test case(s) reproducing
them. Sometimes, developers were already aware of the bugs meanwhile in other cases they
acknowledged them as new defects. Interestingly, some developers were curious about how we
have detected the bugs and requested more information.

5.1. Detecting faults in FM reasoners

As a part of our work, we developed a test data generator for the analysis of FMs based on the
metamorphic relations presented in Sectihfi. The tool generates FMs of a predefined size
together with the exact set of products that they represent following the procedure presented in
Sectiond. This test data generator is stable and available as a part of the BeT Tyiveajg4]. In

this experiment, we evaluated the fault detection capability of our metamorphic test data generator
by testing the latest release of three FM reasoners in which 12 faults were found.

Experimental setup. We evaluated the effectiveness of our test data generator in detecting faults
in three FM reasoners: FaMa Framework 1.1.2, SPLARI FLAME 1.0. FaMa [28] and SPLAR

[45, 58] are two open source Java tools for the automated analysis of FMs. FLAK Prislog—

based reasoner developed by some of the authors as a reference implementation to validate a formal
specification for the analysis of FM&3]. FaMa was tested with its default configuration. SPLAR

is actually composed of two reasoners using SAT-based and BDD-based analysis, which were both
tested. Tests with FLAME were performed as part of a previous contribution and reproduced for
this evaluation 25]. In total, we tested 19 operations in FaMa, 18 en FLAME and 9 in SPLAR.

A detailed description of the operations tested on each reasoner is providedl iflf@&Hhame and

formal semantics of the analysis operations mentioned in this article are based on the work presented
in [25].

The evaluation was performed in two steps. First, we used our metamorphic test data generator
to generate 1,000 random FMs and their corresponding set of products. The size of the models was
between 10 and 20 features and 0% and 20% of cross—tree constraints with respect to the number
of features. Cardinalities were restricted(to.1) and(1..n), beingn the number of subfeatures,
for compatibility with the tools under test. The generated models represented between 0 and 5,800
products. Then, we proceeded with test execution. For each test case, an FM and its corresponding
set of products were loaded, the expected output derived from the set of products and the test run.
We ran 1,000 test cases for each analysis operation and reasoner using this procedure. In order to
test FLAME, test cases were written in an intermediate text file ready to be processed by the Prolog
interpreter. In the cases of operations receiving additional inputs apart from an FM, those inputs
were selected using a basic partition equivalence strategy, making sure that the most significant
values were tested. We may remark that some of the analysis operations receive two input FMs and
return an output indicating how they are related. For those specific operations, an extra suite was
generated composed of 1,000 pairs of FMs and their corresponding set of products. The generation
of the test cases took less than one minute. The total execution time was 55 minutes, with an
average time of 51 seconds per operation under test.

Analysis of results Tablel presents the faults detected in the three FM reasoners. For each fault,
an identifier, the operations revealing it, a description of the failure and the number of failed tests
(out of 1,000) are presented. As illustrated, we detected 4 faults in FaMa, 5 faults in FLAME and 3
faults in SPLAR. In total, we detected 12 faults in 11 different analysis operations. Faults in FaMa

TSPLAR does not use a version naming system. We tested the tool as it was in April 2013.

16

and FLAME affected to single operations. In SPLAR, however, failures were identically reproduced
in several operations. Due to space limitations, we indicate the number of operations revealing the
fault in SPLAR, not their names.

Faults F1, F4 and F7 were revealed when testing the operations with inconsistent models,
i.e. a model that represents no products. In FaMa and FLAME, for instance, we found that all
features were marked as variants, iselectable, when the model is inconsistent, which is a
contradiction. Fault F2 revealed a mismatch between the informal definition of the atomic sets
operation given in] and the formal semantics described in [25]. Fault F3 made some non-valid
feature combinations to be wrongly recognized as a valid product. Faults F5 and F6 raised zero
division exceptions. Faults F8 and F9 made the order of features in products matter, e.g. [A,B,C]
and [A,C,B] were erroneously considered as different products. Fault F10 raised an exception
(org.sat4j.specs.ContradictionException) when dealing with either inconsistent model or invalid
products. The fault was revealed in the initialization of the SPLAR SAT reasoner and therefore
affected all operations. Fault F12 made the SPLAR BDD reasoner to fail when processing group
cardinalities of the forn{1..n}. Instead, only group cardinalities of the fo{m.+) were supported
with identical meaning. We patched faults F10 and F12 for further testing of the SPLAR reasoner.
Finally, fault F11 was revealed in five operations when receiving exactly the same input inconsistent
FMs. We found that several consecutive call to these operations with the same models produced
different outputs, i.e. the analysis operations were not idempotent as expected.

The number of failed tests gives an indication of the difficulty of each fault detection. Faults
F2, F4, F7 and F12, for instance, were easily detected by a large number of test cases, between
208 and 790 test cases (out of 1,000). Faults F8 and F11, however, were detected by 10 and 5 test
cases respectively which shows that some faults are extremely hard to detect. Finally, fault F10 was
revealed by a different number of test cases on each operation ranging from 21 test cases (fairly hard
to detect) to 759 test cases (very simple to uncover). This supports the need for automated testing
mechanisms able to exercise programs with multiple input values and input combinations.

Fault Operation Description Failures
FaMa 1.1.2

F1 Core features Wrong output 21
F2 Atomic sets Wrong output 208
F3 Valid configuration Wrong output 153
F4 Variant features Wrong output 219
FLAME

F5 Homogeneity Exception 124
F6 Commonality Exception 37
F7 Variant Wrong output 273
F8 Refactoring Wrong output 10
F9 Valid product Wrong output 121
SPLAR (SAT)

F10 8 operations Exception 21-759
F11 5 operations Wrong output 5
SPLAR (BDD)

F12 6 operations Exception 790

Table I. Faults detected in FM reasoners

5.2. Detecting faults in CUDF reasoners

For this experiment, we developed a test data generator for the analysis of CUDF documents based
on the metamorphic relations defined in Sect®f. The tool generates CUDF documents of a
predefined size and their set of valid configurations. In this experiment, we evaluated the ability of

17

the test data generator to detect faults in three CUDF reasoners in which two faults were found.

Experimental setup. We evaluated the effectiveness of our test data generator in detecting faults
in three CUDF reasoners2cudf 1.14, aspcudf 1.7 andcudf-check 0.6.2-1.p2cudf [2, 49] is a

Java tool that reuses the Eclipse dependency management technutpgy $olve upgradeability
problems in CUDF. It internally relies on the pseudo—Boolean saagtj [38]. Aspcudf [5, 31]

uses several C++ tools for Answer Set Programming (ASP), a declarative languatieheck

is a command line CUDF reasoner provided as part of the Dehidfrtools package 19). This

tool is mainly used to check the validity of CUDF documents and their configurations, i.e. it does
not support optimization. In this experiment, we tested two different analysis operations. In the
cudf-checker tool, we tested the operation that checks whether a given configuration is valid with
respect to a given CUDF document and a given request2tadf and aspcudf, we tested the
upgradeability problem using the paranoid optimization criteridmp]. As described in Section

4, this criterion searches for a configuration that fulfils the user reqaésténimizes the number

of changes in the system. We selected this optimization operation because it is used in the annual
Mancoosi competition and it is supported by most CUDF reasoners.

The evaluation was performed in two steps. First, we used our metamorphic test data generator
to generate 1,000 random CUDF documents without requests and their corresponding set of
valid configurations. We parametrically controlled the generation assuring that the documents
had a fair proportion of all types of elements, i.e. dependencies, conflicts, version constraints,
etc. We refer the reader to an external technical report for the specific parameters and values
used for the generation [53]. The generated documents had between 5 and 20 packages and
50% and 120% of constraints, i.e. depends and conflicts. Also, version constraintsA (e.g.
>=2) were added with certain probability. Each document represented up to 197,400 different
configurations. Once a CUDF document and its configurations were generated, the packages of a
random configuration were marked as installed (installed: true) to simulate the current status of
the system. Also, a random request was added to each document making no changes in the set
of configurations. The request included a list of packages to be installed and a list of packages to
be removed. The number of packages in the request was proportional to the nhumber of packages
of the document ranging from 1 to 9. Then, we proceeded with test execution. For each test
case, a CUDF document and its corresponding set of configurations were loaded, the expected
output calculated as described in Sectibmnd the test run. We ran 1,000 test cases for each
analysis operation and reasoner using this procedure. Test cases were generated in 8 minutes.
The execution of test cases took 1 houcirf—check and less than 10 minutes in the rest of solvers.

Analysis of results The results revealed 2 faults in th2cudf reasoner, shown in Table For each

fault, an identifier, the operation revealing it, a description of the failure and the number of failed
tests (out of 1,000) are presented. The two faults detected, F13 and F14, were uncovered when
processing non—equal version constraints in depends disjunctiondepends: A | B != 2. Fault

F13 raised an unexpected exception (org.eclipse.equinox.p2.cudf.me-tadata. ORRequiféraent

fault was caused by a Java type safety issue in arrays which raisédriyeStoreException. We
patched this bug for further testing of the tool. Once fixed, F14 arose due to a wrong handling of the
non—equal operator within a disjunction during the encoding st@@déndf, which makes the tool

return a wrong output. It is worth mentioning that this is not a trivial bug because it is caused by a
lack of support for nested disjunctionsp@cudf, which occurs scarcely in practice and never in the
Mancoosi competition benchmarks. More precisely, the nested disjunctions are simply ignored by
the tool, thus the dependencies become much stronger and the number of solutions is reduced. As a
result, the tool may provide either a suboptimal solution or consider that there is no solution at all.

It is noteworthy that fault F14 was detected by only 4 out of our 1,000 test cases, which show the
difficulty to reveal certain faults. One of the failure was a suboptimal solution, while the remaining
three failures were incorrectly answering that the problem did not have any solution. Again, this
motivates the need for automated approaches, as our, able to generate a variety of different inputs
that lead to the execution of different paths in the tools under test.

18

Fault Operation Description Failures

F13 Paranoid Exception 42
F14 Paranoid Wrong output 4

Table Il. Faults detected in the CUDF reasop2cudf

5.3. Detecting faults in SAT reasoners

For this experiment, we developed a test data generator for the analysis of Boolean formulas based
on the metamorphic relations defined in SectioB. The tool generates Boolean formulas in CNF
form and the set of solutions of the formula. For its evaluation, we automatically tested nine SAT
solvers in which 5 bugs were revealed.

Experimental setup. We automatically tested nine SAT reasoners written in different languages.
The binaries of unversioned reasoners were taken from the SAT competition in which they
participated, indicated in parenthesis, namé&igt4j 2.3.1 [38], Lingeling ala-b02 [4(], Minisat 2.2
[27], Clasp 2.1.3 [32],Picosat 535 [9], Rsat 2.0 [5(Q, March_ks (2007) [33],March_rw (2011)
[33], andKcnfs 1.2 [24]. In a related work [11], Brummayer et al. automatically detected faults in
the exact same versions of the reasori&tesat, RSAT andMarch_ks. We included these three
reasoners in our experiments in order to compare our results with theirs. For each input CNF
formula, we enumerated the solutions provided by each reasoner checking that the set of solutions
was the expected one. Most of the reasoners do not support enumeration of solutions, they just
returns the first solution found if the formula is satisfiable (SAT), or none if it is unsatisfiable
(UNSAT). To enable enumeration, we added a new constraint in the input formula after each solution
was found in order to prevent the same solution to be found in successive calls to the solver, until
no more solutions were found.

For the evaluation, we used the same number of test cases as]im[order to make our
results comparable. In particular, we first used our metamorphic test data generator to generate
10,000 random CNF formulas in the DIMACS format and their corresponding set of solutions. The
generated formulas had between 4 and 12 variables and between 5 and 25 clauses. Each clause had
between 2 and 5 variables. Most of the generated formulas (94.3%) were satisfiable representing up
to 3,480 different solutions. Most reasoners assume that input clauses have no duplicated variables
(a v a) or tautologies (& —a) since this is not allowed in the input format of the SAT competition,
in which most of them participate. Thus, we disabled metamorphic relations, MRl MR, 3
to make the test inputs compatible with most of the tools under test. After the generation, we
proceeded with test execution. For each test case, a CNF formula and its corresponding set of
solutions were loaded and the test run. On each test, we checked that the solutions returned by the
reasoner matched the solutions generated by our test data generator. We ran 10,000 test cases on
each SAT reasoner using this procedure. Since each test case exercises the SAT solver once per
found solution, and a last time to check that no more solution exists, each reasoner was expected
to answer SAT 1,817,142 times, the total number of solutions in the suite, and UNSAT 10,000
times in total. The generation of the test data took 3 hours. The execution time ranged between 9
minutes inSat4j and almost 10 days iKcnfs (due to timeouts, see the analysis results in the next
paragraph). Notice tha&at4j does support solution enumeration natively, so it did not require to
read each time a new problem with a new blocking clause. Thus, no file system 1/O operations were
performed in that case and, more importantly, the solver could take advantage of an incremental
setting. In contrast, solvers such Misat or Clasp had to run during 6 hours due mainly to the
creation of intermediate CNF input files.

Analysis of results Tablelll summarizes the faults detected in the SAT reasoners. Note that no
faults were detected in the reason®as4j, Minisat, Lingeling, andClasp. This was expected since
these are widely used SAT reasoners that are highly tested and validated by their user community.
However, we detected various defects on more prototypical reasoners, s¥chfa®r March

19

reasoners. In particular, we automatically detected 3 faultgairch_ks, 1 fault inMarch_rw and 1
fault in Kenfs, 5 faults in total.

Fault Operation Description Failures
March_ks

F15 Satisfiability UNSAT instead of SAT 1
F16 Satisfiability SAT instead of UNSAT 38

F17 Satisfiability ~Cannot decide 21
March_rw

F18 Satisfiability Cannot decide 6
Kenfs

F19 Satisfiability ~Timeout exceeded 952

Table Ill. Faults detected in SAT reasoners

Two of the faults mad@arch_ks to answer incorrectly UNSAT instead of SAT (F15) or SAT
instead of UNSAT (F16). Faults F17 and F18 made the reasoners unable to decide the satisfiability
of the formula, i.e. they return UNKNOWN instead of SAT or UNSAT. AccordingMarch
developers, this was due to a “problem with the solution reconstruction after the removal of XOR
constraints. Regarding fault F19Kcnfs seemed to enter into an infinite loop after iterating over
a few solutions. To complete the tests, we used a timeout of 15 minutes before considering the
program faulty. This timeout was reached in 952 out of the 10,000 test cases.

In [11], Brummayer et al. compared the effectiveness of three test data geadm SAT:
3SATGen, CNFuzz andFuzzSAT. Each generator was used to generate 10,000 test cases, 30,000 in
total. When comparing our results to theirs, the findings are heterogeneous. On the one hand, they
found 86 errors irRsat (i.e. unexpected termination without providing a result), and 2 failures in
Picosat producing a wrong answer. We could not reproduce any of these defects in our work. On
the other hand, we detected 39 failures producing a wrong answnral_ks while they revealed
only 4. This is mainly due to the enumeration of all solutions in our approach, i.e. most faults
would not have been detected using a single call to the SAT solver ag]inr fact, only 11 out
of 39 failures inMarch_ks were revealed with the first call to the SAT solver. The remaining 28
failures were detected while iterating over all the solutions of the input formula. This suggests that
our metamorphic test data generator could be complementary to the existing testing tools for SAT
helping them to reveal more faults.

As previously mentioned, we disabled metamorphic relations;M&nd MR;3 to avoid
generating clauses with duplicated variables or tautologies, since these are not supported by most
reasoners. To evaluate both relations, we enabled them and generated and executed another 10,000
test cases. We found that some reasonersSa&j, Lingeling, Minisat manage tautologies and
duplicate variables effectively while other suchMerch or Kenfs crashes or simply return a wrong
answer. This suggests that our test data generator would also be effective in detecting faults related
to a wrong handling of duplicated variables and tautologies in production reasoners.

The number of failures revealed by faults F16 to F18 was significantly low, ranging from 1 to 38,
out of 10,000. This again demonstrates how hard is to detect certain bugs and motivates the need for
automated testing techniques. This also suggests that using a larger test suite could have revealed
more bugs.

6. APPLICATION TO OTHER VARIABILITY ANALYSIS DOMAINS

Based on our experience, we present some guidelines for the application of our metamorphic testing
approach to similar domains. Given a variability modelling language, we propose the following steps
to test their analysis tools, namely:

20

1. Identify variants These are the basic units that can be combined into valid configurations,
e.g. features in FMs, packages in CUDF documents or Boolean variables in CNF formulas.

2. Identify variability constraintsThese are the constraints that restrict how variants can be
combined. For example, FMs have five different types of feature constraints: mandatory,
optional, set, requires and excludes (see Se&ibh

3. Define metamorphic relation®efine a metamorphic relation for each identified variability
constraint. Each relation should relate the set of configurations represented by a VM before
(source) and after (follow—up) adding the variability constraint. Ideally, it should be defined a
metamorphic relation for each variability constraint of the language to foster diversity during
test data generation. This is supported by related works on the effectiveness of metamorphic
relations, which suggest that good metamorphic relations should be diverse and semantically
rich, i.e. rely on the semantics of the system under tE5t41, 44].

4. Generate test data. Apply the metamorphic relations iteratively to generate increasingly
larger and more complex VMs and their corresponding set of valid configurations. In certain
domains, it may be required to apply the relations in a certain order. For instance, packages
must be added to CUDF documents (MRefore adding constraints referencing them VIR
MRg, and MR)). Generation parameters (e.g. size of the models) should foster diversity
assuring a balance amony number of test cases, i.e. the more the betigrsize range
of the input models, i.e. the wider, the better, ang testing time, i.e. time available for
the generation and execution of test cases. In general terms, test cases should be simple,
numerous and diverse rather than complex, few and homogeneous.

5. Run test cases. Run the tools under test using the generated variability models as inputs and
their set of configurations as oracles to determine the correctness of the outputs.

7. LIMITATIONS

The number of configurations generated by our test data generators increases exponentially with the
size of the corresponding VM. As a result, our approach is unable to generate large, hard-to—analyse
VMs. We remark, however, that computationally—hard inputs are not appealing from a functional
testing point of view, e.g. executing a test case per hour is unlikely to provide successful results.
Instead, as in our work, test data generators should be able to generate multiple inputs with different
complexity degrees, most of them easy to process, in order to exercise as many execution paths as
possible. This is supported by our previous works with FMs and mutation, in which we found that
most faults were detected by small inpui$ [56]. Having said that, we emphasize that our test

data generators can efficiently generate VMs representing hundreds of thousands of configurations,
something that goes well beyond the scope of manual testing.

8. THREATS TO VALIDITY

The main factors that could have influenced our results are summarized in the follmvisiuct,
internal and external validity threats $7]. Notice that theconclusionvalidity threats are not
applicable to our work due to the nature of the experiments.

Construct validity. This validity threat is concerned with the relation between theory and
observation §7]. In our case, whether the observed number of failures reflects thauedoer

of faults. As mentioned in Sectioh, most faults were confirmed by either the respective tool
developers, the related literature, or fix reports. In a few cases (F11, F14 to F19), we could confirm
the failures but not the faults causing them. Hence, there is a chance that faults F15 to F17, detected

21

in March_ks, are actually the same fault revealing a different behaviour. Analogously, since some
isolated defects are still being investigated by their respective developers (e.g. F11, F14, F18), it
could be the case that they are caused by the interaction of more than one fault. A related risk
is derived from possible misunderstandings in the interaction with the developers. To minimize
this threat, we contacted the tool developers in written form, by e-mail, sending them the failed
test cases to reproduce the failures. Despite this, we must admit a small margin of error (above or
below) in the number of reported faults.

Internal validity. This refers to whether there is sufficient evidence to support the conclusions.

In order to evaluate our approach, we automatically tested 22 analysis operations in 15 different
reasoners written in a variety of programming languages. Among the reasoners, 4 were developed
by some of the authors, meanwhile 11 of them were developed by external developers. This clearly
shows the black—box nature of the work, testing analysis tools with no prior knowledge about their
internal details. As a result of the tests, we detected 19 total faults in the three domains under study:
analysis of FMs, CUDF documents and CNF formulas.

External validity. Regarding the generalization of the conclusions, we evaluated our approach with
three different variability languages, a number that could seem insufficient for the generalization of
the conclusions of our study. We remark, however, that these languages are used in completely
different domains, and have particularities such as hierarchical constraints in FMs, version and
installation constraints in CUDF documents, or negated variables in Boolean formulas, that make
them sufficiently heterogeneous. Beside these particularities, the three variability languages include
constraints with similar semantics, egxcludesin FMs is very similar taconflicts in CUDF. These
constraints are very common in variability modelling, something that suggests that our approach
could be easily applicable to other variability languages such as orthogonal variability maels [

or decision modelsq9].

Since FMs and CUDF documents can be translated into (pseudo) Boolean formulas, it could
be argued that working directly with Boolean formulas is a simpler and more generic approach.
We did not adopt this approach for two reasons. First, a bidirectional translation from high—level
variability models to Boolean formulas is a complex, language—specific 243k $econd, and
more importantly, translating models to formulas, forwards and backwards, would make test data
generators very complex and probably more error—prone than the analysis tool under test.

Finally, the power of the presented approach relies on the use of metamorphic relations to
construct VMs and their exact set of configurations. The construction of the set of configurations
depends on the completeness of the metamorphic relations, i.e. ensuring that all the valid
configurations of the input VM are generated. The presented metamorphic relations are a logical
consequence of the semantics of the corresponding variability languages, therefore they are as
generation-—complete as the original semantics, which are complete by definition. There is a
chance, however, that mistakes during the definition of the metamorphic relations could lead to
incomplete configuration sets. This threat was discarded in our work, in which thousands of test
cases where run in 15 tools in three different domains without finding a single inconsistency in the
generated configuration sets. We admit, however, that identifying, implementing, and guaranteeing
completeness in more complex variability analysis domains such as attributed variability models
[7], could be challenging.

9. RELATED WORK

In the following sections, we present the related works in the areas of testing SAT, FM and CUDF
reasoners as well as those in the fields of metamorphic and automated testing.

22

9.1. Testing SAT reasoners

Brummayer et al. 1] presented a fuzzy testing approach for the automated detection of faults in
SAT reasoners. Fuzzy testing is a black—box technique in which the tools under test are fed with
random and syntactically valid inputs in order to find faults. To check the correctness of the outputs,
the authors used redundant testing, that is, they compared the results of several reasoners and trusted
on the majority. In their paper, the authors mentioned “If all solvers agreed that the current instance
is unsatisfiable, we did not further validate the unsatisfiability status as it is highly unlikely that
all solvers are wrong”. Notice that SAT solvers can also be equipped to produce UNSAT proofs to
be checked by independent external tools [63]. A similar approach for testing ASP reasoners was
presented by Brummayer and Jarvisalo in][18rtho et al. [3] proposed a model-based testing
approach to test sequences of method calls and configurations in SAT reasoners. This approach
is tool-dependent since it requires to model the valid sequences of API calls as well as valid
configuration options of the SAT reasoner under test. For its evaluation, they introduced artificial
faults in the Lingeling SAT reasoner. In contrast to these works, our contribution is generic and
applicable to different variability languages and tools regardless of their implementation details, i.e.
we follow a black—box approach. Also, our work truly overcomes the oracle problem by generating
the exact set of solutions of each SAT formula instead of depending on third—party tools using
redundant testing.

In the context of performance testing, some authors have presented algorithms for the automated
generation of computationally—hard SAT probleri8][Interestingly, some of the algorithms for
SAT can be configured to generate satisfiable or unsatisfiable instances only. This is usually done
by starting from a known formula and adding constraints assuring at each step that the formula is
still (un)satisfiable. This procedure can also be used for the automated detection of functional faults.
Our work, however, goes a step further since it allows not only knowing whether the input model
is satisfiable or not, but also its exact set of solutions. This enables testing not only the satisfiability
operation, but any analysis operation that can be expressed as a function on the set of solutions.

9.2. Testing FM reasoners

In [52], some of the authors presented a test suite for the analysis of FMs. iténevas composed

of 192 manually—designed test cases intended to test six different analysis operations. The suite was
evaluated using mutation testing in the FM reasoner FaMa, in which two real bugs were detected.
Although partially effective, we found that the manual design of test cases was extremely time
consuming and error—prone. This motivated the need for the proposed approach which clearly
outperforms the manual suite in terms of automation, generalisability and effectiveness.

In terms of performance testing, some algorithms and tools have been presented for the generation
of random [54] and computationally—hard FMs [57]. In contrast to our work, these approaches
generate FMs (input) but not their configurations (output), and therefore are not suitable to detect
functional faults in FM reasoners.

9.3. Testing CUDF reasoners

The 2012 Mancoosi solver competition provided a solution checker to assess the correctness of
the solutions returned by the competitor CUDF reason&} [.e. redundant testing. Other related
works have been presented in the context of package—based distributions. Vouillon and Di Cosmo
[23] proposed a theoretical framework to detect co—installability conflicts, ickagas that cannot

be installed together. Artho et ali][presented a case study classifying the types of conflicts found

in two specific distributions, Debian and Red Hat. B8][some of the authors proposed using
variability analysis techniques for the automated analysis of Debian repositories. Compared to them,
our work contributes to detect bugs in package management tools overcoming the oracle problem
rather than analysing variability in package repositories.

23

9.4. Metamorphic testing

Kuo et al. B6] presented an approach for the automated detection of faults in decisiportsup
systems. In particular, they focused in the so—calMdlti—Criteria Group Decision Making
(MCGDM), in which decision problems are modelled as a matrix with several dimensions:
alternatives, criteria and experts. They also introduced eleven metamorphic relations in natural
language, and evaluated their approach using artificial faults in the researdbetddér. This

work has certain commonalities with our contribution since VMs could be used as decision models
during software configuration. Also, as in our work, Kuo et al. used metamorphic relations to
actually construct the expected output of follow—up test cases (i.e. follow—up matrices) instead of
just checking the output of the tests. However, our contribution is applied to a different domain,
analysis of software variability, in which three different variability languages were used to illustrate
our approach. Also, we formally defined our metamorphic relations and, more importantly, we
evaluated our test data generators with numerous reasoners in which 19 real bugs were detected.

Chen et al 15] investigated how to select effective metamorphic relations and concludied tha
good relations are those that lead to program executions as “different” as possible, e.g. in terms
of paths traversed. Mayer et all4] presented a set of general rules to assess the suitability of
metamorphic relations. Among others, the authors defined as good metamorphic relations those
based on the semantics of the system under test. Liu et}jlpfesented an empirical study on the
effectiveness of metamorphic testing to alleviate the oracle problem and concluded that diversity is
an important aspect to increase the fault—detection capability of metamorphic relations. Our work
supports previous results showing the effectiveness of using diverse metamorphic relations derived
from the semantics of the variability languages under analysis.

Liu et al. [42] proposed composing metamorphic relations to create new relations fromgxistin
ones. Wu [68] proposed applying metamorphic relations iteratively as a way to improve their
fault—detection capability. Both approaches were evaluated using case studies and mutation testing.
These works are similar to ours in the sense that metamorphic relations are applied iteratively
creating increasingly larger and more complex test cases. Compared to them, however, our approach
enables the construction of the expected outputs rather than comparing source and follow—-up test
cases. Also, our work focuses on a specific domain, variability analysis, where 19 real bugs were
uncovered.

Regarding the detection of real bugs, Xie et al. integrated program slicing and metamorphic
testing, detecting two bugs in the Siemens Suite].[Although in a different domain, their work
supports our results on the effectiveness of metamorphic testing in detecting real faults.

9.5. Automated testing

The automated generation of test cases is a hot research topic that involves numerous tedfjniques [
Adaptive random testinfiL6] proposes using random inputs spread across the input domain of the
system under tesCombinatorial interaction testin§l7, 48] systematically select inputs that may
reveal failures caused by the interaction between two or more input vélleelel-based testing

[62] use system models like finite state machines to derive test suites using a tesinchigsed

on a test hypothesis justifying the adequateness of the selection. Other techniques such as those
based on symbolic execution, mutation testing, and most variants of search—based testing, work at
the code level (i.e. white—box) and are therefore out of the scope of our approach. Most previous
work concentrates on the problem of generating good test inputs, but they do not address the equally
relevant challenge of assessing the correctness of the outputs produced by the generated inputs, i.e.
the oracle problem. In contrast, our approach overcomes both problems, automated generation of
inputs and expected outputs, providing a fully automated fault detection mechanism.

10. CONCLUSIONS

In this article, we have presented a metamorphic testing approach for the automated detection of
faults in variability analysis tools. This method enables the generation of non—trivial variability

24

models and their corresponding valid configurations, from which the expected output of a number
of analysis operations can be derived, thus overcoming the oracle problem. Among others analysis
operations, we automatically generated test data for an optimization operation which is a novelty
on the application of metamorphic testing to variability analysis tools. A key benefit of this
approach is its applicability to any variability language with common variability constraints in which
metamorphic relations can be identified. In this sense, we present some guidelines for the application
of our metamorphic approach to similar variability analysis domains. To show the feasibility and
generalizability of our work, we automatically tested the implementation of 22 analysis operations
in 15 reasoners written in different languages in the domains of FMs, CUDF documents and CNF
formulas. In total, we automatically detected 19 real bugs in 7 of the tools under test. Most faults
were directly acknowledged by the tools’ developers, from whom we received comments as “You
hammered it right on the nail!” or “the bugs found by your tests are non trivial iSsUdss
supports our conclusions and reinforces the potential of metamorphic testing as an automated testing
technique.

MATERIAL

The source <code of the test data generators as well as the test
data and test results (CSV format) of the evaluation are available at
http://ww. | si.us.es/~segural/files/mterial/STVRL4/.

ACKNOWLEDGMENTS

We appreciate the help of Dr Martin Monperrus whose comments and suggestions helped us to
improve the article substantially. We would also like to thank Dr. Marcilio Mendonga, Dr. Marijn J.
H. Heule and José A. Galindo for confirming the bugs found in their respective tools.

This work has been partially supported by the European Commission (FEDER) and Spanish
Government under CICYT projects TAPAS (TIN2012-32273) and SAAS FIREWALL (IPT-2012-
0890-390000) and the Andalusian Government projects THEOS (TIC-5906) and COPAS (P12-TIC-
1867).

References

1. S. Anand, E. Burke, T. Y. Chen, J. Clark, M. Cohen, W. Grieskamp, M. Harman, M. Harrold, and P. McMinn. An
orchestrated survey on automated software test case generdtamal of Systems and Software, 86(8):1978—
2001, August 2013.

2. L. Argelich, D. Le Berre, I. Lynce, J. Silva, and P. Rapicault. Solving linux upgradeability problems using boolean

optimization. In I. Lynce and R. Treinen, editolprkshop on Logics for Component Configuratisalume 29

of EPTCS, pages 11-22, 2010.

. C. Artho, A. Biere, and M. Seidl. Model-based testing for verification back-endsthimternational Conference
on Tests & Proofs, Budapest, Hungary, 2013. Springer.

. C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Why do software packages confl@tt?I B E
Working Conference of Mining Software Repositories, pages 141-150, 2012.

. aspcudht t p: / / www. cs. uni - pot sdam de/ w/ aspcud. Accessed November 2013.

. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature modd/gth limternational
Conference on Advanced Information Systems Engineering (CAISE), volume 352€tare Notes in Computer
Sciences, pages 491-503. Springer—Verlag, 2005.

7. D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years later: A literature
review. Information Systems, 35(6):615 — 636, 2010.

8. T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variability modeling in the real: a perspective from
the operating systems domain. Iliternational Conference on Automated Software Engineering (ASE’10), pages
73-82, 2010.

9. A. Biere. Picosat essential§SAT, 4(2-4):75-97, 2008.

10. R. Brummayer and M. Jarvisalo. Testing and debugging techniques for answer set solver develammealt of

Theory and Practice of Logic Programming0(4-6):741-758, July 2010.

A W

o ol

http://www.lsi.us.es/~segura/files/material/STVR14/
http://www.cs.uni-potsdam.de/wv/aspcud

11.

12.
13.
14.

15.

16.
17.

18.

19.
20.
21.

22.
23.

24.
25.

26.
27.

28.
29.
30.
31.

32.

33.
. M. Jang.Linux Annoyances for Geeks. O’Reilly, 2006.
35.
36.
37.
38.
39.
40.
41.
42.
43.

. J. Mayer and R. Guderlei. An empirical study on the selection of good metamorphic relatioRsocéedings

45,

25

R. Brummayer, F. Lonsing, and A. Biere. Automated testing and debugging of SAT and QBF solvers. In
Proceedings of the 13th international conference on Theory and Applications of Satisfiability ,T&Xirg0,

pages 44-57, Berlin, Heidelberg, 2010. Springer-Verlag.

W. Chan, S. Cheung, and K. Leung. A metamorphic testing approach for online testing of service-oriented software
applications.International Journal of Web Services Researtf2):61-81, 2007.

T. Chen, S. Cheung, and S. Yiu. Metamorphic testing: a new approach for generating next test cases. Technical
Report HKUST-CS98-01, University of Science and Technology, Hong Kong, 1998.

T. Chen, J. Feng, and T. Tse. Metamorphic testing of programs on partial differential equations: a case study. In
Proceedings of the 26th International Computer Software and Applications Conference, pages 327-333, 2002.

T. Chen, D. Huang, T. Tse, and Z. Zhou. Case studies on the selection of useful relations in metamorphic testing. In
Proceedings of the 4th Ibero-American Symposium on Software Engineering and Knowledge Engineering (JIISIC),
pages 569-583, 2004.

T. Chen, F. Kuo, R. Merkel, and T. Tse. Adaptive random testing: The art of test case divdsityal of Systems

and Software, 83(1):60-66, Jan. 2010.

M. Cohen, M. Dwyer, and S. Jiangfan. Constructing interaction test suites for highly-configurable systems in the
presence of constraints: A greedy approaSbftware Engineering, IEEE Transactions 84(5):633—650, 2008.

S. Cook and D. Mitchell. Finding hard instances of the satisfiability problem: A surveSatisfiability Problem:

Theory and Applications, volume 35 bfmacs Series in Discrete Mathematics and Theoretical Computer Science,
pages 1-17. American Mathematical Society, 1997.

Cudf-tools debian packadge t p: / / packages. debi an. or g/ wheezy/ cudf - t ool s. Accessed Novem-

ber 2013.

K. Czarnecki and A. Wasowski. Feature diagrams and logics: There and back addith limternational Software
Product Line Conference (SPLC), pages 23-34, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

Debian reference guidéi t p: / / www. debi an. or g/ doc/ manual s/ debi an-ref erence/. Accessed
November 2013.

Debian 7.0 wheezy released, May 2013. Accessed November 2013.

R. Di Cosmo and J. Vouillon. On software component co-installability. 13th European conference on
Foundations of Software EngineeringSEC/FSE '11, pages 256-266, New York, NY, USA, 2011. ACM.

O. Dubois and G. Dequen. A backbone-search heuristic for efficient solving of hard 3-sat formulae. In B. Nebel,
editor,IJCAI, pages 248-253. Morgan Kaufmann, 2001.

A. Duran, D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. Flame: Fama formal framework (v 1.0).
Technical Report ISA-12-TR-02, Seville, Spain, March 2012.

Eclipse marketpladet t p: / / mar ket pl ace. ecl i pse. or g/ . Accessed November 2013.

N. Eén and N. Sérensson. An extensible sat-solver. In E. Giunchiglia and A. Tacchella, &hfgraplume 2919

of Lecture Notes in Computer Science, pages 502-518. Springer, 2003.

FaMa Tool Suiteht t p: / / ww. i sa. us. es/ f ama/ , Accessed November 2013.

J. Galindo, D. Benavides, and S. Segura. Debian packages repositories as software product line models. Towards
automated analysis. IRroceedings of the 1st International Workshop on Automated Configuration and Tailoring

of Applications (ACoTA), Antwerp, Belgium, 2010.

J. Garcia-Galan, O. Rana, P. Trinidad, and A. Ruiz-Cortés. Migrating to the cloud: a software product line based
analysis. Ir3rd International Conference on Cloud Computing and Services Science (CLOSER’13), 2013.

M. Gebser, R. Kaminski, and T. Schaub. aspcud: A linux package configuration tool based on answer set
programming. In C. Drescher, I. Lynce, and R. Treinen, editdskshop on Logics for Component Configurafion
volume 65 ofEPTCS, pages 12-25, 2011.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schazlasp: A conflict-driven answer set solver. In C. Baral,

G. Brewka, and J. S. Schlipf, editot2NMR, volume 4483 dfecture Notes in Computer Science, pages 260-265.
Springer, 2007.

M. Heule. SmArT Solving: Tools and Techniques for Satisfiability Solvers. PhD thesis, TU Delft, 2008.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature—Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, SEI, 1990.

F. Kuo, Z. Zhou, J. Ma, and G. Zhang. Metamorphic testing of decision support systems: a casSativeyre,

IET, 4(4):294-301, 2010.

D. Le Berre and A. Parrain. On sat technologies for dependency management and beyeired.wiorkshop on
Analyses of Software Product Lines, volume 2, pages 197-200, 2008.

D. Le Berre and A. Parrain. The Sat4j library, release 2l@urnal on Satisfiability, Boolean Modeling and
Computation, 7:59—-64, 2010. system description.

D. Le Berre and P. Rapicault. Dependency management for the eclipse ecosystem: eclipse p2, metadata and
resolution. InProceedings of the 1st international Workshop on Open Component Ecosystems, IWOCE '09, pages
21-30, New York, NY, USA, 2009. ACM.

Lingeling sat solveht t p: //fnv. j ku. at/1ingeling/. Accessed November 2013.

H. Liu, F. Kuo, D. Towey, and T. Chen. How effectively does metamorphic testing alleviate the oracle problem?
IEEE Transactions on Software Engineerid@(1):4-22, January 2014.

H. Liu, X. Liu, and T. Chen. A new method for constructing metamorphic relations12th International
Conference on Quality Software (QSIC), pages 59-68, Aug 2012.

Mancoosi european research project. p: / / www. mancoosi . or g/ . Accessed November 2013.

of the 30th Annual International Computer Software and Applications Conference - Volume 01, pages 475-484,
Washington, DC, USA, 2006. IEEE Computer Society.

M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Software Product Lines Online TooZonipanion to

the 24th ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

http://packages.debian.org/wheezy/cudf-tools
http://www.debian.org/doc/manuals/debian-reference/
http://marketplace.eclipse.org/
http://www.isa.us.es/fama/
http://fmv.jku.at/lingeling/
http://www.mancoosi.org/

26

46.
47.
48.
. p2cudfttp://w ki.eclipse.org/ Equi nox/ p2/ CUDFResol ver. Accessed November 2013.

. K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for satisfiability solvers. In
51.
52.

53.

55.

56.
57.
58.
59.

60.
61.
62.
63.
64.
65.

66.
67.

68.
69.
70.

Applications (OOPSLA), pages 761-762, Orlando, Florida, USA, October 2009. ACM.

M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based analysis of feature models is dasycekdings of
the International Sofware Product Line Conference (SPLC), 2009.

C. Mller, M. Resinas, and A. Ruiz-Cortés. Automated Analysis of Conflicts in WS—Agreement Docutiétis.
Transactions on Services Computiz§13.

C. Nie and H. Leung. A survey of combinatorial testidgCM Computing Surveys, 43(2):11:1-11:29, Feb. 2011.

J. Marques-Silva and K. A. Sakallah, edito8AT, volume 4501 ofecture Notes in Computer Science, pages
294-299. Springer, 2007.

K. Pohl, G. Biickle, , and F. van der LindeSoftware Product Line Engineering: Foundations, Principles, and
Techniques. Springer-Verlag, 2005.

S. Segura, D. Benavides, and A. Ruiz-Cortés. Functional testing of feature model analysis tools: a test suite.
Software, IET, 5(1):70-82, 2011.

S. Segura, A. Duran, A. Sanchez, D. Le Berre, E. Lonca, and A. Ruiz-Cortés. Automated metamorphic testing
on the analysis of software variability. Technical Report ISA-2013-TR-03, ISA Research Group, Seville, Spain,
December 2013ht t p: / / www. | si . us. es/ ~segura/ fil es/ paper s/ segural3- TR- 03. pdf.

. S. Segura, J. Galindo, D. Benavides, J. Parejo, and A. RuisC&eTTy: Benchmarking and Testing on the

Automated Analysis of Feature Models. In U. Eisenecker, S. Apel, and S. Gnesi, e8itdrs,nternational
Workshop on Variability Modelling of Software-intensive Systems (VaMoS’'12), pages 63-71, Leipzig, Germany,
2012. ACM.

S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data generation on the analyses of
feature models: A metamorphic testing approach.International Conference on Software Testing, Verification

and Validation, pages 35-44, Paris, France, 2010. IEEE press.

S. Segura, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated metamorphic testing on the analyses of
feature modelsInformation and Software Technology, 53:245-258, 2011.

S. Segura, J. Parejo, R. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated generation of computationally hard
feature models using evolutionary algorithnisxpert Systems with Applications, 41(8):3975 — 3992, 2014.

Software Product Lines Automated Reasoning library (SPLAR)p: // code. googl e. conl p/ spl ar/ .
Accessed November 2013.

R. Stoiber and M. Glinz. Supporting stepwise, incremental product derivation in product line requirements
engineering. Irinternational Workshop on Variability Modelling of Software-intensive Systems., volume 37, pages
77-84, 2010.

M. Svahnberg, L. van Gurp, and J. Bosch. A taxonomy of variability realization techniques: Research articles.
Software Practice and Experience, 35(8):705-754, 2005.

R. Treinen and S. Zacchirol. Common Upgradeability Description Format (CUDF) 2.0. Technical Report 003, The
Mancoosi project (FP7), 2009.

M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing appro&®titware Testing
Verification and Reliability, 22(5):297-312, Aug. 2012.

A. Van Gelder. Producing and verifying extremely large propositional refutations - have your cake and eat it too.
Ann. Math. Artif. Intell., 65(4):329-372, 2012.

B. Veer and J. Dallaway. The ecos component writer's guidet p: / / ecos. sour cewar e. or g/ ecos.
Accessed November 2013.

H. Wang, Y. Li, J. Sun, H. Zhang, and J. Pan. Verifying feature models using QiMlrnal of Web Semantics,
5:117-129, June 2007.

E. Weyuker. On testing non-testable prograifise Computer Journal, 25(4):465-470, 1982.

C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wes&Rrperimentation in Software
Engineering Springer, 2012.

P. Wu. lterative metamorphic testing. B9th Annual International Computer Software and Applications
Conference, COMPSAC., volume 1, pages 19-24, July 2005.

X. Xie, W. Wong, T. Chen, and B. Xu. Metamorphic slice: An application in spectrum-based fault localization.
Information and Software Technology, 55(5):866 — 879, 2013.

Z. Zhou, D. Huang, T. Tse, Z. Yang, H. Huang, and T. Chen. Metamorphic testing and its applications. In
Proceedings of the 8th International Symposium on Future Software Technology, pages 346-351, 2004.

http://wiki.eclipse.org/Equinox/p2/CUDFResolver
http://www.lsi.us.es/~segura/files/papers/segura13-TR-03.pdf
http://code.google.com/p/splar/
http://ecos.sourceware.org/ecos

	1 Introduction
	2 Preliminaries
	2.1 Feature models
	2.2 CUDF documents
	2.3 CNF formulas
	2.4 Metamorphic testing

	3 Metamorphic relations on variability models
	3.1 Metamorphic relations on feature models
	3.2 Metamorphic relations on CUDF documents
	3.3 Metamorphic relations on CNF formulas

	4 Automated test data generation
	4.1 Variability model generation
	4.2 Test data extraction

	5 Evaluation
	5.1 Detecting faults in FM reasoners
	5.2 Detecting faults in CUDF reasoners
	5.3 Detecting faults in SAT reasoners

	6 Application to other variability analysis domains
	7 Limitations
	8 Threats to validity
	9 Related work
	9.1 Testing SAT reasoners
	9.2 Testing FM reasoners
	9.3 Testing CUDF reasoners
	9.4 Metamorphic testing
	9.5 Automated testing

	10 Conclusions

