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SUMMARY

Test case prioritization aims at scheduling test cases in an order that improves some performance goal. One
performance goal is a measure of how quickly faults are detected. Such prioritization can be performed
by exploiting the Fault Exposing Potential (FEP) parameters associated to the test cases. FEP is usually
approximated by mutation analysis under certain fault assumptions. Although this technique is effective, it
could be relatively expensive compared to the other prioritization techniques. This study proposes a cost-
effective FEP approximation for prioritizing Modified Condition Decision Coverage (MCDC) test cases. A
strict negative correlation between the FEP of a MCDC test case and the influence value of the associated
input condition allows to order the test cases easily without the need of an extensive mutation analysis. The
method is entirely based on mathematics and it provides useful insight into how spectral analysis of Boolean
functions can benefit software testing. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reports show that the cost of testing can be more than the half of total cost of software development
process [1]. In regression testing and even in initial testing, running all of the test cases can require
very large amount of effort. It is stated that in a typical software having 20,000 lines of code may
require seven weeks to run the entire test suite [2]. In this case, a tester may want to order the test
cases according to some objective so that those with the highest priority are run earlier.

Test case prioritization allows to schedule the execution of test cases in an order that attempts to
maximize some objective function. The objective is usually about how quickly faults are detected in
testing process. An improved rate of fault detection can provide a faster feedback about the program
under test and let software engineers begin locating and correcting of faults earlier. Like several
other studies in the literature [2, 3], this work focuses on increasing the likelihood of revealing
faults earlier in testing process.

Several studies state that the FEP prioritization is one of the most effective techniques [3, 4, 5].
The disadvantage however is the difficulty in computing the FEP, which is generally based on
an expensive mutation analysis. This work proposes a novel approach to estimating FEP values.
It relies on the spectral analysis of Boolean functions, particularly the influence values of the
input conditions. In the places where Boolean expressions are used, such as the requirements
or the structure of the software, one can benefit from many useful and powerful techniques like
Boolean derivative calculus and spectral analysis of Boolean functions. Boolean derivative calculus
is particularly used in hardware testing [6, 7, 8, 9] and it is rarely exploited in software testing except
for the MCDC test suite definition [10].

The proposed spectral analysis-based technique prioritizes MCDC test suites. MCDC is used
in development of not necessarily the most critical software as per DO-178B standard. It is
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quite popular in practice. MCDC requires that each decision takes every possible outcome, each
condition in a decision takes every possible outcome and each condition in a decision is shown
to independently affect the outcome of the decision. As an example, consider the following trivial
expression:

Expression = A and B

where A and B are conditions. To show the independence of A, condition B must be held to
true; otherwise switching A will not affect the outcome of the expression. Therefore, the test pair
corresponding to A will be (T,T) and (F,T). Independence of B is shown similarly and the test pair
is found to be (T,T) and (T,F). Table I shows the three test cases.

Table I. MCDC test cases for expression A and B

A B A and B

T T T
F T F
T F F

The aim of the test prioritization is to change the order of tests such that tests with higher FEP can
be applied earlier. FEP values of the individual tests are computed by the help of mutation analysis.
The key idea of this work is to find a relationship between the fault exposing potentials and the
influence values, which completely eliminates the mutation analysis and provides prioritization in a
simple and fast manner compared to the existing methods.

The organization of the article is as follows: Section 2 explains MCDC criteria and formally
how test cases are derived, presenting a demonstrative example. The effectiveness of the test suites
and their fault coverages are computed by the mutation analysis, adopting some fault hypotheses
and fault assumptions. These concepts are explained shortly in Section 3. Influence values are
defined as a part of spectral analysis of Boolean functions in Section 4 with a thorough explanation
of the spectral analysis. Section 5 presents the proposed prioritization technique of this work in
detail. The relationship between the fault exposing potentials and the influence values is presented
and explained using mathematics. The spectral analysis-based prioritization is shown step by step
through a demonstrative example with the comparison to the FEP prioritization. The correctness of
the prioritization is shown with a brute force approach by validating the method on a large number
of Boolean functions in Section 6. The method is also demonstrated on a real system and compared
with an existing prioritization algorithm from the literature. Section 7 discusses the potential threats
to validity followed by the related work given in Section 8. Finally the article is concluded with
Section 9.

2. MODIFIED CONDITION DECISION COVERAGE TESTING

The Modified Condition Decision Coverage (MCDC) is a control-flow testing criterion and it
is required to verify Level A software as per the DO-178B standard [11]. MCDC provides a
structural coverage analysis. Structural coverage criteria usually include i) Statement ii) Decision
iii) Condition iv) Condition/Decision v) MCDC and vi) Multiple Condition in the order from
the weakest to strongest criteria. Statement coverage ensures that every executable statement in a
program is invoked at least once. This coverage is relatively weak since it is insensitive to the control
structures. Decision Coverage (DC) ensures that every decision has taken all possible outcomes at
least once. For example, consider the following code excerpt:

if A or B and C then
true_statement;

else
false_statement;
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end if;

The only test pair for DC is defined as follows:

TP = {(a, b) : f(a) = f ′(b)} (1)

Two test cases where A=F, B=F, C=F and A=T, B=F, C=F satisfy the requirement of DC. However,
the effects of B and C are not tested. For a compound condition, if two or more combinations of
components of the condition could cause a particular branch to be executed, decision coverage will
be complete when just one of the combinations has been tested. Compound conditions are a frequent
source of code bugs, therefore DC can be considered as a weak criterion.

Condition coverage requires that every condition in a decision takes on all possible outcomes at
least once. The previous problem is now settled yet it does not require the decision evaluated to both
true and false. For example the test cases where A=F, B=T, C=T and A=T, B=F, C=F satisfy the
requirement of condition coverage but not decision coverage since both test cases yield to true.
Condition/decision coverage, as the name implies, combines condition and decision coverages.
For example, the test cases where A=F, B=T, C=F and A=T, B=F, C=T satisfy the requirement
of condition/decision coverage.

Multiple condition requires that each possible input combination constitutes a test case. This
coverage is the strongest one and reveals all faults but it can be impractical as the number of inputs
increases. For a decision with n inputs, multiple condition coverage requires 2n test cases.

MCDC states that every point of entry and exit in the program has been invoked at least once,
every condition in a decision in the program has taken all possible outcomes at least once, every
decision has taken all possible outcomes at least once, and each condition in a decision has been
shown to independently affect that decision’s outcome by varying just that condition while holding
all other possible conditions fixed. There are several forms of MCDC yet masking and unique-cause
are the most common ones [12]. In this study, the proposed method is demonstrated through the
unique cause MCDC but the technique can be easily adapted to the other forms as well. For any
decision f(x), the test pair for condition xi can be defined as [10]:

TPi = {(a, b) : ∀j ∈ {1, . . . , n} : i 6= j, aj = bj , ai = b′i,

f(a) = f ′(b),
∂f

∂xi
(a) =

∂f

∂xi
(b) = T} (2)

where ∂f
∂xi

is the derivative of f with respect to xi and it is given with the following formula [7]:

∂f

∂xi
:= f(xi ← F) xor f(xi ← T). (3)

Note that the derivative is true if switching xi changes the function output and false otherwise. The
above formal definition of test pairs should be read as:

• a and b are two test vectors that form MCDC independence pair for the ith condition.
• Condition i must toggle between two tests (ai = b′i)
• All bits of a and b except for i are equivalent (∀j ∈ {1, . . . , n} : i 6= j, aj = bj).
• Expression must return different results for the two tests (f(a) = f ′(b))
• Condition i must have an influence on the outcome of the expression when the first test is

applied ( ∂f∂xi
(a) = T)

• Condition i must have an influence on the outcome of the expression when the second test is
applied ( ∂f∂xi

(b) = T)

Unique cause MCDC wants the conditions of no interest to be fixed in the independence pair.
Therefore the maximum number of pairs would be the number of conditions. On the other hand,
masking MCDC allows any number of conditions to change so long as only the condition of interest
has influence on the outcome of the expression. This generally results in more tests and it is stronger
than unique cause MCDC. In theory, minimum n+ 1 and maximum 2n test cases are required by
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unique cause MCDC [12]. Note that, in the rest of the article, the test pairs are arranged such
that f(a) = F and f(b) = T for the sake of clarity. By MCDC, unique cause MCDC is meant. The
following code excerpt taken from the book of Ammann and Offutt [13] will be used to explain
MCDC:

if(((curTemp < dTemp-thresholdDiff)
|| (override && curTemp < overTemp - thresholdDiff))
&& (timeSinceLastRun > minLag) )

{...}

A variable or a literal in a Boolean expression represents a condition that cannot be further
decomposed into simpler Boolean expressions. A condition may be either a simple Boolean
variable representing the switch behaviour or it may actually represent a relational expression
like “curTemp < dTemp-thresholdDiff”. Therefore, assigning the following Boolean
variables to the relational expressions, we have:
x1: curTemp < dTemp-thresholdDiff
x2: override
x3: curTemp < overTemp - thresholdDiff
x4: timeSinceLastRun > minLag
where x = [x4, x3, x2, x1]

T is the test vector. Therefore, this decision can be expressed with the
following Boolean function:

f(x) = (x1 + (x2 · x3)) · x4

Boolean derivatives with respect to the inputs can be computed as follows:

∂f

∂x1
(x) = (x′2 + x′3)x4 (4)

∂f

∂x2
(x) = x′1x3x4 (5)

∂f

∂x3
(x) = x′1x2x4 (6)

∂f

∂x4
(x) = x1 + (x2x3) (7)

Taking into account the derivatives and the Formula (2), a test pair for input i is the solution
to the Boolean satisfiability problem ∂f

∂x1
(x) = T. For example, test inputs satisfying ∂f

∂x1
(x) =

(x′2 + x′3)x4 = T would be [T, F, F, X]. The independence pair therefore consists of the vectors
a = TFFF =8 and b = TFFT =9. Note also that f(a) = F and f(b) = T. For input x2, x′1x3x4 = T

can be satisfied by [T, T, X, F]T= (12, 14). Test pairs for x3 and x4 can be found similarly as
[T, X, T, F]T =(10, 14) and [X, F, F, T]T =(1, 9) respectively. All test pairs are explicitly shown in
Table II. The set of test pairs are then,

TP = {(8, 9), (12, 14), (10, 14), (1, 9)}.

Note that two test cases, 9 and 14 are repeating in two pairs. Elimination of the repeating test cases
(test cases numbered with 6 and 8) reduces the size of the test suite to six. The resulting test suite is
then,

T = {8, 9, 12, 14, 10, 1}.
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Table II. MCDC test cases for expression f(x) = (x1 + (x2 · x3)) · x4

Test No x4 x3 x2 x1 x, f(x)

1 T F F F 8, F
2 T F F T 9, T
3 T T F F 12, F
4 T T T T 14, T
5 T F T F 10, F
6 T T T F 14, T
7 F F F T 1, F
8 T F F T 9, T

According to MCDC, conditions that occur more than once in a decision need each occurrence to
demonstrate its independence. This limits the applicability of MCDC to singular functions, where
each condition has a single occurrence only. For example, consider the following non-singular
function:

f(x) = x1(x2 + x3) + x′1x
′
2

The problem comes about when testing the first occurrence of x1. By definition, the first occurrence
of x1 will be toggled between true and false, while holding the second occurrence of x1 along
with the other conditions fixed. This is not possible and there is no clear guidance how MCDC is
applied to this type of Boolean expressions. Nevertheless, these problems have been mitigated with
various methods [14] so that MCDC can still be applied to a large variety of functions. Moreover,
the applicability of MCDC to non-singular functions is not a great concern since those functions are
rarely seen in real systems [12].

MCDC is not limited to structural code coverage only. In general, it is an effective method to test
Boolean functions where applicable, like branch testing, requirement testing or specification testing
[15, 16]. For example, cause-effect graphing is a popular requirement-based testing introduced by
Myers several decades ago [17, 18] and a recent study proposes the application of MCDC to generate
test cases from these graphs [19]. For further information on MCDC analysis, there exist some
fundamental studies [12, 14, 20], including a systematic literature overview [21].

3. FAULT CLASSES AND FAULT COVERAGES OF TESTS

Circuit testing is traditionally such that typical hardware manufacture defects are hypothesized and
then test cases are derived to detect them. Similar approaches exist in software testing but the fact
that the source of defects is human can introduce much broader range of faults, which might be
harder to hypothesize. In fault-based testing or measurement of the fault-detection effectiveness,
mutation analysis is a common approach [22]. Mutation analysis is a technique that makes small
changes to the correct program under certain fault hypotheses so that test cases can be generated to
find these faults. Mutation analysis is based on two assumptions: (1) the competent programmer
hypothesis, which states that programmers tend to develop correct programs, and (2) the fault
coupling effect, which hypothesizes that a test set that detects all simple faults in a program is
also capable of detecting more complicated faults. Many testing techniques have been proposed to
derive test cases based on Boolean expressions. Boolean expressions are found in logical predicates
inside programs and specifications which model complex conditions. Assume a Boolean predicate
P with n conditions/variables. For n conditions, it is possible to have 22

n − 1 Boolean expressions
that can be considered as faulty. Let them be denoted P ′. The aim of testing is to distinguish P from
the faulty rest of the expressions, that is P ⊕ P ′ = TRUE. Multiple condition criterion requires that
2n tests are sufficient for this purpose but for larger n’s this becomes harder. When only m < 2n

tests are selected, 2n −m combinations are left uncovered. The fault coverage of m tests can be
given as,

P(n,m) = 1− 2(2
n−m) − 1

22n
. (8)
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It is inefficient and unrealistic to consider all the possible combinations of Boolean expressions.
The faulty versions generated by typical mistakes of programmers are taken into account instead.
Several fault hypotheses are proposed for this purpose, as listed below [15, 23, 24, 25, 26]:

Variable Negation Fault (VNF) A variable is wrongly implemented as its negation. For example,
f(x) can be implemented as (x′1 + (x2 · x3)) · x4.

Expression Negation Fault (ENF) The whole expression or its subexpression is wrongly
implemented as its negation. For example, f(x) can be implemented as (x1 + (x2 · x3))′ · x4.

Missing Variable Fault (MVF) A condition is omitted in the expression. For example, f can be
implemented as (x1 + (x2 · x3)).

Variable Reference Fault (VRF) A variable is replaced by another variable. For example, f(x)
can be implemented as (x1 + (x2 · x3)) · x3.

Operator Reference Fault (ORF) A Boolean operator is replaced by another. For example, f(x)
can be implemented as (x1 · (x2 · x3)) · x3.

Stuck-at-Zero (SA0) A condition is stuck at false value. For example, SA0 fault of variable x1
results in (x2 · x3) · x4.

Stuck-at-One (SA1) A condition is stuck at true value. For example, SA1 fault of variable x1
results in x4.

Clause Conjunction Fault (CCF) Condition c1 is replaced by c1 ∧ c2. For example, f can be
implemented as (x1 + (x2 · x3)) · (x4 · x1).

Clause Disjunction Fault (CDF) Condition c1 is replaced by c1 ∨ c2. For example, f can be
implemented as (x1 + (x2 · x3)) · (x4 + x1).

Given a large specification and a large program, considering all possible fault classes may be quite
expensive in terms of computational resource and time complexity, particularly when an optimal
solution is of interest. One approach is to find hierarchical relationships between these classes so
that stronger classes can be sufficiently used to reduce the size of the problem. A fault type, δ1 is said
to be stronger than fault type, δ2 if any test guaranteed to detect all possible faulty implementations
of type δ1 will also detect those of δ2. The relationship is denoted by δ1 ≥f δ2.

The first effort was Kuhn’s study [23] that theoretically establishes a hierarchy between VNF,
ENF and VRF classes such that ENF ≥f VNF ≥f VRF. Tsuchiya and Kikuno extended Kuhns
three fault classes to include the fault class of a missing condition [24]. Lau and Yu further extended
Kuhns hierarchy by analyzing the relationships between variable faults and literal faults [25]. All
of these studies restricted Boolean expressions into Disjunctive Normal Form (DNF). In fact, the
expression do not have to appear in DNF and it has been shown that a single fault in a general
expression may correspond to more than one fault in its corresponding DNF [26]. Kapoor and
Bowen extended the analysis to general Boolean specifications introducing new fault classes [27].
Finally, Chen et. al. extended Kapoor’s study, identifying the incorrect relationships and proposing
a new fault class hierarchy, as shown in Figure 1 [28]. In conclusion, among nine fault classes, it is
sufficient to take into account only four of them, ORF, CCF, CDF and ENF, which can considerably
facilitates the mutation analysis. In this article, the proposed technique will be demonstrated using
ORF, CCF, CDF and ENF fault classes under single fault assumption.

4. SPECTRAL ANALYSIS OF BOOLEAN FUNCTIONS

This section introduces the fundamental concepts of the spectral analysis of Boolean functions,
which benefit the prioritization of test cases. Spectral or Fourier analysis is widely used in
mathematics and engineering. Fourier decomposes a signal as a sum of periodic functions like
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SA0 VRF SA1

MVF VNF

CCF CDF

ORF ENF

Figure 1. Fault class hierarchy [28].

χy(x) = e2πixy/n. In case of Boolean functions, the most used transform has been defined over
Abelian group Zn2 . Boolean functions are usually defined as f : {F, T}n → {F, T}. As a requirement
of Fourier analysis, instead of 0 and 1, 1 and −1 will be used as false and true values respectively.
Hence the function becomes f : {1,−1}n → {1,−1}. The relevant definitions and theorems about
Fourier analysis are given below without the proofs. For further explanations, examples and
theorems with proofs, refer to the seminal works of O’Donnell [29, 30] and Wolf [31].

Theorem 1
(Fourier expansion). Every f : {−1, 1}n → R can be expressed with its Fourier expansion,

f(x) =
∑
ω⊆[n]

f̂(ω)χω(x), (9)

where f̂(ω) is the Fourier coefficient and χω(x) =
∏
i∈ω xi is the parity function. It is also adopted

that χ∅ ≡ 1.

Definition 1
(Inner product). Let f, g : {−1, 1}n → {−1, 1}. The inner product between f and g is defined as

〈f, g〉 :=
∑

x∈{−1,1}n

f(x)g(x)

2n
= E
x∈{−1,1}n

[f(x)g(x)].

Note that 〈f, f〉 = ‖f‖22 = 1 and more generally ‖f‖p := E[|f(x)|p]1/p .

Fourier coefficients can be written as

f̂(ω) = 〈f, χω〉 = E
x
[f(x)χω(x)]. (10)

Note in particular that coefficient f̂(∅) = E[f ] corresponds to the mean E[f ]. This parameter
is also called the balance of the function. For example, recall the 3-input Boolean function
f(x) = a ∨ b ∧ c that was derived in the previous section. Assuming that a and c are the most and
least significant bits respectively, it is trivial to derive the truth vector for f as [F F F T T T T T], i.e.,
[1 1 1 − 1 − 1 − 1 − 1 − 1] as shown in Table III. By using Formula (10), Fourier coefficients
can be computed as f̂(∅) = 1

23 (1 + 1 + 1− 1− 1− 1− 1) = −0.250, f̂(1) = 1
23 (1 · 1 + 1 · 1 + 1 ·

1− 1 · 1− 1 · −1− 1 · −1− 1 · −1− 1 · −1) = 0.750 and so on. The eight coefficients are used to
constitute the Fourier expansion of f as follows:

f = −0.25 + 0.75a+ 0.25b+ 0.25ab+ 0.25c+ 0.25ac− 0.25bc− 0.25abc.

Note that for 3-input Boolean function f(a, b, c) with a being the most significant bit and c being the
least significant bit, the eight spectral components are shown in Figure 2. The Fourier coefficients
shown in Figure 3 are the correlations between these components and the function output.
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8 T. AYAV

Table III. Truth table for f(x) = a ∨ b ∧ c.

x a b c f ∈ B f ∈ R
0 F F F F 1
1 F F T F 1
2 F T F F 1
3 F T T T −1
4 T F F T −1
5 T F T T −1
6 T T F T −1
7 T T T T −1

Figure 2. The eight spectral components of a 3-input Boolean function.

0 1 2 3 4 5 6 7
−0.5

−0.25

0

0.25

0.5

0.75

i

f̂(i)

Figure 3. Fourier coefficients of f(x) = a ∨ b ∧ c.

The derivative or difference calculus for Boolean functions has been exploited in testing digital
circuits and also software over the past two decades. It can also be used to describe the notion
of influence. The following definition of the derivative slightly differs from the one given with
Equation 3 and better represents the classical notion of derivative:

Definition 2
(Derivative). The derivative of f with respect to its input xi is defined as,

∂f

∂xi
=
f(xi B −1)− f(xi B 1)

(−1)− 1
(11)

=
∑
ω3i

f̂(ω)χω\i(x). (12)

For example, ∂f∂a = −1−(0.5+0.5b+0.5c−0.5bc)
−2 = 0.75 + 0.25b+ 0.25c− 0.25bc. It can be noticed

that this derivative would produce 0 if b and c are true (b = c = −1) and 1 otherwise. f is monotonic,
i.e., non-decreasing since changing one bit from false to true would never cause the output to switch
from true to false. Monotonicity requirement can also be expressed by ∂f

∂xi
≥ 0, for all i. In theory,

all Boolean functions excluding the negation operation are monotonic.
Equation (11) requires that the derivative of a Boolean function can be in {−1, 0, 1}. If ∂f

∂xi
(x) =

±1, then xi is said to be pivotal for f at x. If it is zero, then xi has no influence on f at x. Hence, the
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influence of input xi on f is the expected value of being pivotal over x. The definition of influence
is as follows:

Definition 3
(Influence). The influence of input xi on f is defined as,

Infi(f) = Pr[f(x) 6= f(x⊕i)] = E
x

[
∂f

∂xi
(x)2

]
=
∑
ω3i

f̂(ω)2. (13)

where x⊕i is the string x with its i-th bit flipped.

The total influence can be computed as [30],

I(f) =

n∑
i=1

Infi(f). (14)

For f(x) = a ∨ b ∧ c, the influence values are found as Infa(f) = 0.75 and Infb(f) = Infc(f) =
0.25. Considering the influence values, a is the most important input, whereas b and c have identical
importance and they are less important with respect to a. For monotonic functions, ∂f

∂xi
is greater

than or equal to zero and the influence is [30],

Infi(f) = E
x

[
∂f

∂xi

]
=

∂̂f

∂xi
(∅) = f̂({i}). (15)

Equation (15) implies that the influence of a variable equals to a single Fourier coefficient. This
makes the computation of influences feasible particularly for large functions. For the previous
example, Infa(f) = f̂(1), Infb(f) = f̂(2), and Infc(f) = f̂(4).

Another concept is the energy spectrum that may provide useful information about the noise
sensitivity of a function.

Definition 4
(Energy spectrum). For any real-valued function f : Bn → R, the energy spectrum Ef is defined by

Ef (k) :=
∑
|ω|=k

f̂(ω)2 ∀k : 1 ≤ k ≤ n (16)

where |ω| depicts the number of 1 bits in ω.

Ef (∅) is known as DC component, which is the zero-frequency component. If most of the Fourier
mass is localized on high frequencies, then the function is sensitive to small perturbations, i.e.,
condition failures as shown in a sample spectrum given in the right panel of Figure 4.

0 1 2 3
0

0.2

0.4

0.6

0.8

k

Ef (k)

0 1 2 3 4 5
0

0.2

0.4

0.6

k

Ef (k)

Figure 4. Energy spectrum of f(x) = a ∨ b ∧ c (Left Panel) and f(x) = a ∨ b⊕ c⊕ d⊕ e⊕ f (Right Panel).

From the testing point of view, it is easier to detect the faults of a Boolean expression that has
a higher noise stability. This will be briefly demonstrated in the beginning of Section 5. Another
useful parameter to analyze an expression is Noise Stability. If we define a fault probability for
every single condition and denote it with ε, then the noise stability of a Boolean function can be
defined as follows.
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10 T. AYAV

Definition 5
(Noise stability). The noise stability of f at 1− 2ε is

Stab1−2ε(f) =

n∑
k=0

(1− 2ε)kEf (k). (17)

The energy spectrum of the sample function f(x) = a ∨ b ∧ c is shown on the left panel of
Figure 4. If the fault probability of a condition, ε, is assigned 0.25, the noise stability of the function
can be calculated as 0.460938 for ε = 0.25.

The influence for noisy inputs can also be defined as follows [30]:

Definition 6
(Noisy influence). The noisy influence of f at 1− 2ε is

Inf1−2εi (f) = Stab1−2ε(
∂f

∂xi
) =

∑
ω3i

(1− 2ε)|ω|−1f̂(ω)2 (18)

4.1. Approximating Fourier Coefficients

The time and resource usage complexity of the transformation are given as O(n2n) and O(2n)
respectively [32]. Therefore, transformation becomes harder as n gets bigger. In this case, Fourier
coefficients can be approximated. Recall that the Fourier coefficient,

f̂(ω) = E[f · χω]

is an expectation under uniform distribution. χω : {0, 1}n → ±1 is a parity function defined as,

χω(x) = (−1)ω·x,

where ω · x =
∑n

i=1 ωixi =
∑

i∈ω xi. We can approximate the Fourier coefficients from uniformly
drawn examples (x1, f(x1)), . . . , (xm, f(xm)). Expected value is the following empirical average,

1

m

m∑
j=1

f(xj)χω(xj)

and this value converges to the exact value of f̂(ω) asm grows. Moreover, Chernoff bound indicates
how quickly this convergence happens [33].

5. SPECTRAL ANALYSIS-BASED TEST CASE PRIORITIZATION

Spectral analysis provides useful information about the characteristics of Boolean functions, as
explained in Section 4. The most common parameters are balance, influence, energy spectrum and
noise stability. Many of these parameters are mutually dependent. For example, if zero-frequency
component is high or Fourier mass is localized on left frequencies, the function is insensitive to
small perturbations, hence its noise stability is expected to be high. Ef (∅) gives the balance value
of a function in the range between −1 and 1. A zero or near-zero values mean that function is
balanced. Unbalanced functions have also higher noise stability and lower influence values. Stability
has positive correlation with balance values, whereas a negative one with total influence. Spectral
analysis provides a sort of probabilistic reasoning, hence it gives useful information about the
general characteristics of a function. For example, total influence or noise stability value may be
exploited to reason about the effectiveness of a test suite generated for a Boolean function.

As an example, Table IV shows the results of an empirical study to demonstrate how stability
is proportional to the average effectiveness of test suites generated by decision coverage criterion.
In this empirical study, arbitrarily selected TCAS expressions numbered 1,4,9,19 and 20 are used
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PRIORITIZING MCDC TEST CASES BY SPECTRAL ANALYSIS OF BOOLEAN FUNCTIONS 11

[34]. For each expression, all possible DC test suites are generated and average FEP values are
calculated. It can be observed that Stab/n is proportional to the FEP. In other words, the correlation
between them is computed as 0.99. Note that stability values are computed for 1− 2ε = 0.6, yet
this correlation would be almost same for other ε values. Hence, decision coverage tests can be
performed just by ordering the tests according to the stability values.

Table IV. FEP and Stability for DC test suite

TCAS # 1 4 9 19 20

n 8 5 7 8 7
Stab0.6(f) 0.853084 0.54396 0.950812 0.746375 0.912888

Stab0.6(f)/n 0.1066 0.10879 0.13583 0.09329 0.1304
AverageFEP 0.345 0.332 0.524 0.278 0.49

On the other hand, the influence value of an input condition, which is computed depending
on the Fourier coefficients, gives an information about how much that condition influences the
decision. Therefore, the influence is a suitable parameter to distinguish condition dependent test
cases generated by condition coverage, condition/decision coverage or modified condition/decision
coverage techniques.

This study focuses on the influence to distinguish MCDC test cases and prioritize them. The
reason for selecting MCDC as the coverage technique is that it has been shown to be stronger than
DC, CC and C/DC and it is a successful and widely adopted technique. Rothermel et. al. made the
first formal definition for test prioritization [2]:

Definition 7
(Test Prioritization) Let T be a test suite; PT be the set of permutations of T and ν be a valuation
function from PT to the real numbers.
Problem : Find T ′ ∈ PT such that ∀T ′′ ∈ PT , ν(T ′) ≥ ν(T ′′).

Below, a key proposition that allows to prioritize MCDC tests with respect to the influence values
is presented. A detailed explanation follows this proposition. As the main contribution of the paper,
prioritization of MCDC tests is given with Definition 8. Finally, a simple example is conducted to
demonstrate the entire approach.

Proposition 1
Let f(x) : {−1, 1}n → {−1, 1} and Infi(f) be the influence of input xi on f . Let
T = {tp1, tp2, . . . , tpn} be the MCDC test pairs and FEP(tpi) be the fault exposing potential of tpi
under the assumption of ORF, CCF, CDF and ENF hypotheses. There exists a negative correlation
between Infi(f) and FEP(tpi).

This proposition sheds light on a promising relation between the influence and FEP, which
facilitates the prioritization of the test cases. The intuition behind it is such that conditions that
greatly influence decisions are unlikely to be tested by other test cases. However, conditions that
barely influence decisions are highly likely to be tested by chance. As an example, Table V shows
the truth vectors of f(x) = a ∨ b ∧ c and its three mutants under only VNF hypothesis for the sake
of simplicity. The comparison of the two sample MCDC test pairs given below may help express
the intuition. For example, pair tp1 = (0, 4) can be used to test condition a and pair tp2 = (1, 3)
for condition b. It is expected that f(0) = F, f(4) = T and similarly f(1) = F, f(3) = T to pass the
tests. In general, a test case with higher FEP value requires that the original function’s output differs
as greatly as possible from the most of the mutants’ outputs. For most of the mutants, however,
influence values remain almost the same. For instance, both Infa(f) and Infa(M1) are equal to
0.75 and consequently a has a strong masking effect. Switching a in tp1 from F to T, switches also
the output of M2 and M3 in the same direction, which means these test cases are unable to detect
mutants M2 and M3. On the other hand, condition b has a less masking effect since Infb(f) = 0.25
and pair tp2 is indeed able to detect all the three mutants as can be clearly seen from the table.
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12 T. AYAV

Table V. Truth table for f(x) = a ∨ b ∧ c and its mutants M1(x) = a′ ∨ b ∧ c,
M2(x) = a ∨ b′ ∧ c and M3(x) = a ∨ b ∧ c′

x a b c f M1 M2 M3

0 F F F F T F F

1 F F T F T T F

2 F T F F T F T

3 F T T T T F F

4 T F F T F T T

5 T F T T F T T

6 T T F T F T T

7 T T T T T T T

Therefore, having a prioritization strategy that prioritizes test cases in the reverse order of their
influence may help detect failures faster.

Let T = {tppii ≡ (ai, bi)
pi : ∀i ∈ {1, 2, . . . n}} be the test suite. tppii is such that priority pi is

associated to test pair tpi. Priorities are adjusted as inversely proportional to the influences. Hence
the valuation function should be designed as given in Equation (19).

ν(T ) = [Infi(f)− Infj(f)](i− j),
where i 6= j and i, j ∈ {1, 2, . . . , n}. (19)

Therefore, test pairs are easily arranged in decreasing order by maximizing ν(T ) in accordance
with Definition 7. The proposed prioritization replaces Fault Exposing Potential (FEP) based
prioritization. FEP of a test pair is proportional to its priority. FEP values are computed by the
adoption of mutation analysis technique [35]. Mutation analysis creates a large number of faulty
versions (mutants) of the expression by altering conditions and relations, and uses these to assess
the quality of the test suites by measuring whether those suites can detect those faults (kill those
mutants). The approach works as follows: Given a Boolean expression f(x) and its test suite
T = {tp1, tp2, . . . , tpn}, a set of mutants, M1,M2, · · · , of f is created with respect to the chosen
fault hypotheses. Next, each test case tpi ∈ T is checked against those mutants, noting whether tpi
kills them or not. The FEP of tpi, FEP(tpi) is the ratio of mutants of f killed by tpi to the total
number of mutants of f . Therefore, FEP can be expressed as follows:

FEP(tpi) := Pr[tpi = (ai, bi) detects Mj = f(x⊕j)]. (20)

In other words, FEP values are explicitly computed using Formula (21).

FEP(tpi) :=
|Mj killed by tpi|

|Mj |
. (21)

Proof Sketch: Below, a proof sketch is given for Proposition 1. To compute the correlation
Corr(ci, si), Pearson’s formula given in Equation (22) is used.

Corr(ci, si) =

n
n∑
i=1

cisi −
n∑
i=1

ci
n∑
i=1

si√(
n

n∑
i=1

c2i − (
n∑
i=1

ci)2
)(

n
n−1∑
i=1

s2i − (
n−1∑
i=1

si)2
) (22)

For the correlation to be negative, the following condition must be satisfied:

n
∑
i

FEP(tpi) Infi(f)−
∑
i

FEP(tpi)
∑
i

Infi(f) < 0,

Inf(f) ·
∑
i

FEP(tpi) > n
∑
i

FEP(tpi) Infi(f)
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PRIORITIZING MCDC TEST CASES BY SPECTRAL ANALYSIS OF BOOLEAN FUNCTIONS 13

It is clear that test pair tpi = (ai, bi) detects Mj if the following conditions are satisfied:

f(a⊕ji ) = 1, f(b⊕ji ) = −1, (23)
∂f

∂xj
(ai)

2 · ∂f
∂xj

(bi)
2 = 1 (24)

Hence, the FEP of tpi can be expressed as

FEP(tpi) = E
j

[
∂f

∂xj
(ai)

2 · ∂f
∂xj

(bi)
2

]
(25)

=
1

n
(
∂f

∂x1
(ai)

2 · ∂f
∂x1

(bi)
2 · · ·+ ∂f

∂xi
(ai)

2· ∂f
∂xi

(bi)
2

· · · ∂f
∂xn

(ai)
2 · ∂f
∂xn

(bi)
2).

By following Equation (13), influence can be expanded as,

Infi(f) = E
x

[
∂f

∂xi
(x)2

]
=
∑
S3i

f̂(ω)2. (26)

=
1

2n
(
∂f

∂xi
(0)2 +

∂f

∂xi
(1)2 + · · ·+ ∂f

∂xi
(ai)

2 +

∂f

∂xi
(bi)

2 + · · ·+ ∂f

∂xi
(2n−1)2)

In the influence expansion, it is known that ∂f
∂xi

(ai)
2 = ∂f

∂xi
(bi)

2 = 1. If all other terms are zero
then the influence gets its minimum value as 1/2n−1. ∂f

∂xi
(x)2 = 1 means that xj 6=i’s are masked in

x such that output of the function follows xi. The fact that Infi is high implies that Pr[f(x) = xi] is
high and it can be expected that ∂f

∂xj
(ai)

2 · ∂f∂xj
(bi)

2 = 0 for many j 6= i. In this case, FEP(tpi) is
expected to be smaller. �

Based on Proposition 1 and other concepts given so far, Definition 8 provides a new prioritization
technique.

Definition 8
(Spectral Test Prioritization). Let f(x) : {−1, 1}n → {−1, 1} be a Boolean expression and Infi(f)
be the influence of input xi on f . Let TP = {tp1, tp2, . . . , tpn} be the MCDC test pairs for f and
T = {t1, t2, . . . , tk} be the test suite for f ; PT be the set of permutations of T and ν the valuation
function from PT to real numbers. The solution to the following problem gives the prioritized test
suite:
Find T ′ ∈ PT such that ∀T ′′ ∈ PT , ν(T ′) ≥ ν(T ′′) where

ν(T ) =
∑

i,j∈[1,n]

[Infi(f)− Infj(f)](i− j).

This prioritization will be demonstrated using the aforementioned simple function
f(x) = (x1 + (x2 · x3)) · x4. Recall that MCDC pairs are computed as:

TP = {(8, 9), (12, 14), (10, 14), (1, 9)}.

After eliminating the repeating test cases, the unordered test suite would be written as follows:

T = {8, 9, 12, 14, 10, 1}.

To prioritize the test suite, the influence values for the inputs are calculated as shown in Table VI.
Note that FEP values for the test pairs are also given in Table VI to demonstrate the negative
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correlation. The following formula can be designated intuitively to compute the priorities:

pi =
1

n
· I[f ]

Infi(f)
(27)

This formula fulfills the requirement of Definition 8 that pi and Infi are inversely proportional and
the priority for input i also represents the contribution of concerning influence to the total influence.
Applying Formula (27), the test pairs can be assigned the priorities as shown below:

T = {(8, 9)0.833, (12, 14)2.5, (10, 14)2.5, (1, 9)0.625}

Note that priorities are related to the inputs and therefore they are directly assigned to the test
pairs. It is assumed that test cases have the same priority values with their associating test pairs,
i.e. FEP(tpi) = FEP(ai) = FEP(bi) for tpi = (ai, bi). By eliminating the repeating test cases, the
resulting test suite is obtained. If there exists more than one test cases having different priorities,
the highest priority is selected. For example, 90.625 is eliminated whereas 90.833 is placed in the test
suite:

T = {122.5, 142.5, 102.5, 90.833, 80.833, 10.625}

This test suite first applies test inputs 12 and 14 of the test pair 2 for testing condition x2. Then by
applying 10, pair 3 for condition x3 is tested. Similarly, pair 1 and pair 4 are tested for the conditions
x1 and x4 respectively.

Table VI. FEP and Influence values for f(x) = (x1 + (x2 · x3)) · x4. I[f ] = 1.25 and Corr(FEP,Inf)=-0.99.

x1 x2 x3 x4
Inf 0.375 0.125 0.125 0.625
pi 0.833 2.5 2.5 0.5

FEP 0.621 0.862 0.862 0.783

Below, the effect of the proposed prioritization method will be demonstrated using only one
fault hypothesis, ORF for the sake of simplicity. According to ORF, there exist three mutants of
expression f as given below:

M1(x) = (x1 · (x2 · x3)) · x4 (28)
M2(x) = (x1 + (x2 + x3)) · x4 (29)
M3(x) = (x1 + (x2 · x3)) + x4 (30)

Table VII shows the values that f and its three mutants evaluate to against the test suite. Note that a
test case kills the mutant if f and its mutant produce opposite values under a test case. If a mutant
is killed by a test case, the corresponding value is shown with a star character in the table. For
example, test case input 12 kills M2 and M3. Therefore, the FEP of test case 12 is 2/3. On the other
hand, the success of the prioritization technique can be measured how early the potential faults can
be detected. As seen in Table VII, the first fault corresponding to mutant M1 can be detected by
the second test case, 14. However, the second and third faults (M2 and M3) can be detected by the
first test case, 12. For the unprioritized test suite (test order is 8,9,12,14,10,1), the same analysis
would result such that the faults can be detected by the 2nd,3rd and 1st test cases. The original and
prioritized testing processes are compared using a boxplot shown in Figure 5. The boxplot illustrates
that prioritized test suite has a better detection time on average. More comprehensive evaluations
with a relatively larger system will be demonstrated in the next section.

When an entire software or system is considered, there may exist several decisions represented
by Boolean functions. For each decision, MCDC test cases are prioritized as inversely proportional
to the influence values as explained before. If there are common test cases among several Boolean
functions, the priority of any repeating test case needs to be modified such that the resulting priority
will be the sum of priorities of all the repeating test cases. For example, if there are two test pairs
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Table VII. Success of test cases for the three ORF mutants

x 12 14 10 9 8 1

f(x) F T F T F F

M1(x) F F? F F? F F

M2(x) T? T T? T F F

M3(x) T? T T? T T? T?

FEP 2/3 1/3 2/3 1/3 1/3 1/3
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Figure 5. Comparison of unordered and ordered test suites in terms of fault detection times for ORF
hypothesis.

that belong to two different decisions, e.g. (2, 5)2 and (2, 7)3, the prioritized corresponding portion
of the test suite would be T = {25, 73, 52}. This summation allows to give higher priority to a test
case that covers many entities, which is similar to the algorithm presented in [36].

The entire approach is summarized with Algorithm 1. Hereby, the input of algorithm consists
of all decisions in a program or specifications expressed with Boolean functions. The output is the
prioritized test suite.

6. EVALUATIONS

This section presents the evaluations of the proposed approach. First, Proposition 1 is checked by
exploiting a brute-force approach. A large number of Boolean functions with 3 to 8 inputs are
generated and the correlation between FEP and influence is validated against each function. The
generic form of the Boolean functions is as follows:

y = ((((xa ⊕ z)� (xb ⊕ z))� (xc ⊕ z))� (xd ⊕ z))� · · ·

where a, b, c, d, . . . ∈ [0, n− 1], z = {0, 1} and � = {AND, OR}. It is clear that the total number of
generated functions is n! 2n 2n−1 and it can be computed as shown in Table VIII. All evaluations are
performed on an Intel R© CoreTM i7− 2600 @ 3.40GHz CPU, 16 GB RAM, Linux version 2.6.32-
35-server (gcc version 4.4.3) standard computer. A computer program runs the automated process
such that Boolean functions are repeatedly generated and then their Fourier coefficients, including
the influences are computed, MCDC test cases are derived and mutation analyses are performed
to calculate the FEP values. The correlation between FEP and influence is also computed for each
generated function. All the evaluations are performed under 2-fault assumption. This means that for
a 3-input Boolean function, single fault or 2 simultaneous faults are possible. Faults are generated
under ORF, CDF, CCF and ENF classes. Table VIII shows the results. As seen, average correlations
always remain at −1.0.

To evaluate the entire approach, the set of predicates taken from Airborne Traffic Alert and
Collision Avoidance System (TCAS-II) is used. They are shown in Table IX. TCAS-II specifications
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Algorithm 1 Prioritize Test Suite(allDecisions)

Initialize all TPi∈{1,...,k} ← ∅
Initialize all Ti∈{1,...,k} ← ∅
Initialize final test suite: T ← ∅
for all f in allDecisions do

Find the set of MCDC test pairs TP for expression f
Calculate influence values Inf(f)
Assign priorities to the test pairs: pi = 1

n ·
I[f ]

Infi(f)

end for
for all TPi∈{1,...,k} do

for all tpp = (ap, bp) ∈ TPi do
if a /∈ Ti then Ti ← Ti ∪ {ap}
else

Update the priority r of ar in Ti : r ← max{r, p}
end if
if b /∈ Ti then Ti ← Ti ∪ {bp}
else

Update the priority r of br in Ti : r ← max{r, p}
end if

end for
end for
for all Ti∈{1,...,k} do

for all tp ∈ Ti do
if t /∈ T then T ← T ∪ {tp}
else

Update the priority r of tr in Ti : r ← r + p
end if

end for
end for
Order test suite T with respect to the priorities.
return T

Table VIII. Evaluations: Average correlations and computation times

# of
inputs

# of Boolean
functions
generated

Average
Correlation

Computation
time

3 192 -1.000 0.001 minutes
4 3072 -1.000 0.170 minutes
5 61440 -1.000 0.517 minutes
6 1474560 -1.000 54 minutes
7 41287680 -1.000 1924 minutes
8 1321205760 -1.000 26 hours

vary from 5 to 14 variables. They were first introduced by Weyuker et.al [37] and have been
commonly used as a benchmark for test generation techniques [15, 25, 26, 37, 38]. According to
the table, there exist 14 conditions and 20 decisions. The number of conditions and the number
of MCDC test cases generated for each decision are shown in Table X. From the table, it can
be seen that there are totally 253 test cases generated for 20 specifications. After eliminating the
repeating test cases, however, the size of test suite reduces to 134. For comparison, an existing
MCDC prioritization algorithm is used [36]. This algorithm prioritizes the test cases based on their
contribution values. The algorithm takes the unordered test suite and iteratively selects the strongest
test case and adds it to the ordered test suite. The contribution of a test case t is the number of
MCDC pairs completed by t plus the number of entries and exits covered by t and still uncovered
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Table IX. TCAS-II Specifications.

1 (ab)′(de′f ′ + d′ef ′ + d′e′f ′)(ac(d+ e)h+ a(d+ e)h′ + b(e+ f))
2 (a((c+ d+ e)g + af + c(f + g + h+ i))

+(a+ b)(c+ d+ e)i)(ab)′(cd)′(ce)′(de)′(fg)′(fh)′(fi)′(gh)′(hi)′

3 (a(d′ + e′ + de(f ′ghi′ + g′hi)′(f ′glk + g′i′k)′)
+(f ′ghi′ + g′hi)′(f ′glk + g′i′k)′(b+ cm′ + f))(ab′c′ + a′bc′ + a′b′c)

4 a(b′ + c′)d+ e
5 a(b′ + c′ + bc(f ′ghi′ + g′hi)′(f ′glk + g′i′k)′) + f
6 (a′b+ ab′)(cd)′(fg′h′ + f ′gh′ + f ′g′h′)(jk)′((ac+ bd)e(f + (i(gj + hk))))
7 (a′b+ ab′)(cd)′(gh)′(jk)′((ac+ bd)e(i′ + g′k′ + j′(h′ + k′)))
8 (a′b+ ab′)(cd)′(gh)′((ac+ bd)e(fg + f ′h))
9 (cd)′(e′fg′a′(bc+ b′d))
10 ab′c′de′f(g + g′(h+ i))(jk + j′l +m)′

11 ab′c′((f(g + g′(h+ i)))′ + f(g + g′(h+ i))d′e′)(jk + j′lm′)′

12 abc′(f(g + g′(h+ i)))(e′n′ + d) + n′(jk + j′lm′)
13 a+ b+ c+ c′d′efg′h′ + i(j + k)l′

14 ac(d+ e)h+ a(d+ e)h′ + b(e+ f)
15 a((c+ d+ e)g + af + c(f + g + h+ i))(a+ b)(c+ d+ e)i
16 a(d′ + e′ + de(f ′ghi′ + g′hi)′(f ′glk + g′i′k)′) + (f ′ghi′ + g′hi)′(f ′glk + g′i′k)′(b+ cm′ + f)
17 (ac+ bd)e(f + (i(gj + hk)))
18 (ac+ bd)e(i+ g′k′ + j′(h′ + k′))
19 (ac+ bd)e(fg + f ′h)
20 e′fg′a′(bc+ b′d)

Table X. Number of inputs and size of MCDC test suites for TCAS-II expressions.

TCAS# 1 2 3 4 5 6 7 8 9 10
n 7 9 12 5 9 11 10 8 7 13

# of tests 8 12 16 8 12 15 15 11 9 16
TCAS# 11 12 13 14 15 16 17 18 19 20

n 9 14 12 7 9 12 11 10 8 7
# of tests 11 17 15 10 12 17 15 14 11 9

by the test cases in the ordered test suite. This algorithm is called as Pr-Covr in the remaining of
the text. Figure 6 shows the evaluation results. The figure consists of five box plot diagrams. The
four diagrams on left hand side demonstrate the fault detection times of the test suites against the
faults systematically generated by 4 fault hypotheses ORF, CCF, CDF and ENF. The right hand side
diagram illustrates the case of these fault hypotheses all together. In each diagram, there exist three
box plots related to the unordered initial test suite, ordered test suite by Pr-Covr and the ordered
suite by the proposed algorithm Pr-Four, respectively. Fault detection times are such that when test
cases are sequentially applied to a faulty software, the index of first test case that reveals the fault
is considered as the detection time. If the time duration of applying one test is known, this value
can be straightforwardly transformed to the real time as well. Fault detection times are computed
against almost 4000 faulty versions of the entire specifications and box plots explicitly show the
first, second (median) and third quartiles. For example, the median values for the right hand side
diagram are 65, 43 and 24 for the unordered, Pr-Covr and Pr-Four test suites respectively. The plots
show that Pr-Four has the fastest fault detection capability for all fault classes. This means that
in case of unordered test suite and Pr-Covr any fault can be detected at 65th and 43rd test cases,
whereas in Pr-Four a fault can be detected at 24th test case on average.

Another common metric to measure the effectiveness of a test suite is the weighted Average of
the Percentage of Faults Detected (APFD). APFD measures how quickly a test suite detects faults.
For a test suite T with n test cases and m number of faults, APFD metric is defined as follows [5]:

APFD = 1− TF1 + TF2 + . . .+ TFm
nm

+
1

2n
(31)
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Figure 6. Comparison of three methods in terms of fault detection times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100

101

102

103

TCAS specification

Ti
m

e
in

Se
co

nd
s

Mutation analysis Fourier analysis

Figure 7. Comparison of time costs for mutation and Fourier analyses

where TFi is the position of the first test case that reveals fault i. The APFD values for the three
test suites, unordered, prioritized with Pr-Covr and prioritized by Pr-Four are given in Table XI. As
expectedly from Figure 6, Pr-Four outperforms the others.

Compared with Unordr and Pr-Covr, Pr-Four is a highly time consuming algorithm. For FEP
prioritization, mutation analysis is the bottleneck. For Pr-Four, however, the bottleneck is Fourier
analysis. Therefore, Figure 7 compares the time costs of mutation and Fourier analyses of TCAS-II
expressions. Mutation analysis is performed under 2-fault assumption and again using the same four
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Table XI. APFD values of the three test suites under test (4000 faulty versions are generated under 4 fault
classes).

Prioritization Unordr Pr-Covr Pr-Four
APFD 0.514 0.618 0.684

classes, ORF, CCF, CDF and ENF. Note that the figure uses logarithmic y-axis and Fourier analysis
outperforms the mutation analysis, particularly in relatively large expressions. For even larger
expressions, it is also possible to approximate the Fourier coefficients as remarked in Section 4.1,
which makes the approach more efficient.

Both the exact and approximate computations of influence values depend on a simple Boolean
arithmetic and they are easy to implement as opposed to the mutation analysis. Therefore, the
proposed prioritization scheme could be incorporated into any existing utilities.

7. THREATS TO VALIDITY

Four types of threats can be considered [39]: Conclusion, construct, internal and external validities
for the validity of the proposed prioritization approach.

Conclusion validity is mitigated by experimenting a possibly large number of auto-generated
Boolean functions and calculating the correlations between FEP and Inf values. However, up to
8-input functions are handled due to the computation overhead. Regarding the construct validity,
the results are compared with respect to well-established metrics in the literature. It is also assumed
that all test cases are equal in cost. This is generally true in that each test case takes an almost fixed
amount of time to execute. Another assumption is that faults are supposed to have the same severity.
It is likely that some faults can be more severe, and therefore the test cases that reveal such faults
should have higher priorities.

To overcome internal threats, a previously published system is utilized in the experiments and
the same tool is used to perform all the calculations like Fourier analysis, generation of MCDC test
cases, mutation analysis and performance comparisons.

External validity is related to the generalization of the approach. The experiments are performed
on relatively large yet a single system TCAS-II, which can be considered as a serious threat.
However, the success of FEP prioritization shown in the literature and the negative correlation
validated by a large number of auto-generated functions help to mitigate this threat.

The limitation of the proposed approach is the time consumption of Fourier analysis. The
time complexity of the traditional Fourier computation is given as O(n2n) and the influence
computation then would be O(n22n). However, as demonstrated with Figure 7, Fourier has still
better performance than the mutation analysis. Moreover, approximate calculation of Fourier
coefficients mitigates this limitation.

8. RELATED WORK

Software testing is an expensive process and it can consume half of the whole development process
and sometimes more than that in case of the need for higher levels of reliability [1, 40]. Today many
software systems require large amount of tests that cannot be completed due to strict time and cost
limitations. It is therefore of paramount importance to reduce the test suite, or schedule the tests
such that the highest order tests are run first to increase the likelihood of detecting faults earlier. To
this end, test case selection, test suite reduction and test case prioritization methods are suggested.
Among them, the aim of test case prioritization is to rank the test cases to reveal faults earlier in
order to reduce the cost of testing. There are numerous test case prioritization methods proposed in
the literature [2, 3, 4, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55].
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Rothermel was the first to formally define the test case prioritization problem as given in
Definition 7 with the focus on reducing the cost per fault coverage [2]. With the growth of the
size of software and consequently amount of testing efforts, test case prioritization has become
more important, which has taken the attention of many researchers. Almost all studies address the
issue of regression testing that is the re-execution of the tests that have already been conducted
while software evolves. However, as the amount of efforts and cost in time and budget to run a
complete test suite can be tremendous in recent times, it is undisputedly beneficial even for the
initial testing. Elbaum presents six heuristics for prioritization based on the coverage performance
fed back from the prior executions of the tests [4]. These heuristics mainly rely on the bases of
Statement Coverage, Branch Coverage and Fault Exposing Potential (FEP). Prioritizing by the FEP
of the test cases however differs from the other two techniques such that FEP is a probability that
the test case reveals the potential faults. This value must be estimated under certain fault classes
or assumptions. To estimate the FEP values, there exists a well-studied mutation analysis method.
Several works utilize mutation analysis to estimate the FEP and conclude that FEP prioritization is
an effective technique [2, 3, 4, 5, 55].

Mutation testing is based on two main assumptions about the types of errors which typically
occur in software. The first is the “Competent Programmer Hypothesis” which essentially states
that programmers write programs that are reasonably close to the desired program. Second, the
“Coupling Effect” postulates that all complex faults are the product of one or more simple fault(s)
occurring within the software. Both of these assumptions are essential in demonstrating that, by
making simple substitutions in the software under test, mutation replicates the types of errors
typically made by developers. A recent work [56] empirically evaluates the mutation testing
particularly taking into account safety-critical software. As noted in the aforementioned works,
in spite of its efficacy, the FEP prioritization technique seems to be more complicated than other
techniques due to the expense of the mutation analysis. One contribution of the proposed approach
is to facilitate FEP prioritization by moving the problem to a different domain.

Boolean expressions are frequently of interest, for example in testing the requirements or the
structure of the software. In this case, one can benefit from many useful and powerful techniques like
Boolean derivative calculus and Fourier analysis of Boolean functions. Boolean derivative calculus
is particularly used in hardware testing [6, 7, 8, 9] and it is rarely seen in software testing except
for the MCDC test suite definition [10, 12]. However, in these works the boolean derivation is only
used to give a formal definition and any further mathematical analysis is not presented.

Spectral analysis of Boolean functions is also another powerful technique. In the literature,
Fourier analysis, Walsh or Walsh-Hadamard transformations, Reed-Muller transformation are all
used to specify the spectral analysis and they have been well-known for more than thirty years.
Although the technique has a wide application area in mathematics, physics and engineering, its
application in computer science seems relatively limited. Some fields that the Fourier helped so
far are the analysis of error-correcting codes, cryptography, graph theory and quantum computing.
Spectral analysis of Boolean functions has attracted a great attention from computer scientists in
the last decade [29, 30, 31]. This is due to some nice theorems such as Kahn-Kalai, Arrow’s and
Peres’s theorems, and also its contribution in the development of social choice theory. The influence
of Boolean variables and noise sensitivity have also been studied by several papers [29, 31, 57].

There are few studies on the application of Fourier in testing. An early work of Susskind proposes
testing the circuits through the Fourier coefficients [58]. A more recent and comprehensive work of
Falkowski presents the theory of Walsh transformation and its applicability on testing digital circuits
[59]. Yogi proposes an Automatic Test Pattern Generation (ATPG) method for circuits [60, 61].
Here, randomly generated test vectors under the stuck-at fault assumption are spectrally analyzed
and the major components are extracted so that the vectors with a better fault coverage can be
selected.

This work presents an idea and sound method for a better prioritization of MCDC test cases.
Test suite prioritization for MCDC coverage was previously studied by Jones and Harrold [36].
They present a test suite prioritization algorithm assigning contribution values to the test cases
depending on their coverage. The contributions are computed on the basis of the coverage of the
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entry and exit points and the statements in a program. Our proposed method, however provides a
better prioritization of MCDC test cases taking into account also the FEP of test cases. Moreover,
this is achieved by a relatively simpler Fourier analysis instead of a mutation analysis. As explained
in the previous sections, the aim is to increase the likelihood of detecting the faults earlier so that
the testing can be immediately paused to localize and correct the errors.

The benefit of the method is multi-fold: i) it provides an easy technique to order the test cases,
ii) it is based on mathematics, iii) it outperforms the identical FEP prioritization and iv) it gives a
useful insight how to incorporate Fourier analysis in software testing. A strong relationship between
the influences of conditions on the decision and the fault exposing potentials of MCDC test cases
under certain fault assumptions allows to reduce the prioritization problem to the relatively simple
computation of influence variables.

9. CONCLUSION

This work proposes a Fourier analysis-based prioritization method for MCDC test suites. The
correlation between fault exposing potentials of the test cases and the influence values of their
associating input conditions under certain fault hypotheses allows to order test cases with respect
to the influences only. This eliminates the expensive mutation analysis. The method relies
on mathematics and its efficacy is demonstrated with the experiments on a large number of
systematically generated Boolean functions and also a benchmark example from industry. The
method provides a useful insight into how the spectral analysis benefits test case prioritization. It
can be further investigated to cover other fields of testing as well. As the Fourier analysis of Boolean
functions reveals many useful features of them, it seems promising for all fault based Boolean testing
methods not only to prioritize tests but also to help with more efficient test case generation. In the
most general sense, the term “more efficient” must be understood as faster generation of a minimal
test suite that has a better fault exposing potential. To this end, a more in depth study to uncover the
potential relations between the Fourier coefficients together with the noise-related parameters and
the various fault hypotheses could be of considerable interest in the future research.
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