
Formal analysis of some secure procedures
for certificate delivery �

Fabio Martinelli, Marinella Petrocchi, and Anna Vaccarelli

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Pisa, Italy
{fabio.martinelli, marinella.petrocchi, anna.vaccarelli}@iit.cnr.it

Abstract. The paper describes and formally analyzes two communication pro-
tocols to manage the secure emission of digital certificates. The formal analy-
sis is carried out by means of a software tool for the automatic verification of
cryptographic protocols with finite behaviour. The tool is able to discover, at a
conceptual level, attacks against security procedures.
The methodology is general enough to be applied to several kinds of crypto-
graphic procedures and protocols. It is opinion of the authors that this survey
contributes towards a better understanding of the structure and aims of a proto-
col, both for developers, analyzers and final users.
Key words: Formal analysis, security protocols, digital certificates, computer
aided verification.

1 Introduction

In computer science, a protocol is a set of rules, or procedures, for transmitting
data between electronic devices, such as computers.

In particular, a security protocol is a specification for transmitting those data
in a safe way, e.g., avoiding them to be unveiled to unauthorized users or to be
modified during their journey from the sender to the intended recipient. These
and other goals are generally achieved through the use of cryptography, i.e.,
the art of writing in secret characters, not comprehensible by anyone but the
authorized parties.

The use of cryptographic primitives is by now a standard practice within
the area of Internet communication. In the last decades, many researchers have
covered various mathematical issues involved in these primitives, leading to a
better understanding of the foundations of cryptography. On the other hand, us-
ing such well understood cryptographic primitives does not give full guarantees
about the fulfillment of the required security properties. Indeed, threats can lie,
for example, in the way messages are exchanged over the network.

� Extended and revised version of [1].

A simple example is here informally presented, to show the possible uncer-
tainty about the correctness of a protocol specification. Notation is quite intu-
itive. However, the reader is invited to see Section 3 for details.

A simple example. Let the reader suppose that A wants to send to the
bank Bank an order to move some money to X’s account. Thus, A
sends the message “move $1000 to X’s account”, signed with its private
key, denoted by pk−1

A . (A digital signature is a cryptographic construct
aiming at assuring authentication of origin and integrity to a message.)

A �→ Bank : {move $1000 to X’s account}pk−1
A

Since this message is signed by pk−1
A , Bank should be assured that it

has been originated by A. Thus, Bank makes the money transfer. Now,
let the reader suppose that X eavesdrops on this message. It can pretend
to be A and it can send the message again to Bank, i.e., :

X(A) �→ Bank : {move $1000 to X’s account}pk−1
A

The signature of this message is still valid. Possibly, X gets $2000.
Thus, the protocol has been attacked, even without breaking cryptog-
raphy.

Starting from these observations, a branch of research in computer security
assumes cryptographic primitives to be perfect, and uses a black box view of
cryptography. From years, the formal methods (and security) community works
on these topics.

Formal methods and tools have been successfully applied for the analysis of
network security. Exploiting formal methods, the protocol under investigation is
described in a given language, then a formal specification of the security prop-
erty to be analyzed is defined. Whether or not the security property is fulfilled
is investigated by formally analyzing the protocol within a hostile environment,
i.e., considering the presence of a malicious agent running the protocol together
with the honest participants.

In many occasions, formal methods have been proved efficient either to bet-
ter define the goals of a security protocol (and the mechanisms through which
they are achieved) and to offer a rigorous description of the interactions among
the participants. Indeed, many examples of correctness of a security protocol –
as well as the discovery of attacks on them– may be found in the literature, e.g.,
[2, 3, 4, 5, 6, 7, 8]. Furthermore, several formal techniques have been devel-
oped. Some are based on state exploration, and they can typically ensure error-
freeness for bounded systems (e.g., [9, 10, 11]). Other approaches are based on

2

proof techniques for authentication logic (e.g., [12, 13, 14]). Type systems and
other static analyses have also been successfully exploited (e.g., [15, 16]).

Also, automated tools may help in supporting formal theories. They can in-
volve stochastic and timed aspects too. With regard to finite state verification,
their development has been so far generally concentrated on two formalisms,
process algebras and finite state machine models. Each of the two formalisms
has been, and currently is, largely exploited. Here, the main features of two
general-purpose verification tools, enriched with support for cryptographic prim-
itives, are briefly discussed. These analysis tools are not the most recent, but they
have been extensively used, also to analyze large case studies. They are Murφ
and FDR, respectively [7] and [9].

FDR is a refinement model checker for the process algebra CSP [17]. The
basic idea in FDR is to model the correct behavior of the system under investiga-
tion as a process in a process algebra, and the protocol specification as another
process algebra process. Then, the tool can check if the specification is a refine-
ment of its correct behaviour.

Murφ is a finite-state machine verification tool. Its verification method is to
use state enumeration with state assertion checking. It is an efficient brute-force
reachability analyzer.

In both of them (as well as within other frameworks for finite-state ver-
ification), a specification is run exhaustively, and in a specific environment.
Sometimes, the modeling process helps in finding bugs, even before running
the specification by the tool itself. The motivations should be found in the fact
that the modeler is forced to think about the behavior of the protocol participants
and the intruder in a much more detailed manner than when writing a protocol
specification in a non-formal manner. On the other hand, in the past years trou-
bles with lack of crypto-specification/verification education came up. People
designing cryptographic protocols may lack expertise, augmenting the risks for
a bug-design version of a final product. Automating the verification process has
been proved to be really efficient in finding significant attacks, failures as well
as weaknesses, to protocols considered correct even for many years. A paradig-
matic example is the one of the Needham-Schroeder Public Key protocol, [18],
considered correct for a good 17 years after its publication and finally found
flawed by Lowe with the support of FDR, [19, 9].

Here, this promising line of research is continued, by presenting a tool for
the automated verification of security properties in communication protocols
with finite behaviour. In particular, the feasibility of the methodology is shown
through two case studies, both inherited from real applications that were born to
manage the secure delivery of digital certificates over computer networks.

3

Digital certificates, [20], are electronic documents linking an identity (i.e., a
person or a machine) to a public key. They are issued by a Certification Author-
ity (CA) that can vouch for an individual identity. The way CA vouches for such
links is to digitally sign the issued certificate with CA’s private key. Typically, a
digital certificate contains a public key, information specific to the user (a name,
a company, an IP address, etc.), information specific to the issuer, a validity
period (starting date - finishing date) and additional management information.

In particular, (part of) the OpenCA software and (part of) the Simple Cer-
tificate Enrollment Protocol (SCEP) are considered as two case studies.

OpenCA Labs (http://www.openca.org) is “an open organization aimed to
provide a framework for Public Key Infrastructures studying and development
of related projects”. In particular, the OpenCA developers aim at implementing
open source code to easily setup and manage CAs. Consequently, the project
provides specification for the whole lifetime of digital certificates, from their
emission, through their maintenance, to their expiration. CAs based on OpenCA
are really distributed, since there are distinct servers to manage certificates. Fur-
thermore, certificate requests and their validation are performed over the Inter-
net.

SCEP is the evolution of some specification developed by Verisign Inc. and
Cisco Systems and it is commercially available in both client and CA imple-
mentations. It gives specifications for digital certificate enrollment, access and
revocation, for certificates and CRL queries. In particular, SCEP was devel-
oped for the distribution of digital certificates to network devices such as routers
and gateways (it is indeed its peculiarity, with respect to implementations like
OpenCA, to release certificates to machines, rather than to individuals). The
following study is based on the SCEP Internet Draft, [21] (that should be con-
sidered a work in progress, as mentioned by the same authors of the draft).

CONTRIBUTIONS. The paper offers the following contributions.

– Part of the OpenCA source code and of the SCEP protocol are formally
modeled and analyzed. The results of the analysis are here reported.
With regard to the OpenCA enrollment procedure, it is anticipated that it is
correct (at least, at conceptual level). Nevertheless, the attention is focused
on the leakage of some sensitive data stored in an on line server. If a mali-
cious adversary discovers these sensitive data, it can force the certification
authority to issue erroneous certificates, in which the public key of a honest
user is not tied to the identity of the user itself.
With regard to the security properties listed in the SCEP draft, no attacks
are found, at least within an analysis scenario consisting of a finite number
of participants. While this does not suffice to ensure the absolute security
of the protocol in all circumstances, it does enhance the reliability of SCEP.

4

However, a vulnerability is noticed concerning the emission of two digital
certificates with the same subject name/public key binding.

– The application of automated verification tools is useful to better under-
stand how certain mechanisms and checks ensure certain security features
of communication protocols. Generally used with the purpose of verifying a
system against a certain (security) property, such automated tools may also
offer a valid way to analyse a specification in order to highlight motivation
for using a security mechanism rather than another one. Their use might
be useful in revealing causes of omitted or erroneously implemented secu-
rity checks. It might be also useful to render more comprehensive for those
less expert some statements written in technical documents, where often it
is asserted that a security check is necessary but rarely is the reason given.
Thus, in order to understand the reason, some security checks can be omit-
ted in the specification of the protocol. When running the verification tool
over the modified specification, an attack can be found, thus revealing the
importance of the omitted checks. This methodology extends the use of an
automated tool from the common use of verification of a property to a more
global aim, i.e., the analysis of various aspects of a system. Furthermore,
the same methodology is particularly useful to study security protocols in a
formal way by suitably changing the protocol description in order to simu-
late possible faults and check the relative effect (as is common in so-called
methodology “Failure Model and Effect Analysis” adopted in software engi-
neering, see, e.g., http://www.fmeainfocentre.com/ and [22]). In the future,
it would be really appealing to systematically create such case studies in the
security protocol analysis framework as done in [22] for safety in critical
systems.

Finally, to the best of the authors’ knowledge, this is the first attempt to give a
formal description of some security procedures from OpenCA and SCEP.

The authors do not advocate the cause of their tool more than the one of
other existing tools. Being this tool developed within their research team, it is
more appealing and practical for them to use it. Nevertheless, it would be inter-
esting to compare the results obtained by using this tool with the ones obtained
using other formal instruments.

The paper is organized as follows. In Section 2, a sketch of the adopted
analysis approach is presented. Section 3 fixes terminology and notation used
throughout the paper. In Section 4, the OpenCA enrollment phase is described
and modeled. Section 5 reports the results obtained upon analyzing the OpenCA
enrollment phase. In Section 6, the SCEP enrollment phase is described and
modeled. Section 7 highlights motivations for the need of some forms of cor-

5

rectness checks in the SCEP specifications. Section 8 concludes the paper. In
the Appendix, Sections A and B give hints to build up a specification file to be
analysed.

2 Analysis approach

This paper inherits the analysis approach fully illustrated in [23]. Briefly, it was
spurred by the observation that security protocols can be described as open sys-
tems, i.e., systems with some component following an unspecified behaviour.
This may depend on several factors, e.g., one can simply be unable to predict
the whole behaviour of a component within a system. Whatever the not specified
term is, it is appealing that the resulting system works properly (e.g., satisfies a
certain property).

Given the sensitive nature of a cryptographic protocol, one can imagine the
presence of a hostile adversary trying to interfere with the normal execution of
the protocol in order to achieve some advantage. Due to the unpredictable be-
haviour of this adversary, this can be seen as an unspecified component of the
system under investigation. When considering formal languages for the descrip-
tion of concurrent systems, such as CCS [24] or CSP [17], a concurrent system
S with, for example, two specified components A and B and a third unspecified
one, can be described as A | B | (), where | is the parallel composition opera-
tor. The hole takes into account the presence of the adversary, whose behaviour
is unpredictable.

Starting from these premises, to formally verify a security property of a
specification S implies the verification of the property over S with respect to
every possible hole (i.e., every possible adversary behaviour). The problem has
been discussed in details in [23], and solved by extending the partial model
checking techniques of concurrent systems, [25].

The adversary acts according to a Dolev-Yao model, [26], and it follows a
set of message manipulating rules, that are used, e.g., to model cryptographic
functions like encryption and decryption. Like the honest participants, it is able
to send and receive messages over a set of channels. Also, it can intercept and
forge messages. In part, it can derive new messages from the set of messages
that it knows at the beginning of the computation. This set is called the in-
truder’s initial knowledge. On the other hand, new messages are derived from
the intercepted ones, obtained after the beginning of the computation.

Encryption is opaque, i.e., a message encrypted with the public key of i can-
not be decrypted by anyone but the person who knows the correspondent private
key (unless the decryption key is compromised). The adversary can intercept an
encrypted message and it can replay the message later, but the structure of the

6

message is not accessible, i.e., the adversary cannot split the encrypted message
unless it knows the decryption key.

The intruder’s knowledge grows as the computation evolves. The analysis is
over that knowledge, i.e., it is checked if, at a certain point of the computation,
that knowledge satisfies a predicate involving a security property. In case of a
positive result, the analysis report consists of an attack with respect to that prop-
erty, i.e., a trace reporting the sequence of actions performed by the adversary
and leading to break that property.

The development of the theory has lead to the implementation of a partial
model checker, namely the Partial Model Checking Security Analyzer (for short,
PAMOCHSA), [27], through which it is possible to analyze distributed systems.
As usual, only systems with finite computations will be investigated. This is
possible since: 1) the operational language used to specify the protocols does not
allow recursion; 2) the messages are of a fixed structure (due to the fact that they
are typed, see Appendix A); 3) a finite number of parties and sessions running
the protocol are considered; 4) even if the adversary is allowed to generate fresh
messages, their structure is subject to the same constraints above mentioned.

It is worth noticing that, though maintaining the analysis over a finite num-
ber of parties and sessions, the absence of attacks over a particular system run-
ning the protocol does not guarantee that there are no attacks on larger systems
running the same protocol. However, [28, 29] show how, under some assump-
tions, the correctness of a protocol with an unbounded number of parties and
sessions can be inferred from the correctness of the same protocol with finite
parties and sessions. Hopefully, mixing the approaches may contribute to the
development of a fully automated analysis.

The PAMOCHSAtool needs the following set of inputs: the protocol specifi-
cation; the security property to be checked; the initial knowledge of the intruder.
When developing the theory, the operational language Crypto-CCS has been
used for specifying the protocols. It is a CCS-based process algebra with exten-
sions for the treatment of cryptographic primitives. Presenting this language is
out of the scope of this paper. Full details can be found in [23]. However, the
PAMOCHSA input language is not exactly Crypto-CCS. Indeed, it is a variant,
a sort of translation of Crypto-CCS into a more readable and intuitive language,
that was thought in order to help the common user in preparing a correct input
file. An example input file and the PAMOCHSA input language are given in
sections A and B of the Appendix.

3 Notation

In this section, terminology and notation used throughout the paper are fixed.

7

A set of agents able to send and receive messages is considered. The send-
ing and reception of a message is denoted as i A �→ B : msg, where msg is
the exchanged message and i is the i-th communication channel, on which the
exchange takes place. A and B are the sender and the receiver of msg, respec-
tively.

The malicious agent is generally denoted as X. X can intercept and also
fake messages:

(1) X(A) �→ B : msg
(2) A �→ X(B) : msg

Notation (1) describes X that sends a message msg to B pretending to be
A (forgery); (2) denotes: msg, originally intended for B, is actually intercepted
by X (interception).

Notation that recurs periodically throughout the paper is:

namei, pini, . . . := nameof party i, password of agent i, . . .

pki, pk−1
i := public and private key of agent i

{...}pk−1
i

:= message signed by agent i

{...}pki
:= message encrypted by public key of agent i

{...}KEY := message encrypted by symmetric key KEY
h{m} := fingerprint of messagem

The hash functions are a family of functions with the following main proper-
ties: i) they take as input a message of arbitrary length and produce an output of
a fixed length; ii) they are not-reversible (with high probability); iii) it is com-
putationally infeasible to produce two messages having the same output or to
produce any message having a given pre-specified output. Hereafter, the output
of a hash function is referred as fingerprint.

In the following, it will be often referred to the use of nonces, whose def-
inition is here briefly introduced: a nonce is a parameter that varies with time,
e.g., a special marker intended to prevent the unauthorized replay or reproduc-
tion of a message. Indeed, a nonce is “generated with the purpose of being used
in a single run of the protocol”, [19]. Nonces are commonly implemented as
pseudo-random strings.

4 The OpenCA Enrollment Phase

OpenCA Labs is an open organization aimed to provide a framework for pub-
lic key infrastructures studying and development (http://www.openca.org). An

8

open source code has been developed, and it is being maintained, by the OpenCA
developers for the setup and management of Certification Authorities. A formal-
ization of the enrollment procedure of OpenCA will follow.

The following entities are involved in the procedure:

– User (U), requesting a certificate.
– Enrollment Server (ES): a web server used by the users to make certificate

requests, import CA certificates, import requested certificates and import
other users’ certificates. In the investigated implementation, this server is
activated on the same machine of the RA Server (they are indeed the same).
All the interactions between ES and U are through SSL, [30] (client authen-
tication is not required).

– Local Registration Authority Operator (LRA): a set of trusted operators ver-
ifying the correctness of a certificate request. In the investigated implemen-
tation, only one operator will be considered.

– Registration Authority Server (RA): the web server to which LRA connects,
in order to approve certificate requests. Web connections between LRA and
RA are secured through SSL.

– Certification Authority Server (CA): the server where the private key of the
Certification Authority is kept. Actually, CA issues certificates. For secu-
rity needs, this is an off-line server, disconnected by any network. All file
transfers (requests/certificates/etc..) with other computers get executed via
removable support, e.g., floppies.

Hereafter, a correctly issued certificate (where the name of the user is tied
to its public key) is formalized through the name of the user and its public key,
both signed by CA’s private key, i.e., {nameU , pkU}pk−1

ca
. An abstraction of a

digital certificate is here considered, not involving fields like the validity pe-
riod. Given that the analysis in Section 5 involves the verification of a correct
correspondence between an identity and a public key, and it does not involve
temporal validity issues, the structure of the certificate has been here simplified
for the sake of readability.

Fig. 1 and Fig. 2 give a pictorial representation of the enrollment procedure.
Detailed explanation on the use of public keys pkc1, pkc2 and pkc3 are given in
Subsection 4.1. Here, it is anticipated that they serve as a modeling trick to give,
at least, confidentiality to the content of the communication.

1. U connects to ES and sends a certificate request consisting of its name
nameU , a newly created random number pinU , the public key to be cer-
tified pkU and the so-called Netscape SPKAC, i.e., its public key plus a
newly created random number nU , both signed with U’s private key pk−1

U .

9

1 U �→ ES : {nameU , pkU , pinU , {pkU , nU}
pk−1

U
}pkc1

2 U �→ LRA : {{nameU}
pk−1

Gov
, pinU}pkc2

3.1 LRA �→ RA : {nameU , pinU}pkc3

3.2 RA �→ LRA : {nameU , pkU , pinU , {pkU , nU}
pk

−1
U

}pkc3

3.3 LRA �→ RA : {{nameU , pkU , pinU , {pkU , nU}
pk−1

U
}

pk−1
LRA

}pkc3

4 RA �→ CA : {nameU , pkU , pinU , {pkU , nU}
pk−1

U
}

pk−1
LRA

5 CA �→ RA : {nameU , pkU}
pk−1

ca

6 ES �→ U : {nameU , pkU}
pk−1

ca

Fig. 1. The OpenCA enrollment procedure.

Registration
Authority

Server

Server
Enrollment

�
�
�
�

�
�
�
�

�
�

�

������

�
�

�
�

���

�

Users

LRA
Operator

1

6
4

CA Server
5

2
3

Fig. 2. Graphical representation of the OpenCA infrastructure.

10

All these data are stored in the RA server (note that in the investigated im-
plementation ES and RA coincide), waiting for being validated. SPKAC
acts as a Proof of Possession (POP), attesting that U, that is requesting to
link its name to a public key, also owns the corresponding private key. (Only
someone who knows the private key can create that SPKAC.) nU is inserted
to prevent replay attacks. It is up to the recipient of the message to store nU
in order to detect later replays. In the OpenCA specification, this message is
sent across SSL. For the rendering of the transmission over SSL the reader
is invited to read the following Subsection 4.1, OpenCA model.

2. U personally reaches the LRA Operator to identify himself by means of
a valid paper, e.g., an identity card, and by showing the same pin already
present in the formulated request. The identity card is here represented by
nameU signed by the private key of the Government, i.e., {nameU}pk−1

Gov
.

It is assumed that it cannot be forged. Furthermore, even if the structure of
the ID card has been simplified in its formal representation, it is assumed
that it contains the photo of the owner, as usual.

3. LRA connects to RA and approves the request corresponding to nameU and
pinU . In particular, LRA transmits to RA a query regarding a particular pair
identity-pin (step 3.1). Then, RA sends back the request received in step
1 (step 3.2) (corresponding to that pair identity-pin). Finally, LRA sends
the request back signed with its private key pk−1

LRA (step 3.3). Signing the
request means that LRA has personally identified who is requesting the cer-
tificate and that there is a correspondence between name and pin received in
step 2 and what received in step 3.2. All these three steps are through SSL.
Again, the reader is referred to the next subsection for details.

4. The request is exported from RA to CA (through removable media).
5. Before issuing the certificate, CA operator must verify the presence of a

correct LRA signature over the request. Then, CA operator checks the cor-
rectness of SPKAC (by applying pkU that is present in message 4). If the
checks are satisfied, the certificate is issued and exported into RA (through
removable media).

6. Finally, U connects to ES and gets its certificate.

4.1 OpenCA model

All the interactions with the Certification Authority Server (steps 4 and 5) are
via removable media through trusted operators. No adversary may intercept or
listened to the exchanged messages (at least with high probability).

As far as the other steps are concerned, some modeling assumptions of the
OpenCA enrollment are hereafter listed.

11

– In the OpenCA implementation, steps 1, 3.1, 3.2, 3.3 are performed through
SSL connections. That means that data sent over the network are kept con-
fidential (i.e., only the intended recipients can understand the meaning of
those messages), and that the server identity is somehow authenticated to
prevent server spoofing.
Step 1 requires no client authentication, i.e., only the user must be assured
that the other party is actually the enrollment server to which it is to request
a certificate.
On the contrary, steps 3.1, 3.2 and 3.3 require both client (LRA) and server
(RA) authentication, i.e., both RA and LRA must be assured about the iden-
tity of the interlocutor.
To completely model the overall architecture, the SSL protocol should be
encoded within the formalization. To avoid the entire encoding, some confi-
dential channels established between the interested parties are modeled. In
particular, if one supposes that all possible users (and even the adversary)
know a public key pkc1 and that only ES knows the corresponding private
key pk−1

c1 , encrypting requests in step 1 with pkc1 guarantee their confiden-
tiality. One may observe that the same does not guarantee server authenti-
cation. Given that the analysis is here focused on the right correspondence
between a public key and a name in a issued certificate, and since it is not
concerned with specific SSL properties, the claim is that one can afford to
maintain the formalization to a lower level of granularity with respect to the
SSL protocol. Moreover, if no attack is discovered with a weaker model,
one may suppose that no attack would be discovered with a stronger repre-
sentation (with respect to the same analyzed properties). Thus, it is assumed
that everybody knows pkc1 and only ES knows pk−1

c1 .
The goal of confidentiality is similarly modelled in steps 3.1, 3.2 and 3.3,
with the specification that the key pair (pkc3, pk−1

c3) is only known by LRA
and RA.
It is worth noticing that valid approaches are present in the literature for the
analysis of protocols layered on top of SSL, e.g., [31].

– The formal language specifying the protocol is tailored for describing soft-
ware systems where all the interactions are made by means of communica-
tions. Thus, instead of considering that U physically reaches LRA, a sending
operation has been modeled in step 2. Furthermore, to maintain the confi-
dentiality that the physical action of showing the data to an operator should
guarantee, a confidential channel has been established by means of pkc2.
pkc2 is known by all the users (plus the adversary), but only LRA knows
pk−1

c2 .
– In Subsection 5.1 two analyses of the enrollment procedure will be carried

out by assuming that an adversary gathers information that should be secret,

12

i.e., pinU and SPKAC, respectively. In the respective specification files, the
leakage of these information is modeled by sending them on a public chan-
nel. Alternatively, it could also be modeled by including them in the initial
knowledge of the adversary. Both the formalizations do not alter the result
of the analyses. The first choice differs in the sense that one can decide
at which point of the computation the adversary will know the secret. The
reader is invited to note that this solution allows the analyst to specify in a
more natural way different levels of attacks. Indeed, the reception of confi-
dential values over a public channel, at a certain point of the computation,
could model an attack over an online server after that those values have been
stored in that server.

5 OpenCA analysis

An analysis of the correct issuance of a digital certificate is here performed,
with respect to an active adversary that tries to interfere with the enrollment
procedure described in Section 4. This analysis is the evolution of preliminary
work in the area, presented in [32].

The adversary is able to listen, intercept and forge communication between
honest participants. An incorrect certificate is here intended as a certificate that
testifies the association between a public key and the owner of a private key that
does not correspond to that public key.

In particular, two possible misbehaviours are considered for the analysis.
Within the enrollment procedure described in Section 4, it is investigated if it is
possible

1. to issue certificates in which the name of an user is tied to the public key
whose correspondent private key is only known by another user;

2. to issue certificates in which the public key of an user, that also knows the
correspondent private key, is tied to the name of another one (that does not
know that private key).

If one of the two alternatives occur, it means that the enrollment procedure leads
to the issuance of certificates in which there is not a correct correspondence
between the owner of the certificate and the certified public key.

The occurrence of the first alternative could cause a responsibility attack,
i.e., someone could sign some documents and makes another user responsible
for that signature. The failure of the second property could cause a credit attack,
i.e., someone could claim credit for the origin of a document signed by another
user. It is worth noticing that Abadi has formally discussed the properties of re-
sponsibility and credit in [33]. Also, [34] further investigates these topics and an

13

attempt is given to formalize, within the theoretical framework fully presented
in [23], some of the examples discussed by Abadi in [33].

First, the initial knowledge of the adversary is set to the set of public mes-
sages that it knows at the beginning of the computation, e.g., the names and the
public keys of the other participants, its public/private key pair, its identity card.

Thus, the input given to the tool is, informally, as follows (details in Ap-
pendix B):

– Specification file: OpenCA
– Formula:

{nameU , pkX}pk−1
ca

or {nameX , pkU}pk−1
ca

– Initial knowledge:
nameX , pinX , pkX , pk−1

X , {nameX}pk−1
Gov

, pkU , nameU , pkc1, pkc2.
– The result is No attack found.

The specification file is written by following the input language shown in Ap-
pendix A. The same appendix contains some excerpts of that specification file.

By requiring the analysis over that particular formula, a computation is
searched such that, at the end of such a computation, the adversary knows either
message {nameU , pkX}pk−1

ca
or message {nameX , pkU}pk−1

ca
(i.e., certificates

attesting an incorrect association between a public key and its owner). The result
of the analysis gives that such a computation does not exist. Thus, the procedure
is correct, with respect to the investigated properties, and at least at the modeled
conceptual level.

5.1 Some attacks on the RA server

Under some circumstances, it is possible to force the emission of incorrect cer-
tificates. This can happen without breaking CA, but by performing some pre-
liminary attacks on RA. Indeed, the leakage of some confidential information,
recorded into RA, may lead to an incorrect certificate issue.

As is common in security analysis, the protocol is investigated by consider-
ing that the adversary obtains some information considered confidential among
the honest participants.

In particular, here it is supposed that X obtains pinU and SPKAC by per-
forming a direct attack on the RA server, which is an on-line machine and it is
more vulnerable to attacks than the off-line certification authority.

Two attacks can occur, depending on the leaked secret:

– X knows pinU : then, X can associate its public key to the user’s identity.

14

– X knows SPKAC: then, X can associate its name to the public key of user1.

First attack. X knows pinU . The input of PAMOCHSA is:

– Specification file: OpenCA known pin.
– Formula: {nameU , pkX}pk−1

ca
.

– Initial knowledge: same as before
– The result is Attack found

Indeed, X is able to force the issuing of a certificate where its public key is tied
to the name of U. Informally, the attack consists of the following steps (see also
Fig. 3). In the picture, step i indicates the normal execution of the protocol by
the honest participants, as illustrated in Fig. 1, whereas step iX indicates that
step i is performed by the intruder:

1 U �→ ES : {nameU , pkU , pinU , {pkU , nU}
pk−1

U
}pkc1

1X X(U) �→ ES : {nameU , pkX , pinU , {pkX , nX}
pk

−1
X

}pkc1

2 U �→ LRA : {{nameU}
pk−1

Gov
, pinU}pkc2

3.1 LRA �→ RA : {nameU , pinU}pkc3

3.2 as usual
3.3 as usual
4 RA �→ CA : {nameU , pkX , pinU , {pkX , nX}

pk−1
X

}
pk−1

LRA

5 CA �→ RA : {nameU , pkX}
pk−1

ca

6 ES �→ U : {nameU , pkX}
pk−1

ca

Fig. 3. OpenCA - First attack

– Item 1. U connects to ES, as usual.
– Item 1X . X connects to ES and sends a certificate request consisting of user-

name nameU , pinU it has previously discovered by performing an attack on
RA, its public key pkX and SPKAC, i.e., X’s public key plus another nonce
nX , signed by pk−1

X .
– Item 2. U gets in contact with the LRA operator to prove that the data in the

request of step 1 are correct, as usual.
– Item 3.1. LRA operator connects to RA Server and approve the request cor-

responding to the related username and pinU . However, now two requests
exist, both related to the same name and pin. Thus, it could be possible that

1 This holds because of an incomplete management of SPKAC in the investigated version of
OpenCA, see Section 5.2 for details.

15

the LRA operator approves the wrong request. (Note that steps 3.2 and 3.3
are not formalized in Fig. 3, for the sake of simplicity).

– Steps 4, 5 and 6 are as usual. The final issued certificate ties the identity of
the user with X’s public key.

The avoidance of this kind of attack should be actuated by enforcing security
policies to keep sensitive values (like pinU) secret.

Second attack X knows SPKAC. Once again, it is supposed that the adversary
performs an attack on RA (in the model, it receives this piece of information
over a public channel). The input of PAMOCHSA is:

– Specification file: OpenCA known SPKAC.
– Formula {nameX , pkU}pk−1

ca
.

– Initial knowledge: same as before.
– The result is Attack found.

Informally, the attack consists of the following steps (see also Figure 4):

1 U �→ ES : {nameU , pkU , pinU , {pkU , nU}
pk−1

U
}pkc1

1X X �→ ES : {nameX , pkU , pinX , {pkU , nU}
pk−1

U
}pkc1

2X X �→ LRA : {{nameX}
pk−1

Gov
, pinX}pkc2

3.1 LRA �→ RA : {nameX , pinX}pkc3

3.2 as usual
3.3 as usual
4 RA �→ CA : {nameX , pkU , pinX , {pkU , nU}

pk−1
U

}
pk−1

LRA

5 CA �→ RA : {nameX , pkU}
pk−1

ca

6X ES �→ X : {nameX , pkU}
pk−1

ca

Fig. 4. OpenCA - Second attack

– Item 1. U connects to ES as usual.
– Item 1X . X connects to ES and sends its certificate request consisting of

nameX , a newly created nonce pinX , the user public key pkU and the dis-
covered SPKAC of the user.

– Item 2X . X gets in contact with the LRA operator to prove that the data
contained in the request in step 2 are correct. X can physically reach the
LRA operator and it can show its identity card.

– Item 3.1. The LRA operator connects to the RA server and it approves the
request corresponding to nameX and pinX .

16

– Item 4. The certificate requests are exported from the RA server and im-
ported into the CA server, as usual. The CA operator checks if all the re-
quests are signed by the LRA operator and if the Netscape SPKAC is cor-
rectly signed. This is done by checking that pkU is able to verify the signa-
ture on SPKAC.

– Item 5. The CA operator issues the certificate and exports it into the RA
server.

– Item 6X . X connects to ES and gets the certificate in which pkU is tied to
X’s identity.

5.2 A note on the use of SPKAC

The software architecture investigated above is based on OpenCA v.0.2.0 and
OpenSSL v.0.9.4. As explicitly mentioned in the OpenSSL documentation, the
SPKAC nonce challenge is not used in that implementation. Thus, the second at-
tack can be avoided by simply recording the nonce previously used in a SPKAC
structure.

In order to look for a practical evidence of this drawback, a test Certification
Authority has been built, based on the 0.9.4 SSL code. Actually, two requests
with the same SPKAC have been generated and, consequently, two certificates
have been issued, with different user name but same public key. However, if
SPKAC is correctly used, a single CA cannot issue such erroneous certificates.

On the other hand, in a more complex PKI infrastructure this is not true
anymore. Let the reader consider a PKI infrastructure consisting of a root CA
and two sub-CAs, CA1, and CA2 (i.e., a hierarchical structure). The root issues
the certificates for its sub-CAs, while these directly interact with the users. Let
the reader suppose that user A discovers the SPKAC of user B. B is also sup-
posed to have previously obtained a valid certificate from CA2. A can send a
correct certificate request to CA1, by using its name and B’s SPKAC. As a con-
sequence, A may obtain a valid certificate where its name is tied to B’s public
key. Under this scenario the nonce is useless, since CA1 receives the SPKAC
for the first time.

A possible solution could be the insertion in the SPKAC structure of the
identity of the user. Indeed, the inclusion of the identity is well known to be
good practice, [35].

Thus, one can think to follow, e.g., the example of the PKCS#10 structure,
that is a standard describing the syntax for making a certificate request. In sub-
section 6.1 the interested reader will find more about the format and usage of
this standard.

Here, it is anticipated that, by following the PKCS#10 standard, the user
request contains a digital signature (generated with the user’s private key) that

17

signs the name of the user, plus some additional attributes. Then, it makes no
sense to send a duplicate request, as the one in step 1X , Fig. 4. Such an at-
tack would not work, simply because the LRA operator is now able to check if
the name of the user making the request matches the name in the signed field.
Updating the protocol by following the new guidelines, step 1X becomes:

X �→ ES : {nameX , pkU , pinX , {nameU , pkU , attributes}pk−1
U
}pkc1

Thus, X cannot simply reply the request (if not in possess of pk−1
U). Indeed,

the operator would find a mismatch between the identity within the signature
(nameU) and the identity outside the signature (nameX).

Upon analyzing the protocol through PAMOCHSA, the test OpenCA ver-
sion has been updated by the authors of this paper, by allowing only requestsà
la PKCS#10.

6 The SCEP Enrollment Phase

A description of the Simple Certificate Enrollment Procedure (SCEP) is here-
after given. The current section and the following one are based on studies ap-
peared in [1], here revised.

SCEP is a communication protocol whose goal is the secure issuance of
certificates to network devices, such as routers and gateways, using existing
technology. Up to today, the last document describing SCEP is an Internet Draft
available on Internet at [21].

SCEP supports many operations, like CA public key distributions, certificate
enrollment and revocation, certification and CRL query. Hereafter, the attention
will be mainly focussed on the enrollment phase. That consists of two main
phases:

– the user U, identified by a subject name consisting of the Fully Qualified
Domain Name (e.g., alice.somewhere.com), asks for a digital certificate.
It composes its certificate request and sends it to a Certification Authority
Server.

– The Certification Authority tests the correctness of the received request2;
in case of positive outcome, CA issues the certificate, digitally signs it and
sends it to the applicant.

2 In subsection 6.2 it is explained how CA tests the correctness of the request.

18

6.1 User Certificate Request

After having obtained the CA’s certificate, necessary to retrieve CA’s public
key in order to enroll, the user generates its request using PKCS#10 and sends
it to the CA exploiting PKCS#7. PKCS#10 and PKCS#7 are “de facto” stan-
dards, issued by RSA Labs: PKCS#10 describing the syntax for certification
requests and PKCS#7 defining formats to represent data with the addition of
cryptographic information, i.e., encrypted data or digital signatures. Briefly, a
PKCS#10 request can be formalized as follows:

PKCS#10 := {nameU , pkU , pinU , {nameU , pkU , pinU}pk−1
U
}

where nameU is the Subject Name of the user U, pkU is the public key to be
certified and pinU is a secret that associates the subject name to that certificate
request3.

PKCS#10 is completed by adding a digital signature over the name, public
key and pin of the user. This signature acts as a proof of possession, i.e., once
CA has verified the signature, it has proof that whoever originated the signature
holds the corresponding private key.

Upon composing PKCS#10, U builds the Enveloped Data (encrypted data
plus encrypted key by means of RSA)4, exploiting PKCS#7 technologies:

EnvelopedData := {PKCS#10}KEY , {KEY }pkCA

where KEY is a randomly generated symmetric key. The construction of
Enveloped Data provides the encryption of KEY with the public key of the CA,
pkCA, so that only CA can retrieve KEY and successfully obtain the PKCS#10
as a clear-text.

To complete the enrollment request, U creates Signed Data (data plus digital
signatures), basically consisting of:

SignedData := {EnvelopedData, {ID,Nonce}pk−1
U
}

ID is the fingerprint of the public key to be certified and its aim is to
uniquely identify this transaction. Nonce is a random number generated by U,
and its aim is to prove the freshness of the response from the CA to the user

3 This pin is used for certificate revocation (currently implemented as a manual process: U
phones a CA Operator asking for revocation of its certificate, the operator replies asking for
the challenge password, and if it coincides with the one contained in the request, the certifi-
cate will be revoked). The pin can also be used to authenticate U’s identity, as explained in
subsection 6.2

4 For the sake of readability the structures of Enveloped Data, Signed Data and Get Cert Initial
message are here simplified (without, however, affecting the results of the analysis).

19

request. Answers5 of CA to U’s enrollment request can be of three kinds and
they all contain the same ID and Nonce as in the user request. In case of a
success, CA successfully issues the requested certificate; in case of a pending
response, CA is configured to act in manual mode. Before the emission, it has to
carry out some checks to verify enrollment request correctness; finally, in case
of a failure, CA does not issue the certificate.

If the user receives a pending response, then it can enter into a polling mode,
i.e., it can periodically send to CA Get Cert Initial messages, pressing for the
issuance.

GetCertInitial := {{nameU , ID}KEY , {KEY }pkCA
, {Nonce}pk−1

U
}

6.2 Modeling the enrollment procedure

In protocols that use public key cryptography, the association between the public
keys and the identities with which they are associated must be authenticated in
a secure manner. SCEP provides two authentication methods: a manual one and
one based on a pre-shared secret.

In manual mode, once a certificate request has been sent to CA, U waits
until its identity can be verified using any reliable mechanism, to be performed
over channels other than the Internet. This mechanism could be performed, e.g.,
by personally reaching a devoted operator and directly showing some appropri-
ate credentials, or by delivering such credentials by surface mail or phone. In
particular, [21] suggests that CA generates the fingerprint of the PKCS#10 re-
trieved from the user request and compares it with the one computed by the user
itself. During this period, the state of the whole transaction is set to pending.

Otherwise, CA can choose to act in automatic mode: before any request
takes place, CA distributes a pre-shared secret to the user (assumed unique for
each user). The user will then insert the secret in the request (pinU). Then, CA
should check the correspondence between pinU and the name included in the
PKCS#10.

Enrollment procedure with manual user authentication. The enrollment
procedure with manual authentication of the user can be described as follows:

1. U connects to CA and sends enveloped PKCS#10 and authenticated at-
tributes. NonceU is inserted in the authenticated attributes to prevent replay
attacks (from the user point of view). Thus, the answer from CA to U must
contain the same nonce of the previous message from U to CA.

5 These answers contain the same ID and Nonce present in User Certificate Request.

20

1 U �→ CA : {nameU , pkU , pinU , {....}
pk−1

U
}KEY , {KEY }pkCA , {IDU , NonceU}

pk−1
U

2 CA �→ U : {IDU , NonceU , “pending′′}
pk−1

CA

3 U �→ CA : {nameU , IDU}KEY , {KEY }pkCA , {Nonce1U}
pk−1

U

4 CA �→ U : Hash{nameU , pkU , pinU , {....}
pk−1

U
}

5 U �→ CA : Comparison : ok/ko
6 CA �→ U : {{nameU , pkU}

pk−1
CA

}KEY 1, {KEY 1}pkU , {Nonce1U}
pk−1

CA

Fig. 5. SCEP Enrollment Phase with manual user authentication.

2. CA replies with a pending status, same transaction identifier and same nonce
as in the user request.

3. U enters into polling mode by periodically sending Get Cert Initial messages
to CA, until it either receives the certificate or rejection or it simply times
out.

4. Communications over channels 4 and 5 should be intended other than the
Internet. This reliable communication is intended to be by phone or by sur-
face mail. In any case, CA must communicate to U the fingerprint of the
PKCS#10 received in Message 1 (Message 4). Thereafter, the user can com-
pare the fingerprint with the one computed from its original PKCS#10 (Mes-
sage 5).

5. U gives a positive, or negative, answer to CA, depending on the result of the
comparison.

6. Upon receiving a positive answer, CA issues the certificate. SCEP distributes
the certificates in an enveloped mode, followed by the same user nonce con-
tained in the previous Get Cert Initial.

Enrollment Procedure with Automatic User Authentication. When a pre-
shared secret scheme is used, the enrollment procedure is quite simple (Fig. 6).
The user authentication is subject to the correspondence between pinU and
nameU .

1 U �→ CA : {nameU , pkU , pinU , {...}
pk

−1
U

}KEY , {KEY }pkCA , {IDU , NonceU}
pk

−1
U

2 CA �→ U : {{nameU , pkU}
pk−1

CA
}KEY 1, {KEY 1}pkU , {NonceU}

pk−1
CA

Fig. 6. SCEP Enrollment Phase with automatic user authentication.

21

7 SCEP Analysis

Briefly, the security goals of SCEP are that no adversary can: i) subvert the pub-
lic key/identity binding from that intended; ii) discover the identity information
in the enrollment request and in the issued certificates; iii) cause the revocation
of certificates with any non-negligible probability.

The first and second goals are met by exploiting encryption and digital sig-
natures with authenticated public keys. The third goal is met through the use of
a challenge password for revocation.

The revocation phase is not a concern to the scope of this paper but rather
the phase of enrollment has been considered.

When running the tool, a finite number of processes, each of them having
a finite behavior, has been considered. Note that, with regard to this scenario,
SCEP guarantees the correct emission of certificates (i.e., goals 1 and 2 are
achieved).

However, the attention will be focused on particular checks suggested in [21],
in order to understand some security mechanisms and the possible consequences
of their absence.

7.1 Relevance of the user authentication phase

Here, a simple analysis is performed, by checking if an intruder could be able
to force CA to issue certificates in which the public key/identity binding is sub-
verted.

A specification following the Internet Draft, i.e., the one including the com-
parison of the PKCS#10 fingerprints, has been checked. The results confirm the
correct emission of the certificate.

When no fingerprint comparison takes place, the protocol results vulnerable
to a man in the middle attack. The tool automatically unveils the attack. This
consists of the following steps (see also Fig. 7):

1. U connects to CA as in a normal execution. The request is intercepted by X.
2. X sends to CA a certificate request containing the user name.
3. CA’s answer contains a pending status.
4. U enters into polling mode. Its Get Cert Initial message is intercepted by X.
5. X simulates the polling mode.
6. Something went wrong with the comparison of the fingerprint. It is possible

to issue the certificate related to the request of X.

The absence of the fingerprint comparison could represent either the fact that
CA does not contact the user to communicate the received fingerprint (no Mes-
sage 4 in Fig. 5) or the fact that the user itself omits the comparison (no Message
5 in Fig. 5).

22

1 U �→ X(CA) : {nameU , pkU , pinU , {...}
pk−1

U
}KEY , {KEY }pkCA , {IDU , NonceU}

pk−1
U

2 X(U) �→ CA : {nameU , pkX , pinX , {nameU , pkX , pinX}
pk−1

X
}KEYX , {KEYX}pkCA ,

{IDX , NonceU}
pk−1

X

3 CA �→ U : {IDX , NonceU , “pending′′}
pk−1

CA

4 U �→ X(CA) : {nameU , IDU}KEY , {KEY }pkCA , {Nonce1U}
pk−1

U

5 X(U) �→ CA : {nameU , IDX}KEYX , {KEYX}pkCA , {Nonce1U}
pk−1

X

6 CA �→ U : {{nameU , pkX}
pk−1

CA
}KEY 1, {KEY 1}pkX , {Nonce1U}

pk−1
CA

Fig. 7. No fingerprint comparison.

The particular structure of messages in SCEP helps U to discover that it
actually receives an incorrect certificate. Indeed, U will not be able to open
the envelope received in message 6, since KEY 1 is encrypted with an unex-
pected key, pkX . If the user does not receive any certificate (e.g., the adver-
sary could intercept message 6), it will send to CA a sequence of GetCertIni-
tial messages, pressing for the certificate. Possible further interceptions of these
messages could then lead to a time out interrupt of U’s connection.

7.2 How to avoid the issuance of two identical certificates

The draft encourages CAs to enforce the so called certificate-name uniqueness:
at any time, there will be only one pair of keys for a given subject name and key
usage combination.

The authors of this paper prefer to distinguish between two kinds of unique-
ness. Thus, the above mentioned property will be referred as a weak unique-
ness, meaning that it is not possible to issue two (or more) valid certificates with
the same subject name, same public key and key usage whose validity periods
overlap. With respect to the validity period of a certificate, weak uniqueness is
in contrast with another property, called strong uniqueness, meaning that it is
never possible to issue two (or more) valid certificates with the same subject
name, same public key and key usage.

To better distinguish between weak and strong uniqueness, let the reader
suppose the existence of two certificates with same subject name, same public
key and key usage. Then, it could be the case that their validity periods overlap
(e.g., the validity period of the first certificate is January 1st, 2005 – January
1st, 2006, whereas the one of the second certificate is July 1st, 2005 – July 1st,
2006). It could be also the case that their validity periods do not overlap at all
(e.g., January 1st, 2005 – January 1st, 2006 and July 1st, 2006 – July 1st, 2007).

23

In the first case, both weak and strong uniqueness do not hold. In the last case,
it holds weak uniqueness, but not the strong one.

If CA issues two identical certificates, they will however differ in the serial
number, say sn1 and sn2. Let the reader consider that their validity periods
overlap. Suppose also that an adversary was able to force CA to issue the last
certificate, so that the adversary is conscious of its existence, while U is not.
There are multiple reasons for preventing the re-transmission of the same data
from creating a second certificate. The most significant reasons are:

– considering a large scale application scenario, the computational cost in gen-
erating and signing unused certificates is high;

– a document digitally signed with the private key corresponding to U’s public
key could be valid longer than expected, because the unexpired certificate
would validate the signature;

– U could maliciously extend her/his own certificate’s validity even when
(s)he is purposely denied the right to a new certificate; e.g., in a corporate
environment, an employee might have access to a certain facility but only
for a limited time.

Each public key to be certified is strictly connected to the Transaction Iden-
tifier ID, since it is the fingerprint of the key. To guarantee weak uniqueness, it
is assumed that CA records the pair (nameU , IDU). A specification expecting
weak uniqueness (i.e., including that record) has been checked. The analysis
confirms that it is not possible to issue two identical certificates whose validity
periods overlap.

However, if CA neglects to record that pair, the protocol results vulnerable to
the following attack: the intruder eavesdrops on a legitimate certificate request
and it simply repeats it later. This replay attack is reported in Fig. 8.

1. U connects to CA, as usual. Its request is eavesdropped by X.
2. X repeats the request, pretending to be U.
3. CA issues a first valid certificate with serial number sn1.
4. CA issues a second valid certificate with serial number sn2, because it omits

checks on crucial fields of the requests. X intercepts this message.

The user itself may unconsciously contribute towards the issuance of iden-
tical certificates. Indeed, if U times out, CA could issue a first certificate but
U may not receive anything. Consequently, U is allowed to re-issue the same
request and the absence of checks by CA may lead to the issuance of a double
certificate.

Finally, when automatic enrollment is used, weak uniqueness is not enough
to protect against replay attacks on expired certificates requests. Indeed, X could

24

1 U �→ CA : {nameU , pkU , pinU , {...}
pk−1

U
}KEY , {KEY }pkCA , {IDU , NonceU}

pk−1
U

2 X(U) �→ CA : {nameU , pkU , pinU , {...}
pk−1

U
}KEY , {KEY }pkCA , {IDU , NonceU}

pk−1
U

3 CA �→ U : {{nameU , pkU , sn1}pk−1
CA

}KEY 1, {KEY 1}pkU , {NonceU}
pk−1

CA

4 CA �→ X(U) : {{nameU , pkU , sn2}pk−1
CA

}KEY 2, {KEY 2}pkU , {NonceU}
pk−1

CA

Fig. 8. Replay attack

eavesdrop on a legitimate certificate request. The automatic procedure will lead
to the issuance of {nameU , pkU}pk−1

ca
. Then, X may send the replay of the

request once that first certificate has expired. This can cause a new certificate to
be issued with the same subject name - public key binding. The existence of the
last certificate may cause a document previously signed by U to be valid longer
than expected. It is opinion of the authors of this paper that, to avoid such a
vulnerability, CAs should guarantee the strong uniqueness property.

8 Conclusions

In this paper (part of) the OpenCA and the SCEP enrollment phases have been
formalized. An analysis of some of their properties has been performed by
means of a software tool. With regard to a limited scenario (finite number of
processes with a finite behavior), no attack has been found.

With regard to OpenCA, it has been shown that, when sensitive data are not
accurately stored, the leakage of those data may lead to an incorrect certificate
issuance. This can cause attacks on responsibility and credit, e.g., by making a
signature to be considered valid when it should not, or by considering someone
responsible for something (s)he has not signed.

As far as SCEP is concerned, when automatic enrollment is used, a vulner-
ability was found, concerning a replay attack on expired certificates requests.
Furthermore, some checks suggested in the SCEP draft have been purposely
omitted. As a consequence, a subversion of the correct public key/identity bind-
ing and the emission of duplicate valid certificates are detected.

This paper has focused on aspects of certificate delivery. Nevertheless, prob-
lematics related to digital certificates are wide, and future work should be de-
voted to the analysis of problems such as certificate revocation.

Acknowledgements

Work partially supported by MIUR project: “Strumenti, Ambienti e Applicazioni
Innovative per la Società dell’Informazione”, subproject SP1: Reti INTERNET:

25

“efficienza, integrazione e sicurezza”; by MIUR project: “Tecniche e Strumenti
Software per l’Analisi della Sicurezza delle Comunicazioni in Applicazioni
Telematiche di Interesse Economico e Sociale”; by CNR project: “Strumenti,
Ambienti ed Applicazioni Innovative per la Società dell’Informazione”; by
“MEFISTO”: Metodi Formali per la Sicurezza ed il Tempo; by CSP projects:
“SeTAPS I” and “SeTAPS II”; by Quality of Protection (QoP) project: “CREATE-
NET”.

The authors would like to thank the anonymous referees for their significant
advice.

References

[1] Martinelli F, Petrocchi M, Vaccarelli A. Automated analysis of some security mechanisms
of SCEP. Proc. of ISC’02, volume 2433 LNCS, pages 414–427. Springer, 2002.

[2] Abadi M, Gordon AD. Reasoning about cryptographic protocols in the Spi Calculus. Proc.
of CONCUR’97, volume 1243 LNCS, pages 59–73. Springer, 1997.

[3] Focardi R, Gorrieri R, Martinelli F. Non interference for the analysis of cryptographic
protocols. Proc. of ICALP’00, volume 1853 LNCS, pages 354–372. Springer, 2000.

[4] Marchignoli D., Martinelli F. Automatic verification of cryptographic protocols through
compositional analysis techniques. Proc. of TACAS’99, volume 1579 LNCS, pages 148–
162. Springer, 1999.

[5] Meadows C. Formal verification of cryptographic protocols: a survey. Proc. of ASI-
ACRYPT’94: Advances in Cryptology, volume 917 LNCS, pages 135–150. Springer, 1995.

[6] Lowe G., Roscoe AW. Using CSP to detect errors in the TMN protocol. Software Engi-
neering, 23(10):659–669, 1997.

[7] Shmatikov V, Stern U. Efficient finite state analysis for large security protocols. Proc. of
CSFW’98, pages 105–116. IEEE Computer Society Press, 1998.

[8] Thayer FJ, Herzog JC, Guttman JD. Strand Spaces: proving security protocols correct.
Journal of Computer Security, 7(1):191–230. 1999.

[9] Lowe G. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
Proc. of TACAS’96, volume 1055 LNCS, pages 147–166. Springer, 1996.

[10] Mitchell JC, Mitchell M, Stern U. Automated analysis of cryptographic protocols using
Murphi. Proc. S&P’97, pages 141–153. IEEE Computer Society Press, 1997.

[11] Roscoe AW, Goldsmith MH. The perfect spy for model-checking crypto-protocols. book-
title = Proc. DIMACS Workshop on Design and Formal Verification of Security Protocols,
1997.

[12] Abadi M, Tuttle MR. A semantics for a logic of authentication. Proc. SPDC’91. pages
201–216. ACM, 1991.

[13] Kindred D, Wing JM. Fast automatic checking of security protocols. Proc. 2nd Usenix
Workshop on Electronic Commerce. pages 41–52. 1996.

[14] Paulson LC. Proving properties of security protocols by induction. Proc. CSFW’97. pages
70–83. IEEE computer Society Press, 1997.

[15] Abadi M. Secrecy by typing in security protocols. Journal of the ACM. 46(5):749–786.
ACM, 1999.

[16] Bodei C, Degano P, Nielson F, Nielson HR. Static analysis for the pi-Calculus with appli-
cations to security. Information and Computation. 168(1):68–92. 2001.

[17] Ryan P, Schneider S, Goldsmith M, Lowe G, Roscoe B. The modelling and analysis of
security protocols: the CSP approach. Addison-Wesley, 2002.

26

[18] Needham R, Schroeder M. Using encryption for authentification in large networks of
computers. Communications of the ACM. 21(12). ACM, 1978.

[19] Lowe G. An attack on the Needham-Schroeder public key authentication protocol. Infor-
mation Processing Letters. 56(3):131–136. 1995.

[20] Housley R, Ford W, Polk W, Solo D. RFC 2459: Internet X.509 public key
infrastructure certificate and CRL profile. The Internet Society. IETF, 1999.
http://www.ietf.org/rfc/rfc2459.txt. Last access March 30, 2005.

[21] Liu X, Madson C, McGrew D, Nourse A. Internet Draft: draft-nourse-scep-11, Cisco
Systems, 2005. http://www.vpnc.org/draft-nourse-scep. Last access March 30, 2005.

[22] Cichocki T, Gorski J. Formal support for fault modeling and analysis. Proc. of SAFE-
COMP’01, volume 2187 LNCS, pages 190–199. Springer, 2001.

[23] Martinelli F. Analysis of security protocols as open systems. Theoretical Computer Sci-
ence 290(1): 1057-1106. 2003.

[24] Milner R. Communication and Concurrency. Prentice Hall, 1989.
[25] Andersen HR. Partial model checking. Proc. of 10th Symposium Logic in Computer

Science. pages 398–407. IEEE Computer Society Press. 1995.
[26] Dolev D., Yao A. On the security of public key protocols. Trans. Inf. Theory. 29(2):198–

208. IEEE Computer Society Press. 1983.
[27] The PAMOCHSA homepage. http://www.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm.

Last access March 30, 2005.
[28] Lowe G. Towards a completeness result for model checking of security protocols. Proc.

of CSFW’98, pages 96–105. IEEE Computer Society Press. 1998.
[29] Stoller S. A reduction for automated verification of authentication protocols. Technical

Report 520. Computer Science Dept., Indiana University, 1998.
[30] Freier AO, Karlton P, Kocher PC. The SSL Protocol Version 3.0 - Internet Draft

http://wp.netscape.com/eng/ssl3/ssl-toc.html, 1996. Last access March 30, 2005.
[31] P. Broadfoot and G. Lowe. On distributed security transactions that use secure transport

protocols. In Proc. of CSFW’03, pages 141–155. IEEE, 2003.
[32] Giani A, Martinelli F, Petrocchi M, Vaccarelli A. A case study with PamoChSA: a tool

for the automated analysis of protocols.. Proc. of SCI-ISAS’01, volume 5, pages 203–210.
IIIS, 2001.

[33] Abadi M. Two facets of authentication. Proc. of CSFW’98, pages 27–32. IEEE Computer
Society Press, 1998.

[34] Gorrieri R, Martinelli F, Petrocchi M. A formalization of credit and responsibility. Proc.
of SASYFT’04. Technical Report LIFO 2004-11. 2004.

[35] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Transactions on Software Engineering 22(1): 6–15. 1996.

A The PAMOCHSA input language

This appendix describes the syntax of the PAMOCHSA input language and
gives examples for the drawing up of an input file.

A.1 Typed messages

The messages are typed, i.e., each message has an associated type that denotes
its structure. Types are used to record the structure of the exchanged data. Since

27

certain operations are meaningful only over data with a certain structure, types
permit to define managing rules that precisely correspond to those operations.

A message m of type T is represented as: m : T. This expression forms a
typed message. Typed messages can be basic or compound and they are recur-
sively defined.

A.2 Grammar of the input language

The input file of PAMOCHSAis a so called experiment file with the following
structure.

< FORMULA >
Formula

< /FORMULA >

< KNOWLEDGE >
Initial Knowledge

< /KNOWLEDGE >

<HIDE CHANNELS >
Hidden Channels List

< /HIDE CHANNELS >

< SPEC >
Protocol Specification

< /SPEC >

Special identifiers contain the four sections constituent the file.
Each formula can be either a single typed message or a set of typed messages

tied by the logic operators and, or and not.
The initial knowledge is a set of typed messages.
The list of hidden channels is a list of channels over which the intruder

cannot interfere during the run of the protocol.
The protocol specification is actually the body of the protocol, i.e., a se-

quence of sending, reception and control actions.
In particular, the grammar of the input language is recursively defined as

follows (only a simplified version is here reported):

experiment form ::= < FORMULA > form < /FORMULA >
< KNOWLEDGE > m list < /KNOWLEDGE >
< HIDE CHANNELS > str list < /HIDE CHANNELS >
< SPEC > term < /SPEC >

28

term ::= 0
| Send (pstr, expr).term
| Recv (pstr, ident : msg type). term
| If (expr = expr) Then term Else term End If
| If Deduce (ident = expr) Then term Else term End Deduce
| Choice c list End Choice
| Parallel p list End Parallel

expr ::= typed msg form ::= typed msg
| ident | form & form
| Fst expr | form | form
| Snd expr | Not form
| (expr) | (form)
| (expr, expr)
| Encrypt (expr, expr)
| Decrypt (expr, expr)

pstr and ident are alphanumeric strings (plus special characters ′ ′ ’<’ ’>’
’/’).

form can be either a single typed message or a combination of typed mes-
sages by means of the logical operators & (AND), | (OR) and Not.

The definition of term maps a set of atomic actions into the tool input lan-
guage. Indeed,

- 0 is the process that does nothing.
- Send (pstr,expr).term is the process that can perform the sending of

message expr on channel pstr and then it behaves like term.
- Recv (pstr,ident:msg type).term is the process that receives a message

ident of type msg type on channel pstr and then it behaves like term;
- If (expr = expr) Then term Else term End If maps the match construct

of CryptoCCS.
- If Deduce (ident = expr) Then term Else term End Deduce is

the inference construct. The inference system adopted in the paper is shown
in Fig. A.2, where rules to perform encryption, decryption and for retrieving the
elements of a pair are given. In particular, rule (1) builds the pair of two mes-
sages; rules (2) and (3) are used to obtain the elements of a pair; rules (4) and
(5) allow messages to be encrypted using a public key of type EKey or a private
key of type DKey; rules (6) and (7) allow messages to be decrypted using the
corresponding inverse keys. It is worth noticing that other inference systems are
allowed and that the analysis sketched in Section 2 is parametric with respect to
the given system.

- Choice c list End Choice maps the non deterministic choice. Thus, it
represents a process that non-deterministically decides to behave as one of the
terms in c list.

29

- Parallel p list End Parallel represents the parallel composition of the
processes in p list.

p list is a list of terms to be executed in parallel. c list is a list of terms of
which only one will be executed.

A typed message has the following structure:

typed msg ::= msg : msg type;

where

msg ::= pstr msg type ::= ident
| (msg) | EKey
| msg, msg | DKey
| Enc [pstr] (msg) | (msg type)

| msg type ∗ msg type
| Enc(msg type ∗ msg type)

Commas are used to separate elements in a pair, while * is for separating
the types of the pair.

Types are freely assigned, except two special types denoting encryption and
decryption keys, i.e., EKey and DKey, respectively. Public keys are always of
type EKey, whereas DKey is the type for private keys. The correspondence
between a public and a private key is established by the name of those keys, i.e.,
: key A : EKey denotes the public key of A; key A : DKey denotes the private key
of A.

Symmetric cryptography can be simulated by using a pair of public/private
key.

In the recursive definition of Expr, Fst (resp., Snd) returns the first (resp.,
the second) element of a pair, while Encrypt (resp., Decrypt) returns the en-
cryption (resp., the decryption) of the first element with the second one, that
must be an encryption (resp., a decryption) key.

Message Enc [pstr] (msg) can be used to set up formulas. Let the reader
suppose that the formula is a typed message consisting of a pair, e.g., (name,
nonce) encrypted with the public key pkey. Syntactically, this corresponds to:
Enc[pkey](name, nonce) : Enc((Name * Nonce) * EKey).

B OpenCA specification

Here, an excerpt of an experiment file given as input to the tool are presented.
In particular, the excerpt is from the experiment file OpenCA describing the
enrollment procedure presented in Section 4, Fig. 1.

30

x : T1 y : T2

x, y : T1 ∗ T2
(1)

(x, y) : T1 ∗ T2

x : T1
(2)

(x, y) : T1 ∗ T2

y : T2
(3)

x : T y : EKey
Encrypt(x, y) : Enc(T ∗ EKey)

(4)
x : T y : DKey

Encrypt(x, y) : Enc(T ∗ DKey)
(5)

Encrypt(x, y) : Enc(T ∗ EKey) y : DKey
x : T

(6)
Encrypt(x, y) : Enc(T ∗ DKey) y : EKey

x : T
(7)

Fig. 9. An example inference system

B.1 OpenCA experiment file

<FORMULA>
Enc[pk_ca](u_name,pk_x) : Enc((Name * EKey) * DKey) |
Enc[pk_ca](x_name,pk_u) : Enc((Name * EKey) * DKey)
</FORMULA>

<KNOWLEDGE>
pk_c1 : EKey; pk_c2 : EKey; x_name : Name; x_pin : Pin;
pk_x : EKey; pk_x : DKey; Enc[pk_gov](x_name):
Enc(Name * DKey); pk_u : EKey; u_name : Name
</KNOWLEDGE>

<HIDE_CHANNELS>
c4,c5
</HIDE_CHANNELS>

<SPEC>
Parallel

(* User *)
Send(c1, Encrypt((((u_name : Name, pk_u : EKey), u_pin : Pin),

Enc[pk_u](pk_u, n_u):Enc((EKey * Nonce)* DKey)),pk_c1 : EKey)).
Send(c2, (Enc[pk_gov](u_name), u_pin) : (Enc(Name * DKey)) * Pin).
Recv(c6, Y : (Enc((Name * EKey) * DKey))).0

And

(* CA *)
Recv(c4, Z : Enc ((((Name * EKey) * Pin) *

Enc ((EKey * Nonce) * DKey)) * DKey)).
If Deduce (Z1 = Decrypt (Z, pk_lra : EKey)) Then

(* verify LRA signature *)
If Deduce (M = Snd (Fst (Z1))) Then

(* retrieve user public key *)
If Deduce (M1 = Decrypt (Snd (Z1), M)) Then

(* decrypt SPKAC with user public key *)
If (M = Fst(M1)) Then

(* equalities of public keys *)

31

If Deduce (Z2 = Fst (Z1)) Then
(* retrieve name_u, pk_u *)

Send(c5, Encrypt (Z2 , pk_ca : DKey)).0
(* release certificate *)

End Deduce
End If

End Deduce
End Deduce

End Deduce

And
(* Enrollment Server *)
[...]

And
(* RA Server *)
[...]

And
(* LRA Operator *)

Recv(c2, Z : Enc ((Enc(Name * DKey) * Pin) * EKey)).
If Deduce (X = Decrypt (Z , pk_c2 : DKey)) Then
If Deduce (Z1 = Decrypt (Fst X , pk_gov : EKey)) Then

(* verify the identity card *)
Send(c31, Encrypt ((Z1, Snd X), pk_c3 : EKey)).

(* name and pin to RA *)
Recv(c32, Z2 : Enc ((((Name * EKey) * Pin) *

Enc((EKey * Nonce) * DKey)) * EKey)).
If Deduce (Z2_p = Decrypt (Z2 , pk_c3 : DKey)) Then

If (Z1 = (Fst (Fst (Fst Z2_p)))) Then
(* check name_u *)

If (Snd X = (Snd (Fst Z2_p))) Then
(* check pin_u *)

Send(c33, Encrypt (Encrypt (Z2_p, pk_lra : DKey),
pk_c3: EKey)).0

End If
End If

End Deduce
End Deduce
End Deduce

End Parallel
</SPEC>

32

