promoting access to White Rose research papers

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Software Testing,
Verification and Reliability.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78802

Published paper

Simons, A.J.H. (2006) A theory of regression testing for behaviourally compatible
object types. Software Testing, Verification and Reliability, 16 (3). 133 - 156.
ISSN 0960-0833

http://dx.doi.org/10.1002/stvr.349

White Rose Research Online
eprints@whiterose.ac.uk

mailto:eprints@whiterose.ac.uk
http://eprints.whiterose.ac.uk/
http://eprints.whiterose.ac.uk/78802
http://dx.doi.org/10.1002/stvr.349

A Theory of Regression Testing for Behaviourally

Compatible Object Types

Anthony J H Simons
Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.

Abstract

A behavioural theory of object compatibility is presented, which has implications for object-
oriented regression testing. The theory predicts that only certain models of state refinement
yield compatible types, dictating the legitimate design styles to be adopted in object
statecharts. The theory also predicts that conformity-testing using regression tests is
inadequate. Functionally complete test-sets that are applied as regression tests to subtype
objects are usually expected to cover the functionality of the original type, even though they
are clearly not expected to cover extra functionality introduced in the subtype. However, such
regression testing is proven to cover strictly less than the original state space in the new
context and so provides much weaker confidence than expected. A different retesting model
is proposed, based on full automatic test regeneration from the subtype’s specification. This
method can guarantee equivalent levels of confidence after retesting. The behavioural

conformity desired by regression testing can then be proven by verification in the theory.

Keywords

Object-oriented, behavioural subtyping, state refinement, state-based testing, regression

testing, testing adequacy.

1 Introduction

Practical object-oriented unit testing is influenced considerably by the non-intrusive testing
philosophy of McGregor et a/ [1, 2]. In this approach, every object under test (OUT) has a
corresponding test-harness object (THO), which encapsulates all the test-sets separately. This

separation of concerns is the main motivation for McGregor’s parallel design and test

architecture, in which an isomorphic inheritance graph of test harness classes shadows the
graph of production classes [2]. This embodies the beguiling intuition that, since a child class
is an extension of its parent, so the test-sets for the child are extensions of the test-sets for the
parent. The intended advantage of parallel design and test is that the effort invested in
creating standard test-sets is not wasted. Test-sets can be inherited from the parent THO and
applied, as a suite, to the child OUT in a kind of regression test, to ensure that the child class
still delivers all the functionality of the parent. While it is clearly understood that the child
THO will supply additional test-sets to exercise methods introduced in the child OUT [1, 2],
the fact of encapsulating the inherited tests as a suite is shown below to be significant.
Contrary to intuition, retesting with this suite does not confirm the behaviour of the parent in
the child, since it can be proven (see section 4.2) that the saved test suite exercises strictly less

of the parent’s state space in the child than it originally exercised in the parent.

More recently, the JUnit tool has fostered a similar strategy for re-testing classes that are
subject to continuous modification and extension [3, 4]. JUnit allows programmers to
develop test scripts, which are converted into suites of methods behind the scenes. These are
executed on demand, to test objects and to re-test modified or extended versions of those
objects. One of the key benefits of JUnit is that it makes the re-testing of modified objects
semi-automatic, so it is widely used in the eXtreme Programming (XP) community, in which
the recycling of test-sets has become a major part of the quality assurance strategy. While XP
is to be commended for putting rigorous testing back on the popular agenda, it is difficult to
identify precisely what XP expects to gain from its retesting strategy, which seems to address
both sociological and technical concerns. Up to three possible reasons for retesting can be

inferred from the standard informal account [5].
Initially, test creation takes the place of writing a specification:

“Development is driven by tests. You test first, then code. Until all the tests run, you
aren’t done. When all the tests run, and you can’t think of any more tests that would

break, you are done adding functionality” [5], p9.

Test creation is manual, with test cases selected by human intuition. This can provide good
diagnostics for anticipated fault classes, but no absolute guarantee of test completeness or
correctness after testing. The general position seems to be that writing more tests

progressively reduces the defect rate to a statistically acceptable level [5].

page 2

The value of automated retesting is partly psychological, creating a sense of well-being and
confidence in the programmer and in the customer. In the JUnit community, programmers

talk of “clicking the test-button and waiting for the test-result bar to turn green”:

“I just wanted a little jolt of confidence. Seeing that the tests still ran gave me that”

[5], p46.

“You feel good when you see all the tests running.” ... “The customer feels good

about the system when they see all of their tests running” [5], p66.

A second motivation for retesting is to engage in fault detection. It is logically sound to infer
that, if a test fails, then a fault has been introduced. However, it is not logically sound to infer

that, if all the tests succeed, then no additional faults have been introduced:

“When the machine is free, a pair with code to integrate sits down, loads the current
release, loads their changes (checking for and resolving any collisions), and runs the

tests until they pass (100% correct)” [5], p60.
“You can run the tests quickly so you know you haven’t broken anything.” [5], p68.

This is starting to move into dangerous territory, since it is tending towards claiming that the
program has not broken after successful retesting (faults may have been introduced in the
original functionality that the tests did not detect — see section 4.2). Such false confidence is

encouraged by the ready availability of automatic retesting tools:

“Tests must be automatic, returning an unqualified thumbs-up/thumbs-down

indication of whether the system is behaving” [5], p116.

“When I have written all the tests I can imagine could possibly break and they all pass,

I’m certain my code is correct” [6], p101-102.

This reveals the third motivation for retesting, which is to confirm the correct behaviour of
modified systems. In XP there is at least a strong expectation (if not an outright claim) that
automated unit and integration testing provides protection against software entropy, allowing
all of the programmers to modify each other’s code freely, so long as each modification passes

all the original tests:

page 3

“After they have added a feature, the programmers ask if they can now see how to
make the program simpler, while still running all of the tests. This is called

refactoring” [5], p58.

“Unit tests enable refactoring as well. After each small change the unit tests can verify

that a change in structure did not introduce a change in functionality” [7].

There are two sides to this kind of claim. Firstly, if the modified code fails any tests, it is
clear that faults have been introduced, so there is some benefit in reusing old tests as
diagnostics. Secondly, there is the implicit assumption that modified code which passes all
the tests is still as secure as (i.e. no more defective than) the original. Recycled tests are
implicitly being used for a stronger purpose, as confirmation of a certain positive level of

correctness.

This unsound expectation motivated the current investigation. If a near-perfect unit testing
method were found, that could offer measurable guarantees after testing, how would this be
affected by regression? How much of a modified or refined object could be tested effectively
by saved test suites? Can saved test-sets be extended in any simple way to test modified
objects? The findings show that the coverage of regression tests can be quantified with
respect to a formal model; but that the confidence offered by regression testing is strictly less
than what intuition expects. In place of regression testing, a new retesting paradigm is
proposed, which is based on regenerating test-sets automatically from refined specifications,

which are then proven compatible with original specifications.

In section 2, a state-based theory of object refinement is presented, which encompasses object
extension with subtyping, the concrete realisation of abstract interfaces and incremental
redesign with unchanged behaviour. The theory predicts that only certain models of state
refinement yield compatible types, dictating the legitimate design styles to be adopted in
object statecharts. In section 3, the object X-machine theory of complete functional testing is
presented. A formula is used to generate increasingly more powerful test-sets from a state-
based specification that can guarantee the correctness of the tested object’s state-related
behaviour, under progressively weakening assumptions about the quality of its
implementation. In section 4, the theory of refinement is used to predict that conformity-
testing using regression tests is inadequate. Functionally complete test-sets that are applied as

regression tests to subtype objects are usually expected to cover the state-space of the

page 4

supertype in the subtype object. However, such testing is proven to cover strictly less of the
original object’s state space in the new context and so provides much weaker confidence than
expected. Objects that pass the recycled tests may yet contain introduced faults, which are
undetected. In section 5, it is found that there is no simple way to extend encapsulated test
suites to achieve coverage in modified objects. Instead, the complete test generation approach
is used to regenerate tests for arbitrary state-based specifications, obtaining predictable and
repeatable levels of confidence after testing. In combination with verification in the formal
model of behavioural compatibility, this satisfies the requirement for a testing method that can
certify the conformant behaviour of a modified object, with respect to an original

specification.

2 A Theory of Compatible Object Refinement

In classical automata theory, the notion of machine compatibility is judged by comparing sets
of traces, sequences of labels taken from transition paths computed through the machines in
question [8, 9]. Two machines are deemed equivalent if their trace-sets are equivalent. A
machine is behaviourally compatible with another if its trace-set includes all the traces of the
other, that is, for every trace in the protocol of the reference machine, such a trace also exists
in the protocol of the compared machine. Object-oriented design methods [10, 11] include
object statecharts, which are influenced by Harel’s statecharts [12] and SDL [13]. These
notations are more complex than simple finite state automata. Equivalence and compatibility
between statecharts are judged by considering syntactic relations between the transformed

state spaces, from which the trace behaviour follows.

21 McGregor’s Statechart Refinements

McGregor et al. proposed one of the early theories of object statechart refinement [14, 15]. In
McGregor’s model, object states derive from the object’s stored variable values, as seen
through observer methods. The machines have Mealy-semantics, with quiescent states and
actions on the transitions, representing the invoking of methods. Figure 1 illustrates a
contemporary reworking of McGregor’s three main structural refinements, to allow

comparison with trace models.

[Figure 1 : Insert figure and caption as close as possible to here]

page 5

These kinds of refinement were deemed compatible because they observed the rules:

e all states in the base object are preserved in the refined object;

e all introduced states are wholly contained in existing states;

e all transitions in the base object are preserved in the refined object.

These structural refinements may be compared with trace models. In figure 1, the traces of
MO are the set {<>, <a>, <a, b>}, where <a, b> is a sequence of method invocations in the
protocol of M0. M]I adds an extra method c to the interface of M0. This is a derived method,
analogous to function composition [16], that computes a more direct route to the destination
state S3. The traces of M1 are {<>, <a>, <a, b>, <c>} so it is clear that this includes the

traces of MO.

M?2 adds two extra methods d and e, which examine state S2 at a finer granularity. S2 is
completely partitioned into substates S2.7/ and S2.2. Since states are abstractions over variable
products [14], this is equivalent to dependence on disjoint subsets of variable values. The
usual statechart semantics of M2 is that entry to S2 implies entry to the default initial substate
S2.1; and the exit transition b from S2 preempts other substate events. The statechart may
therefore be flattened to a simple state machine, with transition a leading directly from state
S1 to S2.1 and an exit transition b from both substates S7.7/ and S/7.2 to state S3. The traces of
M2 are infinite (due to the infinite alternation of d, e), but include {<>, <a>, <a, b>, <a, d>,

<a, d, b>, <a, d, e>, <a, d, e, b>, ...} and so include all the traces of M0.

M3 introduces concurrent states S4, S5 and extra methods d and e which depend on the new
states. This represents the definition of new variables in the object subtype, together with new
methods whose behaviour is orthogonal to existing behaviour. The usual statechart semantics
is that both machines execute concurrently. Formally, this is equivalent to a flat state machine
containing the product of the states of the two concurrent machines, which in this paper is
denoted by: {S1/4, §2/4, S3/4, S1/5, S2/5, S3/5}. The traces of M3 are infinite, but include
{<>, <a>, <d>, <a, d>, <d, a>, <a, b>, <d, e>, <a, d, e>, <d, e, a>, <a, d, b>,...} and so

include all the traces of MO.

page 6

2.2 Cook and Daniels’ Statechart Refinements

In their Syntropy method [17], Cook and Daniels permit further extensions to statecharts.
Their full set of refinements includes (p207-8): adding new transitions, adding new states,
partitioning a state into substates, splitting transitions either at source or destination substates,
retargeting transitions onto destination substates and composition with concurrent machines.
Figure 2 illustrates the three main kinds of transformational refinement not already covered

above.
[Figure 2 : Insert figure and caption as close as possible to here]

These refinements may also be compared with trace models. M4 refines M0 by adding a new
method c leading to a new state S4. This new state represents the addition of object variables,
but unlike the case M3, the associated behaviour is not orthogonal, but tightly coupled to state
S1. The state S4 is sometimes described as a new external state, to distinguish this from a
new substate, of the kind in M2. The traces of M4 are the set {<>, <a>, <a, b>, <c>} and so
include the traces of M. However, this refinement breaks the second of McGregor’s rules

about new states being introduced as wholly contained substates.

M5 refines M0 by splitting the exit transition b, which no longer proceeds from the S2 state
boundary, but from the individual substates S2.7 and §2.2. This represents the redefinition of
the method b in the refinement, to depend disjointly on the introduced substates. The overall
response is equivalent to the original b. The traces of M5 are {<>, <a>, <a, b>, <a, d>, <a,
d, b>} and so include the traces of M0. By the usual semantics of object statecharts, an exit
transition from a superstate boundary is equivalent to exit transitions from every substate. It is

therefore inevitable that state partitioning will split exit transitions.

Cook and Daniels [17] also allow the symmetrical case, splitting entry transitions to target
different destination substates. Mutually exclusive and exhaustive guards are introduced to
distinguish which of the substates should be reached by each partial transition. However,
fairness in partitioning incoming transitions to all substates is later shown to be irrelevant in
the retargeting rule. M6 refines M0 by retargeting the transition a onto an arbitrary substate of
S2. The state S2.2 was chosen as the target in this example simply to illustrate how this is
different from the default initial substate S2./, even though the model now cannot enter S2. /.

The traces of M6 are {<>, <a>, <a, b>} and so are exactly the traces of M0.

page 7

According to the classical theory of trace inclusion, all of the refinements M7-M6 may be
substituted in place of M0 and will exhibit identical trace behaviour in response to M0’s
events. However, it is argued below that this is an insufficient guarantee of behavioural
compatibility in object-oriented programming, where objects are aliased by handles of

multiple types. For this, a stronger theory is required.

2.3 Behaviourally Compatible Statechart Refinement

The fundamental philosophical issue to decide in the theory is how to treat the introduction of
new variables in subtype objects. Do these variables correspond to missing pieces of the
object’s earlier state, such that their concatenation in the subtype gives rise to brand-new
external states (like M4 above)? Do these variables already exist in virtuo at the abstract
level, in which case their concrete exposure in the subtype creates new substates (like M2
above)? Are these variables orthogonal and so give rise to concurrent states in the subtype,

equivalent to state products (like M3 above)?

These different views of state refinement are in conflict. To help resolve the issue, the
contrasting refinements M2, M3 and M4 are examined in more detail. The M3 refinement can
be shown to be more general than M2. By flattening M2, a statechart is obtained in which all
a-transitions target the default initial substate, S2./. The product machine obtained by
flattening the M3 refinement is more sophisticated, since the a-transitions go from S7/4 and
S1/5 to §2/4 and S2/5 respectively. M3 is more sensitive to orthogonal behaviour than M2. It
is reasonable to assume that subtype objects must exhibit orthogonal behaviour at least some

of the time, so the M3 refinement is preferred over M2.

Both M3 and M2 assume that introduced state variables are exposed as substates of existing
states. This contrasts with M4, which assumes that entirely new states may be introduced. In
M4, the c-transition takes an object entirely out of the S/ state, whereas in M3, the d-transition
still leaves the object in its S/ state (going from S7/4 to S1/5). This means that in all contexts
and under all firings of d- and e-transitions, the M3 object can be abstracted to a M0 object,
whereas this cannot be done for a M4 object. Abstracting away from M4 in state S4 leaves an
object in no recognizable M0 state, and furthermore the object will deadlock in this state for
any attempt to fire a-transitions. In terms of the mt-calculus process algebra [18], M3 strongly

simulates M0, whereas M4 only weakly simulates M0. This is discussed in section 5.4 below.

page 8

Since refinements like M3 must eventually be expected, in which full state products are
computed, the notion of hierarchical superstates encapsulating substates, in the style of A2,
becomes moot. It is more sensible to think of the old states as being completely partitioned
into new states. Figure 3 illustrates this in a more compelling way. Here, L2 is the refinement
resulting from the concurrent composition of L0 and LI. However, it is irrelevant whether L0
is the basis and L/ is the supplement, or vice-versa. Whereas in figure 1 it was tempting to
view composition as ordered, such a view cannot be taken here. Accordingly, it cannot be
said that any particular superstate hierarchy is more valid. So, superstates are discarded in
favour of regions, intersecting areas enclosing states that share some common transition
behaviour. In figure 3, regions are shown as dashed outlines. Four intersecting regions can be

identified in L2 that correspond to the pairs of simple states in L0 and L1.

[Figure 3 : Insert figure and caption as close as possible to here]

The process of refining a state machine then becomes a matter of turning states into regions,
whose enclosed states completely partition the original unrefined state. After this, the main
obligation is to ensure that all the transition behaviour of the base object is preserved in the
refined object. Partitioning a state will always split outgoing transitions, for example, the a-
transition from S/ is turned into a pair of partial a-transitions from S7/3 and S//4. Since
orthogonal behaviour is assumed, these also target separate partitions of S2, the states S2/3
and S2/4. However, what if the behaviours of ¢, d are not entirely independent of g, b? In this

case, incoming transitions might be retargeted onto different states.

Let a region correspond to a state that is being refined. Retargeting has no adverse effect on
the validity of the refinement, so long as the transition retargets a state within the same region.
Suppose the a-transitions were retargeted onto different states within S2. No matter which
target states within region S2 are chosen, it is still possible to abstract away to S2. In all cases,
the partial a-transitions would be merged in a single transition from S7 to S2. Retargeting
may select an arbitrary state, or combination of states within the destination region.

Supposing now that the c-transition from S//3 were retargeted outside the S/ region, to S2/4,
within the different region S2. The ¢ message now interacts unfavourably with the alternating
behaviour of a, . This means that a sequence <c, a> will deadlock from S§7/3. While this
modification is not compatible with L0, it is compatible with L/. Retargeting must therefore

be considered with respect to the compatibility relation desired between specific machines.

page 9

From these considerations, a simplified set of rules for state and transition refinement may be
obtained. Note that this approach comes entirely out of a theory of state partitioning, so it
belongs alongside models of data refinement (see other comparisons in section 2.4). The rules
for statechart refinement are expressed operationally, to provide practical guidelines for
engineers using a statechart design tool (following the style of McGregor, Cook and Daniels).
With respect to the statechart for a given object type, the statechart for a compatible object
may introduce additional states, corresponding to the exposure of extra variable products, and
additional transitions, corresponding to the introduction of new methods, so long as the

following conditions are observed:

e Rule 1: new states are always introduced as complete partitions of existing states,

which become enclosing regions;

e Rule 2: new transitions for additional methods do not cross region boundaries, but

only connect states within regions;

e Rule 3: refined transitions crossing a region boundary completely partition the old

entry/exit transitions of the original unrefined state;

e Rule 4: refined transitions within a region completely partition the old self-transitions

of the original unrefined state.

Rule 1 is the fundamental rule, which preserves the hierarchy of state abstractions. It confirms
McGregor’s second rule of statechart refinement [15]. It disallows the introduction of new
external states, so rules out Cook and Daniels’ refinement by extension (such as M4) [17].
Rule 2 defines limits on state retargeting for new methods, with respect to the chosen
compabitility relationship. Section 5.4 discusses how these two rules relate to strong
simulation. Rule 3 captures all of Cook and Daniels’ rules about transition splitting and
retargeting within a superstate (a region, in our approach). The important generalisation is the
complete partitioning of transitions, which ensures that the set of new transitions behaves
exactly like the old single transition. Rule 4 is a similar rule to ensure that self-transitions are
preserved explicitly in the refinement. These two rules essentially describe the faithful
replication of transitions for states that have been partitioned. They ensure that the refined

machine is a non-minimal simulation of the original machine.

page 10

24 Comparisons with Other Refinement Approaches

Under the assumptions of data refinement, the four rules enforce a strict behavioural
consistency between the refined and original state machines, analagous to strong simulation
(see section 5.4) in which the existing behaviour is guaranteed in all future contexts of usage
(no deadlocks). This is stronger than some other trace-based models of consistency, which
only look at model executions in the absence of a theory of state and state generalisation. The
invocational consistency of Ebert and Engels [19] requires the subtype to contain all the traces
of the supertype. This is equivalent to Cook and Daniels’ position, described above [17],
which only guarantees existing behaviour in the original context of usage. Ebert and Engels’
observational consistency is weaker still, since it merely requires all the supertype’s traces to
be derivable by censoring the subtype’s traces to remove methods that were introduced in the

subtype [19].

Other work in this area has independently arrived at similar conditions for data refinement,
using formal models of statecharts. Rules 1, 3 and 4 would seem to correspond closely to the
adequacy conditions of Lano et al. [20]. Rule 2 would seem to correspond to Fiadeiro and
Maibaum’s locality condition [21]. Complete partitioning is a general condition for adequacy
and can be derived as a necessary condition for the theory of a subclass statechart to validate
all the axioms of a superclass statechart. It is related to the method subtyping rule [22] which
requires the precondition of a refined operation to be no stronger than the precondition of the

operation that it replaces [23].

The data refinement model requires certain reasonable assumptions to be made. Methods are
terminating, rather than divergent. If this were not so, the introduction of a nonterminating
method in a subclass could break a system that used the subclass in the parent’s context.
(Arguably, this would also break rule 2, since the transition would have no destination).
Objects execute within a single process. If this were not so, a subclass object might not be
able to respond to a parent method if it were already livelocked in a parallel process. Other
process algebra models with refusals and divergences would be needed to handle these more
difficult cases. Other kinds of refinement are possible, including changing the granularity of
transitions, splitting one transition into a chain that achieves the same behaviour, or
distributing the behaviour of one object over several objects. This requires further rules to

relate the composition of behaviours back to a facade object (in the sense of the Facade

page 11

design pattern [24]) that could be substituted according to these rules. In general, the
transitions in object-oriented software are complex, involving messages to further objects,
such that the behaviour of a single object depends on many others. Nonetheless, provided that
the states represented in a statechart are directly derivable from the data that an object controls

(this accounts for simple and facade objects) then the above rules will apply.

3 The Generation of Complete Unit Test-Sets

In state-based specification and testing approaches [25, 26, 15, 27], the notion of complete test
coverage is based on the exhaustive exploration of states and transitions. However, the nature
of the guarantee obtained after testing varies from approach to approach. The following is an
object-oriented adaptation of the X-Machine testing method [27, 28], which offers stronger
guarantees than other methods, in that its testing assumptions are clear and it tests negatively
for the absence of all undesired behaviour as well as positively for the presence of all desired
behaviour. State-based specifications are developed for individual object types and abstract
interface types. Testing may then be carried out with respect to these specifications. Of
particular interest is the question whether a complete test-set generated for a given type may

be used to test a behaviourally compatible subtype.

3.1 State-Based Specification

The state-based specification of an object type presumes that the object exists in a series of
states. These are chosen by the designer to reflect modes in which the object’s methods react
differently to the same message stimuli (the property of having state is due to state-contingent
response and has nothing to do with the object having quiesecent periods [11]). The possible
states of an object type ultimately derive from different ways of partitioning the Cartesian
product of its attribute domains [14, 15]. More abstractly, the states of an interface type may
be characterised as a complete partition of the product of the ranges of its (abstract) access
methods. Since access methods yield a projection on the concrete state of any compatible
object, the partitions formed by abstract states are bound to include the object’s concrete
states. This motivates the establishment of formal compatibility relations between abstract

interface machines and the concrete object machines, which refine them.

[Figure 4 : Insert figure and caption as close as possible to here]

page 12

Figure 4 illustrates the state-based specification for a Stack. This could be considered as
specifying a concrete object type, a linked Stack existing in the Empty and Normal states. The
preferred interpretation is that it specifies an abstract interface type, existing in at /least these
two states, which are subject to refinement in subtypes. A syntactically correct state transition
diagram has a unique transition to the initial state (to Empty, in figure 4) and may have one or
more transitions to a final state, a mode in which all behaviour is terminated (in figure 4, the
pop transition from Empty raises an exception, so leads to a final error state denoting a
corrupted object representation). For completeness, the state transition diagram must define a
transition for each method in every state. However, suitable conventions may be adopted to
simplify the drawing of the diagram, in particular, to establish the meaning of missing
transitions. Figure 4 is a simplified diagram, in which the omitted transitions for access

methods size, empty and top may be inferred implicitly as self-transitions in every state.

It must be possible to determine the desired behaviour of the object, in every state, and for
each method. If more than one transition with the same method label exits from a given state,
the machine is nondeterministic. Qualifying the indistinguishable transitions with mutually
exclusive, exhaustive guards will restore determinism (in figure 4, ambiguous pop transitions
exiting the Normal state are guarded). Certain design-for-test conditions may apply, to ensure
that an exemplar test object can be driven deterministically through all of its states and
transitions [27]. For example, in order to know when the final pop transition from Normal to

Empty is reached, the accessor size is required as one of Stack’s methods.

3.2 State-Based Test Generation

When testing from a state-based specification, the objective is to drive the object under test
(OUT) into all of its states and then attempt every possible transition (both expected and
unwanted) from each state, checking afterwards which destination states were reached. The
OUT should exhibit indistinguishable behaviour from the specification, to pass the tests. It is
assumed that the specification is a minimal state machine (with no duplicate, or redundant
states), but the tested implementation may be non-minimal, with more than the expected

states. These notions are formalised below.

The alphabet is the set of methods m € M that can be called on the interface of the OUT

(including all inherited methods). The OUT responds to all m € M, and to no other methods

page 13

(which are ruled out by the syntactic checking phase of the compiler). This puts a useful

upper bound on the scope of negative testing.

The OUT has a number of control states s € S, which partition its observable memory states.
A control state is defined as an equivalence class on the product of the ranges of the OUT’s
access methods. If a subset A — M of access methods exists, then each observable state of the
OUT is a tuple of length |A|. Formally, tuples fall into equivalence classes under exhaustive,
disjoint predicates p : Tuple — Boolean, where each predicate p corresponds to a unique state
s € S. In practice, these predicates are implemented as external functions p : Object —
Boolean invoked by the test harness upon the OUT : Object, which detect whether the OUT is

in the given state using some combination of its public access methods.

Sequences of methods, denoted <m;, my, ...>, m € M, may be constructed. Languages M°,
M, M?, ... are sets of sequences of specific lengths; that is, M” is the set of zero-length
sequences: {<>} and M is the set of all unit-length sequences: {<m,>, <m,>, ...}, etc. The
infinite language M* is the union M” U M' U M? U ... containing all arbitrary-length
sequences. A predicate language P = {<p;>, <p,>, ...} is a set of predicate calls, testing

exhaustively for each state s € S.

In common with other state-based testing approaches, the state cover is determined as the set
C < M* consisting of the shortest sequences that will drive the OUT into all of its states. C is
chosen by inspection, or by automatic exploration of the model. An initial test-set T aims to
reach and then verify every state. States are verified by executing every state predicate for
each reached state, expecting only one predicate to yield true and the rest false. This is
accomplished by computing test sequences: C ® P, where ® is the concatenated product,

which appends every sequence in P to every sequence in C.

T'=C®P)]

A more sophisticated test-set T' aims to reach every state and also exercise every single
method in every state. This is constructed from the transition cover, a set of sequences K' =
C U C ® M', which includes the state cover C and the extra product term C ® M', denoting
the attempted firing of every single transition from every state. The states reached by the

transition cover are again validated by concatenating all singleton sequences <p> e P.

page 14

T'=(CuC®M")®P (2)

An even more sophisticated test-set T* aims to reach every state, fire every single transition
and also every possible pair of transitions from each state. This is constructed from the switch
cover, an augmented set of sequences K> = C U C ® M' U C ® M?, which explores every
single and every pair of transitions from each state, and, as above, the product with P to verify
all reached states. In this, the extra product term C ® M? denotes the attempted firing of all

pairs of transitions from every state.

= |\ |\
T’=(CuUCORM'UCO®M)®P (3)

In a similar fashion, further test-sets are constructed from the state cover C and low-order
languages M € M*. The reached states are always verified using <p> € P, for which exactly
one should return true, and all the others false. The desired Boolean outcome is determined
from the model. Each test-set subsumes the smaller test-sets of lesser sophistication in the
series. In general, the series can be factorised and expressed for test-sets of arbitrary

sophistication as:

T"=CcoM'uUM UM ..M")®P 4)

For the Stack shown in figure 4, the alphabet M = {push, pop, top, empty, size}. Note that
new is not technically in the method-interface of Stack. It represents the default initial
transition, executed when an object is first constructed, which in the formula is represented by
the empty method sequence <>. The smallest state cover C = {<>, <push>}, since the “final
state” can be treated as a required exception raised by pop from the Empty state. Other
sequences are calculated as above. Test-sets generated from this model may be used to test
any Stack implementation that has identical states and transitions, for example, a LinkedStack,

which uses a linked list to store its elements.

3.3 Test Completeness and Guarantees

The test-sets produced by this formula have important completeness properties. For each

value of k, specific guarantees are obtained about the implementation, once testing is over.
The set T° guarantees that the implementation has af least all the states in the specification.
The set T' guarantees this, and that a minimal implementation provides exactly the desired

state-transition behaviour. The remaining test-sets T* provide the same guarantees for non-

page 15

minimal implementations, under weakening assumptions about the level of duplication in the

states and transitions.

A redundant implementation is one where a programmer has inadvertently introduced extra
“ghost” states, which may or may not be faithful copies of states desired in the specification.
Test sequences may lead into these “ghost” states, if they exist, and the OUT may then behave
in subtle unexpected ways, exhibiting extra, or missing transitions, or reaching unexpected
destination states. Each test-set T* provides complete confidence for systems in which chains
of duplicated states do not exceed length k-1. For small values of k, such as k=3, it is possible
to have a very high level of confidence in the correct state-transition behaviour of even quite

perversely-structured implementations.

Both positive and negative testing are achieved. As an example of the latter, it is confirmed
that sequences of access methods do not inadvertently modify object states. Testing avoids
any uniformity assumption [29], since no conformity to type need be assumed in order for the
OUT to be tested. Likewise, testing avoids any regularity assumption that cycles in the
specification necessarily correspond to implementation cycles. When the OUT “behaves
correctly” with respect to the specification, this means that it has all the same states and
transitions, or, if it has extra, redundant states and transitions, then these are semantically
identical duplicates of the intended states in the specification. Testing demonstrates full

conformity up to the level of abstraction described by the control states.

The state-based testing approach described here is an adaptation of the X-Machine approach
for complete functional testing [27, 28], replacing input/output pairs with method invocations.
The need for “witness values” in the output is eliminated by the guaranteed binding of
messages to the intended methods in the compiler. The test generation method adapts Chow’s
W-method for testing finite state automata [25]. In Chow’s method, states are not directly
inspectable. Instead, reached states are verified by attempting to drive the implementation
through further diagnostic sequences chosen from a characterisation set W < M*, each state
uniquely identified by a particular combination of diagnostic outcomes. Here, it is guaranteed
that the OUT’s state is inspectable, since it must be characterised by some partition of the

product of the ranges of its access methods.

page 16

4. Object Refinement and Test Coverage

The notion of behaviourally-compatible refinement introduced in section 2 applies equally to
the realisation of interfaces in the UML sense that a concrete class implements an abstract
interface [11] and also to the specialisation of object subtypes. In both cases, the notion of
refinement is explained in terms of deriving a more elaborate state transition diagram by
subdividing states and adding transitions to a basic diagram. This paper also considers that an
incremental modification of an object that preserves all of its existing behaviour, in the sense
of XP’s incremental design with refactoring [5, 6], constitutes a refinement in the same sense.
Incremental modification in response to new requirements typically replaces simple solutions

with more complex ones, having more states and transitions.

At the unit-testing level, individual OUTs tend to become more complex. It is also possible,
when refactoring an entire subsystem [30, 5], for certain objects to become simplified, at the
expense of introducing new objects, or shifting the complexity onto other objects, or by
deleting unnecessary code. This not considered in any detail here, because it usually involves
altering interfaces at the unit level. However, if a collection of objects is refactored behind a

facade, this interface can be verified according to the theory of compatibility.

41 Refinement of More Concrete Specifications

Figure 5 illustrates the object statechart for a DynamicStack, an array-based implementation of
a Stack. This is taken to model a concrete refinement of the abstract Stack illustrated in figure
4, similar to the UML notion of realising an interface with a type that provides all the required
methods. To demonstrate that the DynamicStack can be plugged safely into a system that
requires at least an abstract Stack, the statechart in figure 5 must be proven compatible with
the statechart in figure 4, according to the behavioural theory. Alternatively, if figure 4 is
taken to represent the states and transitions of a concrete Stack with a linked list-based
implementation, then figure 5 can be understood as a change in implementation policy, similar
to incremental redesign in XP. In this case, the modified object must also be shown to be

substitutable for the original one.

[Figure 5 : Insert figure and caption as close as possible to here]

page 17

The main difference between the DynamicStack and the earlier Stack statechart is that the old
Normal state, now only shown as a dashed region, has been partitioned into the states
{Loaded, Full}, in order to model the dynamic resizing of the DynamicStack (push will
behave differently in the Full state, triggering a memory reallocation). This is a complete
partition (no other substate of Normal exists), so rule 1 is satisfied. No new methods are
introduced, so rule 2 is not applicable. This is a characteristic of refinements that exactly
satisfy an abstract specification. Even though no new methods are added, the partitioning of

states will result in the splitting of transitions for the existing methods.

The Normal state’s old entry and exit transitions now cross over the region boundary, reaching
the exposed Loaded state. The new pair of push, pop transitions exactly replaces the old pair
(without splitting), so rule 3 is satisfied. The Normal state’s old self-transitions are now
replicated inside the region, as a consequence of splitting the state. The former push transition
is first split in two (one replication for each new state) and then the transition from Loaded is
split again, with exclusive guards on size. Similarly, the former pop transition is replicated for
each new state and its former guard: size() > 1 is preserved in both states; however, the guard
need not be notated in the Full state, as there is no other conflicting pop transition. So, rule 4
is also satisfied. The refined DynamicStack implementation (in figure 5) is therefore

compatible with the original Stack interface’s behaviour (in figure 4).

4.2 Regression Test Coverage of Concrete Realisations

Next, the issue of regression test coverage is considered. Increasing the state-space has
important implications for test guarantees. Consider the sufficiency of the T test-set,
generated from the abstract Stack specification in figure 4. This robustly guarantees the
correct behaviour of a simple LinkedStack implementation with S = {Empty, Normal}, even in
the presence of “ghost” states. T? will include one sequence <push, push, push, isNormal>,
which robustly exercises <push, push> from the Normal state and will even detect a “ghost”
copy of the Normal state. A strong guarantee of correctness after testing may therefore be

given for a LinkedStack implementation.

In classical regression testing, saved test-sets are reapplied to modified or extended objects in
the expectation that passing all the saved tests will provide the same level of confidence in the

modified object after testing. If the Stack’s T* test-set (related to the switch cover criterion)

page 18

were reused to test a DynamicStack constructed with » > 3, so having all the states {Empzy,
Loaded, Full} and all the transitions shown in figure 5, the resizing push transition would
never be reached, since this requires a sequence of four push methods. To the tester, it would
appear that the DynamicStack had passed all the saved T? tests, even if a fault existed in the
resizing push transition. This fault would be undetected by the saved test-set. This provides
initial evidence that regression testing is less useful than generally supposed. Note that the
testing guarantee that applied in the original case is broken, despite the intention not to modify
any of the Stack’s abstract behaviour in the refinement. This is because the state space has

increased, resulting in more transitions to cover in the refinement.

4.3 Refinement of Extended and Subtype Specifications

A common refinement in object-oriented programming is subclassing, in which the subclass
extends its parent class, adding extra attributes and methods. The statechart for the subclass is
a refinement of the parent statechart, in which the extra attributes and methods result in a
partitioning of states and the introduction of new transitions for the extra methods. If the
subclass’s statechart can be proven compatible with the parent’s statechart, then it describes a
behavioural subtype, whose instances may be safely substituted where the parent type was
specified. However, subclass extensions may break the conditions for subtyping, if they
change the semantics of the parent’s methods. This is easily detected in the theory of

behavioural compatibility.

Figure 6 illustrates the development of a class hierarchy leading to concepts like the loaned
items in a lending library. The upper state machine describes the abstract behaviour of a
Loanable entity, which oscillates between its Available and OnLoan states. The lower state
machine describes a Loanltem entity that extends the Loanable entity. This is a product
machine (see section 2.3) with four states, resulting from the concurrent composition of the
Loanable machine with a supplementary Reservable machine (not illustrated), which, it may
be inferred, oscillates between Unreserved and Reserved states. The resulting four states are
named {OnShelf, PutAside, NormalLoan, Recalled}. However, in Loanltem, the behaviours

of loaning and reserving have been made dependent on each other.

[Figure 6 : Insert figure and caption as close as possible to here]

page 19

The refined Loanltem machine must be checked for behavioural compatibility with the
abstract Loanable machine. The four Loanltem states completely partition the two states of
Loanable, so rule 1 is satisfied. The new methods {reserve, cancel} introduced in Loanltem
stay within the prescribed region boundaries, so rule 2 is satisfied. This is a characteristic of
subclass refinements which orthogonally compose the behaviour of the parent (Loanable)
with the behaviour of the incremental extension (the putative Reservable, a kind of mixin-
class [31]). However, elsewhere in this example, behaviours are not completely independent.

In the subclass, the borrow method has been redefined to take reservations into account.

Considering now the splitting of transitions required by rule 3, whereas return has correctly
been split as a consequence of partitioning OnLoan into two states {NormalLoan, Recalled},
the refinement of the old borrow transition is more problematic. One partial transition from
OnShelf allows the loan to go ahead. The other partial transition from the PutAside state is
guarded, and only succeeds if the Loanltem is borrowed by the same person who reserved it
previously. While such behaviour is reasonable, it makes Loanltem incompatible with
Loanable. The refinement of the borrow transition breaks rule 3, since the partials are not a
complete partition of the original. From Loanable’s perspective, borrow always succeeds

from the Available state, whereas it sometimes fails for a Loanltem.

This illustrates how easy it is to make an adaptation in a subclass which breaks subtyping. In
formal terms, the redefined borrow has strengthened the precondition of the method it
replaces, which violates operation refinement. Strengthened preconditions can be related to
covariant argument redefinition [23], which is known to break subtyping [32]. In this
situation, a designer can either decide to accept that the subclass is not compatible with the
parent class and so refuse to allow programs to alias a Loanltem through a Loanable variable
(this can be enforced using private inheritance in C++, for example). Alternatively, the
specification of Loanable can be revisited and generalised to permit the desired compatibility,
which may be restored by adding a borrow transition from the Available state to itself, in the
Loanable abstract class, indicating the anticipated null operation. The abstract state machine
is then nondeterministic, since the choice of the successful or failing borrow transition cannot
yet be determined (it depends on information revealed in the subclass). This is formally
correct, and corresponds to axiomatic treatments in which the supertype is left deliberately
underspecified [23]. The programmer may still provide the obvious default implementation of

borrow in Loanable which always succeeds, since this satisfies the specification.

page 20

4.4 Regression Test Coverage of Extended Objects

Next, the extent of the coverage of extended objects provided by saved regression tests is
examined. The subtype-incompatible refinement of figure 6 will be considered, without the
suggested retrospective modification. Assuming that a T test-set is generated from the
Loanable specification in figure 6, this will robustly confirm whether borrow and return
succeed and fail correctly for a Loanable instance, even in the presence of “ghost” versions of
the OnLoan and Available states. Strong guarantees of correctness are offered by a successful

test outcome.

However, when the same tests are reapplied to the extended Loanltem, they will only cover
half of the partitioned states. The saved T test-set includes the sequences: {<isAvailable>,
<borrow, isOnLoan>, <return, exception>, <borrow, return, isAvailable>, ...} and naturally
no sequence will contain reserve or cancel, which are first introduced in the subclass’s
protocol. The saved test-set will therefore oscillate between the states {OnShelf,
NormalLoan} and will not reach the states {PutAside, Recalled}. Because of this, only half of
the borrow and return transitions will be exercised in the refinement, compared to all of them
in the original. This runs counter to the intuitions of programmers, who tend to believe that

regression tests exercise all of the parent’s functionality in the subclass.

Consider how serious this is. Partitioning states always results in splitting transitions. Every
pair of methods like {horrow, return} and {reserve, cancel} introduces further partitions in
every existing state. The proportion of the original transitions that are still covered by a saved
test suite falls off as a geometrically decreasing fraction in each successive refinement.
Contrary to popular expectations that recycled regression tests positively confirm the parent’s
behaviour in the subclass, regression tests actually cover significantly less of the parent’s
state-space in each successive subclass and may eventually cover only a trivial portion. To re-
emphasise the point, the failure exposed here has nothing to do with testing new methods that
are introduced in the subclass. It is clear that regression tests are not designed to do this.

Rather, the issue is that regression tests fail to test the original behaviour.

Finally, this example also demonstrates how regression testing cannot reliably determine
whether a refinement is compatible. If the designer expected borrow always to succeed, as it
does in Loanable, then no amount of testing with any saved test-set will reveal that borrow

sometimes fails in Loanltem. To reveal this requires a particular interleaving of methods from

page 21

Loanable and Loanitem. In practice, programmers write extra tests to do this, although
manual test creation is risky, since the appropriate interleaving may not be discovered. The

point here is that regression tests alone are insufficient.

5. Regression Testing versus Test Regeneration

The weakness in conventional regression testing comes from recycling saved test-sets as a
whole. In object-oriented testing, this culture goes back to the parallel design and test
architecture [1, 2] (see section 1), in which test-suites are saved as methods of the THO and
are inherited for reuse as a whole. Likewise, supplementary test-sets for the refined object are
encapsulated and may not interact fully with the original behaviour. The prospect of reusing
whole test-suites is so beguiling, that it is hard to refuse, especially after the effort invested in
developing the tests in the first place. In test-driven development with JUnit [3, 4], test scripts
are saved and recycled as a whole, in the expectation that this provides protection against the
effects of entropy in modified code. However, the theory of object state refinement presented
in this paper (see section 2 above) predicts that the entropy of modified objects may increase,

and not be detected, despite their passing all the saved tests.

5.1 Overestimation of Regression Test Coverage

Programmers tend to overestimate the effectiveness of regression testing. Naturally, they do
not expect the regression tests to exercise any new features introduced in the refinement. For
this, they develop additional tests, exercising the new features alone and in combination with
old features. However, they do expect the regression tests to exercise all of the original
features adequately, as demonstrated in some of the citations in section 1 above. In talking to

testers in industry, the author has found this fallacy to be quite persistent.

One explanation for this could be that programmers have a different mental model of how
modifications and extensions affect the state-space. This can be ascribed to an impoverished
view of refinement that corresponds to the discredited model M4 (see section 2.2 above), in
which new external states and transitions are added in a linear fashion to the original
machine. If this were the appropriate model, then clearly the saved tests would appear to
cover all of the parent’s state-space in the subclass. In reality, the state-space of the parent is

partitioned in the subclass, rather than extended, more like the model L2 (see section 2.3

page 22

above). This is what causes the progressive loss of coverage, as parent transitions are split
into partials, of which at most half are exercised in the subclass (and possibly fewer than this,

depending on how many times the state-space is partitioned by new methods).

Unfortunately, recycled test-sets always cover significantly less of the parent’s state-space in
the subclass than they did in the parent. As the state-space of the modified or extended object
increases, by a factor of two for each state subdivision, the confidence offered by retesting is
progressively weakened. The saved tests only cover a half, a quarter, an eighth, and so on, of
the original object’s state space in each successive refinement. This seriously undermines the
validity of popular regression testing approaches, which are based on the reuse of inherited

test-sets [1, 2] or saved and recycled test suites [3, 4].

Given the geometric decrease in coverage, it is difficult to quantify how useful the saved test-
sets are, if regression tests are a// that is available. One possible measure is the static
coverage of the saved test-set, expressed as the fraction of the original state space covered in
the refinement, by the same tests. However, this ignores the dynamic usage of the system.
Instead, a weighted statistical coverage of the saved test-set may be calculated from the
frequency that saved tests exercise used parts of the refined system, based on collecting sets of
traces from live usage of the refined system. This kind of reassurance is questionable, since

testing is incomplete and offers no useful guarantees.

5.2 Completeness of Regenerated Test Sets

To achieve complete coverage of the refined machine, it is vital to test systematically all the
interleavings of new methods with the inherited methods, so exploring the refined state-
transition diagram completely. This simply cannot be done reliably by human intuition and
manual test-script creation. Instead, the complete test-sets for refined object types, such as the
DynamicStack or the Loanltem introduced in section 4, must be regenerated from scratch,
using an algorithm based on the formula from section 3. If programmers are willing to accept
even simple specifications that idealise the behaviour of an object as a finite state machine,
this process can be fully automated, generating test-sets to the desired T', T?, T°... confidence
levels. This test-generation approach has been used successfully in testing automotive

systems with hundreds of thousands of states and millions of transitions [33].

page 23

Regenerated tests are not regression tests in the conventional sense, but all-new tests in which
the state-space of the refined OUT is fully explored. The tests must be regenerated from
scratch, because there is no predictable way in which the regenerated sequences could be
derived by extending the original test sequences, without reference to an exploration of the
derived object’s state space. For convenience’s sake, the additional tests required to test the
refined object could be isolated a posteriori by computing the set difference of the two test
sets: Tk(Reﬁned) - Tk(Basic), for some confidence level £, but this would still require
computing the refined set Tk(Reﬁned) from scratch, in any case. So, the cheapest policy is to

regenerate all-new tests for each refined specification.

However, regenerated tests do satisfy the expectations of regression testing, in that they test up
to the same confidence-levels as the original tests. In common with all test-sets generated
using the object X-machine method, regenerated tests provide specific guarantees for specific
amounts of testing. Because the test-sets are generated systematically, the tester may choose
whether to test using T', T2, T°.... etc. up to the desired level of & in the test generation
formula (see section 3.2). The significance of this is that the same levels of guarantee may be
provided for both the original and retested objects, something that is not possible with
conventional regression testing using recycled test-sets, for which the the level of confidence

is progressively weakened in each new context

Regenerating a test-set works equally well, whether or not the OUT is a behaviourally
compatible refinement of some original object, since the test-set is derived directly from the
refined specification. For this reason, the proposed test regeneration approach is robust under
all kinds of software evolution, whether this is by subclassing, by incremental design, by
refactoring or by simple textual editing of the OUT, and works independently of behavioural

compatibility, which must be judged separately.

5.3 Determining Behavioural Compatibility

According to the opinions cited in section 1, a major goal of regression testing is to provide
reassurance that a modified object is still behaviourally compatible with its unrefined
precursor. Regression testing seeks to confirm this by testing the refined object, until it passes
the saved tests [2, 3, 5, 6, 7]. However, this expectation was shown to be fallacious. Section

4.3 demonstrated how a subclass (Loaniltem) may violate the behaviour of its parent

page 24

(Loanable), by the redirection of just one of its transitions away from the semantically-
consistent target state (one of the three partials of the borrow transition). The regression tests
could not detect that the semantics of the object had changed (see section 4.4). However, the

rules for behavioural compatibility were able to determine this (see section 4.3).

This paper seeks to turn a number of regression-testing concepts on their head. Compatibility
cannot be assured directly through re-testing a modified object up to the original specification,
as is conventionally expected. Instead, compatibility can be assured by a combination of
testing up to the refined specification and then by verifying that the refined specification is
compatible with the original specification in a formal model. Figure 7 shows the difference

between the two philosophies.
[Figure 7 : Insert figure and caption as close as possible to here]

Compatibility is defined in this paper as a verifiable refinement relationship between two
object specifications. Testing only has the power to confirm that each OUT conforms to its
own specification, using a specific test-set generated from that specification (the B-test and R-
test sets in figure 7). The refined OUT is then proved compatible with the basic specification
by virtue of the transitive composition of the testing relationship (R-test conforms, in figure 7)
and the verification relationship (refines, in figure 7). This is a novel combination of formal

verification and practical testing.

The general rules for verifying compatible statechart behaviour were presented in section 2.3.
These rules provide a framework for comparing earlier work. A scale of strictness may be
established, from the weakest approach of trace censoring (cf. Ebert and Engels’
observational consistency [19]), via the intermediate frace inclusion of Cook and Daniels [17]
and classical automata theory [9] (cf. Ebert and Engels’ invocational consistency [19]), up to
the strictest state and transition partitioning approach adopted here, which includes
McGregor’s refinement rules [14, 15], the adequacy conditions of Lano et al. [20] and
Fiadeiro and Maibaum’s locality condition [21]. The difference between weak and
intermediate compatibility is the collapsing, versus the preservation of transition paths. The
key difference between intermediate and strict compatibility is the strict insistence that new

states are partitions of existing states.

page 25

Strict compatibility has important practical consequences, where objects are aliased
simultaneously by handles of many types. This is in fact quite common in object-oriented
design, where generic algorithms are factored into parts introduced at different levels in the
inheritance hierarchy (see the Template Method design pattern [24], p335). In this context, an
object may be manipulated by more than one protocol, and messages from the different

protocols may be interleaved, which may sometimes cause deadlocks [34, 35].

5.4 Comparison with Weak and Strong Simulation

The difference between strict and intermediate compatibility may be explained in terms of
concepts in process calculus. Cook and Daniels’ [17] examples of statechart refinement are
equivalent to the classical refinement of automata, which judges behavioural compatibility by
trace inclusion [9, 19]. Milner’s t-calculus [18] defines compatibility more subtly, taking into
account the effects of nondeterministic choice and invisible t-actions. Of particular interest is
the distinction between weak and strong simulation. An automaton weakly simulates another,
if its observed behaviour is identical, under the null assumption about invisible T-actions (viz.
that they do not affect behaviour). An automaton strongly simulates another, if its observed

behaviour is identical in all contexts, irrespective of the T-actions’ unseen behaviour.

Suppose that a subtype object is aliased through a supertype handle. An analogy with 7t-
calculus may be drawn by comparing the supertype’s protocol to visible actions, and the
subtype’s additional protocol to invisible t-actions (from the supertype’s point of view). So
long as the subtype object is manipulated on/y through the protocol of the supertype, it will
behave in a conformant way (under both intermediate and strict compatibility). However, if
the subtype object is also aliased by a subtype handle, it may be manipulated in ways that are
unforeseen by the supertype. Section 2.2 above showed how an M4 object (see figure 2) could
be manipulated through the protocol of M0, until it receives <c¢> through the M4 protocol, at
which point the M0 protocol deadlocks. M4 is therefore not strictly compatible with M0,
although it clearly includes the traces of M0. For this reason, M4 only weakly simulates MO.
By contrast, in section 2.3 the L2 object strongly simulates L0 (see figure 3). It always
behaves in the identical way to L0, even under arbitrary interleaving of messages from the L/

protocol (which are invisible from L0’s point of view).

page 26

The strict behavioural compatibility described in this paper is therefore like strong simulation,
because the protocol of the supertype is preserved, under arbitrary interleaving of subtype
protocols. This is achieved by making sure, in refinement rules 1 and 2, that invisible actions
cannot force a refined object into a state that is unrecognised by its supertype’s protocol. The
rules are therefore normative, since strong simulation immediately follows. This is a
significant advantage for designers, who may use the statechart refinement rules without

reference to a more detailed trace analysis.

5.5 Conclusion: Guarantees of Repeatable Quality

The goal of all verification and testing is to assure the quality of the software end product.
The analysis developed in this paper has seriously undermined the validity of conventional
regression testing as a quality control mechanism to confirm behavioural properties.
Regression testing can neither assure the conformant behaviour of modified or extended
objects up to some original specification, nor can it assure the correctness of inherited or
preserved functionality in extended objects. This is because the recycled tests exercise
significantly less of the original specification in the refinement than they did in the unrefined
precursor, such that modified and re-tested objects may be considerably less secure, for the

same testing effort.

By contrast, the theory of statechart refinement provides a strong guarantee of behavioural
compatibility. It is more expressive than Liskov and Wing’s behavioural subtyping [16],
which adds new transitions but admits no new states [34]. It eliminates protocol deadlock
under polymorphic aliasing, a stronger guarantee than that provided by some earlier statechart
refinement approaches [17, 19]. For non-divergent processes, the new rules are equivalent to
Milner’s strong simulation [18], guaranteeing conformant behaviour notwithstanding any
future actions taken in the protocols of subtypes. Having a practical means of guaranteeing
behavioural compatibility is a relatively new benefit for object-oriented programming, which

conventionally judges compatibility only in terms of interface matching.

To satisfy the requirement for a method that can test whether an object conforms to some
supertype specification, a new approach was developed. Complete functional test-sets are
regenerated systematically from each refined or extended statechart specification. Conformity

to a supertype specification is then assured by a combination of rigorously testing up to the

page 27

refined specification and then verifying in the theory that this conforms to the supertype
specification. In the test regeneration approach, it is possible to provide strong guarantees for
specific levels of confidence in the OUT once testing is over. Furthermore, after the OUT has
been refined, the same levels of confidence may be retained after re-testing using fully
regenerated test-sets. This notion of guaranteed, repeatable quality is a new and important

concept in object-oriented testing.

Acknowledgement

This research was undertaken as part of the MOTIVE project (Method for Object Testing,
Integration and Verification), supported by UK EPSRC GR/M56777.

References

[11 McGregor JD, Korson T. Integrating object-oriented testing and development
processes. Communications of the ACM, 1994; 37(9): 59-77.

[2] McGregor JD, Kare A. Parallel architecture for component testing of object-oriented
software. Proc. 9th Annual Software Quality Week, Software Research, Inc. San
Francisco, 1996; May.

[3] Beck K, Gamma E et al. The JUnit Project. URL http://www .junit.org/, 2005.

[4] Stotts D, Lindsey M, Antley A. An informal method for systematic JUnit test case
generation. Lecture Notes in Computer Science, 2002; 2418: 132-143.

[S] Beck K. Extreme Programming Explained: Embrace Change, 1* edn. Addison-
Wesley: New York, 2000.

[6] Beck K. Extreme Programming Explained: Embrace Change, 2" edn. Addison-
Wesley: New York, 2005.

[7]1 Wells D. Unit tests: lessons learned, in: The rules and practices of Extreme

Programming. URL http://www.extremeprogramming.org/rules/unittests2.html, 2005.

[8] Hopcroft JE and Ullman JD. Introduction to Automata Theory, Languages and
Computation. Addison Wesley: New York, 1979.

[9] Diekert V. The Book of Traces. World Scientific, 1995.

page 28

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-Oriented
Modeling and Design. Prentice Hall: Englewood Cliffs NJ, 1991.

Object Management Group, UML Resource Page. URL http://www.omg.org/uml/,
2005.

Harel D, Naamad A. The STATEMATE semantics of statecharts. ACM Transactions on
Software Engineering and Methods, 1996; 5(4): 293-343.

Bjorkander M. Real-time systems in UML (and SDL). Embedded Systems
Engineering, 2000; URL http://www.telelogic.com/download/paper/realtimerev2.pdf .

McGregor JD, Dyer DM. A note on inheritance and state machines. Software
Engineering Notes, 1993; 18(4): 61-69.

McGregor JD. Constructing functional test cases using incrementally-derived state
machines. Proc. 11th International Conference on Testing Computer Software,
USPDI, Washington, 1994.

Liskov B, Wing JM. A new definition of the subtype relation. Proc. European
Conference on Object-Oriented Programming, Lecture Notes in Computer Science,
1993; 707: 118-141.

Cook S, Daniels J. Designing Object-Oriented Systems: Object-Oriented Modelling
with Syntropy. Prentice Hall: London, 1994.

Milner R. Communicating and Mobile Systems: the w-Calculus. Cambridge
University Press: Cambridge, 1999.

Ebert J, Engels G. Dynamic models and behavioural views. International Symposium
on Object-oriented Methods and Systems, Lecture Notes in Computer Science, 1994;
858.

Lano K, Clark D, Androutsopoulos K and Kan, P. Invariant-based synthesis of fault-
tolerant systems. 6™ International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, Lecture Notes in Computer Science, 2000; 1926: 46-57.

Fiadeiro J and Maibaum T. Temporal theories as modularisation units for concurrent

system specification. Formal Aspects of Computing, 1992; 4(3): 239-272.

Cardelli L and Wegner P. On understanding types, data abstraction and polymorphism.
ACM Computing Surveys, 1985; 17(4): 471-521.

page 29

[23] Simons AJH. The theory of classification, part 5: Axioms, assertions and subtyping.
Journal of Object Technology, 2003; 2(1): 13-21.

[24] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley: Reading MA, 1995.

[25] Chow T. Testing software design modeled by finite state machines. IEEE
Transactions on Software Engineering, 1978; 4(3): 178-187.

[26] Binder RV. Testing object-oriented systems: a status report. 3rd edn. URL
http://www.rbsc.com/pages/oostat.html, 2005.

[27] Holcombe WML, Ipate F. Correct Systems: Building a Business Process Solution.
Applied Computing Series. Springer Verlag: Berlin, 1998.

[28] Ipate F, Holcombe WML. An integration testing method that is proved to find all
faults. International Journal of Computational Mathematics, 1997; 63: 159-178.

[29] Bernot B, Gaudel M.-C, Marre B. Software testing based on formal specifications: a
theory and a tool. Software Engineering Journal, 1991; 6(6): 387-405.

[30] Fowler M. Refactoring: Improving the Design of Existing Code. Addison Wesley:
New York, 1999.

[31] Bracha G and Cook W. Mixin-based inheritance. Proc. 5™ ACM Conference on
Object-Oriented Programming Systems, Languages and Applications and 4™ European
Conference on Object-Oriented Programming, ACM Sigplan Notices, 1990; 25(10):
303-311.

[32] Cook W. A proposal for making Eiffel type safe. Proc. 3rd European Conference on
Object-Oriented Programming, 1989, 57-70. Reprinted in: Computer Journal, 1989;
32(4): 305-311.

[33] Bogdanov KE. Automated testing of Harel's statecharts, PhD Thesis, University of
Sheffield, 2000.

[34] Simons AJH, Stannett MP, Bogdanov KE, Holcombe WML. Plug and play safely:
behavioural rules for compatibility. Proc. 6th IASTED International Conference on
Software Engineering and Applications, Cambridge MA, 263-268.

[35] Simons AJH. Letter to the editor. Journal of Object Technology, 5 December 2003.
URL http://www .jot.fm/general/letters/comment_simons_html, 2003.

page 30

Figures to be Inserted in the Main Text

Figure 2. Cook and Daniels’ additional statechart refinements

page 31

new / S

push(e)
[size() < n-1]

size() <n

push(e)/
resize()

pop() [size() = 1] pop()

pop() [size() >1] .

Figure 5. Concrete machine for a DynamicStack, realising the Stack interface

page 32

(Available]

new
borrow
loaned() = false l_\‘ ®)
(oOnLoan |
return()
loaned() = true I
//_ _______________________________ \\

a #b]

reserved() = false

<
(PutAside |

return() reserved() = true |

— borrow(b)
(Normal] = b]
reserved() = false ‘reserve(a)

(Recalled

return()

cancel()
reserved() = true

Figure 6. General Loanable and specialised Loanltem machines

B-test conforms

OSpec ouT
Basic Basic
. B-test conforms
Regression
ouT
Refined
OSpec B-test conforms ouT
Basic N Basic
~N
~N
\\ o,
] Uransitively conforms
1 N
1 \\
OSpec ~ ouT
Refined R-test Refined
conforms
Regeneration

Figure 7. Contrasting regeneration and regression testing

page 33

	author_version_front_page.pdf
	STVR_Regression.pdf

