
Parallel and Distributed
Computing

Edited by Alberto Ros

Edited by Alberto Ros

Photo by zaozaa09 / iStock

The 14 chapters presented in this book cover a wide variety of representative works
ranging from hardware design to application development. Particularly, the topics that

are addressed are programmable and reconfigurable devices and systems, dependability
of GPUs (General Purpose Units), network topologies, cache coherence protocols,

resource allocation, scheduling algorithms, peertopeer networks, largescale network
simulation, and parallel routines and algorithms. In this way, the articles included in this
book constitute an excellent reference for engineers and researchers who have particular

interests in each of these topics in parallel and distributed computing.

ISBN 978-953-307-057-5

Parallel and D
istributed C

om
puting

Parallel and Distributed Computing

Edited by
Alberto Ros

In-Tech
intechweb.org

Parallel and Distributed Computing

Edited by
Alberto Ros

In-Tech
intechweb.org

Parallel and Distributed Computing
http://dx.doi.org/10.5772/229
Edited by Alberto Ros

© The Editor(s) and the Author(s) 2010
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2010 by INTECH d.o.o.
eBook (PDF) Published by IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Parallel and Distributed Computing
Edited by Alberto Ros

p. cm.

ISBN 978-953-307-057-5

eBook (PDF) ISBN 978-953-51-5909-4

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

3,350+
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

108,000+
International authors and editors

114M+
Downloads

We are IntechOpen,
the first native scientific

publisher of Open Access books

V

Preface

Parallel and distributed computing has offered the opportunity of solving a wide range
of computationally intensive problems by increasing the computing power of sequential
computers. Although important improvements have been achieved in this field in the last
30 years, there are still many unresolved issues. These issues arise from several broad areas,
such as the design of parallel systems and scalable interconnects, the efficient distribution of
processing tasks, or the development of parallel algorithms.

This book provides some very interesting and highquality articles aimed at studying the
state of the art and addressing current issues in parallel processing and/or distributed
computing. The 14 chapters presented in this book cover a wide variety of representative
works ranging from hardware design to application development. Particularly, the topics
that are addressed are programmable and reconfigurable devices and systems, dependability
of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource
allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and
parallel routines and algorithms. In this way, the articles included in this book constitute
an excellent reference for engineers and researchers who have particular interests in each of
these topics in parallel and distributed computing.

I would like to thank all the authors for their help and their excellent contributions in the
different areas of their expertise. Their wide knowledge and enthusiastic collaboration have
made possible the elaboration of this book. I hope the readers will find it very interesting and
valuable.

Alberto Ros
Departamento de Ingeniería y Tecnología de Computadores

Universidad de Murcia, Spain

a.ros@ditec.um.es

Preface

Parallel and distributed computing has offered the opportunity of solving a wide range
of computationally intensive problems by increasing the computing power of sequential
computers. Although important improvements have been achieved in this field in the last
30 years, there are still many unresolved issues. These issues arise from several broad areas,
such as the design of parallel systems and scalable interconnects, the efficient distribution of
processing tasks, or the development of parallel algorithms.

This book provides some very interesting and highquality articles aimed at studying the
state of the art and addressing current issues in parallel processing and/or distributed
computing. The 14 chapters presented in this book cover a wide variety of representative
works ranging from hardware design to application development. Particularly, the topics
that are addressed are programmable and reconfigurable devices and systems, dependability
of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource
allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and
parallel routines and algorithms. In this way, the articles included in this book constitute
an excellent reference for engineers and researchers who have particular interests in each of
these topics in parallel and distributed computing.

I would like to thank all the authors for their help and their excellent contributions in the
different areas of their expertise. Their wide knowledge and enthusiastic collaboration have
made possible the elaboration of this book. I hope the readers will find it very interesting and
valuable.

Alberto Ros
Departamento de Ingeniería y Tecnología de Computadores

Universidad de Murcia, Spain

a.ros@ditec.um.es

VII

Contents

Preface	 V

1.	 Fault tolerance of programmable devices	 001
Minoru Watanabe

2.	 Fragmentation management for HW multitasking in 2D Reconfigurable
Devices: Metrics and Defragmentation Heuristics	 011
Julio Septién, Hortensia Mecha, Daniel Mozos and Jesus Tabero

3.	 TOTAL ECLIPSE—An Efficient Architectural Realization of the
Parallel Random Access Machine	 039
Martti Forsell

4.	 Facts, Issues and Questions - GPUs for Dependability 065
Bernhard Fechner

5.	 Shuffle-Exchange Mesh Topology for Networks-on-Chip	 081
Reza Sabbaghi-Nadooshan, Mehdi Modarressi and Hamid Sarbazi-Azad

6.	 Cache Coherence Protocols for Many-Core CMPs	 093
Alberto Ros, Manuel E. Acacio and Jos´e M. Garc´ıa

7.	 Using hardware resource allocation to balance HPC applications 119
Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero

8.	 A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems	 143
Shinpei Kato

9.	 Plagued by Work: Using Immunity to Manage the Largest
Computational Collectives	 159
Lucas A. Wilson, Michael C. Scherger & John A. Lockman III

10.	 Scheduling of Divisible Loads on Heterogeneous Distributed Systems	 179
Abhay Ghatpande, Hidenori Nakazato and Olivier Beaumont

11.	 On the Role of Helper Peers in P2P Networks	 203
Shay Horovitz and Danny Dolev

Contents

Preface	 VII

1. Fault	tolerance	of	programmable	devices 001
Minoru	Watanabe

2. Fragmentation	management	for	HW	multitasking	in	2D	Reconfigurable
Devices:	Metrics	and	Defragmentation	Heuristics 011
Julio	Septién,	Hortensia	Mecha,	Daniel	Mozos	and	Jesus	Tabero

3. TOTAL	ECLIPSE—An	Efficient	Architectural	Realization	of	the
Parallel	Random	Access	Machine 039
Martti	Forsell

4. Facts,	Issues	and	Questions	-	GPUs	for	Dependability 065
Bernhard	Fechner

5. Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 081
Reza	Sabbaghi-Nadooshan,	Mehdi	Modarressi	and	Hamid	Sarbazi-Azad

6. Cache	Coherence	Protocols	for	Many-Core	CMPs 093
Alberto	Ros,	Manuel	E.	Acacio	and	Jos´e	M.	Garc´ıa

7. Using	hardware	resource	allocation	to	balance	HPC	applications 119
Carlos	Boneti,	Roberto	Gioiosa,	Francisco	J.	Cazorla	and	Mateo	Valero

8. A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 143
Shinpei	Kato

9. Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest
Computational	Collectives 159
Lucas	A.	Wilson,	Michael	C.	Scherger	&	John	A.	Lockman	III

10. Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 179
Abhay	Ghatpande,	Hidenori	Nakazato	and	Olivier	Beaumont

11. On	the	Role	of	Helper	Peers	in	P2P	Networks 203
Shay	Horovitz	and	Danny	Dolev

X

12. Parallel	and	Distributed	Immersive	Real-Time	Simulation	of
Large-Scale	Networks 221
Jason	Liu

13. A	parallel	simulated	annealing	algorithm	4pt	as	a	tool	for	fitness
landscapes	exploration 247
Zbigniew	J.	Czech

14. Fine-Grained	Parallel	Genomic	Sequence	Comparison 273
Dominique	Lavenier

Fault tolerance of programmable devices 1

Fault tolerance of programmable devices

Minoru Watanabe

0

Fault tolerance of programmable devices

Minoru Watanabe
Shizuoka University

Japan

1. Introduction

Currently, we are frequently facing demands for automation of many systems. In particular,
demands for cars and robots are increasing daily. For such applications, high-performance
embedded systems are necessary to execute real-time operations. For example, image pro-
cessing and image recognition are heavy operations that tax current microprocessor units.
Parallel computation on high-capacity hardware is expected to be one means to alleviate the
burdens imposed by such heavy operations.

To implement such large-scale parallel computation onto a VLSI chip, the demand for a large-
die VLSI chip is increasing daily. However, considering the ratio of non-defective chips under
current fabrications, die sizes cannot be increased (1),(2). If a large system must be integrated
onto a large die VLSI chip or as an extreme case, a wafer-size VLSI, the use of a VLSI including
defective parts must be accomplished.

In the earliest use of field programmable gate arrays (FPGAs) (3)–(5), FPGAs were anticipated
as defect-tolerant devices that accommodate inclusion of defective areas on the gate array be-
cause of their programmable capability. However, that hope was partly shattered because de-
fects of a serial configuration line caused severe impairments that prevented programming of
the entire gate array. Of course, a spare row method such as that used for memories (DRAMs)
reduces the ratio of discarded chips (6),(7), in which spare rows of a gate array are used instead
of defective rows by swapping them with a laser beam machine. However, such methods re-
quire hardware redundancy. Moreover, they are not perfect. To use a gate array perfectly
and not produce any discarded VLSI chips, a perfectly parallel programmable capability is
necessary: one which uses no serial transfer.

Currently, optically reconfigurable gate arrays (ORGAs) that support parallel programming
capability and which never use any serial transfer have been developed (8)–(15). An ORGA
comprises a holographic memory, a laser array, and a gate-array VLSI. Although the ORGA
construction is slightly more complex than that of currently available FPGAs, the parallel
programmable gate array VLSI supports perfect avoidance of its faulty areas; it instead uses
the remaining area. Therefore, the architecture enables the use of a large-die VLSI chip and
even entire wafers, including fault areas. As a result, the architecture can realize extremely
high-gate-count VLSIs and can support large-scale parallel computation.

This chapter introduces an ORGA architecture as a high defect tolerance device, describes
how to use an optically reconfigurable gate array including defective areas, and clarifies its
high fault tolerance. The ORGA architecture has some weak points in making a large VLSI, as

1

VIII

12.	 Parallel	and	Distributed	Immersive	Real-Time	Simulation	of		
Large-Scale	Networks	 221
Jason	Liu

13.	 A	parallel	simulated	annealing	algorithm	4pt	as	a	tool	for	fitness		
landscapes	exploration	 247
Zbigniew	J.	Czech

14.	 Fine-Grained	Parallel	Genomic	Sequence	Comparison	 273
Dominique	Lavenier

Fault	tolerance	of	programmable	devices 1

Fault	tolerance	of	programmable	devices

Minoru	Watanabe

0

Fault tolerance of programmable devices

Minoru Watanabe
Shizuoka University

Japan

1. Introduction

Currently, we are frequently facing demands for automation of many systems. In particular,
demands for cars and robots are increasing daily. For such applications, high-performance
embedded systems are necessary to execute real-time operations. For example, image pro-
cessing and image recognition are heavy operations that tax current microprocessor units.
Parallel computation on high-capacity hardware is expected to be one means to alleviate the
burdens imposed by such heavy operations.

To implement such large-scale parallel computation onto a VLSI chip, the demand for a large-
die VLSI chip is increasing daily. However, considering the ratio of non-defective chips under
current fabrications, die sizes cannot be increased (1),(2). If a large system must be integrated
onto a large die VLSI chip or as an extreme case, a wafer-size VLSI, the use of a VLSI including
defective parts must be accomplished.

In the earliest use of field programmable gate arrays (FPGAs) (3)–(5), FPGAs were anticipated
as defect-tolerant devices that accommodate inclusion of defective areas on the gate array be-
cause of their programmable capability. However, that hope was partly shattered because de-
fects of a serial configuration line caused severe impairments that prevented programming of
the entire gate array. Of course, a spare row method such as that used for memories (DRAMs)
reduces the ratio of discarded chips (6),(7), in which spare rows of a gate array are used instead
of defective rows by swapping them with a laser beam machine. However, such methods re-
quire hardware redundancy. Moreover, they are not perfect. To use a gate array perfectly
and not produce any discarded VLSI chips, a perfectly parallel programmable capability is
necessary: one which uses no serial transfer.

Currently, optically reconfigurable gate arrays (ORGAs) that support parallel programming
capability and which never use any serial transfer have been developed (8)–(15). An ORGA
comprises a holographic memory, a laser array, and a gate-array VLSI. Although the ORGA
construction is slightly more complex than that of currently available FPGAs, the parallel
programmable gate array VLSI supports perfect avoidance of its faulty areas; it instead uses
the remaining area. Therefore, the architecture enables the use of a large-die VLSI chip and
even entire wafers, including fault areas. As a result, the architecture can realize extremely
high-gate-count VLSIs and can support large-scale parallel computation.

This chapter introduces an ORGA architecture as a high defect tolerance device, describes
how to use an optically reconfigurable gate array including defective areas, and clarifies its
high fault tolerance. The ORGA architecture has some weak points in making a large VLSI, as

1

Parallel	and	Distributed	Computing2

Fig. 1. Overview of an ORGA.

do FPGAs. Therefore, this chapter also presents discussion of more reliable design methods
to avoid weak points.

2. Optically Reconfigurable Gate Array (ORGA)

The ORGA architecture has the following features: numerous reconfiguration contexts, rapid
reconfiguration, and large die size VLSIs or wafer-scale VLSIs. A large die size VLSI can
produce large physical gates that increase the performance of large parallel computation. Fur-
thermore, numerous reconfiguration contexts achieve huge virtual gates with contexts several
times more numerous than those of the physical gates. For that reason, such huge virtual
gates can be reconfigured dynamically on the physical gates so that huge operations can be
integrated onto a single ORGA-VLSI. The following sections describe the ORGA architecture,
which presents such advantages.

2.1 Overall construction
An overview of an Optically Reconfigurable Gate Array (ORGA) is portrayed in Fig. 1. An
ORGA comprises a gate-array VLSI (ORGA-VLSI), a holographic memory, and a laser diode
array. The holographic memory stores reconfiguration contexts. A laser array is mounted on
the top of the holographic memory for use in addressing the reconfiguration contexts in the
holographic memory. One laser corresponds to a configuration context. Turning one laser
on, the laser beam propagates into a certain corresponding area on the holographic memory
at a certain angle so that the holographic memory generates a certain diffraction pattern. A
photodiode-array of a programmable gate array on an ORGA-VLSI can receive it as a recon-
figuration context. Then, the ORGA-VLSI functions as the circuit of the configuration con-
text. The reconfiguration time of such ORGA architecture reaches nanosecond-order (14),(15).
Therefore, very-high-speed context switching is possible. Since the storage capacity of a holo-
graphic memory is extremely high, numerous configuration contexts can be used with a holo-
graphic memory. Therefore, the ORGA architecture can dynamically treat huge virtual gate
counts that are larger than the physical gate count on an ORGA-VLSI.

2.2 Gate array structure
This section introduces a design example of a fabricated ORGA-VLSI chip. Based on it, a
generalized gate array structure of ORGA-VLSIs is discussed.

(a) (b)

(c) (d)
Fig. 2. Gate-array structure of a fabricated ORGA. Panels (a), (b), (c), and (d) respectively
depict block diagrams of a gate array, an optically reconfigurable logic block, an optically
reconfigurable switching matrix, and an optically reconfigurable I/O bit.

2.2.1 Prototype ORGA-VLSI chip
The basic functionality of an ORGA-VLSI is fundamentally identical to that of currently avail-
able field programmable gate arrays (FPGAs). Therefore, ORGA-VLSI takes an island-style
gate array or a fine-grain gate array. Figure 2 depicts the gate array structure of a first pro-
totype ORGA-VLSI chip. The ORGA-VLSI chip was fabricated using a 0.35 µm triple-metal
CMOS process (8). The photograph of a board is portrayed in Fig. 3. Table 1 presents the spec-
ifications. The ORGA-VLSI chip consists of 4 optically reconfigurable logic blocks (ORLB), 5
optically reconfigurable switching matrices (ORSM), and 12 optically reconfigurable I/O bits
(ORIOB) portrayed in Fig. 2(a). Each optically reconfigurable logic block is surrounded by
wiring channels. In this chip, one wiring channel has four connections. Switching matrices
are located on the corners of optically reconfigurable logic blocks. Each connection of the
switching matrices is connected to a wiring channel. The ORGA-VLSI has 340 photodiodes
to program its gate array. The ORGA-VLSI can be reconfigured perfectly in parallel. In this
fabrication, the distance between each photodiode was designed as 90 µm. The photodiode
size was set as 25.5 × 25.5 µm2 to ease the optical alignment. The photodiode was constructed
between the N-well layer and P-substrate. The gate array’s gate count is 68. It was confirmed
experimentally that the ORGA-VLSI itself is reconfigurable within a nanosecond-order period

Fault	tolerance	of	programmable	devices 3

Fig. 1. Overview of an ORGA.

do FPGAs. Therefore, this chapter also presents discussion of more reliable design methods
to avoid weak points.

2. Optically Reconfigurable Gate Array (ORGA)

The ORGA architecture has the following features: numerous reconfiguration contexts, rapid
reconfiguration, and large die size VLSIs or wafer-scale VLSIs. A large die size VLSI can
produce large physical gates that increase the performance of large parallel computation. Fur-
thermore, numerous reconfiguration contexts achieve huge virtual gates with contexts several
times more numerous than those of the physical gates. For that reason, such huge virtual
gates can be reconfigured dynamically on the physical gates so that huge operations can be
integrated onto a single ORGA-VLSI. The following sections describe the ORGA architecture,
which presents such advantages.

2.1 Overall construction
An overview of an Optically Reconfigurable Gate Array (ORGA) is portrayed in Fig. 1. An
ORGA comprises a gate-array VLSI (ORGA-VLSI), a holographic memory, and a laser diode
array. The holographic memory stores reconfiguration contexts. A laser array is mounted on
the top of the holographic memory for use in addressing the reconfiguration contexts in the
holographic memory. One laser corresponds to a configuration context. Turning one laser
on, the laser beam propagates into a certain corresponding area on the holographic memory
at a certain angle so that the holographic memory generates a certain diffraction pattern. A
photodiode-array of a programmable gate array on an ORGA-VLSI can receive it as a recon-
figuration context. Then, the ORGA-VLSI functions as the circuit of the configuration con-
text. The reconfiguration time of such ORGA architecture reaches nanosecond-order (14),(15).
Therefore, very-high-speed context switching is possible. Since the storage capacity of a holo-
graphic memory is extremely high, numerous configuration contexts can be used with a holo-
graphic memory. Therefore, the ORGA architecture can dynamically treat huge virtual gate
counts that are larger than the physical gate count on an ORGA-VLSI.

2.2 Gate array structure
This section introduces a design example of a fabricated ORGA-VLSI chip. Based on it, a
generalized gate array structure of ORGA-VLSIs is discussed.

(a) (b)

(c) (d)
Fig. 2. Gate-array structure of a fabricated ORGA. Panels (a), (b), (c), and (d) respectively
depict block diagrams of a gate array, an optically reconfigurable logic block, an optically
reconfigurable switching matrix, and an optically reconfigurable I/O bit.

2.2.1 Prototype ORGA-VLSI chip
The basic functionality of an ORGA-VLSI is fundamentally identical to that of currently avail-
able field programmable gate arrays (FPGAs). Therefore, ORGA-VLSI takes an island-style
gate array or a fine-grain gate array. Figure 2 depicts the gate array structure of a first pro-
totype ORGA-VLSI chip. The ORGA-VLSI chip was fabricated using a 0.35 µm triple-metal
CMOS process (8). The photograph of a board is portrayed in Fig. 3. Table 1 presents the spec-
ifications. The ORGA-VLSI chip consists of 4 optically reconfigurable logic blocks (ORLB), 5
optically reconfigurable switching matrices (ORSM), and 12 optically reconfigurable I/O bits
(ORIOB) portrayed in Fig. 2(a). Each optically reconfigurable logic block is surrounded by
wiring channels. In this chip, one wiring channel has four connections. Switching matrices
are located on the corners of optically reconfigurable logic blocks. Each connection of the
switching matrices is connected to a wiring channel. The ORGA-VLSI has 340 photodiodes
to program its gate array. The ORGA-VLSI can be reconfigured perfectly in parallel. In this
fabrication, the distance between each photodiode was designed as 90 µm. The photodiode
size was set as 25.5 × 25.5 µm2 to ease the optical alignment. The photodiode was constructed
between the N-well layer and P-substrate. The gate array’s gate count is 68. It was confirmed
experimentally that the ORGA-VLSI itself is reconfigurable within a nanosecond-order period

Parallel	and	Distributed	Computing2

Fig. 1. Overview of an ORGA.

do FPGAs. Therefore, this chapter also presents discussion of more reliable design methods
to avoid weak points.

2. Optically Reconfigurable Gate Array (ORGA)

The ORGA architecture has the following features: numerous reconfiguration contexts, rapid
reconfiguration, and large die size VLSIs or wafer-scale VLSIs. A large die size VLSI can
produce large physical gates that increase the performance of large parallel computation. Fur-
thermore, numerous reconfiguration contexts achieve huge virtual gates with contexts several
times more numerous than those of the physical gates. For that reason, such huge virtual
gates can be reconfigured dynamically on the physical gates so that huge operations can be
integrated onto a single ORGA-VLSI. The following sections describe the ORGA architecture,
which presents such advantages.

2.1 Overall construction
An overview of an Optically Reconfigurable Gate Array (ORGA) is portrayed in Fig. 1. An
ORGA comprises a gate-array VLSI (ORGA-VLSI), a holographic memory, and a laser diode
array. The holographic memory stores reconfiguration contexts. A laser array is mounted on
the top of the holographic memory for use in addressing the reconfiguration contexts in the
holographic memory. One laser corresponds to a configuration context. Turning one laser
on, the laser beam propagates into a certain corresponding area on the holographic memory
at a certain angle so that the holographic memory generates a certain diffraction pattern. A
photodiode-array of a programmable gate array on an ORGA-VLSI can receive it as a recon-
figuration context. Then, the ORGA-VLSI functions as the circuit of the configuration con-
text. The reconfiguration time of such ORGA architecture reaches nanosecond-order (14),(15).
Therefore, very-high-speed context switching is possible. Since the storage capacity of a holo-
graphic memory is extremely high, numerous configuration contexts can be used with a holo-
graphic memory. Therefore, the ORGA architecture can dynamically treat huge virtual gate
counts that are larger than the physical gate count on an ORGA-VLSI.

2.2 Gate array structure
This section introduces a design example of a fabricated ORGA-VLSI chip. Based on it, a
generalized gate array structure of ORGA-VLSIs is discussed.

(a) (b)

(c) (d)
Fig. 2. Gate-array structure of a fabricated ORGA. Panels (a), (b), (c), and (d) respectively
depict block diagrams of a gate array, an optically reconfigurable logic block, an optically
reconfigurable switching matrix, and an optically reconfigurable I/O bit.

2.2.1 Prototype ORGA-VLSI chip
The basic functionality of an ORGA-VLSI is fundamentally identical to that of currently avail-
able field programmable gate arrays (FPGAs). Therefore, ORGA-VLSI takes an island-style
gate array or a fine-grain gate array. Figure 2 depicts the gate array structure of a first pro-
totype ORGA-VLSI chip. The ORGA-VLSI chip was fabricated using a 0.35 µm triple-metal
CMOS process (8). The photograph of a board is portrayed in Fig. 3. Table 1 presents the spec-
ifications. The ORGA-VLSI chip consists of 4 optically reconfigurable logic blocks (ORLB), 5
optically reconfigurable switching matrices (ORSM), and 12 optically reconfigurable I/O bits
(ORIOB) portrayed in Fig. 2(a). Each optically reconfigurable logic block is surrounded by
wiring channels. In this chip, one wiring channel has four connections. Switching matrices
are located on the corners of optically reconfigurable logic blocks. Each connection of the
switching matrices is connected to a wiring channel. The ORGA-VLSI has 340 photodiodes
to program its gate array. The ORGA-VLSI can be reconfigured perfectly in parallel. In this
fabrication, the distance between each photodiode was designed as 90 µm. The photodiode
size was set as 25.5 × 25.5 µm2 to ease the optical alignment. The photodiode was constructed
between the N-well layer and P-substrate. The gate array’s gate count is 68. It was confirmed
experimentally that the ORGA-VLSI itself is reconfigurable within a nanosecond-order period

Fault	tolerance	of	programmable	devices 3

Fig. 1. Overview of an ORGA.

do FPGAs. Therefore, this chapter also presents discussion of more reliable design methods
to avoid weak points.

2. Optically Reconfigurable Gate Array (ORGA)

The ORGA architecture has the following features: numerous reconfiguration contexts, rapid
reconfiguration, and large die size VLSIs or wafer-scale VLSIs. A large die size VLSI can
produce large physical gates that increase the performance of large parallel computation. Fur-
thermore, numerous reconfiguration contexts achieve huge virtual gates with contexts several
times more numerous than those of the physical gates. For that reason, such huge virtual
gates can be reconfigured dynamically on the physical gates so that huge operations can be
integrated onto a single ORGA-VLSI. The following sections describe the ORGA architecture,
which presents such advantages.

2.1 Overall construction
An overview of an Optically Reconfigurable Gate Array (ORGA) is portrayed in Fig. 1. An
ORGA comprises a gate-array VLSI (ORGA-VLSI), a holographic memory, and a laser diode
array. The holographic memory stores reconfiguration contexts. A laser array is mounted on
the top of the holographic memory for use in addressing the reconfiguration contexts in the
holographic memory. One laser corresponds to a configuration context. Turning one laser
on, the laser beam propagates into a certain corresponding area on the holographic memory
at a certain angle so that the holographic memory generates a certain diffraction pattern. A
photodiode-array of a programmable gate array on an ORGA-VLSI can receive it as a recon-
figuration context. Then, the ORGA-VLSI functions as the circuit of the configuration con-
text. The reconfiguration time of such ORGA architecture reaches nanosecond-order (14),(15).
Therefore, very-high-speed context switching is possible. Since the storage capacity of a holo-
graphic memory is extremely high, numerous configuration contexts can be used with a holo-
graphic memory. Therefore, the ORGA architecture can dynamically treat huge virtual gate
counts that are larger than the physical gate count on an ORGA-VLSI.

2.2 Gate array structure
This section introduces a design example of a fabricated ORGA-VLSI chip. Based on it, a
generalized gate array structure of ORGA-VLSIs is discussed.

(a) (b)

(c) (d)
Fig. 2. Gate-array structure of a fabricated ORGA. Panels (a), (b), (c), and (d) respectively
depict block diagrams of a gate array, an optically reconfigurable logic block, an optically
reconfigurable switching matrix, and an optically reconfigurable I/O bit.

2.2.1 Prototype ORGA-VLSI chip
The basic functionality of an ORGA-VLSI is fundamentally identical to that of currently avail-
able field programmable gate arrays (FPGAs). Therefore, ORGA-VLSI takes an island-style
gate array or a fine-grain gate array. Figure 2 depicts the gate array structure of a first pro-
totype ORGA-VLSI chip. The ORGA-VLSI chip was fabricated using a 0.35 µm triple-metal
CMOS process (8). The photograph of a board is portrayed in Fig. 3. Table 1 presents the spec-
ifications. The ORGA-VLSI chip consists of 4 optically reconfigurable logic blocks (ORLB), 5
optically reconfigurable switching matrices (ORSM), and 12 optically reconfigurable I/O bits
(ORIOB) portrayed in Fig. 2(a). Each optically reconfigurable logic block is surrounded by
wiring channels. In this chip, one wiring channel has four connections. Switching matrices
are located on the corners of optically reconfigurable logic blocks. Each connection of the
switching matrices is connected to a wiring channel. The ORGA-VLSI has 340 photodiodes
to program its gate array. The ORGA-VLSI can be reconfigured perfectly in parallel. In this
fabrication, the distance between each photodiode was designed as 90 µm. The photodiode
size was set as 25.5 × 25.5 µm2 to ease the optical alignment. The photodiode was constructed
between the N-well layer and P-substrate. The gate array’s gate count is 68. It was confirmed
experimentally that the ORGA-VLSI itself is reconfigurable within a nanosecond-order period

Parallel	and	Distributed	Computing4

Fig. 3. Photograph of an ORGA-VLSI board with a fabricated ORGA-VLSI chip. The ORGA-
VLSI was fabricated using a 0.35 µm three-metal 4.9 × 4.9 mm2 CMOS process chip. The gate
count of a gate array on the chip is 68. In all, 340 photodiodes are used for optical configura-
tions.

(14),(15). Although the gate count of the chip is too small, the gate count of future ORGAs was
already estimated (12). Future ORGAs will achieve gate counts of over a million, which is sim-
ilar to gate counts of FPGAs.

2.2.2 Optically reconfigurable logic block
The block diagram of an optically reconfigurable logic block of the prototype ORGA-VLSI
chip is presented in Fig. 2(b). Each optically reconfigurable logic block consists of a four-
input one-output look-up table (LUT), six multiplexers, four transmission gates, and a delay
type flip-flop with a reset function. The input signals from the wiring channel, which are
applied through some switching matrices and wiring channels from optically reconfigurable
I/O blocks, are transferred to a look-up table through four multiplexers. The look-up table
is used for implementing Boolean functions. The outputs of the look-up table and of a delay
type flip-flop connected to the look-up table are connected to a multiplexer. A combinational
circuit and sequential circuit can be chosen by changing the multiplexer, as in FPGAs. Finally,
an output of the multiplexer is connected to the wiring channel again through transmission
gates. The last multiplexer controls the reset function of the delay-type flip-flop. Such a four-
input one-output look-up table, each multiplexer, and each transmission gate respectively
have 16 photodiodes, 2 photodiodes, and 1 photodiode. In all, 32 photodiodes are used for
programming an optically reconfigurable logic block. Therefore, the optically reconfigurable
logic block can be reconfigured perfectly in parallel. In this prototype chip, since the gate array
is too small, a CLK for each flip-flop is provided through a single CLK buffer tree. However,
for a large gate array, CLKs of flip-flops are applied through multiple CLK buffer trees as
programmable CLKs, as well as that of FPGAs.

Technology 0.35µm double-poly

triple-metal CMOS process

Chip size 4.9 mm × 4.9 mm

Photodiode size 25.5 µm × 25.5 µm

Distance between photodiodes 90 µm

Number of photodiodes 340

Gate count 68

Table 1. ORGA-VLSI Specifications.

2.2.3 Optically reconfigurable switching matrix
Similarly, optically reconfigurable switching matrices are optically reconfigurable. The block
diagram of the optically reconfigurable switching matrix is portrayed in Fig. 2(c). The basic
construction is the same as that used by Xilinx Inc. One four-directional with 24 transmission
gates and 4 three-directional switching matrices with 12 transmission gates were implemented
in the gate array. Each transmission gate can be considered as a bi-directional switch. A
photodiode is connected to each transmission gate; it controls whether the transmission gate
is closed or not. Based on that capability, four-direction and three-direction switching matrices
can be programmed, respectively, as 24 and 12 optical connections.

2.2.4 Optically reconfigurable I/O block
Optically reconfigurable gate arrays are assumed to be reconfigured frequently. For that rea-
son, an optical reconfiguration capability must be implemented for optically reconfigurable
logic blocks and optically reconfigurable switching matrices. However, the I/O block might
not always be reconfigured under such dynamic reconfiguration applications because such
a dynamic reconfiguration arises inside the device and each mode of Input, Output, or In-
put/Output, and each pin location of the I/O block must always be fixed due to limitations of
the external environment. However, the ORGA-VLSI supports optical reconfiguration for I/O
blocks because reconfiguration information is provided optically from a holographic memory
in ORGA. Consequently, electrically configurable I/O blocks are unsuitable for ORGAs. Here,
each I/O block is also controlled using nine optical connections. Always, the optically recon-
figurable I/O block configuration is executed only initially.

3. Defect tolerance design of the ORGA architecture

3.1 Holographic memory part
Holographic memories are well known to have a high defect tolerance. Since each bit of a
reconfiguration context can be generated from the entire holographic memory, the damage of
some fraction rarely affects its diffraction pattern or a reconfiguration context. Even though
a holographic memory device includes small defect areas, holographic memories can cor-
rectly record configuration contexts and can correctly generate configuration contexts. Such
mechanisms can be considered as those for which majority voting is executed from an infinite
number of diffraction beams for each configuration bit. For a semiconductor memory, single-
bit information is stored in a single-bit memory circuit. In contrast, in holographic memory, a
single bit of a reconfiguration context is stored in the entire holographic memory. Therefore,

Fault	tolerance	of	programmable	devices 5

Fig. 3. Photograph of an ORGA-VLSI board with a fabricated ORGA-VLSI chip. The ORGA-
VLSI was fabricated using a 0.35 µm three-metal 4.9 × 4.9 mm2 CMOS process chip. The gate
count of a gate array on the chip is 68. In all, 340 photodiodes are used for optical configura-
tions.

(14),(15). Although the gate count of the chip is too small, the gate count of future ORGAs was
already estimated (12). Future ORGAs will achieve gate counts of over a million, which is sim-
ilar to gate counts of FPGAs.

2.2.2 Optically reconfigurable logic block
The block diagram of an optically reconfigurable logic block of the prototype ORGA-VLSI
chip is presented in Fig. 2(b). Each optically reconfigurable logic block consists of a four-
input one-output look-up table (LUT), six multiplexers, four transmission gates, and a delay
type flip-flop with a reset function. The input signals from the wiring channel, which are
applied through some switching matrices and wiring channels from optically reconfigurable
I/O blocks, are transferred to a look-up table through four multiplexers. The look-up table
is used for implementing Boolean functions. The outputs of the look-up table and of a delay
type flip-flop connected to the look-up table are connected to a multiplexer. A combinational
circuit and sequential circuit can be chosen by changing the multiplexer, as in FPGAs. Finally,
an output of the multiplexer is connected to the wiring channel again through transmission
gates. The last multiplexer controls the reset function of the delay-type flip-flop. Such a four-
input one-output look-up table, each multiplexer, and each transmission gate respectively
have 16 photodiodes, 2 photodiodes, and 1 photodiode. In all, 32 photodiodes are used for
programming an optically reconfigurable logic block. Therefore, the optically reconfigurable
logic block can be reconfigured perfectly in parallel. In this prototype chip, since the gate array
is too small, a CLK for each flip-flop is provided through a single CLK buffer tree. However,
for a large gate array, CLKs of flip-flops are applied through multiple CLK buffer trees as
programmable CLKs, as well as that of FPGAs.

Technology 0.35µm double-poly

triple-metal CMOS process

Chip size 4.9 mm × 4.9 mm

Photodiode size 25.5 µm × 25.5 µm

Distance between photodiodes 90 µm

Number of photodiodes 340

Gate count 68

Table 1. ORGA-VLSI Specifications.

2.2.3 Optically reconfigurable switching matrix
Similarly, optically reconfigurable switching matrices are optically reconfigurable. The block
diagram of the optically reconfigurable switching matrix is portrayed in Fig. 2(c). The basic
construction is the same as that used by Xilinx Inc. One four-directional with 24 transmission
gates and 4 three-directional switching matrices with 12 transmission gates were implemented
in the gate array. Each transmission gate can be considered as a bi-directional switch. A
photodiode is connected to each transmission gate; it controls whether the transmission gate
is closed or not. Based on that capability, four-direction and three-direction switching matrices
can be programmed, respectively, as 24 and 12 optical connections.

2.2.4 Optically reconfigurable I/O block
Optically reconfigurable gate arrays are assumed to be reconfigured frequently. For that rea-
son, an optical reconfiguration capability must be implemented for optically reconfigurable
logic blocks and optically reconfigurable switching matrices. However, the I/O block might
not always be reconfigured under such dynamic reconfiguration applications because such
a dynamic reconfiguration arises inside the device and each mode of Input, Output, or In-
put/Output, and each pin location of the I/O block must always be fixed due to limitations of
the external environment. However, the ORGA-VLSI supports optical reconfiguration for I/O
blocks because reconfiguration information is provided optically from a holographic memory
in ORGA. Consequently, electrically configurable I/O blocks are unsuitable for ORGAs. Here,
each I/O block is also controlled using nine optical connections. Always, the optically recon-
figurable I/O block configuration is executed only initially.

3. Defect tolerance design of the ORGA architecture

3.1 Holographic memory part
Holographic memories are well known to have a high defect tolerance. Since each bit of a
reconfiguration context can be generated from the entire holographic memory, the damage of
some fraction rarely affects its diffraction pattern or a reconfiguration context. Even though
a holographic memory device includes small defect areas, holographic memories can cor-
rectly record configuration contexts and can correctly generate configuration contexts. Such
mechanisms can be considered as those for which majority voting is executed from an infinite
number of diffraction beams for each configuration bit. For a semiconductor memory, single-
bit information is stored in a single-bit memory circuit. In contrast, in holographic memory, a
single bit of a reconfiguration context is stored in the entire holographic memory. Therefore,

Parallel	and	Distributed	Computing4

Fig. 3. Photograph of an ORGA-VLSI board with a fabricated ORGA-VLSI chip. The ORGA-
VLSI was fabricated using a 0.35 µm three-metal 4.9 × 4.9 mm2 CMOS process chip. The gate
count of a gate array on the chip is 68. In all, 340 photodiodes are used for optical configura-
tions.

(14),(15). Although the gate count of the chip is too small, the gate count of future ORGAs was
already estimated (12). Future ORGAs will achieve gate counts of over a million, which is sim-
ilar to gate counts of FPGAs.

2.2.2 Optically reconfigurable logic block
The block diagram of an optically reconfigurable logic block of the prototype ORGA-VLSI
chip is presented in Fig. 2(b). Each optically reconfigurable logic block consists of a four-
input one-output look-up table (LUT), six multiplexers, four transmission gates, and a delay
type flip-flop with a reset function. The input signals from the wiring channel, which are
applied through some switching matrices and wiring channels from optically reconfigurable
I/O blocks, are transferred to a look-up table through four multiplexers. The look-up table
is used for implementing Boolean functions. The outputs of the look-up table and of a delay
type flip-flop connected to the look-up table are connected to a multiplexer. A combinational
circuit and sequential circuit can be chosen by changing the multiplexer, as in FPGAs. Finally,
an output of the multiplexer is connected to the wiring channel again through transmission
gates. The last multiplexer controls the reset function of the delay-type flip-flop. Such a four-
input one-output look-up table, each multiplexer, and each transmission gate respectively
have 16 photodiodes, 2 photodiodes, and 1 photodiode. In all, 32 photodiodes are used for
programming an optically reconfigurable logic block. Therefore, the optically reconfigurable
logic block can be reconfigured perfectly in parallel. In this prototype chip, since the gate array
is too small, a CLK for each flip-flop is provided through a single CLK buffer tree. However,
for a large gate array, CLKs of flip-flops are applied through multiple CLK buffer trees as
programmable CLKs, as well as that of FPGAs.

Technology 0.35µm double-poly

triple-metal CMOS process

Chip size 4.9 mm × 4.9 mm

Photodiode size 25.5 µm × 25.5 µm

Distance between photodiodes 90 µm

Number of photodiodes 340

Gate count 68

Table 1. ORGA-VLSI Specifications.

2.2.3 Optically reconfigurable switching matrix
Similarly, optically reconfigurable switching matrices are optically reconfigurable. The block
diagram of the optically reconfigurable switching matrix is portrayed in Fig. 2(c). The basic
construction is the same as that used by Xilinx Inc. One four-directional with 24 transmission
gates and 4 three-directional switching matrices with 12 transmission gates were implemented
in the gate array. Each transmission gate can be considered as a bi-directional switch. A
photodiode is connected to each transmission gate; it controls whether the transmission gate
is closed or not. Based on that capability, four-direction and three-direction switching matrices
can be programmed, respectively, as 24 and 12 optical connections.

2.2.4 Optically reconfigurable I/O block
Optically reconfigurable gate arrays are assumed to be reconfigured frequently. For that rea-
son, an optical reconfiguration capability must be implemented for optically reconfigurable
logic blocks and optically reconfigurable switching matrices. However, the I/O block might
not always be reconfigured under such dynamic reconfiguration applications because such
a dynamic reconfiguration arises inside the device and each mode of Input, Output, or In-
put/Output, and each pin location of the I/O block must always be fixed due to limitations of
the external environment. However, the ORGA-VLSI supports optical reconfiguration for I/O
blocks because reconfiguration information is provided optically from a holographic memory
in ORGA. Consequently, electrically configurable I/O blocks are unsuitable for ORGAs. Here,
each I/O block is also controlled using nine optical connections. Always, the optically recon-
figurable I/O block configuration is executed only initially.

3. Defect tolerance design of the ORGA architecture

3.1 Holographic memory part
Holographic memories are well known to have a high defect tolerance. Since each bit of a
reconfiguration context can be generated from the entire holographic memory, the damage of
some fraction rarely affects its diffraction pattern or a reconfiguration context. Even though
a holographic memory device includes small defect areas, holographic memories can cor-
rectly record configuration contexts and can correctly generate configuration contexts. Such
mechanisms can be considered as those for which majority voting is executed from an infinite
number of diffraction beams for each configuration bit. For a semiconductor memory, single-
bit information is stored in a single-bit memory circuit. In contrast, in holographic memory, a
single bit of a reconfiguration context is stored in the entire holographic memory. Therefore,

Fault	tolerance	of	programmable	devices 5

Fig. 3. Photograph of an ORGA-VLSI board with a fabricated ORGA-VLSI chip. The ORGA-
VLSI was fabricated using a 0.35 µm three-metal 4.9 × 4.9 mm2 CMOS process chip. The gate
count of a gate array on the chip is 68. In all, 340 photodiodes are used for optical configura-
tions.

(14),(15). Although the gate count of the chip is too small, the gate count of future ORGAs was
already estimated (12). Future ORGAs will achieve gate counts of over a million, which is sim-
ilar to gate counts of FPGAs.

2.2.2 Optically reconfigurable logic block
The block diagram of an optically reconfigurable logic block of the prototype ORGA-VLSI
chip is presented in Fig. 2(b). Each optically reconfigurable logic block consists of a four-
input one-output look-up table (LUT), six multiplexers, four transmission gates, and a delay
type flip-flop with a reset function. The input signals from the wiring channel, which are
applied through some switching matrices and wiring channels from optically reconfigurable
I/O blocks, are transferred to a look-up table through four multiplexers. The look-up table
is used for implementing Boolean functions. The outputs of the look-up table and of a delay
type flip-flop connected to the look-up table are connected to a multiplexer. A combinational
circuit and sequential circuit can be chosen by changing the multiplexer, as in FPGAs. Finally,
an output of the multiplexer is connected to the wiring channel again through transmission
gates. The last multiplexer controls the reset function of the delay-type flip-flop. Such a four-
input one-output look-up table, each multiplexer, and each transmission gate respectively
have 16 photodiodes, 2 photodiodes, and 1 photodiode. In all, 32 photodiodes are used for
programming an optically reconfigurable logic block. Therefore, the optically reconfigurable
logic block can be reconfigured perfectly in parallel. In this prototype chip, since the gate array
is too small, a CLK for each flip-flop is provided through a single CLK buffer tree. However,
for a large gate array, CLKs of flip-flops are applied through multiple CLK buffer trees as
programmable CLKs, as well as that of FPGAs.

Technology 0.35µm double-poly

triple-metal CMOS process

Chip size 4.9 mm × 4.9 mm

Photodiode size 25.5 µm × 25.5 µm

Distance between photodiodes 90 µm

Number of photodiodes 340

Gate count 68

Table 1. ORGA-VLSI Specifications.

2.2.3 Optically reconfigurable switching matrix
Similarly, optically reconfigurable switching matrices are optically reconfigurable. The block
diagram of the optically reconfigurable switching matrix is portrayed in Fig. 2(c). The basic
construction is the same as that used by Xilinx Inc. One four-directional with 24 transmission
gates and 4 three-directional switching matrices with 12 transmission gates were implemented
in the gate array. Each transmission gate can be considered as a bi-directional switch. A
photodiode is connected to each transmission gate; it controls whether the transmission gate
is closed or not. Based on that capability, four-direction and three-direction switching matrices
can be programmed, respectively, as 24 and 12 optical connections.

2.2.4 Optically reconfigurable I/O block
Optically reconfigurable gate arrays are assumed to be reconfigured frequently. For that rea-
son, an optical reconfiguration capability must be implemented for optically reconfigurable
logic blocks and optically reconfigurable switching matrices. However, the I/O block might
not always be reconfigured under such dynamic reconfiguration applications because such
a dynamic reconfiguration arises inside the device and each mode of Input, Output, or In-
put/Output, and each pin location of the I/O block must always be fixed due to limitations of
the external environment. However, the ORGA-VLSI supports optical reconfiguration for I/O
blocks because reconfiguration information is provided optically from a holographic memory
in ORGA. Consequently, electrically configurable I/O blocks are unsuitable for ORGAs. Here,
each I/O block is also controlled using nine optical connections. Always, the optically recon-
figurable I/O block configuration is executed only initially.

3. Defect tolerance design of the ORGA architecture

3.1 Holographic memory part
Holographic memories are well known to have a high defect tolerance. Since each bit of a
reconfiguration context can be generated from the entire holographic memory, the damage of
some fraction rarely affects its diffraction pattern or a reconfiguration context. Even though
a holographic memory device includes small defect areas, holographic memories can cor-
rectly record configuration contexts and can correctly generate configuration contexts. Such
mechanisms can be considered as those for which majority voting is executed from an infinite
number of diffraction beams for each configuration bit. For a semiconductor memory, single-
bit information is stored in a single-bit memory circuit. In contrast, in holographic memory, a
single bit of a reconfiguration context is stored in the entire holographic memory. Therefore,

Parallel	and	Distributed	Computing6

the holographic memory’s information is robust while, in the semiconductor memory, the de-
fect of a transistor always erases information of a single bit or multiple bits. Earlier studies
have shown experimentally that a holographic memory is robust (13). In the experiments,
1000 impulse noises and 10% Gaussian noise were applied to a holographic memory. Then
the holographic memory was assembled to an ORGA architecture. All configuration experi-
ments were successful. Therefore, defects of a holographic memory device on the ORGA are
beyond consideration.

3.2 Laser array part
In an ORGA, a laser array is a basic component for addressing a configuration memory or
a holographic memory. Although configuration context information stored on a holographic
memory is robust, if the laser array becomes defective, then the execution of each config-
uration becomes impossible. Therefore, the defect modes arising on a laser array must be
analyzed. In an ORGA, many discrete semiconductor lasers are used for switching configu-
ration contexts. Each laser corresponds to one holographic area including one configuration
context. One laser addresses one configuration context. The defect modes of a certain laser are
categorizable as a turn-ON defect mode and a full-time turn-ON defect mode or a turn-OFF
defect mode. The turn-ON defect mode means that a certain laser cannot be turned on. The
full-time turn-ON defect mode means the state in which a certain laser is constantly turned
ON and cannot be turned OFF.

3.2.1 Turn-ON defect mode
A laser might have a Turn-ON defect. However, laser source defects can be avoided easily
by not using the defective lasers, and not using holographic memory areas corresponding to
the lasers. An ORGA has numerous reconfiguration contexts. A slight reduction of reconfig-
uration contexts is therefore negligible. Programmers need only to avoid the defective parts
when programming reconfiguration contexts for a holographic memory. Therefore, the ORGA
architecture allows Turn-ON defect mode for lasers.

3.2.2 Turn-OFF defect mode
Furthermore, a laser might have a Turn-OFF defect mode. This trouble level is slightly higher
than that of the Turn-ON defect mode. The corresponding holographic memory information
is constantly superimposed to the other configuration context under normal reconfiguration
procedure if one laser has Turn-OFF defect mode and turns on constantly. Therefore, the Turn-
OFF defect mode of lasers presents the possibility that all normal configuration procedures are
impossible. Therefore, if such Turn-OFF defect mode arises on an ORGA, a physical action to
cut the corresponding wires or driver units is required. The action is easy and can perfectly
remove the defect mode.

3.2.3 Defect mode for matrix addressing
Such laser arrays are always arranged in the form of a two-dimensional matrix and addressed
as the matrix. In such matrix implementation, the defect of one driver causes all lasers on the
addressing line to be defective. To avoid simultaneous defects of many lasers, a spare row
method like that used for memories (DRAMs) is useful (6)(7). By introducing the spare row
method, the defect mode can be removed perfectly.

GND

VCC

GND

VCC

GND

VCC

GND

VCC

T

RST

Q T

RST

Q T

RST

Q T

RST

Q

Configuration signals for
Logic Blocks, Switching Matrix, and I/O Blocks

RESET
CLOCK

REFRESH

CS1 CS2 CSnCS3

Fig. 4. Circuit diagram of reconfiguration circuit.

Fig. 5. Defective area avoidance method on a gate array. Here, it is assumed that a defective
optically reconfigurable logic block (ORLB) exists, as portrayed in the upper area of the figure.
In this case, the defective area is avoided perfectly using parallel programming with the other
components, as presented in the lower area of the figure.

3.3 ORGA-VLSI part
In the ORGA-VLSIs, serial transfers were perfectly removed and optical reconfiguration cir-
cuits including static memory functions and photodiodes were placed near and directly con-
nected to programming elements of a programmable gate array VLSI. Figure 4 shows that the
toggle flip-flops are used for temporarily storing one context and realizing a bit-by-bit config-
uration. Using this architecture, the optical configuration procedure for a gate array can be
executed perfectly in parallel. Thereby, the VLSI part can achieve a perfectly parallel bit-by-bit
configuration.

3.3.1 Simple method to avoid defective areas
Using configuration, a damaged gate array can be restored as shown in Fig. 5. The structure
and function of an optically reconfigurable logic block and optically reconfigurable switching
matrices on a gate array are mutually similar. If a part is defective or fails, the same function
can be implemented onto the other part. Here, the upper part of Fig. 5 shows that it is assumed

Fault	tolerance	of	programmable	devices 7

the holographic memory’s information is robust while, in the semiconductor memory, the de-
fect of a transistor always erases information of a single bit or multiple bits. Earlier studies
have shown experimentally that a holographic memory is robust (13). In the experiments,
1000 impulse noises and 10% Gaussian noise were applied to a holographic memory. Then
the holographic memory was assembled to an ORGA architecture. All configuration experi-
ments were successful. Therefore, defects of a holographic memory device on the ORGA are
beyond consideration.

3.2 Laser array part
In an ORGA, a laser array is a basic component for addressing a configuration memory or
a holographic memory. Although configuration context information stored on a holographic
memory is robust, if the laser array becomes defective, then the execution of each config-
uration becomes impossible. Therefore, the defect modes arising on a laser array must be
analyzed. In an ORGA, many discrete semiconductor lasers are used for switching configu-
ration contexts. Each laser corresponds to one holographic area including one configuration
context. One laser addresses one configuration context. The defect modes of a certain laser are
categorizable as a turn-ON defect mode and a full-time turn-ON defect mode or a turn-OFF
defect mode. The turn-ON defect mode means that a certain laser cannot be turned on. The
full-time turn-ON defect mode means the state in which a certain laser is constantly turned
ON and cannot be turned OFF.

3.2.1 Turn-ON defect mode
A laser might have a Turn-ON defect. However, laser source defects can be avoided easily
by not using the defective lasers, and not using holographic memory areas corresponding to
the lasers. An ORGA has numerous reconfiguration contexts. A slight reduction of reconfig-
uration contexts is therefore negligible. Programmers need only to avoid the defective parts
when programming reconfiguration contexts for a holographic memory. Therefore, the ORGA
architecture allows Turn-ON defect mode for lasers.

3.2.2 Turn-OFF defect mode
Furthermore, a laser might have a Turn-OFF defect mode. This trouble level is slightly higher
than that of the Turn-ON defect mode. The corresponding holographic memory information
is constantly superimposed to the other configuration context under normal reconfiguration
procedure if one laser has Turn-OFF defect mode and turns on constantly. Therefore, the Turn-
OFF defect mode of lasers presents the possibility that all normal configuration procedures are
impossible. Therefore, if such Turn-OFF defect mode arises on an ORGA, a physical action to
cut the corresponding wires or driver units is required. The action is easy and can perfectly
remove the defect mode.

3.2.3 Defect mode for matrix addressing
Such laser arrays are always arranged in the form of a two-dimensional matrix and addressed
as the matrix. In such matrix implementation, the defect of one driver causes all lasers on the
addressing line to be defective. To avoid simultaneous defects of many lasers, a spare row
method like that used for memories (DRAMs) is useful (6)(7). By introducing the spare row
method, the defect mode can be removed perfectly.

GND

VCC

GND

VCC

GND

VCC

GND

VCC

T

RST

Q T

RST

Q T

RST

Q T

RST

Q

Configuration signals for
Logic Blocks, Switching Matrix, and I/O Blocks

RESET
CLOCK

REFRESH

CS1 CS2 CSnCS3

Fig. 4. Circuit diagram of reconfiguration circuit.

Fig. 5. Defective area avoidance method on a gate array. Here, it is assumed that a defective
optically reconfigurable logic block (ORLB) exists, as portrayed in the upper area of the figure.
In this case, the defective area is avoided perfectly using parallel programming with the other
components, as presented in the lower area of the figure.

3.3 ORGA-VLSI part
In the ORGA-VLSIs, serial transfers were perfectly removed and optical reconfiguration cir-
cuits including static memory functions and photodiodes were placed near and directly con-
nected to programming elements of a programmable gate array VLSI. Figure 4 shows that the
toggle flip-flops are used for temporarily storing one context and realizing a bit-by-bit config-
uration. Using this architecture, the optical configuration procedure for a gate array can be
executed perfectly in parallel. Thereby, the VLSI part can achieve a perfectly parallel bit-by-bit
configuration.

3.3.1 Simple method to avoid defective areas
Using configuration, a damaged gate array can be restored as shown in Fig. 5. The structure
and function of an optically reconfigurable logic block and optically reconfigurable switching
matrices on a gate array are mutually similar. If a part is defective or fails, the same function
can be implemented onto the other part. Here, the upper part of Fig. 5 shows that it is assumed

Parallel	and	Distributed	Computing6

the holographic memory’s information is robust while, in the semiconductor memory, the de-
fect of a transistor always erases information of a single bit or multiple bits. Earlier studies
have shown experimentally that a holographic memory is robust (13). In the experiments,
1000 impulse noises and 10% Gaussian noise were applied to a holographic memory. Then
the holographic memory was assembled to an ORGA architecture. All configuration experi-
ments were successful. Therefore, defects of a holographic memory device on the ORGA are
beyond consideration.

3.2 Laser array part
In an ORGA, a laser array is a basic component for addressing a configuration memory or
a holographic memory. Although configuration context information stored on a holographic
memory is robust, if the laser array becomes defective, then the execution of each config-
uration becomes impossible. Therefore, the defect modes arising on a laser array must be
analyzed. In an ORGA, many discrete semiconductor lasers are used for switching configu-
ration contexts. Each laser corresponds to one holographic area including one configuration
context. One laser addresses one configuration context. The defect modes of a certain laser are
categorizable as a turn-ON defect mode and a full-time turn-ON defect mode or a turn-OFF
defect mode. The turn-ON defect mode means that a certain laser cannot be turned on. The
full-time turn-ON defect mode means the state in which a certain laser is constantly turned
ON and cannot be turned OFF.

3.2.1 Turn-ON defect mode
A laser might have a Turn-ON defect. However, laser source defects can be avoided easily
by not using the defective lasers, and not using holographic memory areas corresponding to
the lasers. An ORGA has numerous reconfiguration contexts. A slight reduction of reconfig-
uration contexts is therefore negligible. Programmers need only to avoid the defective parts
when programming reconfiguration contexts for a holographic memory. Therefore, the ORGA
architecture allows Turn-ON defect mode for lasers.

3.2.2 Turn-OFF defect mode
Furthermore, a laser might have a Turn-OFF defect mode. This trouble level is slightly higher
than that of the Turn-ON defect mode. The corresponding holographic memory information
is constantly superimposed to the other configuration context under normal reconfiguration
procedure if one laser has Turn-OFF defect mode and turns on constantly. Therefore, the Turn-
OFF defect mode of lasers presents the possibility that all normal configuration procedures are
impossible. Therefore, if such Turn-OFF defect mode arises on an ORGA, a physical action to
cut the corresponding wires or driver units is required. The action is easy and can perfectly
remove the defect mode.

3.2.3 Defect mode for matrix addressing
Such laser arrays are always arranged in the form of a two-dimensional matrix and addressed
as the matrix. In such matrix implementation, the defect of one driver causes all lasers on the
addressing line to be defective. To avoid simultaneous defects of many lasers, a spare row
method like that used for memories (DRAMs) is useful (6)(7). By introducing the spare row
method, the defect mode can be removed perfectly.

GND

VCC

GND

VCC

GND

VCC

GND

VCC

T

RST

Q T

RST

Q T

RST

Q T

RST

Q

Configuration signals for
Logic Blocks, Switching Matrix, and I/O Blocks

RESET
CLOCK

REFRESH

CS1 CS2 CSnCS3

Fig. 4. Circuit diagram of reconfiguration circuit.

Fig. 5. Defective area avoidance method on a gate array. Here, it is assumed that a defective
optically reconfigurable logic block (ORLB) exists, as portrayed in the upper area of the figure.
In this case, the defective area is avoided perfectly using parallel programming with the other
components, as presented in the lower area of the figure.

3.3 ORGA-VLSI part
In the ORGA-VLSIs, serial transfers were perfectly removed and optical reconfiguration cir-
cuits including static memory functions and photodiodes were placed near and directly con-
nected to programming elements of a programmable gate array VLSI. Figure 4 shows that the
toggle flip-flops are used for temporarily storing one context and realizing a bit-by-bit config-
uration. Using this architecture, the optical configuration procedure for a gate array can be
executed perfectly in parallel. Thereby, the VLSI part can achieve a perfectly parallel bit-by-bit
configuration.

3.3.1 Simple method to avoid defective areas
Using configuration, a damaged gate array can be restored as shown in Fig. 5. The structure
and function of an optically reconfigurable logic block and optically reconfigurable switching
matrices on a gate array are mutually similar. If a part is defective or fails, the same function
can be implemented onto the other part. Here, the upper part of Fig. 5 shows that it is assumed

Fault	tolerance	of	programmable	devices 7

the holographic memory’s information is robust while, in the semiconductor memory, the de-
fect of a transistor always erases information of a single bit or multiple bits. Earlier studies
have shown experimentally that a holographic memory is robust (13). In the experiments,
1000 impulse noises and 10% Gaussian noise were applied to a holographic memory. Then
the holographic memory was assembled to an ORGA architecture. All configuration experi-
ments were successful. Therefore, defects of a holographic memory device on the ORGA are
beyond consideration.

3.2 Laser array part
In an ORGA, a laser array is a basic component for addressing a configuration memory or
a holographic memory. Although configuration context information stored on a holographic
memory is robust, if the laser array becomes defective, then the execution of each config-
uration becomes impossible. Therefore, the defect modes arising on a laser array must be
analyzed. In an ORGA, many discrete semiconductor lasers are used for switching configu-
ration contexts. Each laser corresponds to one holographic area including one configuration
context. One laser addresses one configuration context. The defect modes of a certain laser are
categorizable as a turn-ON defect mode and a full-time turn-ON defect mode or a turn-OFF
defect mode. The turn-ON defect mode means that a certain laser cannot be turned on. The
full-time turn-ON defect mode means the state in which a certain laser is constantly turned
ON and cannot be turned OFF.

3.2.1 Turn-ON defect mode
A laser might have a Turn-ON defect. However, laser source defects can be avoided easily
by not using the defective lasers, and not using holographic memory areas corresponding to
the lasers. An ORGA has numerous reconfiguration contexts. A slight reduction of reconfig-
uration contexts is therefore negligible. Programmers need only to avoid the defective parts
when programming reconfiguration contexts for a holographic memory. Therefore, the ORGA
architecture allows Turn-ON defect mode for lasers.

3.2.2 Turn-OFF defect mode
Furthermore, a laser might have a Turn-OFF defect mode. This trouble level is slightly higher
than that of the Turn-ON defect mode. The corresponding holographic memory information
is constantly superimposed to the other configuration context under normal reconfiguration
procedure if one laser has Turn-OFF defect mode and turns on constantly. Therefore, the Turn-
OFF defect mode of lasers presents the possibility that all normal configuration procedures are
impossible. Therefore, if such Turn-OFF defect mode arises on an ORGA, a physical action to
cut the corresponding wires or driver units is required. The action is easy and can perfectly
remove the defect mode.

3.2.3 Defect mode for matrix addressing
Such laser arrays are always arranged in the form of a two-dimensional matrix and addressed
as the matrix. In such matrix implementation, the defect of one driver causes all lasers on the
addressing line to be defective. To avoid simultaneous defects of many lasers, a spare row
method like that used for memories (DRAMs) is useful (6)(7). By introducing the spare row
method, the defect mode can be removed perfectly.

GND

VCC

GND

VCC

GND

VCC

GND

VCC

T

RST

Q T

RST

Q T

RST

Q T

RST

Q

Configuration signals for
Logic Blocks, Switching Matrix, and I/O Blocks

RESET
CLOCK

REFRESH

CS1 CS2 CSnCS3

Fig. 4. Circuit diagram of reconfiguration circuit.

Fig. 5. Defective area avoidance method on a gate array. Here, it is assumed that a defective
optically reconfigurable logic block (ORLB) exists, as portrayed in the upper area of the figure.
In this case, the defective area is avoided perfectly using parallel programming with the other
components, as presented in the lower area of the figure.

3.3 ORGA-VLSI part
In the ORGA-VLSIs, serial transfers were perfectly removed and optical reconfiguration cir-
cuits including static memory functions and photodiodes were placed near and directly con-
nected to programming elements of a programmable gate array VLSI. Figure 4 shows that the
toggle flip-flops are used for temporarily storing one context and realizing a bit-by-bit config-
uration. Using this architecture, the optical configuration procedure for a gate array can be
executed perfectly in parallel. Thereby, the VLSI part can achieve a perfectly parallel bit-by-bit
configuration.

3.3.1 Simple method to avoid defective areas
Using configuration, a damaged gate array can be restored as shown in Fig. 5. The structure
and function of an optically reconfigurable logic block and optically reconfigurable switching
matrices on a gate array are mutually similar. If a part is defective or fails, the same function
can be implemented onto the other part. Here, the upper part of Fig. 5 shows that it is assumed

Parallel	and	Distributed	Computing8

that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.

5. References

[1] C. Hess, L. H. Weiland, ”Wafer level defect density distribution using checkerboard test
structures,” International Conference on Microelectronic Test Structures, pp. 101–106,
1998.

[2] C. Hess, L. H. Weiland, ”Extraction of wafer-level defect density distributions to im-
prove yield prediction,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12,
Issue 2, pp. 175-183, 1999.

[3] Altera Corporation, ”Altera Devices,” http://www. altera.com.

[4] Xilinx Inc., ”Xilinx Product Data Sheets,” http://www. xilinx.com.

[5] Lattice Semiconductor Corporation, ”LatticeECP and EC Family Data Sheet,”
http://www. latticesemi.co.jp/products, 2005.

[6] A. J. Yu, G. G. Lemieux, ”FPGA Defect Tolerance: Impact of Granularity,” IEEE Interna-
tional Conference on Field-Programmable Technology,pp. 189–196, 2005.

[7] A. Doumar, H. Ito, ”Detecting, diagnosing, and tolerating faults in SRAM-based field
programmable gate arrays: a survey,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 11, Issue 3, pp. 386 – 405, 2003.

[8] M. Watanabe, F. Kobayashi, ”Dynamic Optically Reconfigurable Gate Array,” Japanese
Journal of Applied Physics, Vol. 45, No. 4B, pp. 3510-3515, 2006.

[9] N. Yamaguchi, M. Watanabe, ”Liquid crystal holographic configurations for ORGAs,”
Applied Optics, Vol. 47, No. 28, pp. 4692-4700, 2008.

[10] D. Seto, M. Watanabe, ”A dynamic optically reconfigurable gate array - perfect emula-
tion,” IEEE Journal of Quantum Electronics, Vol. 44, Issue 5, pp. 493-500, 2008.

[11] M. Watanabe, M. Nakajima, S. Kato, ”An inversion/non-inversion dynamic optically
reconfigurable gate array VLSI,” World Scientific and Engineering Academy and Soci-
ety Transactions on Circuits and Systems, Issue 1, Vol. 8, pp. 11- 20, 2009.

[12] M. Watanabe, T. Shiki, F. Kobayashi, ”Scaling prospect of optically differential reconfig-
urable gate array VLSIs,” Analog Integrated Circuits and Signal Processing, Vol. 60, pp.
137 - 143, 2009.

[13] M. Watanabe, F. Kobayashi, ”Manufacturing-defect tolerance analysis of optically re-
configurable gate arrays,” World Scientific and Engineering Academy and Society
Transactions on Signal Processing, Issue 11, Vol. 2, pp. 1457- 1464, 2006.

Fault	tolerance	of	programmable	devices 9

that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.

5. References

[1] C. Hess, L. H. Weiland, ”Wafer level defect density distribution using checkerboard test
structures,” International Conference on Microelectronic Test Structures, pp. 101–106,
1998.

[2] C. Hess, L. H. Weiland, ”Extraction of wafer-level defect density distributions to im-
prove yield prediction,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12,
Issue 2, pp. 175-183, 1999.

[3] Altera Corporation, ”Altera Devices,” http://www. altera.com.

[4] Xilinx Inc., ”Xilinx Product Data Sheets,” http://www. xilinx.com.

[5] Lattice Semiconductor Corporation, ”LatticeECP and EC Family Data Sheet,”
http://www. latticesemi.co.jp/products, 2005.

[6] A. J. Yu, G. G. Lemieux, ”FPGA Defect Tolerance: Impact of Granularity,” IEEE Interna-
tional Conference on Field-Programmable Technology,pp. 189–196, 2005.

[7] A. Doumar, H. Ito, ”Detecting, diagnosing, and tolerating faults in SRAM-based field
programmable gate arrays: a survey,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 11, Issue 3, pp. 386 – 405, 2003.

[8] M. Watanabe, F. Kobayashi, ”Dynamic Optically Reconfigurable Gate Array,” Japanese
Journal of Applied Physics, Vol. 45, No. 4B, pp. 3510-3515, 2006.

[9] N. Yamaguchi, M. Watanabe, ”Liquid crystal holographic configurations for ORGAs,”
Applied Optics, Vol. 47, No. 28, pp. 4692-4700, 2008.

[10] D. Seto, M. Watanabe, ”A dynamic optically reconfigurable gate array - perfect emula-
tion,” IEEE Journal of Quantum Electronics, Vol. 44, Issue 5, pp. 493-500, 2008.

[11] M. Watanabe, M. Nakajima, S. Kato, ”An inversion/non-inversion dynamic optically
reconfigurable gate array VLSI,” World Scientific and Engineering Academy and Soci-
ety Transactions on Circuits and Systems, Issue 1, Vol. 8, pp. 11- 20, 2009.

[12] M. Watanabe, T. Shiki, F. Kobayashi, ”Scaling prospect of optically differential reconfig-
urable gate array VLSIs,” Analog Integrated Circuits and Signal Processing, Vol. 60, pp.
137 - 143, 2009.

[13] M. Watanabe, F. Kobayashi, ”Manufacturing-defect tolerance analysis of optically re-
configurable gate arrays,” World Scientific and Engineering Academy and Society
Transactions on Signal Processing, Issue 11, Vol. 2, pp. 1457- 1464, 2006.

Parallel	and	Distributed	Computing8

that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.

5. References

[1] C. Hess, L. H. Weiland, ”Wafer level defect density distribution using checkerboard test
structures,” International Conference on Microelectronic Test Structures, pp. 101–106,
1998.

[2] C. Hess, L. H. Weiland, ”Extraction of wafer-level defect density distributions to im-
prove yield prediction,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12,
Issue 2, pp. 175-183, 1999.

[3] Altera Corporation, ”Altera Devices,” http://www. altera.com.

[4] Xilinx Inc., ”Xilinx Product Data Sheets,” http://www. xilinx.com.

[5] Lattice Semiconductor Corporation, ”LatticeECP and EC Family Data Sheet,”
http://www. latticesemi.co.jp/products, 2005.

[6] A. J. Yu, G. G. Lemieux, ”FPGA Defect Tolerance: Impact of Granularity,” IEEE Interna-
tional Conference on Field-Programmable Technology,pp. 189–196, 2005.

[7] A. Doumar, H. Ito, ”Detecting, diagnosing, and tolerating faults in SRAM-based field
programmable gate arrays: a survey,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 11, Issue 3, pp. 386 – 405, 2003.

[8] M. Watanabe, F. Kobayashi, ”Dynamic Optically Reconfigurable Gate Array,” Japanese
Journal of Applied Physics, Vol. 45, No. 4B, pp. 3510-3515, 2006.

[9] N. Yamaguchi, M. Watanabe, ”Liquid crystal holographic configurations for ORGAs,”
Applied Optics, Vol. 47, No. 28, pp. 4692-4700, 2008.

[10] D. Seto, M. Watanabe, ”A dynamic optically reconfigurable gate array - perfect emula-
tion,” IEEE Journal of Quantum Electronics, Vol. 44, Issue 5, pp. 493-500, 2008.

[11] M. Watanabe, M. Nakajima, S. Kato, ”An inversion/non-inversion dynamic optically
reconfigurable gate array VLSI,” World Scientific and Engineering Academy and Soci-
ety Transactions on Circuits and Systems, Issue 1, Vol. 8, pp. 11- 20, 2009.

[12] M. Watanabe, T. Shiki, F. Kobayashi, ”Scaling prospect of optically differential reconfig-
urable gate array VLSIs,” Analog Integrated Circuits and Signal Processing, Vol. 60, pp.
137 - 143, 2009.

[13] M. Watanabe, F. Kobayashi, ”Manufacturing-defect tolerance analysis of optically re-
configurable gate arrays,” World Scientific and Engineering Academy and Society
Transactions on Signal Processing, Issue 11, Vol. 2, pp. 1457- 1464, 2006.

Fault	tolerance	of	programmable	devices 9

that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.

5. References

[1] C. Hess, L. H. Weiland, ”Wafer level defect density distribution using checkerboard test
structures,” International Conference on Microelectronic Test Structures, pp. 101–106,
1998.

[2] C. Hess, L. H. Weiland, ”Extraction of wafer-level defect density distributions to im-
prove yield prediction,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12,
Issue 2, pp. 175-183, 1999.

[3] Altera Corporation, ”Altera Devices,” http://www. altera.com.

[4] Xilinx Inc., ”Xilinx Product Data Sheets,” http://www. xilinx.com.

[5] Lattice Semiconductor Corporation, ”LatticeECP and EC Family Data Sheet,”
http://www. latticesemi.co.jp/products, 2005.

[6] A. J. Yu, G. G. Lemieux, ”FPGA Defect Tolerance: Impact of Granularity,” IEEE Interna-
tional Conference on Field-Programmable Technology,pp. 189–196, 2005.

[7] A. Doumar, H. Ito, ”Detecting, diagnosing, and tolerating faults in SRAM-based field
programmable gate arrays: a survey,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 11, Issue 3, pp. 386 – 405, 2003.

[8] M. Watanabe, F. Kobayashi, ”Dynamic Optically Reconfigurable Gate Array,” Japanese
Journal of Applied Physics, Vol. 45, No. 4B, pp. 3510-3515, 2006.

[9] N. Yamaguchi, M. Watanabe, ”Liquid crystal holographic configurations for ORGAs,”
Applied Optics, Vol. 47, No. 28, pp. 4692-4700, 2008.

[10] D. Seto, M. Watanabe, ”A dynamic optically reconfigurable gate array - perfect emula-
tion,” IEEE Journal of Quantum Electronics, Vol. 44, Issue 5, pp. 493-500, 2008.

[11] M. Watanabe, M. Nakajima, S. Kato, ”An inversion/non-inversion dynamic optically
reconfigurable gate array VLSI,” World Scientific and Engineering Academy and Soci-
ety Transactions on Circuits and Systems, Issue 1, Vol. 8, pp. 11- 20, 2009.

[12] M. Watanabe, T. Shiki, F. Kobayashi, ”Scaling prospect of optically differential reconfig-
urable gate array VLSIs,” Analog Integrated Circuits and Signal Processing, Vol. 60, pp.
137 - 143, 2009.

[13] M. Watanabe, F. Kobayashi, ”Manufacturing-defect tolerance analysis of optically re-
configurable gate arrays,” World Scientific and Engineering Academy and Society
Transactions on Signal Processing, Issue 11, Vol. 2, pp. 1457- 1464, 2006.

Parallel	and	Distributed	Computing10

[14] M. Miyano, M. Watanabe, F. Kobayashi, ”Optically Differential Reconfigurable Gate
Array,” Electronics and Computers in Japan, Part II, Issue 11, vol. 90, pp. 132-139, 2007.

[15] M. Nakajima, M. Watanabe, ”A four-context optically differential reconfigurable gate
array,” IEEE/OSA Journal of Lightwave Technology, Vol. 27, No. 24, 2009.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 11

Fragmentation	management	for	HW	multitasking	in	2D	Reconfigurable	
Devices:	Metrics	and	Defragmentation	Heuristics

Julio	Septién,	Hortensia	Mecha,	Daniel	Mozos	and	Jesus	Tabero

x

Fragmentation management for HW
multitasking in 2D Reconfigurable Devices:

Metrics and Defragmentation Heuristics

Julio Septién, Hortensia Mecha, Daniel Mozos and Jesus Tabero
University Complutense de Madrid

Spain

1. Introduction

Hardware multitasking has become a real possibility as a consequence of FPGA advances
along the last decade, such as partial run-time reconfiguration capability and increased
FPGA size. Partial reconfiguration times are small enough, and FPGA sizes large enough, to
consider reconfigurable environments where a single FPGA managed by an extended
operating system can store and run simultaneously several whole tasks, even belonging to
different users. The problem of HW multitasking management involves decisions such as
the structure used to keep track of the free FPGA resources, the allocation of FPGA
resources for each incoming task, the scheduling of the task execution at a certain time
instant, where its time constraints are satisfied, and others that have been studied in detail
in (Wigley & Kearney, 2002a).
The tasks enter and leave the FPGA dynamically, and thus FPGA reuse due to hardware
multitasking leads to fragmentation. When a task finishes execution and has to leave the
FPGA, it leaves a hole that has to be incorporated to the FPGA free area. It becomes
unavoidable that such process, repeated once and again, generates an external
fragmentation that can lead to difficult situations where new tasks are unable to find room
in the FPGA though there are free resources enough. The FPGA free area has become
fragmented and it can not be used to accommodate future incoming tasks due to the way
the free resources are spread along the FPGA.
For 1D-reconfiguration architectures such as that of commercial Xilinx Virtex or Virtex II
(only column-programmable, though they consist of 2D block arrays), simple management
techniques based, for example, on several fixed-sized partitions or even arbitrary-sized
partitions, are used, and fragmentation can be easily detected and managed (Steiger et al.,
2004) (Ahmadinia et al., 2003). It is a linear problem alike to that of memory fragmentation
in SW multitasking environments. The main problem for such architectures is not the
management of the fragmented free area, but how defragmentation is accomplished by
performing task relocation (Brebner & Diessel, 2001). Some systems even propose a 2D
management of the 1D-reconfigurable, Virtex-type, architecture (Hübner et al., 2006) (van
der Veen et al., 2005).

2

Parallel	and	Distributed	Computing10

[14] M. Miyano, M. Watanabe, F. Kobayashi, ”Optically Differential Reconfigurable Gate
Array,” Electronics and Computers in Japan, Part II, Issue 11, vol. 90, pp. 132-139, 2007.

[15] M. Nakajima, M. Watanabe, ”A four-context optically differential reconfigurable gate
array,” IEEE/OSA Journal of Lightwave Technology, Vol. 27, No. 24, 2009.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 11

Fragmentation	management	for	HW	multitasking	in	2D	Reconfigurable	
Devices:	Metrics	and	Defragmentation	Heuristics

Julio	Septién,	Hortensia	Mecha,	Daniel	Mozos	and	Jesus	Tabero

x

Fragmentation management for HW
multitasking in 2D Reconfigurable Devices:

Metrics and Defragmentation Heuristics

Julio Septién, Hortensia Mecha, Daniel Mozos and Jesus Tabero
University Complutense de Madrid

Spain

1. Introduction

Hardware multitasking has become a real possibility as a consequence of FPGA advances
along the last decade, such as partial run-time reconfiguration capability and increased
FPGA size. Partial reconfiguration times are small enough, and FPGA sizes large enough, to
consider reconfigurable environments where a single FPGA managed by an extended
operating system can store and run simultaneously several whole tasks, even belonging to
different users. The problem of HW multitasking management involves decisions such as
the structure used to keep track of the free FPGA resources, the allocation of FPGA
resources for each incoming task, the scheduling of the task execution at a certain time
instant, where its time constraints are satisfied, and others that have been studied in detail
in (Wigley & Kearney, 2002a).
The tasks enter and leave the FPGA dynamically, and thus FPGA reuse due to hardware
multitasking leads to fragmentation. When a task finishes execution and has to leave the
FPGA, it leaves a hole that has to be incorporated to the FPGA free area. It becomes
unavoidable that such process, repeated once and again, generates an external
fragmentation that can lead to difficult situations where new tasks are unable to find room
in the FPGA though there are free resources enough. The FPGA free area has become
fragmented and it can not be used to accommodate future incoming tasks due to the way
the free resources are spread along the FPGA.
For 1D-reconfiguration architectures such as that of commercial Xilinx Virtex or Virtex II
(only column-programmable, though they consist of 2D block arrays), simple management
techniques based, for example, on several fixed-sized partitions or even arbitrary-sized
partitions, are used, and fragmentation can be easily detected and managed (Steiger et al.,
2004) (Ahmadinia et al., 2003). It is a linear problem alike to that of memory fragmentation
in SW multitasking environments. The main problem for such architectures is not the
management of the fragmented free area, but how defragmentation is accomplished by
performing task relocation (Brebner & Diessel, 2001). Some systems even propose a 2D
management of the 1D-reconfigurable, Virtex-type, architecture (Hübner et al., 2006) (van
der Veen et al., 2005).

2

Parallel	and	Distributed	Computing12

For 2D-reconfigurable architectures such as Virtex 4 (Xilinx, Inc “Virtex-4 Configuration
Guide) and 5 (Xilinx, Inc “Virtex-5 Configuration User Guide), more sophisticated
techniques must be used to keep track of the available free area, in order to get an efficient
FPGA resource management (Bazargan et al., 2000) (Walder et al., 2003) (Diessel et al., 2000)
(Ahmadinia et al., 2004) (Handa & Vemuri, 2004a) (Tabero et al., 2004). For such
architectures the estimation of the FPGA fragmentation status through an accurate metric is
an important issue, and some researchers have proposed estimation metrics as in (Handa &
Vemuri, 2004b), (Ejnioui & DeMara, 2005) and (Septien et al., 2008). What the 2D metric
must estimate is how idoneous is the geometry of the free FPGA area to accommodate a
new task.
A reliable fragmentation metric can be used in different ways: first, as a cost function when
the allocation decisions are being taken (Tabero et al., 2004). The use of a fragmentation
metric as cost function would guarantee future FPGA status with lower fragmentation (for
the same FPGA occupation level), that would give a better probability of finding a location
for the next task.
It can be used, also, as an alarm in order to trigger defragmentation measures as preventive
actions or in extreme situations, that lead to relocation of one o more of the currently
running tasks (van der Veen et al., 2005), (Diessel et al., 2000), (Septien et al., 2006) and
(Fekete et al., 2008).
In this work, we are going to review the fragmentation metrics proposed in the literature to
estimate the fragmentation of the FPGA resources, and we’ll present two fragmentation
metrics of our own, one of them based on the number and shape of the FPGA free holes, and
another based on the relative quadrature of the free area perimeter. Then we´ll show
examples of how these metrics behave in different situations, with one or several free holes
and also with islands (isolated tasks). We’ll also show how they can be used as cost
functions in a location selection heuristic, each time a task is loaded into the FPGA.
Experimental results show that though they maintain a low complexity, these metrics,
specially the quadrature-based one, behave better than most of the previous ones,
discarding a lower amount of computing volume when the FPGA supports a heavy task
load.
We will review also the different approaches to FPGA defragmentation considered in the
literature, and we’ll propose a set of FPGA defragmentation techniques. Two basic
techniques will be presented: preventive and on-demand defragmentation. Preventive
measures will try to anticipate to possible allocation problems due to fragmentation. These
measures will be triggered by a high fragmentation metric value. When fired, the system
performs an immediate global or partial defragmentation, or a delayed global one
depending on the time constraints of the involved tasks. On-demand measures try an urgent
move of a single candidate task, the one with the highest relative adjacency with the hole
border. Such battery of defragmentation measures can help avoiding most problems
produced by fragmentation in HW multitasking on 2D reconfigurable devices.

2. Previous work

The problems of fragmentation estimation and defragmentation are very different when
FPGAs managed in one or two dimensions are considered. For 1D, a few simple solutions

have been used, but for 2D a nice amount of interesting research has been done, and in this
section we’ll focus on such work.

2.1 Fragmentation estimation
Fragmentation has been considered in the existing literature as an aspect of the area
management problem in HW multitasking, and thus most fragmentation metrics have been
proposed as part of different management techniques, most of them rectangle-based.
Bazargan presented in (Bazargan et al., 2000) a free area management and task allocation
heuristic that is broadly referenced. Such heuristic is based on MERs, maximum empty
rectangles. Bazargan´s allocator keeps track, with a high complexity algorithm, of all the
MERs (which can overlap) available in the free FPGA area. Such approach is optimal, in the
sense that if there is free room enough for an incoming task, it is contained in one of the
available MERs. To select one of the MERs, Bazargan uses several techniques: First-Fit,
Worst-Fit, Best-fit… Though Bazargan does not estimate fragmentation directly, the
availability of large MERs at a given time is an indirect measure of the fragmentation status
of a given FPGA situation.
The MER approach, though, is so expensive in terms of update and search time that
Bazargan finally opted for a non-optimal approach to area management, by dividing the
free area into a set of non-overlapping rectangles.
Wigley proposes in (Wigley & Kearney, 2002b) a metric that must keep track of all the
available MERs. Thus what we have just stated about the MER approach applies also to this
metric. It considers fragmentation then as the average size of the maximal squares fitting
into the more relevant set of MERs. Moreover, this metric does not discriminate enough,
giving the same values for very different fragmentation situations.
Walder makes in (Walder & Platzner, 2002) an estimation of the free area fragmentation,
using non-overlapping rectangles similar to those of Bazargan. It considers the number of
rectangles with a given size. It uses a normalized, device-independent formula, to compute
the free area. Its main problem comes from the complexity of the technique needed to keep
track of such rectangles.
Handa in (Handa & Vemuri, 2004b) computes fragmentation referred to the average task
size. Holes with a size two times such value or more are not considered for the metric.
Fragmentation then has not an absolute value for a given FPGA situation, but depends on
the incoming task. It gives in general very low fragmentation values, even for situations
with very disperse tasks and holes not too large compared to the total free area.
Ejnoui in (Ejnioui & DeMara, 2005) proposes a fragmentation metric that depends only on
the free area and the number of holes, and not on the shape of the holes. It can be considered
then a measure of the FPGA occupation, more than of FPGA fragmentation. There is a
fragmentation value of 0 only for an empty chip. When the FPGA is heavily loaded the
metric approaches to 1 quickly, independently from the hole shape.
Cui in (Cui et al., 2007) computes fragmentation for all the MERs of the free area. For each
MER this fragmentation is based on the probable size of the arriving task, and involves
computations for each basic cell inside the MER. Thus the technique presents a heavy
complexity order that, as for other MER-based techniques, makes it difficult to use in a real
environment.
All that has been explained above allows to make some assertions. The main feature of a
good fragmentation metric should be its ability to detect when the free FPGA area is more or

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 13

For 2D-reconfigurable architectures such as Virtex 4 (Xilinx, Inc “Virtex-4 Configuration
Guide) and 5 (Xilinx, Inc “Virtex-5 Configuration User Guide), more sophisticated
techniques must be used to keep track of the available free area, in order to get an efficient
FPGA resource management (Bazargan et al., 2000) (Walder et al., 2003) (Diessel et al., 2000)
(Ahmadinia et al., 2004) (Handa & Vemuri, 2004a) (Tabero et al., 2004). For such
architectures the estimation of the FPGA fragmentation status through an accurate metric is
an important issue, and some researchers have proposed estimation metrics as in (Handa &
Vemuri, 2004b), (Ejnioui & DeMara, 2005) and (Septien et al., 2008). What the 2D metric
must estimate is how idoneous is the geometry of the free FPGA area to accommodate a
new task.
A reliable fragmentation metric can be used in different ways: first, as a cost function when
the allocation decisions are being taken (Tabero et al., 2004). The use of a fragmentation
metric as cost function would guarantee future FPGA status with lower fragmentation (for
the same FPGA occupation level), that would give a better probability of finding a location
for the next task.
It can be used, also, as an alarm in order to trigger defragmentation measures as preventive
actions or in extreme situations, that lead to relocation of one o more of the currently
running tasks (van der Veen et al., 2005), (Diessel et al., 2000), (Septien et al., 2006) and
(Fekete et al., 2008).
In this work, we are going to review the fragmentation metrics proposed in the literature to
estimate the fragmentation of the FPGA resources, and we’ll present two fragmentation
metrics of our own, one of them based on the number and shape of the FPGA free holes, and
another based on the relative quadrature of the free area perimeter. Then we´ll show
examples of how these metrics behave in different situations, with one or several free holes
and also with islands (isolated tasks). We’ll also show how they can be used as cost
functions in a location selection heuristic, each time a task is loaded into the FPGA.
Experimental results show that though they maintain a low complexity, these metrics,
specially the quadrature-based one, behave better than most of the previous ones,
discarding a lower amount of computing volume when the FPGA supports a heavy task
load.
We will review also the different approaches to FPGA defragmentation considered in the
literature, and we’ll propose a set of FPGA defragmentation techniques. Two basic
techniques will be presented: preventive and on-demand defragmentation. Preventive
measures will try to anticipate to possible allocation problems due to fragmentation. These
measures will be triggered by a high fragmentation metric value. When fired, the system
performs an immediate global or partial defragmentation, or a delayed global one
depending on the time constraints of the involved tasks. On-demand measures try an urgent
move of a single candidate task, the one with the highest relative adjacency with the hole
border. Such battery of defragmentation measures can help avoiding most problems
produced by fragmentation in HW multitasking on 2D reconfigurable devices.

2. Previous work

The problems of fragmentation estimation and defragmentation are very different when
FPGAs managed in one or two dimensions are considered. For 1D, a few simple solutions

have been used, but for 2D a nice amount of interesting research has been done, and in this
section we’ll focus on such work.

2.1 Fragmentation estimation
Fragmentation has been considered in the existing literature as an aspect of the area
management problem in HW multitasking, and thus most fragmentation metrics have been
proposed as part of different management techniques, most of them rectangle-based.
Bazargan presented in (Bazargan et al., 2000) a free area management and task allocation
heuristic that is broadly referenced. Such heuristic is based on MERs, maximum empty
rectangles. Bazargan´s allocator keeps track, with a high complexity algorithm, of all the
MERs (which can overlap) available in the free FPGA area. Such approach is optimal, in the
sense that if there is free room enough for an incoming task, it is contained in one of the
available MERs. To select one of the MERs, Bazargan uses several techniques: First-Fit,
Worst-Fit, Best-fit… Though Bazargan does not estimate fragmentation directly, the
availability of large MERs at a given time is an indirect measure of the fragmentation status
of a given FPGA situation.
The MER approach, though, is so expensive in terms of update and search time that
Bazargan finally opted for a non-optimal approach to area management, by dividing the
free area into a set of non-overlapping rectangles.
Wigley proposes in (Wigley & Kearney, 2002b) a metric that must keep track of all the
available MERs. Thus what we have just stated about the MER approach applies also to this
metric. It considers fragmentation then as the average size of the maximal squares fitting
into the more relevant set of MERs. Moreover, this metric does not discriminate enough,
giving the same values for very different fragmentation situations.
Walder makes in (Walder & Platzner, 2002) an estimation of the free area fragmentation,
using non-overlapping rectangles similar to those of Bazargan. It considers the number of
rectangles with a given size. It uses a normalized, device-independent formula, to compute
the free area. Its main problem comes from the complexity of the technique needed to keep
track of such rectangles.
Handa in (Handa & Vemuri, 2004b) computes fragmentation referred to the average task
size. Holes with a size two times such value or more are not considered for the metric.
Fragmentation then has not an absolute value for a given FPGA situation, but depends on
the incoming task. It gives in general very low fragmentation values, even for situations
with very disperse tasks and holes not too large compared to the total free area.
Ejnoui in (Ejnioui & DeMara, 2005) proposes a fragmentation metric that depends only on
the free area and the number of holes, and not on the shape of the holes. It can be considered
then a measure of the FPGA occupation, more than of FPGA fragmentation. There is a
fragmentation value of 0 only for an empty chip. When the FPGA is heavily loaded the
metric approaches to 1 quickly, independently from the hole shape.
Cui in (Cui et al., 2007) computes fragmentation for all the MERs of the free area. For each
MER this fragmentation is based on the probable size of the arriving task, and involves
computations for each basic cell inside the MER. Thus the technique presents a heavy
complexity order that, as for other MER-based techniques, makes it difficult to use in a real
environment.
All that has been explained above allows to make some assertions. The main feature of a
good fragmentation metric should be its ability to detect when the free FPGA area is more or

Parallel	and	Distributed	Computing12

For 2D-reconfigurable architectures such as Virtex 4 (Xilinx, Inc “Virtex-4 Configuration
Guide) and 5 (Xilinx, Inc “Virtex-5 Configuration User Guide), more sophisticated
techniques must be used to keep track of the available free area, in order to get an efficient
FPGA resource management (Bazargan et al., 2000) (Walder et al., 2003) (Diessel et al., 2000)
(Ahmadinia et al., 2004) (Handa & Vemuri, 2004a) (Tabero et al., 2004). For such
architectures the estimation of the FPGA fragmentation status through an accurate metric is
an important issue, and some researchers have proposed estimation metrics as in (Handa &
Vemuri, 2004b), (Ejnioui & DeMara, 2005) and (Septien et al., 2008). What the 2D metric
must estimate is how idoneous is the geometry of the free FPGA area to accommodate a
new task.
A reliable fragmentation metric can be used in different ways: first, as a cost function when
the allocation decisions are being taken (Tabero et al., 2004). The use of a fragmentation
metric as cost function would guarantee future FPGA status with lower fragmentation (for
the same FPGA occupation level), that would give a better probability of finding a location
for the next task.
It can be used, also, as an alarm in order to trigger defragmentation measures as preventive
actions or in extreme situations, that lead to relocation of one o more of the currently
running tasks (van der Veen et al., 2005), (Diessel et al., 2000), (Septien et al., 2006) and
(Fekete et al., 2008).
In this work, we are going to review the fragmentation metrics proposed in the literature to
estimate the fragmentation of the FPGA resources, and we’ll present two fragmentation
metrics of our own, one of them based on the number and shape of the FPGA free holes, and
another based on the relative quadrature of the free area perimeter. Then we´ll show
examples of how these metrics behave in different situations, with one or several free holes
and also with islands (isolated tasks). We’ll also show how they can be used as cost
functions in a location selection heuristic, each time a task is loaded into the FPGA.
Experimental results show that though they maintain a low complexity, these metrics,
specially the quadrature-based one, behave better than most of the previous ones,
discarding a lower amount of computing volume when the FPGA supports a heavy task
load.
We will review also the different approaches to FPGA defragmentation considered in the
literature, and we’ll propose a set of FPGA defragmentation techniques. Two basic
techniques will be presented: preventive and on-demand defragmentation. Preventive
measures will try to anticipate to possible allocation problems due to fragmentation. These
measures will be triggered by a high fragmentation metric value. When fired, the system
performs an immediate global or partial defragmentation, or a delayed global one
depending on the time constraints of the involved tasks. On-demand measures try an urgent
move of a single candidate task, the one with the highest relative adjacency with the hole
border. Such battery of defragmentation measures can help avoiding most problems
produced by fragmentation in HW multitasking on 2D reconfigurable devices.

2. Previous work

The problems of fragmentation estimation and defragmentation are very different when
FPGAs managed in one or two dimensions are considered. For 1D, a few simple solutions

have been used, but for 2D a nice amount of interesting research has been done, and in this
section we’ll focus on such work.

2.1 Fragmentation estimation
Fragmentation has been considered in the existing literature as an aspect of the area
management problem in HW multitasking, and thus most fragmentation metrics have been
proposed as part of different management techniques, most of them rectangle-based.
Bazargan presented in (Bazargan et al., 2000) a free area management and task allocation
heuristic that is broadly referenced. Such heuristic is based on MERs, maximum empty
rectangles. Bazargan´s allocator keeps track, with a high complexity algorithm, of all the
MERs (which can overlap) available in the free FPGA area. Such approach is optimal, in the
sense that if there is free room enough for an incoming task, it is contained in one of the
available MERs. To select one of the MERs, Bazargan uses several techniques: First-Fit,
Worst-Fit, Best-fit… Though Bazargan does not estimate fragmentation directly, the
availability of large MERs at a given time is an indirect measure of the fragmentation status
of a given FPGA situation.
The MER approach, though, is so expensive in terms of update and search time that
Bazargan finally opted for a non-optimal approach to area management, by dividing the
free area into a set of non-overlapping rectangles.
Wigley proposes in (Wigley & Kearney, 2002b) a metric that must keep track of all the
available MERs. Thus what we have just stated about the MER approach applies also to this
metric. It considers fragmentation then as the average size of the maximal squares fitting
into the more relevant set of MERs. Moreover, this metric does not discriminate enough,
giving the same values for very different fragmentation situations.
Walder makes in (Walder & Platzner, 2002) an estimation of the free area fragmentation,
using non-overlapping rectangles similar to those of Bazargan. It considers the number of
rectangles with a given size. It uses a normalized, device-independent formula, to compute
the free area. Its main problem comes from the complexity of the technique needed to keep
track of such rectangles.
Handa in (Handa & Vemuri, 2004b) computes fragmentation referred to the average task
size. Holes with a size two times such value or more are not considered for the metric.
Fragmentation then has not an absolute value for a given FPGA situation, but depends on
the incoming task. It gives in general very low fragmentation values, even for situations
with very disperse tasks and holes not too large compared to the total free area.
Ejnoui in (Ejnioui & DeMara, 2005) proposes a fragmentation metric that depends only on
the free area and the number of holes, and not on the shape of the holes. It can be considered
then a measure of the FPGA occupation, more than of FPGA fragmentation. There is a
fragmentation value of 0 only for an empty chip. When the FPGA is heavily loaded the
metric approaches to 1 quickly, independently from the hole shape.
Cui in (Cui et al., 2007) computes fragmentation for all the MERs of the free area. For each
MER this fragmentation is based on the probable size of the arriving task, and involves
computations for each basic cell inside the MER. Thus the technique presents a heavy
complexity order that, as for other MER-based techniques, makes it difficult to use in a real
environment.
All that has been explained above allows to make some assertions. The main feature of a
good fragmentation metric should be its ability to detect when the free FPGA area is more or

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 13

For 2D-reconfigurable architectures such as Virtex 4 (Xilinx, Inc “Virtex-4 Configuration
Guide) and 5 (Xilinx, Inc “Virtex-5 Configuration User Guide), more sophisticated
techniques must be used to keep track of the available free area, in order to get an efficient
FPGA resource management (Bazargan et al., 2000) (Walder et al., 2003) (Diessel et al., 2000)
(Ahmadinia et al., 2004) (Handa & Vemuri, 2004a) (Tabero et al., 2004). For such
architectures the estimation of the FPGA fragmentation status through an accurate metric is
an important issue, and some researchers have proposed estimation metrics as in (Handa &
Vemuri, 2004b), (Ejnioui & DeMara, 2005) and (Septien et al., 2008). What the 2D metric
must estimate is how idoneous is the geometry of the free FPGA area to accommodate a
new task.
A reliable fragmentation metric can be used in different ways: first, as a cost function when
the allocation decisions are being taken (Tabero et al., 2004). The use of a fragmentation
metric as cost function would guarantee future FPGA status with lower fragmentation (for
the same FPGA occupation level), that would give a better probability of finding a location
for the next task.
It can be used, also, as an alarm in order to trigger defragmentation measures as preventive
actions or in extreme situations, that lead to relocation of one o more of the currently
running tasks (van der Veen et al., 2005), (Diessel et al., 2000), (Septien et al., 2006) and
(Fekete et al., 2008).
In this work, we are going to review the fragmentation metrics proposed in the literature to
estimate the fragmentation of the FPGA resources, and we’ll present two fragmentation
metrics of our own, one of them based on the number and shape of the FPGA free holes, and
another based on the relative quadrature of the free area perimeter. Then we´ll show
examples of how these metrics behave in different situations, with one or several free holes
and also with islands (isolated tasks). We’ll also show how they can be used as cost
functions in a location selection heuristic, each time a task is loaded into the FPGA.
Experimental results show that though they maintain a low complexity, these metrics,
specially the quadrature-based one, behave better than most of the previous ones,
discarding a lower amount of computing volume when the FPGA supports a heavy task
load.
We will review also the different approaches to FPGA defragmentation considered in the
literature, and we’ll propose a set of FPGA defragmentation techniques. Two basic
techniques will be presented: preventive and on-demand defragmentation. Preventive
measures will try to anticipate to possible allocation problems due to fragmentation. These
measures will be triggered by a high fragmentation metric value. When fired, the system
performs an immediate global or partial defragmentation, or a delayed global one
depending on the time constraints of the involved tasks. On-demand measures try an urgent
move of a single candidate task, the one with the highest relative adjacency with the hole
border. Such battery of defragmentation measures can help avoiding most problems
produced by fragmentation in HW multitasking on 2D reconfigurable devices.

2. Previous work

The problems of fragmentation estimation and defragmentation are very different when
FPGAs managed in one or two dimensions are considered. For 1D, a few simple solutions

have been used, but for 2D a nice amount of interesting research has been done, and in this
section we’ll focus on such work.

2.1 Fragmentation estimation
Fragmentation has been considered in the existing literature as an aspect of the area
management problem in HW multitasking, and thus most fragmentation metrics have been
proposed as part of different management techniques, most of them rectangle-based.
Bazargan presented in (Bazargan et al., 2000) a free area management and task allocation
heuristic that is broadly referenced. Such heuristic is based on MERs, maximum empty
rectangles. Bazargan´s allocator keeps track, with a high complexity algorithm, of all the
MERs (which can overlap) available in the free FPGA area. Such approach is optimal, in the
sense that if there is free room enough for an incoming task, it is contained in one of the
available MERs. To select one of the MERs, Bazargan uses several techniques: First-Fit,
Worst-Fit, Best-fit… Though Bazargan does not estimate fragmentation directly, the
availability of large MERs at a given time is an indirect measure of the fragmentation status
of a given FPGA situation.
The MER approach, though, is so expensive in terms of update and search time that
Bazargan finally opted for a non-optimal approach to area management, by dividing the
free area into a set of non-overlapping rectangles.
Wigley proposes in (Wigley & Kearney, 2002b) a metric that must keep track of all the
available MERs. Thus what we have just stated about the MER approach applies also to this
metric. It considers fragmentation then as the average size of the maximal squares fitting
into the more relevant set of MERs. Moreover, this metric does not discriminate enough,
giving the same values for very different fragmentation situations.
Walder makes in (Walder & Platzner, 2002) an estimation of the free area fragmentation,
using non-overlapping rectangles similar to those of Bazargan. It considers the number of
rectangles with a given size. It uses a normalized, device-independent formula, to compute
the free area. Its main problem comes from the complexity of the technique needed to keep
track of such rectangles.
Handa in (Handa & Vemuri, 2004b) computes fragmentation referred to the average task
size. Holes with a size two times such value or more are not considered for the metric.
Fragmentation then has not an absolute value for a given FPGA situation, but depends on
the incoming task. It gives in general very low fragmentation values, even for situations
with very disperse tasks and holes not too large compared to the total free area.
Ejnoui in (Ejnioui & DeMara, 2005) proposes a fragmentation metric that depends only on
the free area and the number of holes, and not on the shape of the holes. It can be considered
then a measure of the FPGA occupation, more than of FPGA fragmentation. There is a
fragmentation value of 0 only for an empty chip. When the FPGA is heavily loaded the
metric approaches to 1 quickly, independently from the hole shape.
Cui in (Cui et al., 2007) computes fragmentation for all the MERs of the free area. For each
MER this fragmentation is based on the probable size of the arriving task, and involves
computations for each basic cell inside the MER. Thus the technique presents a heavy
complexity order that, as for other MER-based techniques, makes it difficult to use in a real
environment.
All that has been explained above allows to make some assertions. The main feature of a
good fragmentation metric should be its ability to detect when the free FPGA area is more or

Parallel	and	Distributed	Computing14

less apt to accommodate future incoming taks, that is, it must detect if it is efficiently or
inefficiently organized, and give a value to such organization. It must separate the
fragmentation estimation from the occupation degree, or the amount of available free area.
For example, an FPGA status with a high occupation but with all the free area concentred in
a single, almost-square, rectangle, cannot be considered as fragmented as some of the
metrics previously presented do. Also, the metric must be computationally simple, and that
suggests the inconvenience of the MER-based approach of some of the metrics reviewed.

2.2 Defragmentation techniques
As it was previously stated, the problem of defragmentation is different for 1D or 2D
FPGAs. For FPGAs allowing reconfiguration in a single dimension, Compton (Compton et
al., 2002), Brebner (Brebner & Diessel, 2001) or Koch (Koch et al., 2004) have proposed
architectural features to perform defragmentation through relocation of complete columns
or rows.
For 2D-reconfigurable FPGAs, though many researchers estimate fragmentation, and even
use metrics to help their allocation algorithms to choose locations for the arriving tasks, as
section 2.1 has shown, only a few perform explicit defragmentation processes.
Gericota proposes in (Gericota et al., 2003) architectural changes to a classical 2D FPGA to
permit task relocation by replication of CLBs, in order to solve fragmentation problems. But
they do not solve the problems of how to choose a new location or how to decide when this
relocation must be performed.
Ejnioui (Ejnioui & DeMara, 2005) has proposed a fragmentation metric adapted from the
one shown in (Tabero et al., 2003). They propose to use this estimation to schedule a
defragmentation process if a given threshold is reached. They comment several possible
ways of defining such threshold, though they do not seem to choose any of them. Though
they suggest several methodologies, they do not give experimental results that validate their
approach.
Finally, Van der Veen in (van der Veen et al., 2005) and (Fekete et al., 2008) uses a branch-
and bound approach with constraints, in order to accomplish a global defragmentation
process that searches for an optimal module layout. It is aimed to 2D FPGAs, though
column-reconfigurable as current Virtex FPGAs. This process seems to be quite time-
consuming, of an order of magnitude of seconds. The authors do not give any information
about how to insert such defragmentation process in a HW management system.

3. HW management environment

Our approach to reconfigurable HW management is summarized in Figure 1. Our
environment is an extension of the operating system that consists of several modules. The
Task Scheduler controls the tasks currently running in the FPGA and accepts new incoming
tasks. Tasks can arrive anytime and must be processed on-line. The Vertex-List Updater
keeps track of the available FPGA free area with a Vertex-List (VL) structure that has been
described in detail in (Tabero et al., 2003), updating it whenever a new event happens. Such
structure can be travelled with different heuristics ((Tabero et al., 2003), (Tabero et al., 2006),
and (Walder & Platzner, 2002)) by the Vertex Selector in order to choose the vertex where
each arriving task will be placed. Finally, a permanent checking of the FPGA status is made
by the Free Area Analyzer. Such module estimates the FPGA fragmentation and checks for

isolated islands appearing inside the hole defined by the VL, every time a new event
happens.
As Figure 1 shows, we suppose a 2D-managed FPGA, with rectangular relocatable tasks
made of a number of basic reconfigurable basic blocks, each block includes processing
elements and is able to access to a global interconnection network through a standard
interface, not depicted in the figure.

Fig. 1. HW management environment.

Each incoming task Ti is originally defined by the tuple of parameters:

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of basic reconfigurable blocks, t_exi is the
task execution time, t_arri the task arrival time and t_maxi the maximum time allowed for
the task to finish execution. These parameters are characteristic for each incoming task.
If a suitable location is found, task Ti is finally allocated and scheduled for execution at an
instant t_starti. If not, the task goes to the queue Qw, and it is reconsidered again at each
task-end event or after defragmentation. We call the current time t_curr. All the times but
t_exi are absolute (referred to the same time origin). We estimate t_confi, the time needed to
load the configuration of the task, proportional to its size: t_confi = k *wi*hi.

HW managerWaitingTasks Queue
Qw

Vertex List

Task
Scheduler

Vertex List
Updater

Vertex
Selector

VL

Defragmentation
manager

FPGA

Fragmentation
Metric

Running Tasks List
Lr

t1 t2

Vertex List
Analyzer

Task
Loader/Extractor

t3

TN

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 15

less apt to accommodate future incoming taks, that is, it must detect if it is efficiently or
inefficiently organized, and give a value to such organization. It must separate the
fragmentation estimation from the occupation degree, or the amount of available free area.
For example, an FPGA status with a high occupation but with all the free area concentred in
a single, almost-square, rectangle, cannot be considered as fragmented as some of the
metrics previously presented do. Also, the metric must be computationally simple, and that
suggests the inconvenience of the MER-based approach of some of the metrics reviewed.

2.2 Defragmentation techniques
As it was previously stated, the problem of defragmentation is different for 1D or 2D
FPGAs. For FPGAs allowing reconfiguration in a single dimension, Compton (Compton et
al., 2002), Brebner (Brebner & Diessel, 2001) or Koch (Koch et al., 2004) have proposed
architectural features to perform defragmentation through relocation of complete columns
or rows.
For 2D-reconfigurable FPGAs, though many researchers estimate fragmentation, and even
use metrics to help their allocation algorithms to choose locations for the arriving tasks, as
section 2.1 has shown, only a few perform explicit defragmentation processes.
Gericota proposes in (Gericota et al., 2003) architectural changes to a classical 2D FPGA to
permit task relocation by replication of CLBs, in order to solve fragmentation problems. But
they do not solve the problems of how to choose a new location or how to decide when this
relocation must be performed.
Ejnioui (Ejnioui & DeMara, 2005) has proposed a fragmentation metric adapted from the
one shown in (Tabero et al., 2003). They propose to use this estimation to schedule a
defragmentation process if a given threshold is reached. They comment several possible
ways of defining such threshold, though they do not seem to choose any of them. Though
they suggest several methodologies, they do not give experimental results that validate their
approach.
Finally, Van der Veen in (van der Veen et al., 2005) and (Fekete et al., 2008) uses a branch-
and bound approach with constraints, in order to accomplish a global defragmentation
process that searches for an optimal module layout. It is aimed to 2D FPGAs, though
column-reconfigurable as current Virtex FPGAs. This process seems to be quite time-
consuming, of an order of magnitude of seconds. The authors do not give any information
about how to insert such defragmentation process in a HW management system.

3. HW management environment

Our approach to reconfigurable HW management is summarized in Figure 1. Our
environment is an extension of the operating system that consists of several modules. The
Task Scheduler controls the tasks currently running in the FPGA and accepts new incoming
tasks. Tasks can arrive anytime and must be processed on-line. The Vertex-List Updater
keeps track of the available FPGA free area with a Vertex-List (VL) structure that has been
described in detail in (Tabero et al., 2003), updating it whenever a new event happens. Such
structure can be travelled with different heuristics ((Tabero et al., 2003), (Tabero et al., 2006),
and (Walder & Platzner, 2002)) by the Vertex Selector in order to choose the vertex where
each arriving task will be placed. Finally, a permanent checking of the FPGA status is made
by the Free Area Analyzer. Such module estimates the FPGA fragmentation and checks for

isolated islands appearing inside the hole defined by the VL, every time a new event
happens.
As Figure 1 shows, we suppose a 2D-managed FPGA, with rectangular relocatable tasks
made of a number of basic reconfigurable basic blocks, each block includes processing
elements and is able to access to a global interconnection network through a standard
interface, not depicted in the figure.

Fig. 1. HW management environment.

Each incoming task Ti is originally defined by the tuple of parameters:

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of basic reconfigurable blocks, t_exi is the
task execution time, t_arri the task arrival time and t_maxi the maximum time allowed for
the task to finish execution. These parameters are characteristic for each incoming task.
If a suitable location is found, task Ti is finally allocated and scheduled for execution at an
instant t_starti. If not, the task goes to the queue Qw, and it is reconsidered again at each
task-end event or after defragmentation. We call the current time t_curr. All the times but
t_exi are absolute (referred to the same time origin). We estimate t_confi, the time needed to
load the configuration of the task, proportional to its size: t_confi = k *wi*hi.

HW managerWaitingTasks Queue
Qw

Vertex List

Task
Scheduler

Vertex List
Updater

Vertex
Selector

VL

Defragmentation
manager

FPGA

Fragmentation
Metric

Running Tasks List
Lr

t1 t2

Vertex List
Analyzer

Task
Loader/Extractor

t3

TN

Parallel	and	Distributed	Computing14

less apt to accommodate future incoming taks, that is, it must detect if it is efficiently or
inefficiently organized, and give a value to such organization. It must separate the
fragmentation estimation from the occupation degree, or the amount of available free area.
For example, an FPGA status with a high occupation but with all the free area concentred in
a single, almost-square, rectangle, cannot be considered as fragmented as some of the
metrics previously presented do. Also, the metric must be computationally simple, and that
suggests the inconvenience of the MER-based approach of some of the metrics reviewed.

2.2 Defragmentation techniques
As it was previously stated, the problem of defragmentation is different for 1D or 2D
FPGAs. For FPGAs allowing reconfiguration in a single dimension, Compton (Compton et
al., 2002), Brebner (Brebner & Diessel, 2001) or Koch (Koch et al., 2004) have proposed
architectural features to perform defragmentation through relocation of complete columns
or rows.
For 2D-reconfigurable FPGAs, though many researchers estimate fragmentation, and even
use metrics to help their allocation algorithms to choose locations for the arriving tasks, as
section 2.1 has shown, only a few perform explicit defragmentation processes.
Gericota proposes in (Gericota et al., 2003) architectural changes to a classical 2D FPGA to
permit task relocation by replication of CLBs, in order to solve fragmentation problems. But
they do not solve the problems of how to choose a new location or how to decide when this
relocation must be performed.
Ejnioui (Ejnioui & DeMara, 2005) has proposed a fragmentation metric adapted from the
one shown in (Tabero et al., 2003). They propose to use this estimation to schedule a
defragmentation process if a given threshold is reached. They comment several possible
ways of defining such threshold, though they do not seem to choose any of them. Though
they suggest several methodologies, they do not give experimental results that validate their
approach.
Finally, Van der Veen in (van der Veen et al., 2005) and (Fekete et al., 2008) uses a branch-
and bound approach with constraints, in order to accomplish a global defragmentation
process that searches for an optimal module layout. It is aimed to 2D FPGAs, though
column-reconfigurable as current Virtex FPGAs. This process seems to be quite time-
consuming, of an order of magnitude of seconds. The authors do not give any information
about how to insert such defragmentation process in a HW management system.

3. HW management environment

Our approach to reconfigurable HW management is summarized in Figure 1. Our
environment is an extension of the operating system that consists of several modules. The
Task Scheduler controls the tasks currently running in the FPGA and accepts new incoming
tasks. Tasks can arrive anytime and must be processed on-line. The Vertex-List Updater
keeps track of the available FPGA free area with a Vertex-List (VL) structure that has been
described in detail in (Tabero et al., 2003), updating it whenever a new event happens. Such
structure can be travelled with different heuristics ((Tabero et al., 2003), (Tabero et al., 2006),
and (Walder & Platzner, 2002)) by the Vertex Selector in order to choose the vertex where
each arriving task will be placed. Finally, a permanent checking of the FPGA status is made
by the Free Area Analyzer. Such module estimates the FPGA fragmentation and checks for

isolated islands appearing inside the hole defined by the VL, every time a new event
happens.
As Figure 1 shows, we suppose a 2D-managed FPGA, with rectangular relocatable tasks
made of a number of basic reconfigurable basic blocks, each block includes processing
elements and is able to access to a global interconnection network through a standard
interface, not depicted in the figure.

Fig. 1. HW management environment.

Each incoming task Ti is originally defined by the tuple of parameters:

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of basic reconfigurable blocks, t_exi is the
task execution time, t_arri the task arrival time and t_maxi the maximum time allowed for
the task to finish execution. These parameters are characteristic for each incoming task.
If a suitable location is found, task Ti is finally allocated and scheduled for execution at an
instant t_starti. If not, the task goes to the queue Qw, and it is reconsidered again at each
task-end event or after defragmentation. We call the current time t_curr. All the times but
t_exi are absolute (referred to the same time origin). We estimate t_confi, the time needed to
load the configuration of the task, proportional to its size: t_confi = k *wi*hi.

HW managerWaitingTasks Queue
Qw

Vertex List

Task
Scheduler

Vertex List
Updater

Vertex
Selector

VL

Defragmentation
manager

FPGA

Fragmentation
Metric

Running Tasks List
Lr

t1 t2

Vertex List
Analyzer

Task
Loader/Extractor

t3

TN

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 15

less apt to accommodate future incoming taks, that is, it must detect if it is efficiently or
inefficiently organized, and give a value to such organization. It must separate the
fragmentation estimation from the occupation degree, or the amount of available free area.
For example, an FPGA status with a high occupation but with all the free area concentred in
a single, almost-square, rectangle, cannot be considered as fragmented as some of the
metrics previously presented do. Also, the metric must be computationally simple, and that
suggests the inconvenience of the MER-based approach of some of the metrics reviewed.

2.2 Defragmentation techniques
As it was previously stated, the problem of defragmentation is different for 1D or 2D
FPGAs. For FPGAs allowing reconfiguration in a single dimension, Compton (Compton et
al., 2002), Brebner (Brebner & Diessel, 2001) or Koch (Koch et al., 2004) have proposed
architectural features to perform defragmentation through relocation of complete columns
or rows.
For 2D-reconfigurable FPGAs, though many researchers estimate fragmentation, and even
use metrics to help their allocation algorithms to choose locations for the arriving tasks, as
section 2.1 has shown, only a few perform explicit defragmentation processes.
Gericota proposes in (Gericota et al., 2003) architectural changes to a classical 2D FPGA to
permit task relocation by replication of CLBs, in order to solve fragmentation problems. But
they do not solve the problems of how to choose a new location or how to decide when this
relocation must be performed.
Ejnioui (Ejnioui & DeMara, 2005) has proposed a fragmentation metric adapted from the
one shown in (Tabero et al., 2003). They propose to use this estimation to schedule a
defragmentation process if a given threshold is reached. They comment several possible
ways of defining such threshold, though they do not seem to choose any of them. Though
they suggest several methodologies, they do not give experimental results that validate their
approach.
Finally, Van der Veen in (van der Veen et al., 2005) and (Fekete et al., 2008) uses a branch-
and bound approach with constraints, in order to accomplish a global defragmentation
process that searches for an optimal module layout. It is aimed to 2D FPGAs, though
column-reconfigurable as current Virtex FPGAs. This process seems to be quite time-
consuming, of an order of magnitude of seconds. The authors do not give any information
about how to insert such defragmentation process in a HW management system.

3. HW management environment

Our approach to reconfigurable HW management is summarized in Figure 1. Our
environment is an extension of the operating system that consists of several modules. The
Task Scheduler controls the tasks currently running in the FPGA and accepts new incoming
tasks. Tasks can arrive anytime and must be processed on-line. The Vertex-List Updater
keeps track of the available FPGA free area with a Vertex-List (VL) structure that has been
described in detail in (Tabero et al., 2003), updating it whenever a new event happens. Such
structure can be travelled with different heuristics ((Tabero et al., 2003), (Tabero et al., 2006),
and (Walder & Platzner, 2002)) by the Vertex Selector in order to choose the vertex where
each arriving task will be placed. Finally, a permanent checking of the FPGA status is made
by the Free Area Analyzer. Such module estimates the FPGA fragmentation and checks for

isolated islands appearing inside the hole defined by the VL, every time a new event
happens.
As Figure 1 shows, we suppose a 2D-managed FPGA, with rectangular relocatable tasks
made of a number of basic reconfigurable basic blocks, each block includes processing
elements and is able to access to a global interconnection network through a standard
interface, not depicted in the figure.

Fig. 1. HW management environment.

Each incoming task Ti is originally defined by the tuple of parameters:

Ti = {wi, hi, t_exi, t_arri, t_maxi}

where wi times hi indicates the task size in terms of basic reconfigurable blocks, t_exi is the
task execution time, t_arri the task arrival time and t_maxi the maximum time allowed for
the task to finish execution. These parameters are characteristic for each incoming task.
If a suitable location is found, task Ti is finally allocated and scheduled for execution at an
instant t_starti. If not, the task goes to the queue Qw, and it is reconsidered again at each
task-end event or after defragmentation. We call the current time t_curr. All the times but
t_exi are absolute (referred to the same time origin). We estimate t_confi, the time needed to
load the configuration of the task, proportional to its size: t_confi = k *wi*hi.

HW managerWaitingTasks Queue
Qw

Vertex List

Task
Scheduler

Vertex List
Updater

Vertex
Selector

VL

Defragmentation
manager

FPGA

Fragmentation
Metric

Running Tasks List
Lr

t1 t2

Vertex List
Analyzer

Task
Loader/Extractor

t3

TN

Parallel	and	Distributed	Computing16

We also define t_margi, as the time margin each task is allowed to delay its completion, the
time interval between the task scheduled finishing instant and its time-out (defined by
t_maxi). If the task has been scheduled at time t_starti it must be computed as:

 t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, and is waiting at Qw, t_curr should be used
instead of t_starti. In this case, t_margi value decreases at each time cycle as t_curr advances.
When t_margi reaches a value of 0 the task must be definitively rejected and deleted from
Qw.

4. Fragmentation analysis

As explained in section 1, we will present two different techniques to estimate the FPGA
fragmentation status: a hole-based metric and a quadrature-based one.

4.1 Hole-based fragmentation metric
The fragmentation status of the free FPGA area is directly related to the possibility of being
able to find a suitable location for an arriving task. We have identified a fragmentation
situation by the occurrence of several circumstances. First, proliferation of the number of
independent free area holes, each one represented in our system by a different VL. And
second, increasing complexity of the hole shape, that we relate with the number of vertices.
A particular instance of a complex hole is created when it contains an occupied island
inside, made of one of several tasks isolated from the rest.
This ideas lead to the following metric HF, very similar to the one we presented in (Tabero
et al., 2004):

 HF = 1 - h [(4/VH)n * (AH/AF_FPGA)] (2)

Where the term between brackets represents a kind of “suitability” for a given hole H, with
area AH and VH vertices:

 (4/VH)n represents the suitability of the shape of hole H to accommodate rectangular
tasks. Notice that any hole with four vertices has the best suitability. For most of our
experiments we employ n=1, but we can use higher or lower values if we want to
penalize more or less the occurrence of holes with complex shapes and thus difficult
to use.

 (AH/AF_FPGA) represents the relative normalized hole area. AF_FPGA stands for the
whole free area in the FPGA. That is AF_FPGA = ∑ AH.

This HF metric penalizes the proliferation of independent holes in the FPGA, as well as the
occurrence of holes with complex shapes and small sizes. Figure 2 shows several
fragmentation situations in an example FPGA of 20x20 basic blocks, and the fragmentation
values estimated by the formula in (2).
A new estimation is done every time a new event occurs, that is, when a new task is placed
in the FPGA, when a finishing task leaves the FPGA, or when relocation decisions are taken

during a defragmentation process. The HF estimation can be used to help in the vertex
selection process, as it is done in (Tabero et al., 2004), (Tabero et al., 2006) and (Tabero et al.,
2008), or to check the FPGA status in order to fire a defragmentation process when needed
(Septién et al. 2006). In the next sections we will focus in how we accomplish
defragmentation.

Fig. 2. Different FPGA situations and fragmentation values given by the HF metric.

4.2 Perimeter quadrature-based metric
The HF metric presented in section 4.1 gives adequate fragmentation values for many
situations, but does not handle well a few, particular ones. The main problem for such
vertex-based metric is that sometimes a hole with a complex boundary with many vertices
can contain a significantly usable portion of free area. Also, the metric does not discriminate
among holes with different shapes but the same number of vertices, as in Figures 2.a, 2.b
and 2.c. Moreover, as Figure 2.f shows the metric is not too sensible to islands. Finally,
another drawback is that the occurrence of several holes as in Figures 2.d and 2.e is severely
penalized with very high (close to 1) fragmentation values.
We will try to solve this problem with a new metric, derived form a different approach.

A) Quadrature fragmentation metric basics
The new metric starts from a simple idea: we do consider the ideal free hole H as such one
able to accommodate most of the incoming tasks with a variety of shapes and a total task
area similar or smaller than the size of the hole H. The assumption we make is that such
ideal free hole should have a perfect square shape. Such hole would be able to accommodate

a) b) c)

d) e) f)

HF = 0,6 HF = 0,6 HF = 0,6

HF = 0,89 HF = 0.99 HF = 0.67

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 17

We also define t_margi, as the time margin each task is allowed to delay its completion, the
time interval between the task scheduled finishing instant and its time-out (defined by
t_maxi). If the task has been scheduled at time t_starti it must be computed as:

 t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, and is waiting at Qw, t_curr should be used
instead of t_starti. In this case, t_margi value decreases at each time cycle as t_curr advances.
When t_margi reaches a value of 0 the task must be definitively rejected and deleted from
Qw.

4. Fragmentation analysis

As explained in section 1, we will present two different techniques to estimate the FPGA
fragmentation status: a hole-based metric and a quadrature-based one.

4.1 Hole-based fragmentation metric
The fragmentation status of the free FPGA area is directly related to the possibility of being
able to find a suitable location for an arriving task. We have identified a fragmentation
situation by the occurrence of several circumstances. First, proliferation of the number of
independent free area holes, each one represented in our system by a different VL. And
second, increasing complexity of the hole shape, that we relate with the number of vertices.
A particular instance of a complex hole is created when it contains an occupied island
inside, made of one of several tasks isolated from the rest.
This ideas lead to the following metric HF, very similar to the one we presented in (Tabero
et al., 2004):

 HF = 1 - h [(4/VH)n * (AH/AF_FPGA)] (2)

Where the term between brackets represents a kind of “suitability” for a given hole H, with
area AH and VH vertices:

 (4/VH)n represents the suitability of the shape of hole H to accommodate rectangular
tasks. Notice that any hole with four vertices has the best suitability. For most of our
experiments we employ n=1, but we can use higher or lower values if we want to
penalize more or less the occurrence of holes with complex shapes and thus difficult
to use.

 (AH/AF_FPGA) represents the relative normalized hole area. AF_FPGA stands for the
whole free area in the FPGA. That is AF_FPGA = ∑ AH.

This HF metric penalizes the proliferation of independent holes in the FPGA, as well as the
occurrence of holes with complex shapes and small sizes. Figure 2 shows several
fragmentation situations in an example FPGA of 20x20 basic blocks, and the fragmentation
values estimated by the formula in (2).
A new estimation is done every time a new event occurs, that is, when a new task is placed
in the FPGA, when a finishing task leaves the FPGA, or when relocation decisions are taken

during a defragmentation process. The HF estimation can be used to help in the vertex
selection process, as it is done in (Tabero et al., 2004), (Tabero et al., 2006) and (Tabero et al.,
2008), or to check the FPGA status in order to fire a defragmentation process when needed
(Septién et al. 2006). In the next sections we will focus in how we accomplish
defragmentation.

Fig. 2. Different FPGA situations and fragmentation values given by the HF metric.

4.2 Perimeter quadrature-based metric
The HF metric presented in section 4.1 gives adequate fragmentation values for many
situations, but does not handle well a few, particular ones. The main problem for such
vertex-based metric is that sometimes a hole with a complex boundary with many vertices
can contain a significantly usable portion of free area. Also, the metric does not discriminate
among holes with different shapes but the same number of vertices, as in Figures 2.a, 2.b
and 2.c. Moreover, as Figure 2.f shows the metric is not too sensible to islands. Finally,
another drawback is that the occurrence of several holes as in Figures 2.d and 2.e is severely
penalized with very high (close to 1) fragmentation values.
We will try to solve this problem with a new metric, derived form a different approach.

A) Quadrature fragmentation metric basics
The new metric starts from a simple idea: we do consider the ideal free hole H as such one
able to accommodate most of the incoming tasks with a variety of shapes and a total task
area similar or smaller than the size of the hole H. The assumption we make is that such
ideal free hole should have a perfect square shape. Such hole would be able to accommodate

a) b) c)

d) e) f)

HF = 0,6 HF = 0,6 HF = 0,6

HF = 0,89 HF = 0.99 HF = 0.67

Parallel	and	Distributed	Computing16

We also define t_margi, as the time margin each task is allowed to delay its completion, the
time interval between the task scheduled finishing instant and its time-out (defined by
t_maxi). If the task has been scheduled at time t_starti it must be computed as:

 t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, and is waiting at Qw, t_curr should be used
instead of t_starti. In this case, t_margi value decreases at each time cycle as t_curr advances.
When t_margi reaches a value of 0 the task must be definitively rejected and deleted from
Qw.

4. Fragmentation analysis

As explained in section 1, we will present two different techniques to estimate the FPGA
fragmentation status: a hole-based metric and a quadrature-based one.

4.1 Hole-based fragmentation metric
The fragmentation status of the free FPGA area is directly related to the possibility of being
able to find a suitable location for an arriving task. We have identified a fragmentation
situation by the occurrence of several circumstances. First, proliferation of the number of
independent free area holes, each one represented in our system by a different VL. And
second, increasing complexity of the hole shape, that we relate with the number of vertices.
A particular instance of a complex hole is created when it contains an occupied island
inside, made of one of several tasks isolated from the rest.
This ideas lead to the following metric HF, very similar to the one we presented in (Tabero
et al., 2004):

 HF = 1 - h [(4/VH)n * (AH/AF_FPGA)] (2)

Where the term between brackets represents a kind of “suitability” for a given hole H, with
area AH and VH vertices:

 (4/VH)n represents the suitability of the shape of hole H to accommodate rectangular
tasks. Notice that any hole with four vertices has the best suitability. For most of our
experiments we employ n=1, but we can use higher or lower values if we want to
penalize more or less the occurrence of holes with complex shapes and thus difficult
to use.

 (AH/AF_FPGA) represents the relative normalized hole area. AF_FPGA stands for the
whole free area in the FPGA. That is AF_FPGA = ∑ AH.

This HF metric penalizes the proliferation of independent holes in the FPGA, as well as the
occurrence of holes with complex shapes and small sizes. Figure 2 shows several
fragmentation situations in an example FPGA of 20x20 basic blocks, and the fragmentation
values estimated by the formula in (2).
A new estimation is done every time a new event occurs, that is, when a new task is placed
in the FPGA, when a finishing task leaves the FPGA, or when relocation decisions are taken

during a defragmentation process. The HF estimation can be used to help in the vertex
selection process, as it is done in (Tabero et al., 2004), (Tabero et al., 2006) and (Tabero et al.,
2008), or to check the FPGA status in order to fire a defragmentation process when needed
(Septién et al. 2006). In the next sections we will focus in how we accomplish
defragmentation.

Fig. 2. Different FPGA situations and fragmentation values given by the HF metric.

4.2 Perimeter quadrature-based metric
The HF metric presented in section 4.1 gives adequate fragmentation values for many
situations, but does not handle well a few, particular ones. The main problem for such
vertex-based metric is that sometimes a hole with a complex boundary with many vertices
can contain a significantly usable portion of free area. Also, the metric does not discriminate
among holes with different shapes but the same number of vertices, as in Figures 2.a, 2.b
and 2.c. Moreover, as Figure 2.f shows the metric is not too sensible to islands. Finally,
another drawback is that the occurrence of several holes as in Figures 2.d and 2.e is severely
penalized with very high (close to 1) fragmentation values.
We will try to solve this problem with a new metric, derived form a different approach.

A) Quadrature fragmentation metric basics
The new metric starts from a simple idea: we do consider the ideal free hole H as such one
able to accommodate most of the incoming tasks with a variety of shapes and a total task
area similar or smaller than the size of the hole H. The assumption we make is that such
ideal free hole should have a perfect square shape. Such hole would be able to accommodate

a) b) c)

d) e) f)

HF = 0,6 HF = 0,6 HF = 0,6

HF = 0,89 HF = 0.99 HF = 0.67

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 17

We also define t_margi, as the time margin each task is allowed to delay its completion, the
time interval between the task scheduled finishing instant and its time-out (defined by
t_maxi). If the task has been scheduled at time t_starti it must be computed as:

 t_margi = t_maxi – (t_starti + t_confi + t_exi) (1)

But if the task has not been allocated yet, and is waiting at Qw, t_curr should be used
instead of t_starti. In this case, t_margi value decreases at each time cycle as t_curr advances.
When t_margi reaches a value of 0 the task must be definitively rejected and deleted from
Qw.

4. Fragmentation analysis

As explained in section 1, we will present two different techniques to estimate the FPGA
fragmentation status: a hole-based metric and a quadrature-based one.

4.1 Hole-based fragmentation metric
The fragmentation status of the free FPGA area is directly related to the possibility of being
able to find a suitable location for an arriving task. We have identified a fragmentation
situation by the occurrence of several circumstances. First, proliferation of the number of
independent free area holes, each one represented in our system by a different VL. And
second, increasing complexity of the hole shape, that we relate with the number of vertices.
A particular instance of a complex hole is created when it contains an occupied island
inside, made of one of several tasks isolated from the rest.
This ideas lead to the following metric HF, very similar to the one we presented in (Tabero
et al., 2004):

 HF = 1 - h [(4/VH)n * (AH/AF_FPGA)] (2)

Where the term between brackets represents a kind of “suitability” for a given hole H, with
area AH and VH vertices:

 (4/VH)n represents the suitability of the shape of hole H to accommodate rectangular
tasks. Notice that any hole with four vertices has the best suitability. For most of our
experiments we employ n=1, but we can use higher or lower values if we want to
penalize more or less the occurrence of holes with complex shapes and thus difficult
to use.

 (AH/AF_FPGA) represents the relative normalized hole area. AF_FPGA stands for the
whole free area in the FPGA. That is AF_FPGA = ∑ AH.

This HF metric penalizes the proliferation of independent holes in the FPGA, as well as the
occurrence of holes with complex shapes and small sizes. Figure 2 shows several
fragmentation situations in an example FPGA of 20x20 basic blocks, and the fragmentation
values estimated by the formula in (2).
A new estimation is done every time a new event occurs, that is, when a new task is placed
in the FPGA, when a finishing task leaves the FPGA, or when relocation decisions are taken

during a defragmentation process. The HF estimation can be used to help in the vertex
selection process, as it is done in (Tabero et al., 2004), (Tabero et al., 2006) and (Tabero et al.,
2008), or to check the FPGA status in order to fire a defragmentation process when needed
(Septién et al. 2006). In the next sections we will focus in how we accomplish
defragmentation.

Fig. 2. Different FPGA situations and fragmentation values given by the HF metric.

4.2 Perimeter quadrature-based metric
The HF metric presented in section 4.1 gives adequate fragmentation values for many
situations, but does not handle well a few, particular ones. The main problem for such
vertex-based metric is that sometimes a hole with a complex boundary with many vertices
can contain a significantly usable portion of free area. Also, the metric does not discriminate
among holes with different shapes but the same number of vertices, as in Figures 2.a, 2.b
and 2.c. Moreover, as Figure 2.f shows the metric is not too sensible to islands. Finally,
another drawback is that the occurrence of several holes as in Figures 2.d and 2.e is severely
penalized with very high (close to 1) fragmentation values.
We will try to solve this problem with a new metric, derived form a different approach.

A) Quadrature fragmentation metric basics
The new metric starts from a simple idea: we do consider the ideal free hole H as such one
able to accommodate most of the incoming tasks with a variety of shapes and a total task
area similar or smaller than the size of the hole H. The assumption we make is that such
ideal free hole should have a perfect square shape. Such hole would be able to accommodate

a) b) c)

d) e) f)

HF = 0,6 HF = 0,6 HF = 0,6

HF = 0,89 HF = 0.99 HF = 0.67

Parallel	and	Distributed	Computing18

most incoming tasks. One of the advantages of a square shape task would be that the
longest interconnections inside the task would be shorter than for irregular shape tasks with
the same area, or even rectangular ones.
For any hole H with an area AH a perimeter PH and a non-square shape, we define its
relative quadrature Q as “how its shape is near from being a perfect square”. We estimate
such magnitude dividing its actual area AH by the area AQ of a perfect square with the same
perimeter PH. AQ that is computed as:

 AQ = (PH / 4)2 (3)

where PH / 4 would be the length of each one of the square sides. Then the relative
quadrature is:
 Q = AH /AQ (4)

and thus fragmentation is:
 QF = 1 – Q (5)

It can be seen that our quadrature-based metric QF will consider that fragmentation for a
given hole H is minimal (0) when it has a square shape. On the contrary, the longest
perimeter gives a higher fragmentation value.
In Figure 3 we can see a set of five running tasks in a 20x20 FPGA, placed at different
locations. The free area is of 169 basic area units for all of them. But the perimeter P an thus
the AQ and Q values are different for each one, as the figure shows. Thus the fragmentation
QF differs, and is smaller for the FPGA situation with a free area shape more apt to
accommodate future incoming tasks, supposedly Figure 3.f. It can be noticed, also, how the
QF metric, in contrast with the HF metric, gives different fragmentation values for holes
with the same number of vertices (10 in all the cases) but different shapes, as in Figures 3.a,
3.e or 3.f.

Fig. 3. QF metric values for different task locations and a single hole.

A = 169 Q = 1
P = 52 QF = 0
l = P/4 = 13

P = 70 Q = 0,55
AQ = 306,25 QF = 0,45

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 76 Q = 0,47
AQ = 361 QF = 0,53

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 68 Q = 0,58
AQ = 289 QF = 0,42

P = 56 Q = 0,86
AQ = 196 QF = 0,14

a) b) c)

d) e) f)

B) QF metric for multiple holes
The QF metric can be easily extended to a more complex free area made of several holes, by
considering the whole boundary between the free and the occupied area as a single
perimeter. Then P and A values would be used computed as:

 

i
iPP and (6)

 
i

iAA (7)

And the global fragmentation is computed as:

 QF = 1 – A/(P / 4)2 (8)

The global fragmentation value given by QF would be, then, a measure of how far from
being an ideal single hole is the whole available free area delimited by P.
Figure 4 shows several situations for the same 20x20 FPGA and five running tasks than
Figure 3. Now the tasks are located at different positions, and the free area A is divided into
two (Figures 4.a and 4.b) or even three (Figure 4.c) independent holes. The figure shows
how our metric does not need to take into account the number of holes to estimate the
quality of the different FPGA situations.

Fig. 4. QF metric values for different tasks locations and multiple holes

C) QF metric for islands
A situation that our metric deals with automatically is the occurrence of islands. Islands are
high fragmentation, undesirable situations that can happen as some tasks finish and leave
the FPGA, while others remain. It is important that a fragmentation metric is able to deal
with such situations.
Our metric deals with it automatically, because in our representation of the free area
perimeter (a vertex list), the island is connected to the rest of the perimeter with virtual
edges, as depicted in Figure 5. These virtual edges are considered as part of the perimeter
when P is computed. Thus, an island close to the perimeter will have short virtual edges and
the P value will be lower than when the island is more distant. As an island, even a small
one, can be quite annoying when it is located in the middle of a large hole, virtual edges can

P = 82 Q = 0,40
AQ = 420,25 QF = 0,6
= 0.73
T5

P = 78 Q = 0,44
AQ = 380,25 QF = 0,56

P = 90 Q = 0,33
AQ = 506,25 QF = 0,67

a) b) c)

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 19

most incoming tasks. One of the advantages of a square shape task would be that the
longest interconnections inside the task would be shorter than for irregular shape tasks with
the same area, or even rectangular ones.
For any hole H with an area AH a perimeter PH and a non-square shape, we define its
relative quadrature Q as “how its shape is near from being a perfect square”. We estimate
such magnitude dividing its actual area AH by the area AQ of a perfect square with the same
perimeter PH. AQ that is computed as:

 AQ = (PH / 4)2 (3)

where PH / 4 would be the length of each one of the square sides. Then the relative
quadrature is:
 Q = AH /AQ (4)

and thus fragmentation is:
 QF = 1 – Q (5)

It can be seen that our quadrature-based metric QF will consider that fragmentation for a
given hole H is minimal (0) when it has a square shape. On the contrary, the longest
perimeter gives a higher fragmentation value.
In Figure 3 we can see a set of five running tasks in a 20x20 FPGA, placed at different
locations. The free area is of 169 basic area units for all of them. But the perimeter P an thus
the AQ and Q values are different for each one, as the figure shows. Thus the fragmentation
QF differs, and is smaller for the FPGA situation with a free area shape more apt to
accommodate future incoming tasks, supposedly Figure 3.f. It can be noticed, also, how the
QF metric, in contrast with the HF metric, gives different fragmentation values for holes
with the same number of vertices (10 in all the cases) but different shapes, as in Figures 3.a,
3.e or 3.f.

Fig. 3. QF metric values for different task locations and a single hole.

A = 169 Q = 1
P = 52 QF = 0
l = P/4 = 13

P = 70 Q = 0,55
AQ = 306,25 QF = 0,45

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 76 Q = 0,47
AQ = 361 QF = 0,53

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 68 Q = 0,58
AQ = 289 QF = 0,42

P = 56 Q = 0,86
AQ = 196 QF = 0,14

a) b) c)

d) e) f)

B) QF metric for multiple holes
The QF metric can be easily extended to a more complex free area made of several holes, by
considering the whole boundary between the free and the occupied area as a single
perimeter. Then P and A values would be used computed as:

 

i
iPP and (6)

 
i

iAA (7)

And the global fragmentation is computed as:

 QF = 1 – A/(P / 4)2 (8)

The global fragmentation value given by QF would be, then, a measure of how far from
being an ideal single hole is the whole available free area delimited by P.
Figure 4 shows several situations for the same 20x20 FPGA and five running tasks than
Figure 3. Now the tasks are located at different positions, and the free area A is divided into
two (Figures 4.a and 4.b) or even three (Figure 4.c) independent holes. The figure shows
how our metric does not need to take into account the number of holes to estimate the
quality of the different FPGA situations.

Fig. 4. QF metric values for different tasks locations and multiple holes

C) QF metric for islands
A situation that our metric deals with automatically is the occurrence of islands. Islands are
high fragmentation, undesirable situations that can happen as some tasks finish and leave
the FPGA, while others remain. It is important that a fragmentation metric is able to deal
with such situations.
Our metric deals with it automatically, because in our representation of the free area
perimeter (a vertex list), the island is connected to the rest of the perimeter with virtual
edges, as depicted in Figure 5. These virtual edges are considered as part of the perimeter
when P is computed. Thus, an island close to the perimeter will have short virtual edges and
the P value will be lower than when the island is more distant. As an island, even a small
one, can be quite annoying when it is located in the middle of a large hole, virtual edges can

P = 82 Q = 0,40
AQ = 420,25 QF = 0,6
= 0.73
T5

P = 78 Q = 0,44
AQ = 380,25 QF = 0,56

P = 90 Q = 0,33
AQ = 506,25 QF = 0,67

a) b) c)

Parallel	and	Distributed	Computing18

most incoming tasks. One of the advantages of a square shape task would be that the
longest interconnections inside the task would be shorter than for irregular shape tasks with
the same area, or even rectangular ones.
For any hole H with an area AH a perimeter PH and a non-square shape, we define its
relative quadrature Q as “how its shape is near from being a perfect square”. We estimate
such magnitude dividing its actual area AH by the area AQ of a perfect square with the same
perimeter PH. AQ that is computed as:

 AQ = (PH / 4)2 (3)

where PH / 4 would be the length of each one of the square sides. Then the relative
quadrature is:
 Q = AH /AQ (4)

and thus fragmentation is:
 QF = 1 – Q (5)

It can be seen that our quadrature-based metric QF will consider that fragmentation for a
given hole H is minimal (0) when it has a square shape. On the contrary, the longest
perimeter gives a higher fragmentation value.
In Figure 3 we can see a set of five running tasks in a 20x20 FPGA, placed at different
locations. The free area is of 169 basic area units for all of them. But the perimeter P an thus
the AQ and Q values are different for each one, as the figure shows. Thus the fragmentation
QF differs, and is smaller for the FPGA situation with a free area shape more apt to
accommodate future incoming tasks, supposedly Figure 3.f. It can be noticed, also, how the
QF metric, in contrast with the HF metric, gives different fragmentation values for holes
with the same number of vertices (10 in all the cases) but different shapes, as in Figures 3.a,
3.e or 3.f.

Fig. 3. QF metric values for different task locations and a single hole.

A = 169 Q = 1
P = 52 QF = 0
l = P/4 = 13

P = 70 Q = 0,55
AQ = 306,25 QF = 0,45

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 76 Q = 0,47
AQ = 361 QF = 0,53

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 68 Q = 0,58
AQ = 289 QF = 0,42

P = 56 Q = 0,86
AQ = 196 QF = 0,14

a) b) c)

d) e) f)

B) QF metric for multiple holes
The QF metric can be easily extended to a more complex free area made of several holes, by
considering the whole boundary between the free and the occupied area as a single
perimeter. Then P and A values would be used computed as:

 

i
iPP and (6)

 
i

iAA (7)

And the global fragmentation is computed as:

 QF = 1 – A/(P / 4)2 (8)

The global fragmentation value given by QF would be, then, a measure of how far from
being an ideal single hole is the whole available free area delimited by P.
Figure 4 shows several situations for the same 20x20 FPGA and five running tasks than
Figure 3. Now the tasks are located at different positions, and the free area A is divided into
two (Figures 4.a and 4.b) or even three (Figure 4.c) independent holes. The figure shows
how our metric does not need to take into account the number of holes to estimate the
quality of the different FPGA situations.

Fig. 4. QF metric values for different tasks locations and multiple holes

C) QF metric for islands
A situation that our metric deals with automatically is the occurrence of islands. Islands are
high fragmentation, undesirable situations that can happen as some tasks finish and leave
the FPGA, while others remain. It is important that a fragmentation metric is able to deal
with such situations.
Our metric deals with it automatically, because in our representation of the free area
perimeter (a vertex list), the island is connected to the rest of the perimeter with virtual
edges, as depicted in Figure 5. These virtual edges are considered as part of the perimeter
when P is computed. Thus, an island close to the perimeter will have short virtual edges and
the P value will be lower than when the island is more distant. As an island, even a small
one, can be quite annoying when it is located in the middle of a large hole, virtual edges can

P = 82 Q = 0,40
AQ = 420,25 QF = 0,6
= 0.73
T5

P = 78 Q = 0,44
AQ = 380,25 QF = 0,56

P = 90 Q = 0,33
AQ = 506,25 QF = 0,67

a) b) c)

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 19

most incoming tasks. One of the advantages of a square shape task would be that the
longest interconnections inside the task would be shorter than for irregular shape tasks with
the same area, or even rectangular ones.
For any hole H with an area AH a perimeter PH and a non-square shape, we define its
relative quadrature Q as “how its shape is near from being a perfect square”. We estimate
such magnitude dividing its actual area AH by the area AQ of a perfect square with the same
perimeter PH. AQ that is computed as:

 AQ = (PH / 4)2 (3)

where PH / 4 would be the length of each one of the square sides. Then the relative
quadrature is:
 Q = AH /AQ (4)

and thus fragmentation is:
 QF = 1 – Q (5)

It can be seen that our quadrature-based metric QF will consider that fragmentation for a
given hole H is minimal (0) when it has a square shape. On the contrary, the longest
perimeter gives a higher fragmentation value.
In Figure 3 we can see a set of five running tasks in a 20x20 FPGA, placed at different
locations. The free area is of 169 basic area units for all of them. But the perimeter P an thus
the AQ and Q values are different for each one, as the figure shows. Thus the fragmentation
QF differs, and is smaller for the FPGA situation with a free area shape more apt to
accommodate future incoming tasks, supposedly Figure 3.f. It can be noticed, also, how the
QF metric, in contrast with the HF metric, gives different fragmentation values for holes
with the same number of vertices (10 in all the cases) but different shapes, as in Figures 3.a,
3.e or 3.f.

Fig. 3. QF metric values for different task locations and a single hole.

A = 169 Q = 1
P = 52 QF = 0
l = P/4 = 13

P = 70 Q = 0,55
AQ = 306,25 QF = 0,45

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 76 Q = 0,47
AQ = 361 QF = 0,53

P = 62 Q = 0,70
AQ = 240,25 QF = 0,30

P = 68 Q = 0,58
AQ = 289 QF = 0,42

P = 56 Q = 0,86
AQ = 196 QF = 0,14

a) b) c)

d) e) f)

B) QF metric for multiple holes
The QF metric can be easily extended to a more complex free area made of several holes, by
considering the whole boundary between the free and the occupied area as a single
perimeter. Then P and A values would be used computed as:

 

i
iPP and (6)

 
i

iAA (7)

And the global fragmentation is computed as:

 QF = 1 – A/(P / 4)2 (8)

The global fragmentation value given by QF would be, then, a measure of how far from
being an ideal single hole is the whole available free area delimited by P.
Figure 4 shows several situations for the same 20x20 FPGA and five running tasks than
Figure 3. Now the tasks are located at different positions, and the free area A is divided into
two (Figures 4.a and 4.b) or even three (Figure 4.c) independent holes. The figure shows
how our metric does not need to take into account the number of holes to estimate the
quality of the different FPGA situations.

Fig. 4. QF metric values for different tasks locations and multiple holes

C) QF metric for islands
A situation that our metric deals with automatically is the occurrence of islands. Islands are
high fragmentation, undesirable situations that can happen as some tasks finish and leave
the FPGA, while others remain. It is important that a fragmentation metric is able to deal
with such situations.
Our metric deals with it automatically, because in our representation of the free area
perimeter (a vertex list), the island is connected to the rest of the perimeter with virtual
edges, as depicted in Figure 5. These virtual edges are considered as part of the perimeter
when P is computed. Thus, an island close to the perimeter will have short virtual edges and
the P value will be lower than when the island is more distant. As an island, even a small
one, can be quite annoying when it is located in the middle of a large hole, virtual edges can

P = 82 Q = 0,40
AQ = 420,25 QF = 0,6
= 0.73
T5

P = 78 Q = 0,44
AQ = 380,25 QF = 0,56

P = 90 Q = 0,33
AQ = 506,25 QF = 0,67

a) b) c)

Parallel	and	Distributed	Computing20

have an associated weight factor that multiplies its length as desired, in order to penalize
such event.
The figure shows how our metric takes into account how far from the hole perimeter is the
island, giving a higher fragmentation value for Figures 5.a than for Figures 5.b or 5.c. In this
example we have weighted the virtual edges with a penalty factor of 2.
As we said, this metric is very simple to compute, at least for an allocation algorithm that
takes control of the free area boundary.

Fig. 5. QF metric values for a hole with an island at different locations

4.3 Comparison of different fragmentation metrics
A) Experiment #1
In order to compare our metrics HF and QF with others proposed in the literature, we have
computed fragmentation values given by some of these metrics for some of the simple
FPGA examples in Figures 3, 4 and 5. These results are shown in Table 1. The table also
shows the size of largest MER available (L-MER), that though not viable as a real technique
due to its high complexity, it can be used as a reference.
The purpose of this table is to show that the fragmentation value computed by our QF
metric (with the quadrature Q value also given between parentheses) is a reliable estimation
of the fragmentation status of a FPGA.
If compared with the L-MER, the lowest and highest fragmentation cases match, as most of
the others. Only for cases 3.d and 3.e there is a noticeable difference, that comes from the
fact that in case 3.e there exist several medium-sized rectangles, all of them good for
accommodating incoming tasks, though the largest MER is smaller that in other cases. For
the other metrics, it can be seen that F1 and F2 match with L-MER and QF for the less
fragmented case, but do behave not so well with islands: F1 does not discriminate among 5.a
and 5.c and F2 chooses as more fragmented the case where the island is closer to the
perimeter. F3 chooses as less fragmented 3.a instead of 3.f. Finally, F4 and HF do not
discriminate among many of the cases proposed, and assign excessive fragmentation values
to cases with several independent holes.

P = 80+12 = 92 Q = 0,32
AQ = 529 QF = 0,68

a) b) c)

P = 80+4 = 84 Q = 0,38
AQ = 441 QF =

P = 80+8 = 88 Q = 0,35
AQ = 484 QF = 0,65

 Single hole (Fig. 3) Several holes (Fig. 4) Island (Fig. 5)
3.a 3.d 3.e 3.f 4.a 4.b 4.c 5.a 5.c

F1
(Wigley)

10 7 10 11 7 10 7 6 6

F2
(Walder)

0.16 0.36 0.32 0.14 0.39 0.32 0.39 0.43 0.45

F3
(Handa)

0.07 0.18 0.21 0.08 0.28 0.22 0.33 0.21 0.20

F4
(Ejnoui)

0.58 0.58 0.58 0.58 0.96 0.98 1 0.58 0.58

HF 0.60 0.67 0.60 0.60 0.89 0.98 0.99 0.67 0.67
QF
(Q)

0,30
(0,70)

0,42
(0,58)

0,53
(0,47)

0,14
(0,86)

0,60
(0,40)

0,56
(0,44)

0,67
(0,33)

0,68
(0,32)

0,62
(0,38)

L-MER 140 98 100 154 80 110 80 70 84
Table 1. Comparison of HF and QF with different metrics

B) Experiment #2
The previous section showed how our QF metric was able to assign appropriate
fragmentation values to each FPGA situation.
We have made also experiments using HF and QF as a cost functions to select the most
appropriate location to place each new arriving task. We have used our Vertex-list based
manager, that allows choosing among several different vertex selection heuristics. Among
such, heuristic based on 2D (space) adjacency or 3D (space-time) adjacency can be found in
(Tabero et al., 2006). These heuristics are used to select one of the candidate vertices each
time a new task is considered for allocation. For adjacency-based heuristics, the vertex with
a higher adjacency is selected. For fragmentation-based heuristics, the one with lower
fragmentation value, as given by the metric, is chosen.
As a reference we have also used two MER-based heuristics, implementing Best-Fit
(choosing the smaller MER able to contain the task) and Worst-Fit (choosing the largest
MER) as in (Bazargan et al., 2000).
We have not used other metrics as in the previous section, due to the difficulties in
programming all them and incorporating them to the allocation environment (that for some
of them is not possible).
The experimental results are summarized in Table 2 and Figures 6, 7, 8 and 9. We have used
a 20x20 FPGA with 400 area units, and as benchmarks several task sets with 100 tasks and
different features each one.
We have used four different task size ranges. Set S1 is made of small tasks, with each
randomly generated dimension X or Y ranging from 1 to 10 units. Set S2 is made of medium
tasks, with side sizes ranging from 2 to 14 basic block units. Set S3 is made of large tasks
with side size ranging from 4 to 18 units. S4 is a more heterogeneous set, with small,
medium and large tasks combined. The average number of running tasks comes from the
average task size and is approximately of 12 for S1, 8 for S2, and 6 for S3. For S4 it is more
unpredictable.
All the task sets have an excess of workload that forces the allocator to store some tasks
temporally in a queue, and even discard them when their latest starting time constraint is
reached.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 21

have an associated weight factor that multiplies its length as desired, in order to penalize
such event.
The figure shows how our metric takes into account how far from the hole perimeter is the
island, giving a higher fragmentation value for Figures 5.a than for Figures 5.b or 5.c. In this
example we have weighted the virtual edges with a penalty factor of 2.
As we said, this metric is very simple to compute, at least for an allocation algorithm that
takes control of the free area boundary.

Fig. 5. QF metric values for a hole with an island at different locations

4.3 Comparison of different fragmentation metrics
A) Experiment #1
In order to compare our metrics HF and QF with others proposed in the literature, we have
computed fragmentation values given by some of these metrics for some of the simple
FPGA examples in Figures 3, 4 and 5. These results are shown in Table 1. The table also
shows the size of largest MER available (L-MER), that though not viable as a real technique
due to its high complexity, it can be used as a reference.
The purpose of this table is to show that the fragmentation value computed by our QF
metric (with the quadrature Q value also given between parentheses) is a reliable estimation
of the fragmentation status of a FPGA.
If compared with the L-MER, the lowest and highest fragmentation cases match, as most of
the others. Only for cases 3.d and 3.e there is a noticeable difference, that comes from the
fact that in case 3.e there exist several medium-sized rectangles, all of them good for
accommodating incoming tasks, though the largest MER is smaller that in other cases. For
the other metrics, it can be seen that F1 and F2 match with L-MER and QF for the less
fragmented case, but do behave not so well with islands: F1 does not discriminate among 5.a
and 5.c and F2 chooses as more fragmented the case where the island is closer to the
perimeter. F3 chooses as less fragmented 3.a instead of 3.f. Finally, F4 and HF do not
discriminate among many of the cases proposed, and assign excessive fragmentation values
to cases with several independent holes.

P = 80+12 = 92 Q = 0,32
AQ = 529 QF = 0,68

a) b) c)

P = 80+4 = 84 Q = 0,38
AQ = 441 QF =

P = 80+8 = 88 Q = 0,35
AQ = 484 QF = 0,65

 Single hole (Fig. 3) Several holes (Fig. 4) Island (Fig. 5)
3.a 3.d 3.e 3.f 4.a 4.b 4.c 5.a 5.c

F1
(Wigley)

10 7 10 11 7 10 7 6 6

F2
(Walder)

0.16 0.36 0.32 0.14 0.39 0.32 0.39 0.43 0.45

F3
(Handa)

0.07 0.18 0.21 0.08 0.28 0.22 0.33 0.21 0.20

F4
(Ejnoui)

0.58 0.58 0.58 0.58 0.96 0.98 1 0.58 0.58

HF 0.60 0.67 0.60 0.60 0.89 0.98 0.99 0.67 0.67
QF
(Q)

0,30
(0,70)

0,42
(0,58)

0,53
(0,47)

0,14
(0,86)

0,60
(0,40)

0,56
(0,44)

0,67
(0,33)

0,68
(0,32)

0,62
(0,38)

L-MER 140 98 100 154 80 110 80 70 84
Table 1. Comparison of HF and QF with different metrics

B) Experiment #2
The previous section showed how our QF metric was able to assign appropriate
fragmentation values to each FPGA situation.
We have made also experiments using HF and QF as a cost functions to select the most
appropriate location to place each new arriving task. We have used our Vertex-list based
manager, that allows choosing among several different vertex selection heuristics. Among
such, heuristic based on 2D (space) adjacency or 3D (space-time) adjacency can be found in
(Tabero et al., 2006). These heuristics are used to select one of the candidate vertices each
time a new task is considered for allocation. For adjacency-based heuristics, the vertex with
a higher adjacency is selected. For fragmentation-based heuristics, the one with lower
fragmentation value, as given by the metric, is chosen.
As a reference we have also used two MER-based heuristics, implementing Best-Fit
(choosing the smaller MER able to contain the task) and Worst-Fit (choosing the largest
MER) as in (Bazargan et al., 2000).
We have not used other metrics as in the previous section, due to the difficulties in
programming all them and incorporating them to the allocation environment (that for some
of them is not possible).
The experimental results are summarized in Table 2 and Figures 6, 7, 8 and 9. We have used
a 20x20 FPGA with 400 area units, and as benchmarks several task sets with 100 tasks and
different features each one.
We have used four different task size ranges. Set S1 is made of small tasks, with each
randomly generated dimension X or Y ranging from 1 to 10 units. Set S2 is made of medium
tasks, with side sizes ranging from 2 to 14 basic block units. Set S3 is made of large tasks
with side size ranging from 4 to 18 units. S4 is a more heterogeneous set, with small,
medium and large tasks combined. The average number of running tasks comes from the
average task size and is approximately of 12 for S1, 8 for S2, and 6 for S3. For S4 it is more
unpredictable.
All the task sets have an excess of workload that forces the allocator to store some tasks
temporally in a queue, and even discard them when their latest starting time constraint is
reached.

Parallel	and	Distributed	Computing20

have an associated weight factor that multiplies its length as desired, in order to penalize
such event.
The figure shows how our metric takes into account how far from the hole perimeter is the
island, giving a higher fragmentation value for Figures 5.a than for Figures 5.b or 5.c. In this
example we have weighted the virtual edges with a penalty factor of 2.
As we said, this metric is very simple to compute, at least for an allocation algorithm that
takes control of the free area boundary.

Fig. 5. QF metric values for a hole with an island at different locations

4.3 Comparison of different fragmentation metrics
A) Experiment #1
In order to compare our metrics HF and QF with others proposed in the literature, we have
computed fragmentation values given by some of these metrics for some of the simple
FPGA examples in Figures 3, 4 and 5. These results are shown in Table 1. The table also
shows the size of largest MER available (L-MER), that though not viable as a real technique
due to its high complexity, it can be used as a reference.
The purpose of this table is to show that the fragmentation value computed by our QF
metric (with the quadrature Q value also given between parentheses) is a reliable estimation
of the fragmentation status of a FPGA.
If compared with the L-MER, the lowest and highest fragmentation cases match, as most of
the others. Only for cases 3.d and 3.e there is a noticeable difference, that comes from the
fact that in case 3.e there exist several medium-sized rectangles, all of them good for
accommodating incoming tasks, though the largest MER is smaller that in other cases. For
the other metrics, it can be seen that F1 and F2 match with L-MER and QF for the less
fragmented case, but do behave not so well with islands: F1 does not discriminate among 5.a
and 5.c and F2 chooses as more fragmented the case where the island is closer to the
perimeter. F3 chooses as less fragmented 3.a instead of 3.f. Finally, F4 and HF do not
discriminate among many of the cases proposed, and assign excessive fragmentation values
to cases with several independent holes.

P = 80+12 = 92 Q = 0,32
AQ = 529 QF = 0,68

a) b) c)

P = 80+4 = 84 Q = 0,38
AQ = 441 QF =

P = 80+8 = 88 Q = 0,35
AQ = 484 QF = 0,65

 Single hole (Fig. 3) Several holes (Fig. 4) Island (Fig. 5)
3.a 3.d 3.e 3.f 4.a 4.b 4.c 5.a 5.c

F1
(Wigley)

10 7 10 11 7 10 7 6 6

F2
(Walder)

0.16 0.36 0.32 0.14 0.39 0.32 0.39 0.43 0.45

F3
(Handa)

0.07 0.18 0.21 0.08 0.28 0.22 0.33 0.21 0.20

F4
(Ejnoui)

0.58 0.58 0.58 0.58 0.96 0.98 1 0.58 0.58

HF 0.60 0.67 0.60 0.60 0.89 0.98 0.99 0.67 0.67
QF
(Q)

0,30
(0,70)

0,42
(0,58)

0,53
(0,47)

0,14
(0,86)

0,60
(0,40)

0,56
(0,44)

0,67
(0,33)

0,68
(0,32)

0,62
(0,38)

L-MER 140 98 100 154 80 110 80 70 84
Table 1. Comparison of HF and QF with different metrics

B) Experiment #2
The previous section showed how our QF metric was able to assign appropriate
fragmentation values to each FPGA situation.
We have made also experiments using HF and QF as a cost functions to select the most
appropriate location to place each new arriving task. We have used our Vertex-list based
manager, that allows choosing among several different vertex selection heuristics. Among
such, heuristic based on 2D (space) adjacency or 3D (space-time) adjacency can be found in
(Tabero et al., 2006). These heuristics are used to select one of the candidate vertices each
time a new task is considered for allocation. For adjacency-based heuristics, the vertex with
a higher adjacency is selected. For fragmentation-based heuristics, the one with lower
fragmentation value, as given by the metric, is chosen.
As a reference we have also used two MER-based heuristics, implementing Best-Fit
(choosing the smaller MER able to contain the task) and Worst-Fit (choosing the largest
MER) as in (Bazargan et al., 2000).
We have not used other metrics as in the previous section, due to the difficulties in
programming all them and incorporating them to the allocation environment (that for some
of them is not possible).
The experimental results are summarized in Table 2 and Figures 6, 7, 8 and 9. We have used
a 20x20 FPGA with 400 area units, and as benchmarks several task sets with 100 tasks and
different features each one.
We have used four different task size ranges. Set S1 is made of small tasks, with each
randomly generated dimension X or Y ranging from 1 to 10 units. Set S2 is made of medium
tasks, with side sizes ranging from 2 to 14 basic block units. Set S3 is made of large tasks
with side size ranging from 4 to 18 units. S4 is a more heterogeneous set, with small,
medium and large tasks combined. The average number of running tasks comes from the
average task size and is approximately of 12 for S1, 8 for S2, and 6 for S3. For S4 it is more
unpredictable.
All the task sets have an excess of workload that forces the allocator to store some tasks
temporally in a queue, and even discard them when their latest starting time constraint is
reached.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 21

have an associated weight factor that multiplies its length as desired, in order to penalize
such event.
The figure shows how our metric takes into account how far from the hole perimeter is the
island, giving a higher fragmentation value for Figures 5.a than for Figures 5.b or 5.c. In this
example we have weighted the virtual edges with a penalty factor of 2.
As we said, this metric is very simple to compute, at least for an allocation algorithm that
takes control of the free area boundary.

Fig. 5. QF metric values for a hole with an island at different locations

4.3 Comparison of different fragmentation metrics
A) Experiment #1
In order to compare our metrics HF and QF with others proposed in the literature, we have
computed fragmentation values given by some of these metrics for some of the simple
FPGA examples in Figures 3, 4 and 5. These results are shown in Table 1. The table also
shows the size of largest MER available (L-MER), that though not viable as a real technique
due to its high complexity, it can be used as a reference.
The purpose of this table is to show that the fragmentation value computed by our QF
metric (with the quadrature Q value also given between parentheses) is a reliable estimation
of the fragmentation status of a FPGA.
If compared with the L-MER, the lowest and highest fragmentation cases match, as most of
the others. Only for cases 3.d and 3.e there is a noticeable difference, that comes from the
fact that in case 3.e there exist several medium-sized rectangles, all of them good for
accommodating incoming tasks, though the largest MER is smaller that in other cases. For
the other metrics, it can be seen that F1 and F2 match with L-MER and QF for the less
fragmented case, but do behave not so well with islands: F1 does not discriminate among 5.a
and 5.c and F2 chooses as more fragmented the case where the island is closer to the
perimeter. F3 chooses as less fragmented 3.a instead of 3.f. Finally, F4 and HF do not
discriminate among many of the cases proposed, and assign excessive fragmentation values
to cases with several independent holes.

P = 80+12 = 92 Q = 0,32
AQ = 529 QF = 0,68

a) b) c)

P = 80+4 = 84 Q = 0,38
AQ = 441 QF =

P = 80+8 = 88 Q = 0,35
AQ = 484 QF = 0,65

 Single hole (Fig. 3) Several holes (Fig. 4) Island (Fig. 5)
3.a 3.d 3.e 3.f 4.a 4.b 4.c 5.a 5.c

F1
(Wigley)

10 7 10 11 7 10 7 6 6

F2
(Walder)

0.16 0.36 0.32 0.14 0.39 0.32 0.39 0.43 0.45

F3
(Handa)

0.07 0.18 0.21 0.08 0.28 0.22 0.33 0.21 0.20

F4
(Ejnoui)

0.58 0.58 0.58 0.58 0.96 0.98 1 0.58 0.58

HF 0.60 0.67 0.60 0.60 0.89 0.98 0.99 0.67 0.67
QF
(Q)

0,30
(0,70)

0,42
(0,58)

0,53
(0,47)

0,14
(0,86)

0,60
(0,40)

0,56
(0,44)

0,67
(0,33)

0,68
(0,32)

0,62
(0,38)

L-MER 140 98 100 154 80 110 80 70 84
Table 1. Comparison of HF and QF with different metrics

B) Experiment #2
The previous section showed how our QF metric was able to assign appropriate
fragmentation values to each FPGA situation.
We have made also experiments using HF and QF as a cost functions to select the most
appropriate location to place each new arriving task. We have used our Vertex-list based
manager, that allows choosing among several different vertex selection heuristics. Among
such, heuristic based on 2D (space) adjacency or 3D (space-time) adjacency can be found in
(Tabero et al., 2006). These heuristics are used to select one of the candidate vertices each
time a new task is considered for allocation. For adjacency-based heuristics, the vertex with
a higher adjacency is selected. For fragmentation-based heuristics, the one with lower
fragmentation value, as given by the metric, is chosen.
As a reference we have also used two MER-based heuristics, implementing Best-Fit
(choosing the smaller MER able to contain the task) and Worst-Fit (choosing the largest
MER) as in (Bazargan et al., 2000).
We have not used other metrics as in the previous section, due to the difficulties in
programming all them and incorporating them to the allocation environment (that for some
of them is not possible).
The experimental results are summarized in Table 2 and Figures 6, 7, 8 and 9. We have used
a 20x20 FPGA with 400 area units, and as benchmarks several task sets with 100 tasks and
different features each one.
We have used four different task size ranges. Set S1 is made of small tasks, with each
randomly generated dimension X or Y ranging from 1 to 10 units. Set S2 is made of medium
tasks, with side sizes ranging from 2 to 14 basic block units. Set S3 is made of large tasks
with side size ranging from 4 to 18 units. S4 is a more heterogeneous set, with small,
medium and large tasks combined. The average number of running tasks comes from the
average task size and is approximately of 12 for S1, 8 for S2, and 6 for S3. For S4 it is more
unpredictable.
All the task sets have an excess of workload that forces the allocator to store some tasks
temporally in a queue, and even discard them when their latest starting time constraint is
reached.

Parallel	and	Distributed	Computing22

For each one of the sets, we have used three different time constraint types: hard (H), soft (S)
or nonexistent (N). Thus the 12 experiment sets are labelled S1-H, S1-S, S1-N, S2-H… up to
S4-N.
As mentioned earlier, results are shown for the MER approach, with Best-Fit (labelled as
MER-BF) and Worst-Fit (MER-WF), the 2D adjacency heuristic (A-2D), the 3D adjacency
heuristic (A-3D), the hole-based metric HF and the quadrature -based metric QF.
The parameters we have used to characterize each experiment are the number of cycles used
to complete the executed computing volume, the average area occupation, and the
computing volume rejected. The number of cycles is only significant if related with the
computing volume executed, and only when no task has been rejected it allows direct
comparison between the heuristics. The average FPGA occupation ranges between 66 and 75
%, this means that a significant amount of the FPGA area (34 to 25%) cannot be used, due to
fragmentation. The computing volume rejected is the sum, for all the rejected tasks, of the
area of each task multiplied by its execution time.

Table 2. Experimental results

The results of Table 2 are summarized in some figures. Figures 6 and 7 show how much
computing volume (in percentage with respect to the whole computing volume of the task
set) is discarded for each set and for each one of the selection heuristics, for hard and soft
time constraints, respectively. We suppose all the other tasks have been successfully loaded
and executed before their respective time constraints have been reached.
As the figures show, the QF based heuristic discards a smaller percentage of the set
computing volume for most of the task sets that the other heuristics. Only for a single case it
behaves slightly worst, and for a few it does alike to some of the other ones. We must state
that some of the heuristics mentioned have a quite good performance on their own, as it has
been shown in (Tabero et al., 2006).

Parameter

S1-
H

S1-
S

S1-
N

S2-
H

S2-
S

S2-
N

S3-
H

S3-
S

S3-
N

S4-
H

S4-S S4-
N

M
ER

-
W

F

cycles 144 158 158 146 186 199 154 256 302 152 212 200
% area 67 68 68 66 68 66 72 72 73 66 62 68

Vol. rej. 12 0 0 27 4 0 50 17 0 25 5 0

M
ER -B
F

cycles 147 156 156 141 192 203 154 264 321 152 197 207
% area 69 69 69 65 67 65 72 71 68 63 68 66

Vol. rej. 7 0 0 31 3 0 50 16 0 29 3 0

A
-2

D
 # cycles 142 158 158 144 185 200 149 268 308 155 199 202

% area 70 68 68 64 67 66 71 73 71 63 67 67
Vol. rej. 8 0 0 30 7 0 52 12 0 28 3 0

A
-3

D
 # cycles 140 158 158 148 181 192 150 266 299 151 211 208

% area 70 68 68 64 68 69 70 73 73 63 63 65
Vol. rej. 10 0 0 21 7 0 53 12 0 30 3 0

H
F

cycles 145 154 154 141 181 188 153 265 294 156 207 196
% area 68 70 70 68 71 70 72 72 75 65 64 70

Vol. rej. 9 0 0 28 3 0 50 14 0 28 3 0

Q
F

cycles 143 150 150 144 180 190 150 265 300 148 194 194
% area 71 72 72 72 71 70 75 73 73 66 70 70

Vol. rej. 7 0 0 22 3 0 49 12 0 27 0 0

0

10

20

30

40

50

60

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 6. Percentage of computing volume discarded for task sets with hard time constraints

0

2

4

6

8

10

12

14

16

18

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 7. Percentage of computing volume discarded for task sets with soft time constraints

When time constraints are non-existent, or for soft time constraints in some of the sets, no
tasks are discarded by any heuristic, and the comparison must be established in terms of
how many cicles have been used to complete the whole task set by each one of the
heuristics. Figure 8 shows that the QF heuristic is able to execute the complete set workload
in less cycles than most of the others and for most of the task sets. As Figure 9 shows, the
average FPGA area occupation behaves similarly. We want to outline also that though the
MER approaches are given only as a reference, because their complexity makes them
unusable in a real on-line allocation environment, they can give a hint of how other
rectangle-based heuristic will behave. As our heuristic compares favourably with the MER-
based approaches, we can also expect it will stand against non-optimal techniques based on
non-overlapping rectangles.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 23

For each one of the sets, we have used three different time constraint types: hard (H), soft (S)
or nonexistent (N). Thus the 12 experiment sets are labelled S1-H, S1-S, S1-N, S2-H… up to
S4-N.
As mentioned earlier, results are shown for the MER approach, with Best-Fit (labelled as
MER-BF) and Worst-Fit (MER-WF), the 2D adjacency heuristic (A-2D), the 3D adjacency
heuristic (A-3D), the hole-based metric HF and the quadrature -based metric QF.
The parameters we have used to characterize each experiment are the number of cycles used
to complete the executed computing volume, the average area occupation, and the
computing volume rejected. The number of cycles is only significant if related with the
computing volume executed, and only when no task has been rejected it allows direct
comparison between the heuristics. The average FPGA occupation ranges between 66 and 75
%, this means that a significant amount of the FPGA area (34 to 25%) cannot be used, due to
fragmentation. The computing volume rejected is the sum, for all the rejected tasks, of the
area of each task multiplied by its execution time.

Table 2. Experimental results

The results of Table 2 are summarized in some figures. Figures 6 and 7 show how much
computing volume (in percentage with respect to the whole computing volume of the task
set) is discarded for each set and for each one of the selection heuristics, for hard and soft
time constraints, respectively. We suppose all the other tasks have been successfully loaded
and executed before their respective time constraints have been reached.
As the figures show, the QF based heuristic discards a smaller percentage of the set
computing volume for most of the task sets that the other heuristics. Only for a single case it
behaves slightly worst, and for a few it does alike to some of the other ones. We must state
that some of the heuristics mentioned have a quite good performance on their own, as it has
been shown in (Tabero et al., 2006).

Parameter

S1-
H

S1-
S

S1-
N

S2-
H

S2-
S

S2-
N

S3-
H

S3-
S

S3-
N

S4-
H

S4-S S4-
N

M
ER

-
W

F

cycles 144 158 158 146 186 199 154 256 302 152 212 200
% area 67 68 68 66 68 66 72 72 73 66 62 68

Vol. rej. 12 0 0 27 4 0 50 17 0 25 5 0

M
ER -B
F

cycles 147 156 156 141 192 203 154 264 321 152 197 207
% area 69 69 69 65 67 65 72 71 68 63 68 66

Vol. rej. 7 0 0 31 3 0 50 16 0 29 3 0

A
-2

D
 # cycles 142 158 158 144 185 200 149 268 308 155 199 202

% area 70 68 68 64 67 66 71 73 71 63 67 67
Vol. rej. 8 0 0 30 7 0 52 12 0 28 3 0

A
-3

D
 # cycles 140 158 158 148 181 192 150 266 299 151 211 208

% area 70 68 68 64 68 69 70 73 73 63 63 65
Vol. rej. 10 0 0 21 7 0 53 12 0 30 3 0

H
F

cycles 145 154 154 141 181 188 153 265 294 156 207 196
% area 68 70 70 68 71 70 72 72 75 65 64 70

Vol. rej. 9 0 0 28 3 0 50 14 0 28 3 0

Q
F

cycles 143 150 150 144 180 190 150 265 300 148 194 194
% area 71 72 72 72 71 70 75 73 73 66 70 70

Vol. rej. 7 0 0 22 3 0 49 12 0 27 0 0

0

10

20

30

40

50

60

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 6. Percentage of computing volume discarded for task sets with hard time constraints

0

2

4

6

8

10

12

14

16

18

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 7. Percentage of computing volume discarded for task sets with soft time constraints

When time constraints are non-existent, or for soft time constraints in some of the sets, no
tasks are discarded by any heuristic, and the comparison must be established in terms of
how many cicles have been used to complete the whole task set by each one of the
heuristics. Figure 8 shows that the QF heuristic is able to execute the complete set workload
in less cycles than most of the others and for most of the task sets. As Figure 9 shows, the
average FPGA area occupation behaves similarly. We want to outline also that though the
MER approaches are given only as a reference, because their complexity makes them
unusable in a real on-line allocation environment, they can give a hint of how other
rectangle-based heuristic will behave. As our heuristic compares favourably with the MER-
based approaches, we can also expect it will stand against non-optimal techniques based on
non-overlapping rectangles.

Parallel	and	Distributed	Computing22

For each one of the sets, we have used three different time constraint types: hard (H), soft (S)
or nonexistent (N). Thus the 12 experiment sets are labelled S1-H, S1-S, S1-N, S2-H… up to
S4-N.
As mentioned earlier, results are shown for the MER approach, with Best-Fit (labelled as
MER-BF) and Worst-Fit (MER-WF), the 2D adjacency heuristic (A-2D), the 3D adjacency
heuristic (A-3D), the hole-based metric HF and the quadrature -based metric QF.
The parameters we have used to characterize each experiment are the number of cycles used
to complete the executed computing volume, the average area occupation, and the
computing volume rejected. The number of cycles is only significant if related with the
computing volume executed, and only when no task has been rejected it allows direct
comparison between the heuristics. The average FPGA occupation ranges between 66 and 75
%, this means that a significant amount of the FPGA area (34 to 25%) cannot be used, due to
fragmentation. The computing volume rejected is the sum, for all the rejected tasks, of the
area of each task multiplied by its execution time.

Table 2. Experimental results

The results of Table 2 are summarized in some figures. Figures 6 and 7 show how much
computing volume (in percentage with respect to the whole computing volume of the task
set) is discarded for each set and for each one of the selection heuristics, for hard and soft
time constraints, respectively. We suppose all the other tasks have been successfully loaded
and executed before their respective time constraints have been reached.
As the figures show, the QF based heuristic discards a smaller percentage of the set
computing volume for most of the task sets that the other heuristics. Only for a single case it
behaves slightly worst, and for a few it does alike to some of the other ones. We must state
that some of the heuristics mentioned have a quite good performance on their own, as it has
been shown in (Tabero et al., 2006).

Parameter

S1-
H

S1-
S

S1-
N

S2-
H

S2-
S

S2-
N

S3-
H

S3-
S

S3-
N

S4-
H

S4-S S4-
N

M
ER

-
W

F

cycles 144 158 158 146 186 199 154 256 302 152 212 200
% area 67 68 68 66 68 66 72 72 73 66 62 68

Vol. rej. 12 0 0 27 4 0 50 17 0 25 5 0

M
ER -B
F

cycles 147 156 156 141 192 203 154 264 321 152 197 207
% area 69 69 69 65 67 65 72 71 68 63 68 66

Vol. rej. 7 0 0 31 3 0 50 16 0 29 3 0

A
-2

D
 # cycles 142 158 158 144 185 200 149 268 308 155 199 202

% area 70 68 68 64 67 66 71 73 71 63 67 67
Vol. rej. 8 0 0 30 7 0 52 12 0 28 3 0

A
-3

D
 # cycles 140 158 158 148 181 192 150 266 299 151 211 208

% area 70 68 68 64 68 69 70 73 73 63 63 65
Vol. rej. 10 0 0 21 7 0 53 12 0 30 3 0

H
F

cycles 145 154 154 141 181 188 153 265 294 156 207 196
% area 68 70 70 68 71 70 72 72 75 65 64 70

Vol. rej. 9 0 0 28 3 0 50 14 0 28 3 0

Q
F

cycles 143 150 150 144 180 190 150 265 300 148 194 194
% area 71 72 72 72 71 70 75 73 73 66 70 70

Vol. rej. 7 0 0 22 3 0 49 12 0 27 0 0

0

10

20

30

40

50

60

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 6. Percentage of computing volume discarded for task sets with hard time constraints

0

2

4

6

8

10

12

14

16

18

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 7. Percentage of computing volume discarded for task sets with soft time constraints

When time constraints are non-existent, or for soft time constraints in some of the sets, no
tasks are discarded by any heuristic, and the comparison must be established in terms of
how many cicles have been used to complete the whole task set by each one of the
heuristics. Figure 8 shows that the QF heuristic is able to execute the complete set workload
in less cycles than most of the others and for most of the task sets. As Figure 9 shows, the
average FPGA area occupation behaves similarly. We want to outline also that though the
MER approaches are given only as a reference, because their complexity makes them
unusable in a real on-line allocation environment, they can give a hint of how other
rectangle-based heuristic will behave. As our heuristic compares favourably with the MER-
based approaches, we can also expect it will stand against non-optimal techniques based on
non-overlapping rectangles.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 23

For each one of the sets, we have used three different time constraint types: hard (H), soft (S)
or nonexistent (N). Thus the 12 experiment sets are labelled S1-H, S1-S, S1-N, S2-H… up to
S4-N.
As mentioned earlier, results are shown for the MER approach, with Best-Fit (labelled as
MER-BF) and Worst-Fit (MER-WF), the 2D adjacency heuristic (A-2D), the 3D adjacency
heuristic (A-3D), the hole-based metric HF and the quadrature -based metric QF.
The parameters we have used to characterize each experiment are the number of cycles used
to complete the executed computing volume, the average area occupation, and the
computing volume rejected. The number of cycles is only significant if related with the
computing volume executed, and only when no task has been rejected it allows direct
comparison between the heuristics. The average FPGA occupation ranges between 66 and 75
%, this means that a significant amount of the FPGA area (34 to 25%) cannot be used, due to
fragmentation. The computing volume rejected is the sum, for all the rejected tasks, of the
area of each task multiplied by its execution time.

Table 2. Experimental results

The results of Table 2 are summarized in some figures. Figures 6 and 7 show how much
computing volume (in percentage with respect to the whole computing volume of the task
set) is discarded for each set and for each one of the selection heuristics, for hard and soft
time constraints, respectively. We suppose all the other tasks have been successfully loaded
and executed before their respective time constraints have been reached.
As the figures show, the QF based heuristic discards a smaller percentage of the set
computing volume for most of the task sets that the other heuristics. Only for a single case it
behaves slightly worst, and for a few it does alike to some of the other ones. We must state
that some of the heuristics mentioned have a quite good performance on their own, as it has
been shown in (Tabero et al., 2006).

Parameter

S1-
H

S1-
S

S1-
N

S2-
H

S2-
S

S2-
N

S3-
H

S3-
S

S3-
N

S4-
H

S4-S S4-
N

M
ER

-
W

F

cycles 144 158 158 146 186 199 154 256 302 152 212 200
% area 67 68 68 66 68 66 72 72 73 66 62 68

Vol. rej. 12 0 0 27 4 0 50 17 0 25 5 0

M
ER -B
F

cycles 147 156 156 141 192 203 154 264 321 152 197 207
% area 69 69 69 65 67 65 72 71 68 63 68 66

Vol. rej. 7 0 0 31 3 0 50 16 0 29 3 0

A
-2

D
 # cycles 142 158 158 144 185 200 149 268 308 155 199 202

% area 70 68 68 64 67 66 71 73 71 63 67 67
Vol. rej. 8 0 0 30 7 0 52 12 0 28 3 0

A
-3

D
 # cycles 140 158 158 148 181 192 150 266 299 151 211 208

% area 70 68 68 64 68 69 70 73 73 63 63 65
Vol. rej. 10 0 0 21 7 0 53 12 0 30 3 0

H
F

cycles 145 154 154 141 181 188 153 265 294 156 207 196
% area 68 70 70 68 71 70 72 72 75 65 64 70

Vol. rej. 9 0 0 28 3 0 50 14 0 28 3 0

Q
F

cycles 143 150 150 144 180 190 150 265 300 148 194 194
% area 71 72 72 72 71 70 75 73 73 66 70 70

Vol. rej. 7 0 0 22 3 0 49 12 0 27 0 0

0

10

20

30

40

50

60

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 6. Percentage of computing volume discarded for task sets with hard time constraints

0

2

4

6

8

10

12

14

16

18

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 7. Percentage of computing volume discarded for task sets with soft time constraints

When time constraints are non-existent, or for soft time constraints in some of the sets, no
tasks are discarded by any heuristic, and the comparison must be established in terms of
how many cicles have been used to complete the whole task set by each one of the
heuristics. Figure 8 shows that the QF heuristic is able to execute the complete set workload
in less cycles than most of the others and for most of the task sets. As Figure 9 shows, the
average FPGA area occupation behaves similarly. We want to outline also that though the
MER approaches are given only as a reference, because their complexity makes them
unusable in a real on-line allocation environment, they can give a hint of how other
rectangle-based heuristic will behave. As our heuristic compares favourably with the MER-
based approaches, we can also expect it will stand against non-optimal techniques based on
non-overlapping rectangles.

Parallel	and	Distributed	Computing24

0

50

100

150

200

250

300

350

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 8. Number of cycles for task sets without time constraints

60

62

64

66

68

70

72

74

76

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 9. Average area occupation for task sets without time constraints

Though the difference of the results for both fragmentation metrics, QF and HF, are not
always significant, it must be mentioned that QF is much simpler to compute than HF,
because there is no need to consider each independent hole in the FPGA free area. If a
Vertex list-based allocator is used, then the free area perimeter is exactly the Vertex list
length.

5. Defragmentation techniques

Even if we use intelligent (fragmentation-aware) heuristics to select the location for each
incoming task, it is unavoidable that situations where fragmentation becomes a real problem
will eventually arise.
In order to be able to defragment the free area available in an FPGA with several running
tasks, we are making some considerations: we will suppose a pre-emptive system, that is,
that we have the resources needed to interrupt anytime a currently running task, to relocate
or reload the task configuration at a different location without modifying its status, and then
to continue its execution.

We will consider two different defragmentation techniques, each one for a different
situation:

 First, a routine, preventive defragmentation will be initiated if an alarm is fired by
the Free Area Analyzer module. This alarm has two possible causes: the appearing of
an occupied island inside a free hole, as in Figure 5, or a high fragmentation FPGA
status detected by the metric above, as in Figures 2.d or 2.e. This preventive
defragmentation is desired but not urgent, and will be performed only if time
constraints for currently running tasks are not too severe.

 Second, an urgent on-demand defragmentation will be initiated, if an arriving task
cannot find a suitable location in the FPGA, though there is enough free area to
accommodate it. This emergency defragmentation will try to get room by moving a
single currently running task.

5.1 Defragmentation time-cost estimation
It becomes clear that defragmentation is a time-consuming process, and therefore an
estimation of the defragmentation time tD will be needed in order to decide when, how or
even if defragmentation will be performed. We must state also that we will not consider the
time spent by the defragmentation algorithms themselves, which run in software in parallel
with the tasks in the FPGA.
We have supposed that the defragmentation time cost due to each task will be proportional
to the number of basic blocks of the task. And thus the total defragmentation time cost could
be estimated as:

tD = 2 * ∑ t_confi = 2k * ∑ (wi * hi) for all tasks Ti in the FPGA to be relocated (9)

 i i

The proportionality factor k will depend on the technique we use to relocate the task
configuration and on the configuration interface features (for example, the 8-bit SelectMap
interface for Virtex FPGAs described in (www.xilinx.com). The factor of 2 appears because
we have supposed that configuration reloading is done for each task through a readback of
the task configuration and status from the original task location, that are later copied to the
new one.
We would get a lower 2k value if relocation could be done inside the FPGA, with the help of
architectural changes such as the buffer proposed by Compton in (Compton et al., 2002).
Such buffer, though, poses problems because relocation of each task must take into account
the locations of other tasks in the FPGA. But we suppose it is not done by a task shifting
technique such as the one explained in (Diessel et al., 2000), because in such case relocation
time would depend for each task on the initial and final task locations.
The solution that would get the most significant reduction of 2k would be using an FPGA
architecture with two different contexts, a simplified version of the classical multicontext
architecture proposed by Trimberger in (Trimberger et al., 1997). A second context would
allow to schedule and accomplish a global defragmentation with a minimal time cost. The
configuration load in the second context could be done while tasks go on running, and we
would have to add only the time needed to transfer the status of each currently running task
from the active context to the other one.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 25

0

50

100

150

200

250

300

350

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 8. Number of cycles for task sets without time constraints

60

62

64

66

68

70

72

74

76

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 9. Average area occupation for task sets without time constraints

Though the difference of the results for both fragmentation metrics, QF and HF, are not
always significant, it must be mentioned that QF is much simpler to compute than HF,
because there is no need to consider each independent hole in the FPGA free area. If a
Vertex list-based allocator is used, then the free area perimeter is exactly the Vertex list
length.

5. Defragmentation techniques

Even if we use intelligent (fragmentation-aware) heuristics to select the location for each
incoming task, it is unavoidable that situations where fragmentation becomes a real problem
will eventually arise.
In order to be able to defragment the free area available in an FPGA with several running
tasks, we are making some considerations: we will suppose a pre-emptive system, that is,
that we have the resources needed to interrupt anytime a currently running task, to relocate
or reload the task configuration at a different location without modifying its status, and then
to continue its execution.

We will consider two different defragmentation techniques, each one for a different
situation:

 First, a routine, preventive defragmentation will be initiated if an alarm is fired by
the Free Area Analyzer module. This alarm has two possible causes: the appearing of
an occupied island inside a free hole, as in Figure 5, or a high fragmentation FPGA
status detected by the metric above, as in Figures 2.d or 2.e. This preventive
defragmentation is desired but not urgent, and will be performed only if time
constraints for currently running tasks are not too severe.

 Second, an urgent on-demand defragmentation will be initiated, if an arriving task
cannot find a suitable location in the FPGA, though there is enough free area to
accommodate it. This emergency defragmentation will try to get room by moving a
single currently running task.

5.1 Defragmentation time-cost estimation
It becomes clear that defragmentation is a time-consuming process, and therefore an
estimation of the defragmentation time tD will be needed in order to decide when, how or
even if defragmentation will be performed. We must state also that we will not consider the
time spent by the defragmentation algorithms themselves, which run in software in parallel
with the tasks in the FPGA.
We have supposed that the defragmentation time cost due to each task will be proportional
to the number of basic blocks of the task. And thus the total defragmentation time cost could
be estimated as:

tD = 2 * ∑ t_confi = 2k * ∑ (wi * hi) for all tasks Ti in the FPGA to be relocated (9)

 i i

The proportionality factor k will depend on the technique we use to relocate the task
configuration and on the configuration interface features (for example, the 8-bit SelectMap
interface for Virtex FPGAs described in (www.xilinx.com). The factor of 2 appears because
we have supposed that configuration reloading is done for each task through a readback of
the task configuration and status from the original task location, that are later copied to the
new one.
We would get a lower 2k value if relocation could be done inside the FPGA, with the help of
architectural changes such as the buffer proposed by Compton in (Compton et al., 2002).
Such buffer, though, poses problems because relocation of each task must take into account
the locations of other tasks in the FPGA. But we suppose it is not done by a task shifting
technique such as the one explained in (Diessel et al., 2000), because in such case relocation
time would depend for each task on the initial and final task locations.
The solution that would get the most significant reduction of 2k would be using an FPGA
architecture with two different contexts, a simplified version of the classical multicontext
architecture proposed by Trimberger in (Trimberger et al., 1997). A second context would
allow to schedule and accomplish a global defragmentation with a minimal time cost. The
configuration load in the second context could be done while tasks go on running, and we
would have to add only the time needed to transfer the status of each currently running task
from the active context to the other one.

Parallel	and	Distributed	Computing24

0

50

100

150

200

250

300

350

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 8. Number of cycles for task sets without time constraints

60

62

64

66

68

70

72

74

76

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 9. Average area occupation for task sets without time constraints

Though the difference of the results for both fragmentation metrics, QF and HF, are not
always significant, it must be mentioned that QF is much simpler to compute than HF,
because there is no need to consider each independent hole in the FPGA free area. If a
Vertex list-based allocator is used, then the free area perimeter is exactly the Vertex list
length.

5. Defragmentation techniques

Even if we use intelligent (fragmentation-aware) heuristics to select the location for each
incoming task, it is unavoidable that situations where fragmentation becomes a real problem
will eventually arise.
In order to be able to defragment the free area available in an FPGA with several running
tasks, we are making some considerations: we will suppose a pre-emptive system, that is,
that we have the resources needed to interrupt anytime a currently running task, to relocate
or reload the task configuration at a different location without modifying its status, and then
to continue its execution.

We will consider two different defragmentation techniques, each one for a different
situation:

 First, a routine, preventive defragmentation will be initiated if an alarm is fired by
the Free Area Analyzer module. This alarm has two possible causes: the appearing of
an occupied island inside a free hole, as in Figure 5, or a high fragmentation FPGA
status detected by the metric above, as in Figures 2.d or 2.e. This preventive
defragmentation is desired but not urgent, and will be performed only if time
constraints for currently running tasks are not too severe.

 Second, an urgent on-demand defragmentation will be initiated, if an arriving task
cannot find a suitable location in the FPGA, though there is enough free area to
accommodate it. This emergency defragmentation will try to get room by moving a
single currently running task.

5.1 Defragmentation time-cost estimation
It becomes clear that defragmentation is a time-consuming process, and therefore an
estimation of the defragmentation time tD will be needed in order to decide when, how or
even if defragmentation will be performed. We must state also that we will not consider the
time spent by the defragmentation algorithms themselves, which run in software in parallel
with the tasks in the FPGA.
We have supposed that the defragmentation time cost due to each task will be proportional
to the number of basic blocks of the task. And thus the total defragmentation time cost could
be estimated as:

tD = 2 * ∑ t_confi = 2k * ∑ (wi * hi) for all tasks Ti in the FPGA to be relocated (9)

 i i

The proportionality factor k will depend on the technique we use to relocate the task
configuration and on the configuration interface features (for example, the 8-bit SelectMap
interface for Virtex FPGAs described in (www.xilinx.com). The factor of 2 appears because
we have supposed that configuration reloading is done for each task through a readback of
the task configuration and status from the original task location, that are later copied to the
new one.
We would get a lower 2k value if relocation could be done inside the FPGA, with the help of
architectural changes such as the buffer proposed by Compton in (Compton et al., 2002).
Such buffer, though, poses problems because relocation of each task must take into account
the locations of other tasks in the FPGA. But we suppose it is not done by a task shifting
technique such as the one explained in (Diessel et al., 2000), because in such case relocation
time would depend for each task on the initial and final task locations.
The solution that would get the most significant reduction of 2k would be using an FPGA
architecture with two different contexts, a simplified version of the classical multicontext
architecture proposed by Trimberger in (Trimberger et al., 1997). A second context would
allow to schedule and accomplish a global defragmentation with a minimal time cost. The
configuration load in the second context could be done while tasks go on running, and we
would have to add only the time needed to transfer the status of each currently running task
from the active context to the other one.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 25

0

50

100

150

200

250

300

350

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 8. Number of cycles for task sets without time constraints

60

62

64

66

68

70

72

74

76

small medium large heter

MER-WF
MER-BF
A-2D
A-3D
HF
QF

Fig. 9. Average area occupation for task sets without time constraints

Though the difference of the results for both fragmentation metrics, QF and HF, are not
always significant, it must be mentioned that QF is much simpler to compute than HF,
because there is no need to consider each independent hole in the FPGA free area. If a
Vertex list-based allocator is used, then the free area perimeter is exactly the Vertex list
length.

5. Defragmentation techniques

Even if we use intelligent (fragmentation-aware) heuristics to select the location for each
incoming task, it is unavoidable that situations where fragmentation becomes a real problem
will eventually arise.
In order to be able to defragment the free area available in an FPGA with several running
tasks, we are making some considerations: we will suppose a pre-emptive system, that is,
that we have the resources needed to interrupt anytime a currently running task, to relocate
or reload the task configuration at a different location without modifying its status, and then
to continue its execution.

We will consider two different defragmentation techniques, each one for a different
situation:

 First, a routine, preventive defragmentation will be initiated if an alarm is fired by
the Free Area Analyzer module. This alarm has two possible causes: the appearing of
an occupied island inside a free hole, as in Figure 5, or a high fragmentation FPGA
status detected by the metric above, as in Figures 2.d or 2.e. This preventive
defragmentation is desired but not urgent, and will be performed only if time
constraints for currently running tasks are not too severe.

 Second, an urgent on-demand defragmentation will be initiated, if an arriving task
cannot find a suitable location in the FPGA, though there is enough free area to
accommodate it. This emergency defragmentation will try to get room by moving a
single currently running task.

5.1 Defragmentation time-cost estimation
It becomes clear that defragmentation is a time-consuming process, and therefore an
estimation of the defragmentation time tD will be needed in order to decide when, how or
even if defragmentation will be performed. We must state also that we will not consider the
time spent by the defragmentation algorithms themselves, which run in software in parallel
with the tasks in the FPGA.
We have supposed that the defragmentation time cost due to each task will be proportional
to the number of basic blocks of the task. And thus the total defragmentation time cost could
be estimated as:

tD = 2 * ∑ t_confi = 2k * ∑ (wi * hi) for all tasks Ti in the FPGA to be relocated (9)

 i i

The proportionality factor k will depend on the technique we use to relocate the task
configuration and on the configuration interface features (for example, the 8-bit SelectMap
interface for Virtex FPGAs described in (www.xilinx.com). The factor of 2 appears because
we have supposed that configuration reloading is done for each task through a readback of
the task configuration and status from the original task location, that are later copied to the
new one.
We would get a lower 2k value if relocation could be done inside the FPGA, with the help of
architectural changes such as the buffer proposed by Compton in (Compton et al., 2002).
Such buffer, though, poses problems because relocation of each task must take into account
the locations of other tasks in the FPGA. But we suppose it is not done by a task shifting
technique such as the one explained in (Diessel et al., 2000), because in such case relocation
time would depend for each task on the initial and final task locations.
The solution that would get the most significant reduction of 2k would be using an FPGA
architecture with two different contexts, a simplified version of the classical multicontext
architecture proposed by Trimberger in (Trimberger et al., 1997). A second context would
allow to schedule and accomplish a global defragmentation with a minimal time cost. The
configuration load in the second context could be done while tasks go on running, and we
would have to add only the time needed to transfer the status of each currently running task
from the active context to the other one.

Parallel	and	Distributed	Computing26

5.2 Preventive defragmentation
This defragmentation is fired by the Free Area Analyzer module, and it will be performed
only if the free area is large enough, and it will try first to relocate islands inside the free
hole, if they exist, or to relocate most of the currently running tasks if possible. There are
two possible alarm causes: an island alarm, or a fragmentation metrics alarm.
The first alarm checked is the island alarm. An island is made of one or more tasks that have
become isolated when all the tasks surrounding them have already finished. An island can
appear only when a task-end event happens. It is obvious that to remove an island by
relocating its tasks can lead to a significant reduction of the fragmentation value, and thus
we treat it separately.
The second alarm cause is that the fragmentation value rises above a certain threshold. This
can happen as a consequence of several different events, and the system will try to perform,
if possible, a global or quasi-global relocation of the currently running tasks.
This routine defragmentation is not urgent, or at least it is not fired by the immediate need
to allocate an incoming task, and its goal is to get a significantly lower fragmentation FPGA
status by taking one of the mentioned actions.
A) Island alarm management
Though islands are not going to appear frequently, when they appear inside a hole they
must be dealt with before any other consideration is done. An island inside a hole is
represented in our system as part of the hole frontier, its vertices belonging to the VL
defining the hole as all the other vertices do. We connect the island vertices with the external
ones by using two virtual edges, which do not represent, as normal vertices do, a real
frontier, and thus they are not considered when intersections are checked. Figure 10.a shows
an example with a simple island made of two tasks and its VL is shown in Figure 10.b. The
island alarm is then only a bit that is set whenever the Free Area Analyzer module detects
the presence of a pair of virtual edges in VL, that in the example appear as discontinued
arrows.

Fig. 10. FPGA status with an island (a) and its vertex list (b), and FPGA status after
defragmentation (c).

If the island alarm has been fired, we check first if we can relocate it or not, by demanding
that for every task Ti in the island the following condition is satisfied:

 C1: t_margi ≥ tD_island (10)

Island

T1

T2

T3

T1

T2

T3

a) QF=0.77 b) VL c) QF=0.25

 T4
 T4

where t_margi is computed as in (1) and tD_island is the time needed to relocate the complete
island, proportional to the island block size and computed as in (9). If condition C1 is
satisfied, then new locations for the island tasks are selected by the 3D-adjacency allocation
heuristic explained in (Tabero et al., 2004) o (Tabero et al., 2006). The tasks are allocated by
decreasing values of t_remi, the time the will still remain in the FPGA, that is given by:

 t_remi = t_starti+t_confi+t_exi–t_curr. (11)

Figure 10.c shows the FPGA status once the island has been removed. Usually, the
fragmentation estimation after island removal will lower substantially, below the alarm
firing value, and thus we can consider the defragmentation accomplished.
If the island cannot be moved because the C1 condition is not met, then the defragmentation
process will not be done.
B) Fragmentation alarm firing
The Free Area Analyzer module checks continuously the fragmentation status of the FPGA,
estimating its value with the fragmentation metric used. The fragmentation alarm fires
whenever the estimated value surpasses a given threshold. The exact threshold value would
depend on the metric used.
For the examples shown in this paper, with an average running task number between four
and five tasks, we have chosen as threshold a value of 0.75.
Finally, even when the fragmentation estimation reaches a high value, we have set another
condition in order to decide if defragmentation is started: we only perform it if the hole has
a significant size. We have set a minimum size value of two times the average task size:

 AF_FPGA ≥ 2 * average(Ai) (12)

Only when this happens the theoretical fragmentation value can be taken as truly
significant, and the alarm is actually fired. When such is the case, three different approaches
can be considered, depending on the time constraints of the running tasks: immediate global
defragmentation, delayed global defragmentation, or immediate partial defragmentation.
C) Immediate global defragmentation
If a high fragmentation alarm has fired, the system can try an immediate global
defragmentation of the FPGA resources. In order to decide if such a defragmentation is
possible, it must check if all the currently running tasks can be relocated or not, by
demanding that for every task Ti in the FPGA the following condition is satisfied:

 C2: t_margi ≥ tD (13)

where tD is the time needed to relocate all the running tasks computed as in (9). If all the
tasks satisfy condition C2, then a defragmentation is performed where all the tasks are
relocated, starting from an empty FPGA. The task configurations are readback first, and
then relocated at their new locations. In order to reduce the probability of a new
fragmentation situation too soon, tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-adjacency concept. Figure 11.a shows a
FPGA situation with six running tasks and a high fragmentation status (QF=0.76). For each
task Ti, example t_remi and t_margi values are shown. A global defragmentation will lead to

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 27

5.2 Preventive defragmentation
This defragmentation is fired by the Free Area Analyzer module, and it will be performed
only if the free area is large enough, and it will try first to relocate islands inside the free
hole, if they exist, or to relocate most of the currently running tasks if possible. There are
two possible alarm causes: an island alarm, or a fragmentation metrics alarm.
The first alarm checked is the island alarm. An island is made of one or more tasks that have
become isolated when all the tasks surrounding them have already finished. An island can
appear only when a task-end event happens. It is obvious that to remove an island by
relocating its tasks can lead to a significant reduction of the fragmentation value, and thus
we treat it separately.
The second alarm cause is that the fragmentation value rises above a certain threshold. This
can happen as a consequence of several different events, and the system will try to perform,
if possible, a global or quasi-global relocation of the currently running tasks.
This routine defragmentation is not urgent, or at least it is not fired by the immediate need
to allocate an incoming task, and its goal is to get a significantly lower fragmentation FPGA
status by taking one of the mentioned actions.
A) Island alarm management
Though islands are not going to appear frequently, when they appear inside a hole they
must be dealt with before any other consideration is done. An island inside a hole is
represented in our system as part of the hole frontier, its vertices belonging to the VL
defining the hole as all the other vertices do. We connect the island vertices with the external
ones by using two virtual edges, which do not represent, as normal vertices do, a real
frontier, and thus they are not considered when intersections are checked. Figure 10.a shows
an example with a simple island made of two tasks and its VL is shown in Figure 10.b. The
island alarm is then only a bit that is set whenever the Free Area Analyzer module detects
the presence of a pair of virtual edges in VL, that in the example appear as discontinued
arrows.

Fig. 10. FPGA status with an island (a) and its vertex list (b), and FPGA status after
defragmentation (c).

If the island alarm has been fired, we check first if we can relocate it or not, by demanding
that for every task Ti in the island the following condition is satisfied:

 C1: t_margi ≥ tD_island (10)

Island

T1

T2

T3

T1

T2

T3

a) QF=0.77 b) VL c) QF=0.25

 T4
 T4

where t_margi is computed as in (1) and tD_island is the time needed to relocate the complete
island, proportional to the island block size and computed as in (9). If condition C1 is
satisfied, then new locations for the island tasks are selected by the 3D-adjacency allocation
heuristic explained in (Tabero et al., 2004) o (Tabero et al., 2006). The tasks are allocated by
decreasing values of t_remi, the time the will still remain in the FPGA, that is given by:

 t_remi = t_starti+t_confi+t_exi–t_curr. (11)

Figure 10.c shows the FPGA status once the island has been removed. Usually, the
fragmentation estimation after island removal will lower substantially, below the alarm
firing value, and thus we can consider the defragmentation accomplished.
If the island cannot be moved because the C1 condition is not met, then the defragmentation
process will not be done.
B) Fragmentation alarm firing
The Free Area Analyzer module checks continuously the fragmentation status of the FPGA,
estimating its value with the fragmentation metric used. The fragmentation alarm fires
whenever the estimated value surpasses a given threshold. The exact threshold value would
depend on the metric used.
For the examples shown in this paper, with an average running task number between four
and five tasks, we have chosen as threshold a value of 0.75.
Finally, even when the fragmentation estimation reaches a high value, we have set another
condition in order to decide if defragmentation is started: we only perform it if the hole has
a significant size. We have set a minimum size value of two times the average task size:

 AF_FPGA ≥ 2 * average(Ai) (12)

Only when this happens the theoretical fragmentation value can be taken as truly
significant, and the alarm is actually fired. When such is the case, three different approaches
can be considered, depending on the time constraints of the running tasks: immediate global
defragmentation, delayed global defragmentation, or immediate partial defragmentation.
C) Immediate global defragmentation
If a high fragmentation alarm has fired, the system can try an immediate global
defragmentation of the FPGA resources. In order to decide if such a defragmentation is
possible, it must check if all the currently running tasks can be relocated or not, by
demanding that for every task Ti in the FPGA the following condition is satisfied:

 C2: t_margi ≥ tD (13)

where tD is the time needed to relocate all the running tasks computed as in (9). If all the
tasks satisfy condition C2, then a defragmentation is performed where all the tasks are
relocated, starting from an empty FPGA. The task configurations are readback first, and
then relocated at their new locations. In order to reduce the probability of a new
fragmentation situation too soon, tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-adjacency concept. Figure 11.a shows a
FPGA situation with six running tasks and a high fragmentation status (QF=0.76). For each
task Ti, example t_remi and t_margi values are shown. A global defragmentation will lead to

Parallel	and	Distributed	Computing26

5.2 Preventive defragmentation
This defragmentation is fired by the Free Area Analyzer module, and it will be performed
only if the free area is large enough, and it will try first to relocate islands inside the free
hole, if they exist, or to relocate most of the currently running tasks if possible. There are
two possible alarm causes: an island alarm, or a fragmentation metrics alarm.
The first alarm checked is the island alarm. An island is made of one or more tasks that have
become isolated when all the tasks surrounding them have already finished. An island can
appear only when a task-end event happens. It is obvious that to remove an island by
relocating its tasks can lead to a significant reduction of the fragmentation value, and thus
we treat it separately.
The second alarm cause is that the fragmentation value rises above a certain threshold. This
can happen as a consequence of several different events, and the system will try to perform,
if possible, a global or quasi-global relocation of the currently running tasks.
This routine defragmentation is not urgent, or at least it is not fired by the immediate need
to allocate an incoming task, and its goal is to get a significantly lower fragmentation FPGA
status by taking one of the mentioned actions.
A) Island alarm management
Though islands are not going to appear frequently, when they appear inside a hole they
must be dealt with before any other consideration is done. An island inside a hole is
represented in our system as part of the hole frontier, its vertices belonging to the VL
defining the hole as all the other vertices do. We connect the island vertices with the external
ones by using two virtual edges, which do not represent, as normal vertices do, a real
frontier, and thus they are not considered when intersections are checked. Figure 10.a shows
an example with a simple island made of two tasks and its VL is shown in Figure 10.b. The
island alarm is then only a bit that is set whenever the Free Area Analyzer module detects
the presence of a pair of virtual edges in VL, that in the example appear as discontinued
arrows.

Fig. 10. FPGA status with an island (a) and its vertex list (b), and FPGA status after
defragmentation (c).

If the island alarm has been fired, we check first if we can relocate it or not, by demanding
that for every task Ti in the island the following condition is satisfied:

 C1: t_margi ≥ tD_island (10)

Island

T1

T2

T3

T1

T2

T3

a) QF=0.77 b) VL c) QF=0.25

 T4
 T4

where t_margi is computed as in (1) and tD_island is the time needed to relocate the complete
island, proportional to the island block size and computed as in (9). If condition C1 is
satisfied, then new locations for the island tasks are selected by the 3D-adjacency allocation
heuristic explained in (Tabero et al., 2004) o (Tabero et al., 2006). The tasks are allocated by
decreasing values of t_remi, the time the will still remain in the FPGA, that is given by:

 t_remi = t_starti+t_confi+t_exi–t_curr. (11)

Figure 10.c shows the FPGA status once the island has been removed. Usually, the
fragmentation estimation after island removal will lower substantially, below the alarm
firing value, and thus we can consider the defragmentation accomplished.
If the island cannot be moved because the C1 condition is not met, then the defragmentation
process will not be done.
B) Fragmentation alarm firing
The Free Area Analyzer module checks continuously the fragmentation status of the FPGA,
estimating its value with the fragmentation metric used. The fragmentation alarm fires
whenever the estimated value surpasses a given threshold. The exact threshold value would
depend on the metric used.
For the examples shown in this paper, with an average running task number between four
and five tasks, we have chosen as threshold a value of 0.75.
Finally, even when the fragmentation estimation reaches a high value, we have set another
condition in order to decide if defragmentation is started: we only perform it if the hole has
a significant size. We have set a minimum size value of two times the average task size:

 AF_FPGA ≥ 2 * average(Ai) (12)

Only when this happens the theoretical fragmentation value can be taken as truly
significant, and the alarm is actually fired. When such is the case, three different approaches
can be considered, depending on the time constraints of the running tasks: immediate global
defragmentation, delayed global defragmentation, or immediate partial defragmentation.
C) Immediate global defragmentation
If a high fragmentation alarm has fired, the system can try an immediate global
defragmentation of the FPGA resources. In order to decide if such a defragmentation is
possible, it must check if all the currently running tasks can be relocated or not, by
demanding that for every task Ti in the FPGA the following condition is satisfied:

 C2: t_margi ≥ tD (13)

where tD is the time needed to relocate all the running tasks computed as in (9). If all the
tasks satisfy condition C2, then a defragmentation is performed where all the tasks are
relocated, starting from an empty FPGA. The task configurations are readback first, and
then relocated at their new locations. In order to reduce the probability of a new
fragmentation situation too soon, tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-adjacency concept. Figure 11.a shows a
FPGA situation with six running tasks and a high fragmentation status (QF=0.76). For each
task Ti, example t_remi and t_margi values are shown. A global defragmentation will lead to

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 27

5.2 Preventive defragmentation
This defragmentation is fired by the Free Area Analyzer module, and it will be performed
only if the free area is large enough, and it will try first to relocate islands inside the free
hole, if they exist, or to relocate most of the currently running tasks if possible. There are
two possible alarm causes: an island alarm, or a fragmentation metrics alarm.
The first alarm checked is the island alarm. An island is made of one or more tasks that have
become isolated when all the tasks surrounding them have already finished. An island can
appear only when a task-end event happens. It is obvious that to remove an island by
relocating its tasks can lead to a significant reduction of the fragmentation value, and thus
we treat it separately.
The second alarm cause is that the fragmentation value rises above a certain threshold. This
can happen as a consequence of several different events, and the system will try to perform,
if possible, a global or quasi-global relocation of the currently running tasks.
This routine defragmentation is not urgent, or at least it is not fired by the immediate need
to allocate an incoming task, and its goal is to get a significantly lower fragmentation FPGA
status by taking one of the mentioned actions.
A) Island alarm management
Though islands are not going to appear frequently, when they appear inside a hole they
must be dealt with before any other consideration is done. An island inside a hole is
represented in our system as part of the hole frontier, its vertices belonging to the VL
defining the hole as all the other vertices do. We connect the island vertices with the external
ones by using two virtual edges, which do not represent, as normal vertices do, a real
frontier, and thus they are not considered when intersections are checked. Figure 10.a shows
an example with a simple island made of two tasks and its VL is shown in Figure 10.b. The
island alarm is then only a bit that is set whenever the Free Area Analyzer module detects
the presence of a pair of virtual edges in VL, that in the example appear as discontinued
arrows.

Fig. 10. FPGA status with an island (a) and its vertex list (b), and FPGA status after
defragmentation (c).

If the island alarm has been fired, we check first if we can relocate it or not, by demanding
that for every task Ti in the island the following condition is satisfied:

 C1: t_margi ≥ tD_island (10)

Island

T1

T2

T3

T1

T2

T3

a) QF=0.77 b) VL c) QF=0.25

 T4
 T4

where t_margi is computed as in (1) and tD_island is the time needed to relocate the complete
island, proportional to the island block size and computed as in (9). If condition C1 is
satisfied, then new locations for the island tasks are selected by the 3D-adjacency allocation
heuristic explained in (Tabero et al., 2004) o (Tabero et al., 2006). The tasks are allocated by
decreasing values of t_remi, the time the will still remain in the FPGA, that is given by:

 t_remi = t_starti+t_confi+t_exi–t_curr. (11)

Figure 10.c shows the FPGA status once the island has been removed. Usually, the
fragmentation estimation after island removal will lower substantially, below the alarm
firing value, and thus we can consider the defragmentation accomplished.
If the island cannot be moved because the C1 condition is not met, then the defragmentation
process will not be done.
B) Fragmentation alarm firing
The Free Area Analyzer module checks continuously the fragmentation status of the FPGA,
estimating its value with the fragmentation metric used. The fragmentation alarm fires
whenever the estimated value surpasses a given threshold. The exact threshold value would
depend on the metric used.
For the examples shown in this paper, with an average running task number between four
and five tasks, we have chosen as threshold a value of 0.75.
Finally, even when the fragmentation estimation reaches a high value, we have set another
condition in order to decide if defragmentation is started: we only perform it if the hole has
a significant size. We have set a minimum size value of two times the average task size:

 AF_FPGA ≥ 2 * average(Ai) (12)

Only when this happens the theoretical fragmentation value can be taken as truly
significant, and the alarm is actually fired. When such is the case, three different approaches
can be considered, depending on the time constraints of the running tasks: immediate global
defragmentation, delayed global defragmentation, or immediate partial defragmentation.
C) Immediate global defragmentation
If a high fragmentation alarm has fired, the system can try an immediate global
defragmentation of the FPGA resources. In order to decide if such a defragmentation is
possible, it must check if all the currently running tasks can be relocated or not, by
demanding that for every task Ti in the FPGA the following condition is satisfied:

 C2: t_margi ≥ tD (13)

where tD is the time needed to relocate all the running tasks computed as in (9). If all the
tasks satisfy condition C2, then a defragmentation is performed where all the tasks are
relocated, starting from an empty FPGA. The task configurations are readback first, and
then relocated at their new locations. In order to reduce the probability of a new
fragmentation situation too soon, tasks are relocated in order of decreasing values of t_remi,
and the allocation heuristic used is based on the 3D-adjacency concept. Figure 11.a shows a
FPGA situation with six running tasks and a high fragmentation status (QF=0.76). For each
task Ti, example t_remi and t_margi values are shown. A global defragmentation will lead to

Parallel	and	Distributed	Computing28

the situation of Figure 11.b. We have supposed all tasks meet condition C2, and a tD value
of 20 cycles.

Fig. 11. Immediate global defragmentation process.

On the contrary, if there are one or more tasks Tj not meeting the condition above, we say
these tasks have severe time constraints. In such case, a global immediate defragmentation
cannot be made and we have to try a different approach. Then we set as a reference the time
interval defined by the average time-lapse between consecutive task arrivals, t_av. Two

situations can happen, depending on the instant the problematic tasks are going to finish,
related to t_av. If the condition:
 C3: t_remj < t_av (14)

is met by all tasks Tj not satisfying C2, that is, if these problematic tasks are expected to
finish before a new task can arrive, then a delayed global fragmentation will be tried. If this
is not the case, an immediate partial defragmentation will be performed, affecting only the
non-problematic tasks.
D) Delayed global defragmentation
This heuristic is used when condition C3 is met by all tasks Tj not satisfying C2, that is, the
task or tasks Tj with severe time constraint will end “soon”. If all the problematic tasks
finish before this reference threshold is reached, then we can wait the largest t_remj value
and accomplish a delayed global defragmentation. During this defragmentation we do not
perform new incoming task allocations. If any task arrives during this time-lapse it will be
directly copied to the waiting tasks queue Qw, if the task has not severe time constraints.
When a task with a severe time constraint arrives the defragmentation process is instantly
aborted. Figure 12.a shows a situation derived from Figure 11.a, where condition C2 is not
met now by task T6 due to a t_marg6 value of only 10 cycles, though it satisfies C3. The
situation depicted in Figure 12.b corresponds to a time instant after 10 cycles when task T6
has already finished. We also suppose no tasks arrive before task T6 is completed. Figure
12.c shows how it is possible to get a much better fragmentation status, though not
immediately.
E) Immediate partial defragmentation
This approach is chosen if the tasks with severe time constraints will finish “late”, that is, the
condition C3 is not met. In such case, a partial defragmentation is performed immediately,
by relocating all the tasks except the problematic ones. Such defragmentation is not optimal,
but it can reduce the fragmentation value very soon. The configurations of the tasks to be
relocated are readback, and then they are relocated as in a global defragmentation, but with
a Vertex-List including the problematic tasks, instead of with an empty FPGA.
Figure 13.a shows a situation derived from Figure 12.a, where task T6, with a t_marg6 value
of 10 cycles and a t_rem6 value of 60, does not satisfy conditions C2 and C3. Thus immediate
relocation is performed for all tasks except T6. The resulting FPGA fragmentation status
shown in Figure 13.b is not as good as the delayed one of Figure 12.c, but it is immediate.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 29

the situation of Figure 11.b. We have supposed all tasks meet condition C2, and a tD value
of 20 cycles.

Fig. 11. Immediate global defragmentation process.

On the contrary, if there are one or more tasks Tj not meeting the condition above, we say
these tasks have severe time constraints. In such case, a global immediate defragmentation
cannot be made and we have to try a different approach. Then we set as a reference the time
interval defined by the average time-lapse between consecutive task arrivals, t_av. Two

situations can happen, depending on the instant the problematic tasks are going to finish,
related to t_av. If the condition:
 C3: t_remj < t_av (14)

is met by all tasks Tj not satisfying C2, that is, if these problematic tasks are expected to
finish before a new task can arrive, then a delayed global fragmentation will be tried. If this
is not the case, an immediate partial defragmentation will be performed, affecting only the
non-problematic tasks.
D) Delayed global defragmentation
This heuristic is used when condition C3 is met by all tasks Tj not satisfying C2, that is, the
task or tasks Tj with severe time constraint will end “soon”. If all the problematic tasks
finish before this reference threshold is reached, then we can wait the largest t_remj value
and accomplish a delayed global defragmentation. During this defragmentation we do not
perform new incoming task allocations. If any task arrives during this time-lapse it will be
directly copied to the waiting tasks queue Qw, if the task has not severe time constraints.
When a task with a severe time constraint arrives the defragmentation process is instantly
aborted. Figure 12.a shows a situation derived from Figure 11.a, where condition C2 is not
met now by task T6 due to a t_marg6 value of only 10 cycles, though it satisfies C3. The
situation depicted in Figure 12.b corresponds to a time instant after 10 cycles when task T6
has already finished. We also suppose no tasks arrive before task T6 is completed. Figure
12.c shows how it is possible to get a much better fragmentation status, though not
immediately.
E) Immediate partial defragmentation
This approach is chosen if the tasks with severe time constraints will finish “late”, that is, the
condition C3 is not met. In such case, a partial defragmentation is performed immediately,
by relocating all the tasks except the problematic ones. Such defragmentation is not optimal,
but it can reduce the fragmentation value very soon. The configurations of the tasks to be
relocated are readback, and then they are relocated as in a global defragmentation, but with
a Vertex-List including the problematic tasks, instead of with an empty FPGA.
Figure 13.a shows a situation derived from Figure 12.a, where task T6, with a t_marg6 value
of 10 cycles and a t_rem6 value of 60, does not satisfy conditions C2 and C3. Thus immediate
relocation is performed for all tasks except T6. The resulting FPGA fragmentation status
shown in Figure 13.b is not as good as the delayed one of Figure 12.c, but it is immediate.

Parallel	and	Distributed	Computing28

the situation of Figure 11.b. We have supposed all tasks meet condition C2, and a tD value
of 20 cycles.

Fig. 11. Immediate global defragmentation process.

On the contrary, if there are one or more tasks Tj not meeting the condition above, we say
these tasks have severe time constraints. In such case, a global immediate defragmentation
cannot be made and we have to try a different approach. Then we set as a reference the time
interval defined by the average time-lapse between consecutive task arrivals, t_av. Two

situations can happen, depending on the instant the problematic tasks are going to finish,
related to t_av. If the condition:
 C3: t_remj < t_av (14)

is met by all tasks Tj not satisfying C2, that is, if these problematic tasks are expected to
finish before a new task can arrive, then a delayed global fragmentation will be tried. If this
is not the case, an immediate partial defragmentation will be performed, affecting only the
non-problematic tasks.
D) Delayed global defragmentation
This heuristic is used when condition C3 is met by all tasks Tj not satisfying C2, that is, the
task or tasks Tj with severe time constraint will end “soon”. If all the problematic tasks
finish before this reference threshold is reached, then we can wait the largest t_remj value
and accomplish a delayed global defragmentation. During this defragmentation we do not
perform new incoming task allocations. If any task arrives during this time-lapse it will be
directly copied to the waiting tasks queue Qw, if the task has not severe time constraints.
When a task with a severe time constraint arrives the defragmentation process is instantly
aborted. Figure 12.a shows a situation derived from Figure 11.a, where condition C2 is not
met now by task T6 due to a t_marg6 value of only 10 cycles, though it satisfies C3. The
situation depicted in Figure 12.b corresponds to a time instant after 10 cycles when task T6
has already finished. We also suppose no tasks arrive before task T6 is completed. Figure
12.c shows how it is possible to get a much better fragmentation status, though not
immediately.
E) Immediate partial defragmentation
This approach is chosen if the tasks with severe time constraints will finish “late”, that is, the
condition C3 is not met. In such case, a partial defragmentation is performed immediately,
by relocating all the tasks except the problematic ones. Such defragmentation is not optimal,
but it can reduce the fragmentation value very soon. The configurations of the tasks to be
relocated are readback, and then they are relocated as in a global defragmentation, but with
a Vertex-List including the problematic tasks, instead of with an empty FPGA.
Figure 13.a shows a situation derived from Figure 12.a, where task T6, with a t_marg6 value
of 10 cycles and a t_rem6 value of 60, does not satisfy conditions C2 and C3. Thus immediate
relocation is performed for all tasks except T6. The resulting FPGA fragmentation status
shown in Figure 13.b is not as good as the delayed one of Figure 12.c, but it is immediate.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 29

the situation of Figure 11.b. We have supposed all tasks meet condition C2, and a tD value
of 20 cycles.

Fig. 11. Immediate global defragmentation process.

On the contrary, if there are one or more tasks Tj not meeting the condition above, we say
these tasks have severe time constraints. In such case, a global immediate defragmentation
cannot be made and we have to try a different approach. Then we set as a reference the time
interval defined by the average time-lapse between consecutive task arrivals, t_av. Two

situations can happen, depending on the instant the problematic tasks are going to finish,
related to t_av. If the condition:
 C3: t_remj < t_av (14)

is met by all tasks Tj not satisfying C2, that is, if these problematic tasks are expected to
finish before a new task can arrive, then a delayed global fragmentation will be tried. If this
is not the case, an immediate partial defragmentation will be performed, affecting only the
non-problematic tasks.
D) Delayed global defragmentation
This heuristic is used when condition C3 is met by all tasks Tj not satisfying C2, that is, the
task or tasks Tj with severe time constraint will end “soon”. If all the problematic tasks
finish before this reference threshold is reached, then we can wait the largest t_remj value
and accomplish a delayed global defragmentation. During this defragmentation we do not
perform new incoming task allocations. If any task arrives during this time-lapse it will be
directly copied to the waiting tasks queue Qw, if the task has not severe time constraints.
When a task with a severe time constraint arrives the defragmentation process is instantly
aborted. Figure 12.a shows a situation derived from Figure 11.a, where condition C2 is not
met now by task T6 due to a t_marg6 value of only 10 cycles, though it satisfies C3. The
situation depicted in Figure 12.b corresponds to a time instant after 10 cycles when task T6
has already finished. We also suppose no tasks arrive before task T6 is completed. Figure
12.c shows how it is possible to get a much better fragmentation status, though not
immediately.
E) Immediate partial defragmentation
This approach is chosen if the tasks with severe time constraints will finish “late”, that is, the
condition C3 is not met. In such case, a partial defragmentation is performed immediately,
by relocating all the tasks except the problematic ones. Such defragmentation is not optimal,
but it can reduce the fragmentation value very soon. The configurations of the tasks to be
relocated are readback, and then they are relocated as in a global defragmentation, but with
a Vertex-List including the problematic tasks, instead of with an empty FPGA.
Figure 13.a shows a situation derived from Figure 12.a, where task T6, with a t_marg6 value
of 10 cycles and a t_rem6 value of 60, does not satisfy conditions C2 and C3. Thus immediate
relocation is performed for all tasks except T6. The resulting FPGA fragmentation status
shown in Figure 13.b is not as good as the delayed one of Figure 12.c, but it is immediate.

Parallel	and	Distributed	Computing30

Fig. 12. Delayed global defragmentation process

Fig. 13. Immediate partial defragmentation process

5.3 On-demand defragmentation
The on-demand defragmentation is only accomplished on an urgent basis, when a new task
TN cannot fit inside the FPGA due to fragmentation in spite of all the preventive measures
already explained. Reasons for such failure can be the presence of many tasks with severe
time constraints in the FPGA, or a fragmentation level below the alarm threshold. Then, as a
final action, we try to move a single task in order to get room for the new one.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 31

Fig. 12. Delayed global defragmentation process

Fig. 13. Immediate partial defragmentation process

5.3 On-demand defragmentation
The on-demand defragmentation is only accomplished on an urgent basis, when a new task
TN cannot fit inside the FPGA due to fragmentation in spite of all the preventive measures
already explained. Reasons for such failure can be the presence of many tasks with severe
time constraints in the FPGA, or a fragmentation level below the alarm threshold. Then, as a
final action, we try to move a single task in order to get room for the new one.

Parallel	and	Distributed	Computing30

Fig. 12. Delayed global defragmentation process

Fig. 13. Immediate partial defragmentation process

5.3 On-demand defragmentation
The on-demand defragmentation is only accomplished on an urgent basis, when a new task
TN cannot fit inside the FPGA due to fragmentation in spite of all the preventive measures
already explained. Reasons for such failure can be the presence of many tasks with severe
time constraints in the FPGA, or a fragmentation level below the alarm threshold. Then, as a
final action, we try to move a single task in order to get room for the new one.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 31

Fig. 12. Delayed global defragmentation process

Fig. 13. Immediate partial defragmentation process

5.3 On-demand defragmentation
The on-demand defragmentation is only accomplished on an urgent basis, when a new task
TN cannot fit inside the FPGA due to fragmentation in spite of all the preventive measures
already explained. Reasons for such failure can be the presence of many tasks with severe
time constraints in the FPGA, or a fragmentation level below the alarm threshold. Then, as a
final action, we try to move a single task in order to get room for the new one.

Parallel	and	Distributed	Computing32

First, it must be guaranteed that the real problem is fragmentation and not the lack of space.
Thus, we will take defragmenting actions only if the free FPGA area is two times the area of
the incoming task:

 AF_FPGA ≥ 2 * (wN*hN). (15)

If this condition is met, we choose as best candidate task for relocation, TR, the task Ti with
the highest percentage of its perimeter Pi belonging to the hole borders, what we have called
its relative adjacency radji, that can be actually moved. The radji value is computed by the
allocation algorithm for every task in the hole border as:

 radji = [(Pi ∩ VL) / 2(wi + hi)] (16)

TR will be thus the task Ti with the maximal value of radj. The allocation algorithm keeps
continuous track of such relocation candidate, anytime the VL is modified, considering only
values of radji greater than 0.5. Any task forming an island would give the highest possible
value of radji, that is 1. Good candidates would be tasks “joined” with a single side to the
rest of the hole perimeter. Figure 14.a shows a candidate TR intermediate between such two
situations, with a radj value of 0.9286. On the contrary in Figure 14.c, with all tasks having a
radj value of 0.5 or lower, no candidate TR is available any longer because an advantageous
quick task move is not obvious.

Fig. 14. FPGA status before (a) and after (b, then c) an on-demand defragmentation.

Moreover, TR must satisfy: t_margR ≥ tDR, tDR being the relocation time of the candidate task
TR. A similar condition must be satisfied by the incoming task TN as well: t_margN ≥ tDR . If
these two conditions are met, TR is relocated with a 3D-adjacency heuristic, and then the
new task TN is considered again, and a suitable location perhaps can be found as in Figure
14.c.
If there is not a valid TR candidate, though, then the on-demand defragmentation will not
take place and the task TN will go directly to Qw, in hope of a future chance before its

TN

a) QF=0.74 b) QF= 0.5

c) QF=0.7

TN

 TR

 TR

Atask = 63
AF_FPGA = 164
AF_FPGA ≥ 2*Atask

PR = 28
radjR = 26/28 = 0.9286

t_margN is spent. It happens the same if the defragmentation does not give the desired
results.

5.4 Defragmentation experiments
In order to show that the defragmentation techniques proposed do work, we have made an
experiment with a 100x100 FPGA. For this experiments, five new task sets have been
generated with the same criteria than in Section 4. These sets generate situations where the
preventive and on-demand defragmentation techniques can be applied.
We have compared how the Vertex List manager behaves, using as vertex selection heuristic
the QF-based cost function, with and whitout defragmentation. Figures 15 and 16 show,
respectively, the rejected computing volume and the FPGA occupation level.

Fig. 14. Rejected computing volume.

Fig. 15. FPGA occupation level.

35

40

45

50

55

60

1 2 3 4 5

% Occupation

QF
QF_Defrag

2
4
6
8

10
12
14
16

1 2 3 5

% Rejected Volume

QF
QF_Defrag

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 33

First, it must be guaranteed that the real problem is fragmentation and not the lack of space.
Thus, we will take defragmenting actions only if the free FPGA area is two times the area of
the incoming task:

 AF_FPGA ≥ 2 * (wN*hN). (15)

If this condition is met, we choose as best candidate task for relocation, TR, the task Ti with
the highest percentage of its perimeter Pi belonging to the hole borders, what we have called
its relative adjacency radji, that can be actually moved. The radji value is computed by the
allocation algorithm for every task in the hole border as:

 radji = [(Pi ∩ VL) / 2(wi + hi)] (16)

TR will be thus the task Ti with the maximal value of radj. The allocation algorithm keeps
continuous track of such relocation candidate, anytime the VL is modified, considering only
values of radji greater than 0.5. Any task forming an island would give the highest possible
value of radji, that is 1. Good candidates would be tasks “joined” with a single side to the
rest of the hole perimeter. Figure 14.a shows a candidate TR intermediate between such two
situations, with a radj value of 0.9286. On the contrary in Figure 14.c, with all tasks having a
radj value of 0.5 or lower, no candidate TR is available any longer because an advantageous
quick task move is not obvious.

Fig. 14. FPGA status before (a) and after (b, then c) an on-demand defragmentation.

Moreover, TR must satisfy: t_margR ≥ tDR, tDR being the relocation time of the candidate task
TR. A similar condition must be satisfied by the incoming task TN as well: t_margN ≥ tDR . If
these two conditions are met, TR is relocated with a 3D-adjacency heuristic, and then the
new task TN is considered again, and a suitable location perhaps can be found as in Figure
14.c.
If there is not a valid TR candidate, though, then the on-demand defragmentation will not
take place and the task TN will go directly to Qw, in hope of a future chance before its

TN

a) QF=0.74 b) QF= 0.5

c) QF=0.7

TN

 TR

 TR

Atask = 63
AF_FPGA = 164
AF_FPGA ≥ 2*Atask

PR = 28
radjR = 26/28 = 0.9286

t_margN is spent. It happens the same if the defragmentation does not give the desired
results.

5.4 Defragmentation experiments
In order to show that the defragmentation techniques proposed do work, we have made an
experiment with a 100x100 FPGA. For this experiments, five new task sets have been
generated with the same criteria than in Section 4. These sets generate situations where the
preventive and on-demand defragmentation techniques can be applied.
We have compared how the Vertex List manager behaves, using as vertex selection heuristic
the QF-based cost function, with and whitout defragmentation. Figures 15 and 16 show,
respectively, the rejected computing volume and the FPGA occupation level.

Fig. 14. Rejected computing volume.

Fig. 15. FPGA occupation level.

35

40

45

50

55

60

1 2 3 4 5

% Occupation

QF
QF_Defrag

2
4
6
8

10
12
14
16

1 2 3 5

% Rejected Volume

QF
QF_Defrag

Parallel	and	Distributed	Computing32

First, it must be guaranteed that the real problem is fragmentation and not the lack of space.
Thus, we will take defragmenting actions only if the free FPGA area is two times the area of
the incoming task:

 AF_FPGA ≥ 2 * (wN*hN). (15)

If this condition is met, we choose as best candidate task for relocation, TR, the task Ti with
the highest percentage of its perimeter Pi belonging to the hole borders, what we have called
its relative adjacency radji, that can be actually moved. The radji value is computed by the
allocation algorithm for every task in the hole border as:

 radji = [(Pi ∩ VL) / 2(wi + hi)] (16)

TR will be thus the task Ti with the maximal value of radj. The allocation algorithm keeps
continuous track of such relocation candidate, anytime the VL is modified, considering only
values of radji greater than 0.5. Any task forming an island would give the highest possible
value of radji, that is 1. Good candidates would be tasks “joined” with a single side to the
rest of the hole perimeter. Figure 14.a shows a candidate TR intermediate between such two
situations, with a radj value of 0.9286. On the contrary in Figure 14.c, with all tasks having a
radj value of 0.5 or lower, no candidate TR is available any longer because an advantageous
quick task move is not obvious.

Fig. 14. FPGA status before (a) and after (b, then c) an on-demand defragmentation.

Moreover, TR must satisfy: t_margR ≥ tDR, tDR being the relocation time of the candidate task
TR. A similar condition must be satisfied by the incoming task TN as well: t_margN ≥ tDR . If
these two conditions are met, TR is relocated with a 3D-adjacency heuristic, and then the
new task TN is considered again, and a suitable location perhaps can be found as in Figure
14.c.
If there is not a valid TR candidate, though, then the on-demand defragmentation will not
take place and the task TN will go directly to Qw, in hope of a future chance before its

TN

a) QF=0.74 b) QF= 0.5

c) QF=0.7

TN

 TR

 TR

Atask = 63
AF_FPGA = 164
AF_FPGA ≥ 2*Atask

PR = 28
radjR = 26/28 = 0.9286

t_margN is spent. It happens the same if the defragmentation does not give the desired
results.

5.4 Defragmentation experiments
In order to show that the defragmentation techniques proposed do work, we have made an
experiment with a 100x100 FPGA. For this experiments, five new task sets have been
generated with the same criteria than in Section 4. These sets generate situations where the
preventive and on-demand defragmentation techniques can be applied.
We have compared how the Vertex List manager behaves, using as vertex selection heuristic
the QF-based cost function, with and whitout defragmentation. Figures 15 and 16 show,
respectively, the rejected computing volume and the FPGA occupation level.

Fig. 14. Rejected computing volume.

Fig. 15. FPGA occupation level.

35

40

45

50

55

60

1 2 3 4 5

% Occupation

QF
QF_Defrag

2
4
6
8

10
12
14
16

1 2 3 5

% Rejected Volume

QF
QF_Defrag

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 33

First, it must be guaranteed that the real problem is fragmentation and not the lack of space.
Thus, we will take defragmenting actions only if the free FPGA area is two times the area of
the incoming task:

 AF_FPGA ≥ 2 * (wN*hN). (15)

If this condition is met, we choose as best candidate task for relocation, TR, the task Ti with
the highest percentage of its perimeter Pi belonging to the hole borders, what we have called
its relative adjacency radji, that can be actually moved. The radji value is computed by the
allocation algorithm for every task in the hole border as:

 radji = [(Pi ∩ VL) / 2(wi + hi)] (16)

TR will be thus the task Ti with the maximal value of radj. The allocation algorithm keeps
continuous track of such relocation candidate, anytime the VL is modified, considering only
values of radji greater than 0.5. Any task forming an island would give the highest possible
value of radji, that is 1. Good candidates would be tasks “joined” with a single side to the
rest of the hole perimeter. Figure 14.a shows a candidate TR intermediate between such two
situations, with a radj value of 0.9286. On the contrary in Figure 14.c, with all tasks having a
radj value of 0.5 or lower, no candidate TR is available any longer because an advantageous
quick task move is not obvious.

Fig. 14. FPGA status before (a) and after (b, then c) an on-demand defragmentation.

Moreover, TR must satisfy: t_margR ≥ tDR, tDR being the relocation time of the candidate task
TR. A similar condition must be satisfied by the incoming task TN as well: t_margN ≥ tDR . If
these two conditions are met, TR is relocated with a 3D-adjacency heuristic, and then the
new task TN is considered again, and a suitable location perhaps can be found as in Figure
14.c.
If there is not a valid TR candidate, though, then the on-demand defragmentation will not
take place and the task TN will go directly to Qw, in hope of a future chance before its

TN

a) QF=0.74 b) QF= 0.5

c) QF=0.7

TN

 TR

 TR

Atask = 63
AF_FPGA = 164
AF_FPGA ≥ 2*Atask

PR = 28
radjR = 26/28 = 0.9286

t_margN is spent. It happens the same if the defragmentation does not give the desired
results.

5.4 Defragmentation experiments
In order to show that the defragmentation techniques proposed do work, we have made an
experiment with a 100x100 FPGA. For this experiments, five new task sets have been
generated with the same criteria than in Section 4. These sets generate situations where the
preventive and on-demand defragmentation techniques can be applied.
We have compared how the Vertex List manager behaves, using as vertex selection heuristic
the QF-based cost function, with and whitout defragmentation. Figures 15 and 16 show,
respectively, the rejected computing volume and the FPGA occupation level.

Fig. 14. Rejected computing volume.

Fig. 15. FPGA occupation level.

35

40

45

50

55

60

1 2 3 4 5

% Occupation

QF
QF_Defrag

2
4
6
8

10
12
14
16

1 2 3 5

% Rejected Volume

QF
QF_Defrag

Parallel	and	Distributed	Computing34

Both figures confirm that when defragmentation techniques are used, the rejected
computing volume reduces considerably, and the occupation level rises.

6. Conclusions and Future Work

We have presented an approach to 2D hardware multitasking upon a reconfigurable, FPGA-
type, device. Our approach manages the FPGA resources with a Vertex list structure,
allocates tasks to vertices of the list, estimates the fragmentation status of the FPGA and
takes defragmentation decisions when needed.
Two fragmentation metrics have been proposed based on different concepts, one of them on
the shape and area of each hole, and the other one on the relative quadrature of the whole
free area. One of them, the quadrature-based one, has revealed very simple to compute and
reliable enough to be used as cost function for the vertex selection process.
Two basic approaches have been shown to the defragmentation problem: preventive and
on-demand defragmentation. Preventive techniques try to anticipate to possible allocation
problems due to fragmentation. They can be triggered by the presence of an island in the
vertex list, or by a high fragmentation value given by the metric. Preventive
defragmentation can be immediate, global or partial, or delayed, depending on the time
constraints of the involved tasks. On-demand heuristics try an urgent move of a single
candidate task, the one with the highest relative adjacency with the hole border. Such
battery of defragmentation measures can help avoiding most problems produced by
fragmentation in HW multitasking on 2D reconfigurable hardware.
Future work-plans include the implementation of a working prototype based on the
techniques described, upon a 2D-reconfigurable, Virtex 5 FPGA, and the development of
preemption-supporting mechanisms, that allow task suspending and restoring trough task
status storing and recovering.

7. References

Ahmadinia, A., Bobda, C., Bednara, M. & Teich, J. (2004). A new approach for on-line
placement on reconfigurable devices. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2004), pp. 134-, ISBN: 0-7695-2132-0, New Mexico
USA, April 2004.

Ahmadinia, A.; Bobda, C. & Teich, J. (2003). Temporal task clustering for online placement
on reconfigurable hardware, Proceedings of the IEEE International Conference on Field-
Programmable Technology, pp. 359-362, ISBN: 0-7803-8320-6, Tokyo Japan, December
2003, IEEE.

Bazargan, K.; Kastner, R. & Sarrafzadeh, M. (2000). Fast Template Placement for
Reconfigurable Computing Systems, IEEE Design and Test of Computers, Vol. 17, No.
1, (January-March 2000) pp. 68–83, ISSN: 0740-7475.

Brebner, G. & Diessel, O. (2001). Chip-Based Reconfigurable Task Management, Proceedings
of the 11th International Conference on Field-Programmable Logic and Applications, pp.
182–191, ISBN: 3-540-42499-7, Belfast, U.K., August 2001, Springer.

Compton, K.; Cooley, J.; Knol, S. & Hauck S. (2002). Configuration Relocation and
Defragmentation for Reconfigurable Computing. IEEE Transactions on VLSI
Systems, Vol. 10, No. 3, (June 2002) pp. 209-220, ISSN 1063-8210.

Cui, J., Gu, Z., Liu, W. & Deng, Q. (2007). An Efficient Algorithm for Online Soft Real-Time
Task Placement on Reconfigurable Hardware Devices. Proceedings of the 10th IEEE
International Symposium On Object and Component-Oriented Real-Time Distributed
Computing (ISORC’07), pp. 222-227, ISBN:0-7695-2765-5, Santorini Greece, May
2007.

Diessel, O.; ElGindy, H.; Middendorf, M.; Schmeck, H. & Schmidt, B. (2000). Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proc.-Computer Digital
Technology, Vol. 147, No. 3, (May 2000), pp. 181-188, ISSN : 1751-8601.

Ejnioui, A. & DeMara, R.F. (2005). Area Reclamation Metrics for SRAM-based
Reconfigurable Device. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’05), pp. 196-202, ISBN 1-932415-74-2,
Las Vegas, USA, June 2005. CSRAE Press.

Fekete, S.; van der Veen, J.; Ahmadinia, A.; Gohringer, D.; Majer, M. & Teich, J. (2008).
Offline and Online aspects of Defragmenting the Module Layout of a Partially
Reconfigurable Device, IEEE Transactions on VLSI, Vol. 16, No. 9, (September 2008),
pp 1210-1219, ISSN: 1063-8210.

Gericota, M.; Alves, G.; Silva, M. & Ferreira, J. (2003). Run-Time Management of Logic
Resources on Reconfigurable Systems, Proceedings of the conference on Design,
Automation and Test in Europe (DATE’03), pp. 974-979, ISBN:0-7695-1870-2, Munich
Germany, March 2003, IEEE.

Handa, M. & Vemuri, R. (2004a). An Efficient Algorithm for Finding Empty Space for
Online FPGA Placement. Proceedings of the 41st Design Automation Conference
(DAC’04), pp. 960-965, ISBN: 1-51183-828-8, San Diego USA, June 2004, IEEE.

Handa, M. & Vemuri, R. (2004b). Area Fragmentation in Reconfigurable Operating Systems,
Proceedings of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’04), pp.77-83, ISBN 1-932415-42-4, Las Vegas USA, June 2004,
CSREA Press.

Hübner, M., Schuck, C. & Becker, J. (2006). Elementary Block Based 2-Dimensional Dynamic
and Partial Reconfiguration for Virtex-II FPGAs, Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Koch, D.; Ahmadinia, A.; Bobda, C. & Kalte, H. (2004). FPGA Architecture Extensions for
Preemptive Multitasking and Hardware Defragmentation. Proceedings of the IEEE
International Conference on Field-Programmable Technology, pp. 433-436. ISBN: 0-7803-
7574-2, Brisbane, Australia, December 2004, IEEE.

Septién, J.; Mecha, H.; Mozos, D. & Tabero, J., (2006). 2D Defragmentation Heuristics for
Hardware Multitasking on Reconfigurable Devices. Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Septién, J.; Mozos, D.; Mecha, H.; Tabero, J. & García, M.A. (2008). Perimeter Quadrature-
based metric for estimating FPGA fragmentation in 2D HW multitasking,
Proceedings of the Parallel and Distributed Processing Symposium (IPDPS 2008), ISBN:
978-1-4244-1693-6, Miami, Florida USA , April 2008.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 35

Both figures confirm that when defragmentation techniques are used, the rejected
computing volume reduces considerably, and the occupation level rises.

6. Conclusions and Future Work

We have presented an approach to 2D hardware multitasking upon a reconfigurable, FPGA-
type, device. Our approach manages the FPGA resources with a Vertex list structure,
allocates tasks to vertices of the list, estimates the fragmentation status of the FPGA and
takes defragmentation decisions when needed.
Two fragmentation metrics have been proposed based on different concepts, one of them on
the shape and area of each hole, and the other one on the relative quadrature of the whole
free area. One of them, the quadrature-based one, has revealed very simple to compute and
reliable enough to be used as cost function for the vertex selection process.
Two basic approaches have been shown to the defragmentation problem: preventive and
on-demand defragmentation. Preventive techniques try to anticipate to possible allocation
problems due to fragmentation. They can be triggered by the presence of an island in the
vertex list, or by a high fragmentation value given by the metric. Preventive
defragmentation can be immediate, global or partial, or delayed, depending on the time
constraints of the involved tasks. On-demand heuristics try an urgent move of a single
candidate task, the one with the highest relative adjacency with the hole border. Such
battery of defragmentation measures can help avoiding most problems produced by
fragmentation in HW multitasking on 2D reconfigurable hardware.
Future work-plans include the implementation of a working prototype based on the
techniques described, upon a 2D-reconfigurable, Virtex 5 FPGA, and the development of
preemption-supporting mechanisms, that allow task suspending and restoring trough task
status storing and recovering.

7. References

Ahmadinia, A., Bobda, C., Bednara, M. & Teich, J. (2004). A new approach for on-line
placement on reconfigurable devices. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2004), pp. 134-, ISBN: 0-7695-2132-0, New Mexico
USA, April 2004.

Ahmadinia, A.; Bobda, C. & Teich, J. (2003). Temporal task clustering for online placement
on reconfigurable hardware, Proceedings of the IEEE International Conference on Field-
Programmable Technology, pp. 359-362, ISBN: 0-7803-8320-6, Tokyo Japan, December
2003, IEEE.

Bazargan, K.; Kastner, R. & Sarrafzadeh, M. (2000). Fast Template Placement for
Reconfigurable Computing Systems, IEEE Design and Test of Computers, Vol. 17, No.
1, (January-March 2000) pp. 68–83, ISSN: 0740-7475.

Brebner, G. & Diessel, O. (2001). Chip-Based Reconfigurable Task Management, Proceedings
of the 11th International Conference on Field-Programmable Logic and Applications, pp.
182–191, ISBN: 3-540-42499-7, Belfast, U.K., August 2001, Springer.

Compton, K.; Cooley, J.; Knol, S. & Hauck S. (2002). Configuration Relocation and
Defragmentation for Reconfigurable Computing. IEEE Transactions on VLSI
Systems, Vol. 10, No. 3, (June 2002) pp. 209-220, ISSN 1063-8210.

Cui, J., Gu, Z., Liu, W. & Deng, Q. (2007). An Efficient Algorithm for Online Soft Real-Time
Task Placement on Reconfigurable Hardware Devices. Proceedings of the 10th IEEE
International Symposium On Object and Component-Oriented Real-Time Distributed
Computing (ISORC’07), pp. 222-227, ISBN:0-7695-2765-5, Santorini Greece, May
2007.

Diessel, O.; ElGindy, H.; Middendorf, M.; Schmeck, H. & Schmidt, B. (2000). Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proc.-Computer Digital
Technology, Vol. 147, No. 3, (May 2000), pp. 181-188, ISSN : 1751-8601.

Ejnioui, A. & DeMara, R.F. (2005). Area Reclamation Metrics for SRAM-based
Reconfigurable Device. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’05), pp. 196-202, ISBN 1-932415-74-2,
Las Vegas, USA, June 2005. CSRAE Press.

Fekete, S.; van der Veen, J.; Ahmadinia, A.; Gohringer, D.; Majer, M. & Teich, J. (2008).
Offline and Online aspects of Defragmenting the Module Layout of a Partially
Reconfigurable Device, IEEE Transactions on VLSI, Vol. 16, No. 9, (September 2008),
pp 1210-1219, ISSN: 1063-8210.

Gericota, M.; Alves, G.; Silva, M. & Ferreira, J. (2003). Run-Time Management of Logic
Resources on Reconfigurable Systems, Proceedings of the conference on Design,
Automation and Test in Europe (DATE’03), pp. 974-979, ISBN:0-7695-1870-2, Munich
Germany, March 2003, IEEE.

Handa, M. & Vemuri, R. (2004a). An Efficient Algorithm for Finding Empty Space for
Online FPGA Placement. Proceedings of the 41st Design Automation Conference
(DAC’04), pp. 960-965, ISBN: 1-51183-828-8, San Diego USA, June 2004, IEEE.

Handa, M. & Vemuri, R. (2004b). Area Fragmentation in Reconfigurable Operating Systems,
Proceedings of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’04), pp.77-83, ISBN 1-932415-42-4, Las Vegas USA, June 2004,
CSREA Press.

Hübner, M., Schuck, C. & Becker, J. (2006). Elementary Block Based 2-Dimensional Dynamic
and Partial Reconfiguration for Virtex-II FPGAs, Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Koch, D.; Ahmadinia, A.; Bobda, C. & Kalte, H. (2004). FPGA Architecture Extensions for
Preemptive Multitasking and Hardware Defragmentation. Proceedings of the IEEE
International Conference on Field-Programmable Technology, pp. 433-436. ISBN: 0-7803-
7574-2, Brisbane, Australia, December 2004, IEEE.

Septién, J.; Mecha, H.; Mozos, D. & Tabero, J., (2006). 2D Defragmentation Heuristics for
Hardware Multitasking on Reconfigurable Devices. Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Septién, J.; Mozos, D.; Mecha, H.; Tabero, J. & García, M.A. (2008). Perimeter Quadrature-
based metric for estimating FPGA fragmentation in 2D HW multitasking,
Proceedings of the Parallel and Distributed Processing Symposium (IPDPS 2008), ISBN:
978-1-4244-1693-6, Miami, Florida USA , April 2008.

Parallel	and	Distributed	Computing34

Both figures confirm that when defragmentation techniques are used, the rejected
computing volume reduces considerably, and the occupation level rises.

6. Conclusions and Future Work

We have presented an approach to 2D hardware multitasking upon a reconfigurable, FPGA-
type, device. Our approach manages the FPGA resources with a Vertex list structure,
allocates tasks to vertices of the list, estimates the fragmentation status of the FPGA and
takes defragmentation decisions when needed.
Two fragmentation metrics have been proposed based on different concepts, one of them on
the shape and area of each hole, and the other one on the relative quadrature of the whole
free area. One of them, the quadrature-based one, has revealed very simple to compute and
reliable enough to be used as cost function for the vertex selection process.
Two basic approaches have been shown to the defragmentation problem: preventive and
on-demand defragmentation. Preventive techniques try to anticipate to possible allocation
problems due to fragmentation. They can be triggered by the presence of an island in the
vertex list, or by a high fragmentation value given by the metric. Preventive
defragmentation can be immediate, global or partial, or delayed, depending on the time
constraints of the involved tasks. On-demand heuristics try an urgent move of a single
candidate task, the one with the highest relative adjacency with the hole border. Such
battery of defragmentation measures can help avoiding most problems produced by
fragmentation in HW multitasking on 2D reconfigurable hardware.
Future work-plans include the implementation of a working prototype based on the
techniques described, upon a 2D-reconfigurable, Virtex 5 FPGA, and the development of
preemption-supporting mechanisms, that allow task suspending and restoring trough task
status storing and recovering.

7. References

Ahmadinia, A., Bobda, C., Bednara, M. & Teich, J. (2004). A new approach for on-line
placement on reconfigurable devices. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2004), pp. 134-, ISBN: 0-7695-2132-0, New Mexico
USA, April 2004.

Ahmadinia, A.; Bobda, C. & Teich, J. (2003). Temporal task clustering for online placement
on reconfigurable hardware, Proceedings of the IEEE International Conference on Field-
Programmable Technology, pp. 359-362, ISBN: 0-7803-8320-6, Tokyo Japan, December
2003, IEEE.

Bazargan, K.; Kastner, R. & Sarrafzadeh, M. (2000). Fast Template Placement for
Reconfigurable Computing Systems, IEEE Design and Test of Computers, Vol. 17, No.
1, (January-March 2000) pp. 68–83, ISSN: 0740-7475.

Brebner, G. & Diessel, O. (2001). Chip-Based Reconfigurable Task Management, Proceedings
of the 11th International Conference on Field-Programmable Logic and Applications, pp.
182–191, ISBN: 3-540-42499-7, Belfast, U.K., August 2001, Springer.

Compton, K.; Cooley, J.; Knol, S. & Hauck S. (2002). Configuration Relocation and
Defragmentation for Reconfigurable Computing. IEEE Transactions on VLSI
Systems, Vol. 10, No. 3, (June 2002) pp. 209-220, ISSN 1063-8210.

Cui, J., Gu, Z., Liu, W. & Deng, Q. (2007). An Efficient Algorithm for Online Soft Real-Time
Task Placement on Reconfigurable Hardware Devices. Proceedings of the 10th IEEE
International Symposium On Object and Component-Oriented Real-Time Distributed
Computing (ISORC’07), pp. 222-227, ISBN:0-7695-2765-5, Santorini Greece, May
2007.

Diessel, O.; ElGindy, H.; Middendorf, M.; Schmeck, H. & Schmidt, B. (2000). Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proc.-Computer Digital
Technology, Vol. 147, No. 3, (May 2000), pp. 181-188, ISSN : 1751-8601.

Ejnioui, A. & DeMara, R.F. (2005). Area Reclamation Metrics for SRAM-based
Reconfigurable Device. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’05), pp. 196-202, ISBN 1-932415-74-2,
Las Vegas, USA, June 2005. CSRAE Press.

Fekete, S.; van der Veen, J.; Ahmadinia, A.; Gohringer, D.; Majer, M. & Teich, J. (2008).
Offline and Online aspects of Defragmenting the Module Layout of a Partially
Reconfigurable Device, IEEE Transactions on VLSI, Vol. 16, No. 9, (September 2008),
pp 1210-1219, ISSN: 1063-8210.

Gericota, M.; Alves, G.; Silva, M. & Ferreira, J. (2003). Run-Time Management of Logic
Resources on Reconfigurable Systems, Proceedings of the conference on Design,
Automation and Test in Europe (DATE’03), pp. 974-979, ISBN:0-7695-1870-2, Munich
Germany, March 2003, IEEE.

Handa, M. & Vemuri, R. (2004a). An Efficient Algorithm for Finding Empty Space for
Online FPGA Placement. Proceedings of the 41st Design Automation Conference
(DAC’04), pp. 960-965, ISBN: 1-51183-828-8, San Diego USA, June 2004, IEEE.

Handa, M. & Vemuri, R. (2004b). Area Fragmentation in Reconfigurable Operating Systems,
Proceedings of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’04), pp.77-83, ISBN 1-932415-42-4, Las Vegas USA, June 2004,
CSREA Press.

Hübner, M., Schuck, C. & Becker, J. (2006). Elementary Block Based 2-Dimensional Dynamic
and Partial Reconfiguration for Virtex-II FPGAs, Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Koch, D.; Ahmadinia, A.; Bobda, C. & Kalte, H. (2004). FPGA Architecture Extensions for
Preemptive Multitasking and Hardware Defragmentation. Proceedings of the IEEE
International Conference on Field-Programmable Technology, pp. 433-436. ISBN: 0-7803-
7574-2, Brisbane, Australia, December 2004, IEEE.

Septién, J.; Mecha, H.; Mozos, D. & Tabero, J., (2006). 2D Defragmentation Heuristics for
Hardware Multitasking on Reconfigurable Devices. Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Septién, J.; Mozos, D.; Mecha, H.; Tabero, J. & García, M.A. (2008). Perimeter Quadrature-
based metric for estimating FPGA fragmentation in 2D HW multitasking,
Proceedings of the Parallel and Distributed Processing Symposium (IPDPS 2008), ISBN:
978-1-4244-1693-6, Miami, Florida USA , April 2008.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 35

Both figures confirm that when defragmentation techniques are used, the rejected
computing volume reduces considerably, and the occupation level rises.

6. Conclusions and Future Work

We have presented an approach to 2D hardware multitasking upon a reconfigurable, FPGA-
type, device. Our approach manages the FPGA resources with a Vertex list structure,
allocates tasks to vertices of the list, estimates the fragmentation status of the FPGA and
takes defragmentation decisions when needed.
Two fragmentation metrics have been proposed based on different concepts, one of them on
the shape and area of each hole, and the other one on the relative quadrature of the whole
free area. One of them, the quadrature-based one, has revealed very simple to compute and
reliable enough to be used as cost function for the vertex selection process.
Two basic approaches have been shown to the defragmentation problem: preventive and
on-demand defragmentation. Preventive techniques try to anticipate to possible allocation
problems due to fragmentation. They can be triggered by the presence of an island in the
vertex list, or by a high fragmentation value given by the metric. Preventive
defragmentation can be immediate, global or partial, or delayed, depending on the time
constraints of the involved tasks. On-demand heuristics try an urgent move of a single
candidate task, the one with the highest relative adjacency with the hole border. Such
battery of defragmentation measures can help avoiding most problems produced by
fragmentation in HW multitasking on 2D reconfigurable hardware.
Future work-plans include the implementation of a working prototype based on the
techniques described, upon a 2D-reconfigurable, Virtex 5 FPGA, and the development of
preemption-supporting mechanisms, that allow task suspending and restoring trough task
status storing and recovering.

7. References

Ahmadinia, A., Bobda, C., Bednara, M. & Teich, J. (2004). A new approach for on-line
placement on reconfigurable devices. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2004), pp. 134-, ISBN: 0-7695-2132-0, New Mexico
USA, April 2004.

Ahmadinia, A.; Bobda, C. & Teich, J. (2003). Temporal task clustering for online placement
on reconfigurable hardware, Proceedings of the IEEE International Conference on Field-
Programmable Technology, pp. 359-362, ISBN: 0-7803-8320-6, Tokyo Japan, December
2003, IEEE.

Bazargan, K.; Kastner, R. & Sarrafzadeh, M. (2000). Fast Template Placement for
Reconfigurable Computing Systems, IEEE Design and Test of Computers, Vol. 17, No.
1, (January-March 2000) pp. 68–83, ISSN: 0740-7475.

Brebner, G. & Diessel, O. (2001). Chip-Based Reconfigurable Task Management, Proceedings
of the 11th International Conference on Field-Programmable Logic and Applications, pp.
182–191, ISBN: 3-540-42499-7, Belfast, U.K., August 2001, Springer.

Compton, K.; Cooley, J.; Knol, S. & Hauck S. (2002). Configuration Relocation and
Defragmentation for Reconfigurable Computing. IEEE Transactions on VLSI
Systems, Vol. 10, No. 3, (June 2002) pp. 209-220, ISSN 1063-8210.

Cui, J., Gu, Z., Liu, W. & Deng, Q. (2007). An Efficient Algorithm for Online Soft Real-Time
Task Placement on Reconfigurable Hardware Devices. Proceedings of the 10th IEEE
International Symposium On Object and Component-Oriented Real-Time Distributed
Computing (ISORC’07), pp. 222-227, ISBN:0-7695-2765-5, Santorini Greece, May
2007.

Diessel, O.; ElGindy, H.; Middendorf, M.; Schmeck, H. & Schmidt, B. (2000). Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proc.-Computer Digital
Technology, Vol. 147, No. 3, (May 2000), pp. 181-188, ISSN : 1751-8601.

Ejnioui, A. & DeMara, R.F. (2005). Area Reclamation Metrics for SRAM-based
Reconfigurable Device. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’05), pp. 196-202, ISBN 1-932415-74-2,
Las Vegas, USA, June 2005. CSRAE Press.

Fekete, S.; van der Veen, J.; Ahmadinia, A.; Gohringer, D.; Majer, M. & Teich, J. (2008).
Offline and Online aspects of Defragmenting the Module Layout of a Partially
Reconfigurable Device, IEEE Transactions on VLSI, Vol. 16, No. 9, (September 2008),
pp 1210-1219, ISSN: 1063-8210.

Gericota, M.; Alves, G.; Silva, M. & Ferreira, J. (2003). Run-Time Management of Logic
Resources on Reconfigurable Systems, Proceedings of the conference on Design,
Automation and Test in Europe (DATE’03), pp. 974-979, ISBN:0-7695-1870-2, Munich
Germany, March 2003, IEEE.

Handa, M. & Vemuri, R. (2004a). An Efficient Algorithm for Finding Empty Space for
Online FPGA Placement. Proceedings of the 41st Design Automation Conference
(DAC’04), pp. 960-965, ISBN: 1-51183-828-8, San Diego USA, June 2004, IEEE.

Handa, M. & Vemuri, R. (2004b). Area Fragmentation in Reconfigurable Operating Systems,
Proceedings of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’04), pp.77-83, ISBN 1-932415-42-4, Las Vegas USA, June 2004,
CSREA Press.

Hübner, M., Schuck, C. & Becker, J. (2006). Elementary Block Based 2-Dimensional Dynamic
and Partial Reconfiguration for Virtex-II FPGAs, Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Koch, D.; Ahmadinia, A.; Bobda, C. & Kalte, H. (2004). FPGA Architecture Extensions for
Preemptive Multitasking and Hardware Defragmentation. Proceedings of the IEEE
International Conference on Field-Programmable Technology, pp. 433-436. ISBN: 0-7803-
7574-2, Brisbane, Australia, December 2004, IEEE.

Septién, J.; Mecha, H.; Mozos, D. & Tabero, J., (2006). 2D Defragmentation Heuristics for
Hardware Multitasking on Reconfigurable Devices. Proceedings of the Parallel and
Distributed Processing Symposium (IPDPS 2006), ISBN: 1-4244-0054-6, Rodas Greece,
April 2006.

Septién, J.; Mozos, D.; Mecha, H.; Tabero, J. & García, M.A. (2008). Perimeter Quadrature-
based metric for estimating FPGA fragmentation in 2D HW multitasking,
Proceedings of the Parallel and Distributed Processing Symposium (IPDPS 2008), ISBN:
978-1-4244-1693-6, Miami, Florida USA , April 2008.

Parallel	and	Distributed	Computing36

http://csdl.computer.org/comp/trans/tc/2004/11/t1393abs.htmSteiger, C.; Walder, H. &
Platzner, M. (2004). Operating Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks. IEEE Transactions on Computers vol. 53, No.
11, (November 2004) pp.1393-1407, ISSN 0018-9340.

Tabero, J.; Septien, J.; Mecha, H. & Mozos, D. (2004). A Low Fragmentation Heuristic for
Task Placement in 2D RTR HW Management, Proceedings of the 14th International
Conference on Field-Programmable Logic and Applications. pp. 241-250, ISBN: 978-3-
540-22989-6, Antwerp Belgium, August 2004, Springer-Verlag, Berlin.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2006). Task Placement Heuristic Based on 3-D
Adjacency and Look-Ahead in Reconfigurable Systems, Proceedings of the 11th Asia
and South Pacific Design Automation Conference (ASP-DAC 2006), pp. 396-401,
ISBN:0-7803-9451-8, Yokohama Japan, January 2006.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2008). Allocation heuristics and
defragmentation measures for reconfigurable systems management. Integration, the
VLSI Journal, Vol. 41, No. 2, (February 2008), pp. 281-296, ISSN:0167-9260.

Tabero, J.; Septien, J.; Mecha, H.; Mozos, D. & Roman, S. (2003). Efficient Hardware
Multitasking through Space Multiplexing in 2D RTR FPGAs. Euromicro Symposium
on Digital System Design, ISBN 0-7695-2003-0, Belek Turkey, September 2003,
Elsevier.

Trimberger, S.; Carberry, D.; Johnson, A. & Wong, J. (1997). A time-multiplexed FPGA,
Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
(FCCM 97), pp. 22-28, ISBN: 0-8186-8159-4, Napa Valley, USA, April 1997, IEEE.

http://citebase.eprints.org/cgi-
bin/search?author=Bobda%3BMajer%3BAhmadinia%3BKoch%3BTeich%3BField%
3BComputer%3BScience&yearfrom=2003&yearuntil=2004&title=title%3A%28A+dy
namic+NoC+approach+for+communication%29&submit=1van der Veen, J.; Fekete,
S.; Majer, M.; Ahmadinia, A.; Bobda, C.; Hannig, F. & Teich, J. (2005).
Defragmenting the Module Layout of a Partially Reconfigurable Device. Proceedings
of the Proc. of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´05), pp. 92-104, ISBN 1-932415-74-2, Las Vegas, USA. June 2005.
CSREA Press.

Walder, H. & Platzner, M. (2002). Non-preemptive Multitasking on FPGAs: Task Placement
and Footprint Transform, Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’02), pp. 24-30, ISBN: 1-892512-96-3, Las
Vegas, USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Walder, H.; Steiger, C. & Platzner , M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, France, April 2003.

Walder, H.; Steiger, C. & Platzner, M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, Nice, France, April 2003.

Wigley, G. & Kearney, D. (2002a). Research Issues in Operating Systems for Reconfigurable
Computing, Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’02), pp. 569-572 ISBN: 1-892512-96-3, Las Vegas,
USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Wigley, G. & Kearney, D. (2002b). The Management of Applications for Reconfigurable
Computing Using an Operating System. Australian Computer Science
Communications, Vol. 6, No. 3, (January-February 2002), pp. 73-81.

Xilinx, Inc. “Virtex-4 Configuration Guide”, UG071, http://www.xilinx.com.
Xilinx, Inc. “Virtex-5 Configuration User Guide”, UG191, http://www.xilinx.com.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 37

http://csdl.computer.org/comp/trans/tc/2004/11/t1393abs.htmSteiger, C.; Walder, H. &
Platzner, M. (2004). Operating Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks. IEEE Transactions on Computers vol. 53, No.
11, (November 2004) pp.1393-1407, ISSN 0018-9340.

Tabero, J.; Septien, J.; Mecha, H. & Mozos, D. (2004). A Low Fragmentation Heuristic for
Task Placement in 2D RTR HW Management, Proceedings of the 14th International
Conference on Field-Programmable Logic and Applications. pp. 241-250, ISBN: 978-3-
540-22989-6, Antwerp Belgium, August 2004, Springer-Verlag, Berlin.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2006). Task Placement Heuristic Based on 3-D
Adjacency and Look-Ahead in Reconfigurable Systems, Proceedings of the 11th Asia
and South Pacific Design Automation Conference (ASP-DAC 2006), pp. 396-401,
ISBN:0-7803-9451-8, Yokohama Japan, January 2006.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2008). Allocation heuristics and
defragmentation measures for reconfigurable systems management. Integration, the
VLSI Journal, Vol. 41, No. 2, (February 2008), pp. 281-296, ISSN:0167-9260.

Tabero, J.; Septien, J.; Mecha, H.; Mozos, D. & Roman, S. (2003). Efficient Hardware
Multitasking through Space Multiplexing in 2D RTR FPGAs. Euromicro Symposium
on Digital System Design, ISBN 0-7695-2003-0, Belek Turkey, September 2003,
Elsevier.

Trimberger, S.; Carberry, D.; Johnson, A. & Wong, J. (1997). A time-multiplexed FPGA,
Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
(FCCM 97), pp. 22-28, ISBN: 0-8186-8159-4, Napa Valley, USA, April 1997, IEEE.

http://citebase.eprints.org/cgi-
bin/search?author=Bobda%3BMajer%3BAhmadinia%3BKoch%3BTeich%3BField%
3BComputer%3BScience&yearfrom=2003&yearuntil=2004&title=title%3A%28A+dy
namic+NoC+approach+for+communication%29&submit=1van der Veen, J.; Fekete,
S.; Majer, M.; Ahmadinia, A.; Bobda, C.; Hannig, F. & Teich, J. (2005).
Defragmenting the Module Layout of a Partially Reconfigurable Device. Proceedings
of the Proc. of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´05), pp. 92-104, ISBN 1-932415-74-2, Las Vegas, USA. June 2005.
CSREA Press.

Walder, H. & Platzner, M. (2002). Non-preemptive Multitasking on FPGAs: Task Placement
and Footprint Transform, Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’02), pp. 24-30, ISBN: 1-892512-96-3, Las
Vegas, USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Walder, H.; Steiger, C. & Platzner , M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, France, April 2003.

Walder, H.; Steiger, C. & Platzner, M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, Nice, France, April 2003.

Wigley, G. & Kearney, D. (2002a). Research Issues in Operating Systems for Reconfigurable
Computing, Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’02), pp. 569-572 ISBN: 1-892512-96-3, Las Vegas,
USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Wigley, G. & Kearney, D. (2002b). The Management of Applications for Reconfigurable
Computing Using an Operating System. Australian Computer Science
Communications, Vol. 6, No. 3, (January-February 2002), pp. 73-81.

Xilinx, Inc. “Virtex-4 Configuration Guide”, UG071, http://www.xilinx.com.
Xilinx, Inc. “Virtex-5 Configuration User Guide”, UG191, http://www.xilinx.com.

Parallel	and	Distributed	Computing36

http://csdl.computer.org/comp/trans/tc/2004/11/t1393abs.htmSteiger, C.; Walder, H. &
Platzner, M. (2004). Operating Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks. IEEE Transactions on Computers vol. 53, No.
11, (November 2004) pp.1393-1407, ISSN 0018-9340.

Tabero, J.; Septien, J.; Mecha, H. & Mozos, D. (2004). A Low Fragmentation Heuristic for
Task Placement in 2D RTR HW Management, Proceedings of the 14th International
Conference on Field-Programmable Logic and Applications. pp. 241-250, ISBN: 978-3-
540-22989-6, Antwerp Belgium, August 2004, Springer-Verlag, Berlin.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2006). Task Placement Heuristic Based on 3-D
Adjacency and Look-Ahead in Reconfigurable Systems, Proceedings of the 11th Asia
and South Pacific Design Automation Conference (ASP-DAC 2006), pp. 396-401,
ISBN:0-7803-9451-8, Yokohama Japan, January 2006.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2008). Allocation heuristics and
defragmentation measures for reconfigurable systems management. Integration, the
VLSI Journal, Vol. 41, No. 2, (February 2008), pp. 281-296, ISSN:0167-9260.

Tabero, J.; Septien, J.; Mecha, H.; Mozos, D. & Roman, S. (2003). Efficient Hardware
Multitasking through Space Multiplexing in 2D RTR FPGAs. Euromicro Symposium
on Digital System Design, ISBN 0-7695-2003-0, Belek Turkey, September 2003,
Elsevier.

Trimberger, S.; Carberry, D.; Johnson, A. & Wong, J. (1997). A time-multiplexed FPGA,
Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
(FCCM 97), pp. 22-28, ISBN: 0-8186-8159-4, Napa Valley, USA, April 1997, IEEE.

http://citebase.eprints.org/cgi-
bin/search?author=Bobda%3BMajer%3BAhmadinia%3BKoch%3BTeich%3BField%
3BComputer%3BScience&yearfrom=2003&yearuntil=2004&title=title%3A%28A+dy
namic+NoC+approach+for+communication%29&submit=1van der Veen, J.; Fekete,
S.; Majer, M.; Ahmadinia, A.; Bobda, C.; Hannig, F. & Teich, J. (2005).
Defragmenting the Module Layout of a Partially Reconfigurable Device. Proceedings
of the Proc. of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´05), pp. 92-104, ISBN 1-932415-74-2, Las Vegas, USA. June 2005.
CSREA Press.

Walder, H. & Platzner, M. (2002). Non-preemptive Multitasking on FPGAs: Task Placement
and Footprint Transform, Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’02), pp. 24-30, ISBN: 1-892512-96-3, Las
Vegas, USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Walder, H.; Steiger, C. & Platzner , M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, France, April 2003.

Walder, H.; Steiger, C. & Platzner, M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, Nice, France, April 2003.

Wigley, G. & Kearney, D. (2002a). Research Issues in Operating Systems for Reconfigurable
Computing, Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’02), pp. 569-572 ISBN: 1-892512-96-3, Las Vegas,
USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Wigley, G. & Kearney, D. (2002b). The Management of Applications for Reconfigurable
Computing Using an Operating System. Australian Computer Science
Communications, Vol. 6, No. 3, (January-February 2002), pp. 73-81.

Xilinx, Inc. “Virtex-4 Configuration Guide”, UG071, http://www.xilinx.com.
Xilinx, Inc. “Virtex-5 Configuration User Guide”, UG191, http://www.xilinx.com.

Fragmentation	management	for	HW	multitasking	in	2D		
Reconfigurable	Devices:	Metrics	and	Defragmentation	Heuristics 37

http://csdl.computer.org/comp/trans/tc/2004/11/t1393abs.htmSteiger, C.; Walder, H. &
Platzner, M. (2004). Operating Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks. IEEE Transactions on Computers vol. 53, No.
11, (November 2004) pp.1393-1407, ISSN 0018-9340.

Tabero, J.; Septien, J.; Mecha, H. & Mozos, D. (2004). A Low Fragmentation Heuristic for
Task Placement in 2D RTR HW Management, Proceedings of the 14th International
Conference on Field-Programmable Logic and Applications. pp. 241-250, ISBN: 978-3-
540-22989-6, Antwerp Belgium, August 2004, Springer-Verlag, Berlin.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2006). Task Placement Heuristic Based on 3-D
Adjacency and Look-Ahead in Reconfigurable Systems, Proceedings of the 11th Asia
and South Pacific Design Automation Conference (ASP-DAC 2006), pp. 396-401,
ISBN:0-7803-9451-8, Yokohama Japan, January 2006.

Tabero, J.; Septién, J.; Mecha, H. & Mozos, D. (2008). Allocation heuristics and
defragmentation measures for reconfigurable systems management. Integration, the
VLSI Journal, Vol. 41, No. 2, (February 2008), pp. 281-296, ISSN:0167-9260.

Tabero, J.; Septien, J.; Mecha, H.; Mozos, D. & Roman, S. (2003). Efficient Hardware
Multitasking through Space Multiplexing in 2D RTR FPGAs. Euromicro Symposium
on Digital System Design, ISBN 0-7695-2003-0, Belek Turkey, September 2003,
Elsevier.

Trimberger, S.; Carberry, D.; Johnson, A. & Wong, J. (1997). A time-multiplexed FPGA,
Proceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
(FCCM 97), pp. 22-28, ISBN: 0-8186-8159-4, Napa Valley, USA, April 1997, IEEE.

http://citebase.eprints.org/cgi-
bin/search?author=Bobda%3BMajer%3BAhmadinia%3BKoch%3BTeich%3BField%
3BComputer%3BScience&yearfrom=2003&yearuntil=2004&title=title%3A%28A+dy
namic+NoC+approach+for+communication%29&submit=1van der Veen, J.; Fekete,
S.; Majer, M.; Ahmadinia, A.; Bobda, C.; Hannig, F. & Teich, J. (2005).
Defragmenting the Module Layout of a Partially Reconfigurable Device. Proceedings
of the Proc. of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA´05), pp. 92-104, ISBN 1-932415-74-2, Las Vegas, USA. June 2005.
CSREA Press.

Walder, H. & Platzner, M. (2002). Non-preemptive Multitasking on FPGAs: Task Placement
and Footprint Transform, Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’02), pp. 24-30, ISBN: 1-892512-96-3, Las
Vegas, USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Walder, H.; Steiger, C. & Platzner , M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, France, April 2003.

Walder, H.; Steiger, C. & Platzner, M. (2003). Fast online task placement on FPGAs: free
space partitioning and 2D-Hashing. Proceedings of the Parallel and Distributed
Processing Symposium (IPDPS 2003), ISBN: 0-7695-1926-1, Nice, France, April 2003.

Wigley, G. & Kearney, D. (2002a). Research Issues in Operating Systems for Reconfigurable
Computing, Proceedings of the International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’02), pp. 569-572 ISBN: 1-892512-96-3, Las Vegas,
USA. June 2002. Editors: T. P. Plaks & P. M. Athanas, Las Vegas.

Wigley, G. & Kearney, D. (2002b). The Management of Applications for Reconfigurable
Computing Using an Operating System. Australian Computer Science
Communications, Vol. 6, No. 3, (January-February 2002), pp. 73-81.

Xilinx, Inc. “Virtex-4 Configuration Guide”, UG071, http://www.xilinx.com.
Xilinx, Inc. “Virtex-5 Configuration User Guide”, UG191, http://www.xilinx.com.

Parallel	and	Distributed	Computing38
TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 39

TOTAL	ECLIPSE—An	Efficient	Architectural	Realization	of	the	Parallel	
Random	Access	Machine

Martti	Forsell

x

TOTAL ECLIPSE—An Efficient
Architectural Realization of the

Parallel Random Access Machine

Martti Forsell
Platform Architectures

VTT
Finland

1. Introduction

In the beginning of this millennium power density and related heating problems practically
stopped the exponential frequency increase of single core processors and limited availability
of instruction-level parallelism (ILP) in general purpose applications started to limit the
speedup achievable by increasing the number of simultaneously executed instructions in
superscalar processors that along with architectural improvements in exploitation of
memory hierarchies used to roughly duplicate the performance of processors in every
second year for decades. In order to be able to continue the increasing trend of
computational performance, all major processor manufacturers have switched to chip
multiprocessors (CMP) integrating multiple processor cores on a single chip and switching
the focus of parallelism from ILP to thread-level parallelism (TLP), because the number of
transistors per chip still tends to increase exponentially with every new generation of silicon
technology (ITRS, 2007) and high amounts of TLP is easier to extract than ILP.
Manufacturers have ambitious plans to continue this development by roughly duplicating
the number of cores per chip every second year, resulting to constellations with over 100
cores in ten years (Intel, 2006). This will, however, not happen without problems, because
current CMP architectures and related programming models do not support simple
migration to parallel computing, so called automatic parallelization of existing sequential
code has been turned out to be extremely difficult for general purpose programs, writing
explicitly parallel versions of programs has turned out to be tedious, error-prone and
expensive, and achieving linear speed-ups with respect to the number of cores appears to be
limited to only small classes of well-behaving algorithms. These problems are caused by
inability of current architectures to hide the latency of shared memory accesses (or
intercommunication), lack of synchronicity in execution of computational threads as well as
too weak models and low-level primitives of parallel computing forcing a programmer to
explicitly take care of data partitioning to maximize locality, functionality mapping
supporting data partitioning, synchronization of subtasks, and communication. Without
solving these problems, it is hard to imagine that parallel computing would be able to

3

Parallel	and	Distributed	Computing38
TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 39

TOTAL	ECLIPSE—An	Efficient	Architectural	Realization	of	the	Parallel	
Random	Access	Machine

Martti	Forsell

x

TOTAL ECLIPSE—An Efficient
Architectural Realization of the

Parallel Random Access Machine

Martti Forsell
Platform Architectures

VTT
Finland

1. Introduction

In the beginning of this millennium power density and related heating problems practically
stopped the exponential frequency increase of single core processors and limited availability
of instruction-level parallelism (ILP) in general purpose applications started to limit the
speedup achievable by increasing the number of simultaneously executed instructions in
superscalar processors that along with architectural improvements in exploitation of
memory hierarchies used to roughly duplicate the performance of processors in every
second year for decades. In order to be able to continue the increasing trend of
computational performance, all major processor manufacturers have switched to chip
multiprocessors (CMP) integrating multiple processor cores on a single chip and switching
the focus of parallelism from ILP to thread-level parallelism (TLP), because the number of
transistors per chip still tends to increase exponentially with every new generation of silicon
technology (ITRS, 2007) and high amounts of TLP is easier to extract than ILP.
Manufacturers have ambitious plans to continue this development by roughly duplicating
the number of cores per chip every second year, resulting to constellations with over 100
cores in ten years (Intel, 2006). This will, however, not happen without problems, because
current CMP architectures and related programming models do not support simple
migration to parallel computing, so called automatic parallelization of existing sequential
code has been turned out to be extremely difficult for general purpose programs, writing
explicitly parallel versions of programs has turned out to be tedious, error-prone and
expensive, and achieving linear speed-ups with respect to the number of cores appears to be
limited to only small classes of well-behaving algorithms. These problems are caused by
inability of current architectures to hide the latency of shared memory accesses (or
intercommunication), lack of synchronicity in execution of computational threads as well as
too weak models and low-level primitives of parallel computing forcing a programmer to
explicitly take care of data partitioning to maximize locality, functionality mapping
supporting data partitioning, synchronization of subtasks, and communication. Without
solving these problems, it is hard to imagine that parallel computing would be able to

3

Parallel	and	Distributed	Computing40

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 41

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

Parallel	and	Distributed	Computing40

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 41

supersede sequential computing from being the main paradigm of general purpose
computing. Furthermore, if nothing is done, the performance of future processors will
remain the same while the utilization of processor cores for single computational problems
will decrease as the number of cores per chip increases.
The importance of providing easy-to-use programming models has been discovered in
parallel computing research long before the era of CMPs (Schwarz, 1966; Karp and Miller,
1969). The culmination of this early active research period was achieved with the invention
of the parallel random access machine (PRAM) in the late 70’s being able to abstract the essence
of parallel computing into a conceptually simple and beautiful model being a logical
extension the widely used model of sequential computation (Fortune and Wyllie, 1978). A
PRAM consists of a set of processors working under the same clock and a uniform single
step accessible shared memory connected to them (see Figure 1). Programming with the
PRAM model is much easier than with the weaker asynchronous models since with PRAM a
programmer knows all the time the exact state of the threads due to synchrony of
instruction execution, partitioning and mapping problems are eliminated—a programmer
can just put all the data requiring interaction to the shared memory so that all processors can
uniformly access it—and communication happens simply via accessing synchronously
shared variables in the shared memory. One clear evidence for this is that there exists a rich
theory of algorithms for the PRAM model (Jaja, 1992; Keller et al., 2001), which can not be
said for the other models that are typically asynchronous and highly architecture
dependent. Unfortunately, realization of a computer supporting the PRAM model has
turned out to be very challenging. Namely, in our early research (Forsell, 1994) we have
shown that the direct implementation of the multiport memory being the key to PRAM
implementation is not physically feasible with the known silicon technology if the number
of ports is higher than, say 4, due to quadratic wiring area increase with respect to the
number of ports. An indirect implementation, based on executing multiple threads per
processor core to hide the latency of the memory system, high-bandwidth
intercommunication network with randomization to avoid congestion, and wave-based
synchronization mechanism, is known from the early 90’s (Ranade, 1991), but so far the
proposed architectures (Schwarz, 1980; Ranade et al., 1987; Alverson et al., 1990; Abolhassan
et al., 1993; Imai, et al., 2000; Vishkin et al., 2008) have been unable to provide feasibility,
scalability, instruction-level parallelism (ILP) support, low thread-level parallelism (TLP)
support, and cost-efficiency to lure processor manufacturers to employ them in their
products.

Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1

Fig. 1. Parallel random access machine.

In this chapter, we introduce a configurable chip multiprocessor architecture, TOTAL
ECLIPSE, for realizing one of the most powerful PRAM variants, the arbitrary multioperation
concurrent read concurrent write (MCRCW) PRAM model. In addition to standard arbitrary
concurrent read concurrent write (CRCW) PRAM capable of concurrent reads and writes so
that in the case of a write arbitrary of the participating threads succeeds, MCRCW provides
multioperations that can e.g. sum the values sent by all participating threads into a memory
location concurrently. The architecture is optimized for efficient execution of programs
containing enough TLP to hide the latency of the intercommunication network and co-
exploitation of virtual ILP with TLP but it is also able to execute programs with low TLP
efficiently by providing seamless configurability of PRAM threads to non-uniform memory
access (NUMA) (Swan et.al., 1977) bunches combining the computational power of two or
more threads within a processor core. We will describe the principles of PRAM realization,
integration of NUMA bunching to TOTAL ECLIPSE operation, as well as overall
architectural structure and operation of the TOTAL ECLIPSE architecture. Performance
evaluation by executing simple programs with a clock-accurate simulator is provided and
silicon area and power consumption estimations of selected TOTAL ECLIPSE CMP
configurations are given. This chapter acts also as a case-driven introduction to novel
techniques for parallel architectures, unknown from the theory of sequential architectures.
The rest of the chapter is organized so that in Section 2 we describe the principles of
realizing PRAM on a physically feasible silicon platform. In Section 3 we describe the
TOTAL ECLIPSE architecture making use of these principles and additional architectural
techniques, in Section 4 we evaluate the performance, silicon area and power consumption
of selected TOTAL ECLIPSE CMPs, and finally in Section 5 we give conclusions.

2. Realizing the Parallel Random Access Machine

Realizing PRAM on silicon has turned out to be very challenging problem. In addition to the
theoretical complexity of direct implementation mentioned in Section 1 (Forsell, 1994), a
stronger claim arguing that required bandwidth rules any realization unfeasible was
published already in the previous year with the introduction of the LogP model (Culler,
1993). While the complexity of direct implementation can be overcome by using an indirect
implementation technique reported a few years earlier (Valiant, 1990; Ranade, 1991), the
latter claim has been controversial from the very beginning. The tremendous progress in
VLSI technology currently allowing for more than billion transistors and ten on-chip wiring
layers with wiring pitch of only 45 nm has raised the capacity and practically achievable
bisection bandwidth of a single microchip to a level where these old capacity/bandwidth
precautions do not hold any more. In addition, these numbers are predicted to grow for still
more than ten years making even more complex integrated systems feasible (ITRS, 2007).
Finally, recent estimations on the area and power, and even FPGA and silicon prototypes of
PRAM or PRAM-like CMPs (Vishkin, 2007; Forsell and Roivainen, 2008) prove that PRAM
realizations are indeed physically feasible. In this section we describe the principles of
realizing the PRAM model as formulated by (Ranade, 1991; Leppänen 1996).
The current approach for advanced CMPs is to use a cache coherent distributed shared memory
(CC-SM) machine consisting of a number of processor cores with local caches connected to
memory modules via an asynchronous communication network (see Figure 2). In order to
try to hide the latency of the distributed memory system, caches are being kept coherent

Parallel	and	Distributed	Computing42

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 43

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

Parallel	and	Distributed	Computing42

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 43

during execution by using a high-speed cache coherence mechanism, usually based on
distributed directories (Lenoski, 1992). The problems of CC-SMs are that for general purpose
parallel algorithms the cache coherence maintenance traffic consumes already the most of
the intercommunication network bandwidth, for demanding memory access patterns caches
would need to be multiported, thus non-scalable (Forsell, 1994) or severe performance
degrading sequentialization will occur, and for fine-grained parallel functionality the
asynchrony of the machine makes programming very difficult. It is hard to solve all these
problems together without taking a radically different approach like shared memory
emulation connecting a set of processor cores without caches to memory modules via a
high-bandwidth synchronous intercommunication network (Ranade, 1991; Leppänen, 1996).
In it, the latency is hidden with low-overhead multithreading exploiting slackness of
parallel computation, i.e. executing other threads while one is referring the memory in a
pipelined way. We call the obtained solution emulated shared memory (ESM) machine (see
Figure 2). A bit similar cacheless solution is used with some synchronous SIMD and vector
machines, but they can not execute code including control parallelism efficiently.

Common clock or independent clocks

Distributed memory

P2 P3 PpP1

M1 M2 M3 Mp

C2 C3 CpC1

Single-
threaded
cores &
coherent
caches

Asynchronous cache coherence/memory network

Common clock or independent clocks

Distributed memory

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading

High-bandwidth synchronous network

Fig. 2. Cache coherent shared memory (left) versus emulated shared memory approach
(right) (P=processor core, C=local cache, M=memory module).

There exists a number of theoretical studies summarized in (Leppänen, 1996) that formally
prove that this kind of on ESM can work-optimally simulate the PRAM with a high
probability if the following preconditions related to the network topology, and congestion
avoidance are guaranteed:
(i) The bandwidth requirements of certain extreme cases causing all the references to be

headed to a low number of (or even single) memory module(s) are reduced to an ability
to route random traffic by using a hashing of memory locations that is randomly selected
from a family of hashings (Dietzfelbinger et.al., 1994).

(ii) To handle random communication the bisection bandwidth of the network must be at
least O(number of cores).

(iii)Synchronization of memory references can be handled by the synchronization wave
technique that works with acyclic networks in which special synchronization packets are
sent by the processors to the memory modules and vice versa (Ranade, 1991). The idea is
that when a processor has sent all its packets on their way, it sends a synchronization
packet. Synchronization packets from various sources push on the actual packets, and
spread to all possible paths, where the actual packets could go. When a node receives a
synchronization packet from one of its inputs, it waits, until it has received a

synchronization packet from all of its inputs, then it forwards the synchronization wave
to all of its outputs. The synchronization wave may not bypass any actual packets and
vice versa. When a synchronization wave sweeps over a network, all nodes and
processors receive exactly one synchronization packet via each input link and send
exactly one via each output link.

Another necessary condition for practical PRAM implementations is that the used CMP
architecture needs to be ultimately implementable with current silicon technology. Due to
relatively decreasing signal propagation speed on shrinking silicon technologies, variable
link length intercommunication network topologies, including all logarithmic diameter
constellations (trees, fat trees, butterflies, hypercubes, etc.) fail to provide performance
scalability with respect to the number of processor cores, while fixed link length topologies
like coated meshes, sparse meshes and multimeshes have no such scalability problems
(Leppänen, 1996; Forsell, 2002; Forsell and Leppänen, 2005).

3. TOTAL ECLIPSE

Embedded Chip-Level Integrated Parallel SupErcomputer (ECLIPSE) is an architectural
framework for general purpose chip multiprocessors and multiprocessor systems on chip
(MP-SOC), but is extendable also to multichip constellations (Forsell, 2002). It lends many
ideas from our early work on the Instruction-Level Parallel Shared Memory (IPSM) machine
originally reported in (Forsell, 1997) as well as earlier PRAM realization research (Ranade,
1991; Leppänen, 1996) and network on chip (NOC) research (Jantsch, 2003). Unfortunately, the
original ECLIPSE architecture is only able to support the exclusive read exclusive write
(EREW) PRAM model which is not able to match the performance of MCRCW PRAM, but
requires logarithmically longer execution times for a large number of parallel computational
problems even though optimal parallel algorithms are used. In addition, it fails to support
efficient execution of low-TLP functionalities because for organizational reasons it features a
relatively high minimum number of threads per processor, dropping the utilization of a core
to as low as the reciprocal of that value in the case of a functionality having only one thread.
Our renewed proposal for a universal general purpose CMP is the TOTAL ECLIPSE
architecture that realizes the arbitrary MCRCW PRAM model and supports NUMA
execution for processor-wise thread bunches making execution of low-TLP functionalities as
efficient as with standard sequential processors using the NUMA convention. A TOTAL
ECLIPSE consists of P Tp-threaded (constituting total T = PTp threads) F-functional unit
MBTAC processor cores with dedicated instruction memory and local data memory
modules, P Tp-line step caches and scratchpads attached to processors, P fast data memory
modules, and a high-bandwidth multimesh interconnection network (see Figure 3).
In the following subsections we describe the processor, memory system, and
communication network of the TOTAL ECLIPSE architecture as well as the key architectural
techniques used in them to realize the properties of it. Due to simplicity reasons and lack of
space, we limit ourselves to describing an integer-only version of the architecture. Inclusion
of floating point support to this class of architectures should be, however, as straightforward
as for any other architecture. Supporting application-specific acceleration of functionalities,
like graphics, multimedia, and communications, is also left out because they can be
implemented efficiently with already relatively well-known architectural solutions that may
be used along with TOTAL ECLIPSE, making the overall system architecture slightly

Parallel	and	Distributed	Computing44

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Registers
R1 ... Rr-1

Sequencer
 S

Global Memo ry units
M0 ... Mm-1

Opcode
 O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memory
Request

Send

Memory
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Out
Instruction-In

Data
Out0

Address
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0 ... Aq-1

Post-memo ry ALUs
Aq ... Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Status
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 45

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Registers
R1 ... Rr-1

Sequencer
 S

Global Memo ry units
M0 ... Mm-1

Opcode
 O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memory
Request

Send

Memory
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Out
Instruction-In

Data
Out0

Address
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0 ... Aq-1

Post-memo ry ALUs
Aq ... Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Status
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

Parallel	and	Distributed	Computing44

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Registers
R1 ... Rr-1

Sequencer
 S

Global Memo ry units
M0 ... Mm-1

Opcode
 O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memory
Request

Send

Memory
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Out
Instruction-In

Data
Out0

Address
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0 ... Aq-1

Post-memo ry ALUs
Aq ... Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Status
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 45

heterogeneous (Forsell, 2009). In such a heterogeneous TOTAL ECLIPSE system, however,
the performance of TOTAL ECLIPSE unit in general purpose parallel execution would make
useless techniques used in some current heterogeneous systems that map even some general
purpose functionality to general purpose GPUs rather than standard multicore CPUs to gain
modest speedups (although this happens often with the cost of reduced utilization,
increased power consumption, and more difficult programmability).

Scratchpad

Data

Address

Data

Thread

Address

Thread

Pending Pending

Fast memory bank

Reply AddressData Op

ALU

mux
Active
memory
unit

Step cache

Collection of switches
(i.e. superswitch) attached to
a processor, memory module
and four neighboring
superswitches

Mc-multimesh: Mc parallel
acyclic double mesh networks
Note: acyclic structure of the
network can not be seen from
this high-level illustration.

Physically distributed, but
logically shared data memory

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Local data memory

Fig. 3. Block diagram of the TOTAL ECLIPSE architecture (P=processor, M=shared data
memory module, L=local data memory module, I=instruction memory module, a= active
memory unit, c=step cache, t=scratchpad, and s=switch).

3.1 Processor
Multibunched/threaded Architecture with Chaining (MBTAC) is a dual-mode VLIW processor
architecture designed for realizing both a strong PRAM model on a physically distributed
memory architecture (so called PRAM mode) and an efficient NUMA model for low TLP
locality-optimized code (so called NUMA mode) (Forsell, 2009). An MBTAC processor has A
ALUs, M memory units, M hash address calculation units, a compare unit, a sequencer, and
a register file of R registers per thread on a deep, cyclic, hazard-free interthread pipeline for
the PRAM mode execution and a local ALU, a local memory unit, a local sequencer, and a
register file of R registers per thread bunch on a four stage pipeline for the NUMA mode
execution (see Figure 4). The NUMA mode pipeline is overlapped/merged with the first
four stages of the PRAM mode pipeline so that most of the hardware, including one ALU
and all registers, can be shared between the modes. Other parts of the processor include a
step cache and scratchpad that are used to implement concurrent memory access and
multioperations. MBTAC has a VLIW-style instruction set with a chain-like fixed execution
ordering of subinstructions with a mechanism for using the result of a subinstruction as an
operand of the following subinstructions in the chain for the PRAM mode and standard
parallel organization of functional units for the NUMA mode (see Appendix A for the list of
subinstructions). There is a hardware assisted synchronization mechanism for a limited
number of concurrent fast barriers, while a bit slower software based solution utilizing
multioperations can be used to provide an arbitrary number of simultaneous barriers
(Forsell, 2006).

MBTAC supports overlapped execution of a variable number of threads and thread bunches
and seamless dynamic switching between them with special instructions. Multithreading is
implemented as a Tp-stage, cyclic interthread pipeline for hiding the latency of the memory
system and maximizing the overlapping of execution in the PRAM mode. Switching
between threads and bunch slots happens in zero time, because threads proceed in the
pipeline only during the forward time. If a thread tries to refer memory when the
intercommunication network is busy, the whole pipeline is suspended until the network
becomes available again. After issuing a memory read, the thread can wait the reply for at
most Mw<Tp clock cycles before the pipeline freezes until the reply arrives. For the NUMA
mode, forwading is used to reduce the number of pipeline hazards to two delay slots per
each executed control transfer instruction.

Registers
R1 ... Rr-1

Sequencer
 S

Global Memo ry units
M0 ... Mm-1

Opcode
 O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memory
Request

Send

Memory
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Out
Instruction-In

Data
Out0

Address
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0 ... Aq-1

Post-memo ry ALUs
Aq ... Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Status
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back

Fig. 4. Block diagram of the MBTAC processor

The PRAM and NUMA models are linked to the architecture so that a full cycle in the
pipeline corresponds typically to a single PRAM step and a full cycle of execution for a
bunch with B thread slots corresponds typically to executing B consecutive instructions.
During a step, each thread of each processor of the CMP executes an instruction, including

Parallel	and	Distributed	Computing46

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Shared memo ry access
Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T threads per
processor
p

F execution slots in a chain

Memory reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 47

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Shared memo ry access
Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T threads per
processor
p

F execution slots in a chain

Memory reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

Parallel	and	Distributed	Computing46

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Shared memo ry access
Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T threads per
processor
p

F execution slots in a chain

Memory reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 47

at most M shared memory reference subinstructions, and sends a synchronization wave.
Therefore a step lasts for multiple, at least Tp+1, clock cycles.
In the following subsections we take a detailed look at special architectural techniques,
chaining, step caches, and scratchpads, used in TOTAL ECLIPSE.

3.1.1 Low and low-level parallelism exploitation via chaining and bunching
The organization of the PRAM mode functional units in MBTAC is targeted for exploiting
ILP during steps of parallel execution. Therefore functional units in MBTAC are connected
as a chain, so that a unit is able to use the results of its predecessors in the chain (Forsell,
1997; Forsell, 2003). Since multiple threads are executed in an overlapped way, it possible to
execute dependent subinstructions during a step unlike with parallel functional unit
organization of sequential processors (see Figure 5). We call this new class of parallelism
virtual instruction level parallelism. In order to maximize the obtained speedup, the ordering
of functional units in the chain is selected according to the average ordering of instructions
in a basic block: Two thirds of the ALUs form the beginning of the chain. They are followed
by the memory units and the rest of the ALUs. The compare unit and the sequencer are
located in the end of the chain, because comparing and branching happen always in the end
of basic blocks. In the NUMA mode, the local functional units are organized in parallel like
in a standard single threaded VLIW processor because chaining would cause a lot of
pipeline hazards for bunches and actually degrade the performance.

Shared memo ry access
Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T threads per
processor
p

F execution slots in a chain

Memory reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode

Fig. 5. Chaining and bunching.

Efficient execution of low TLP code is implemented by making the thread storage
configurable/indirect and pipeline suitable for sequential execution so that multiple thread

execution slots can be assigned to efficiently execute a single NUMA mode thread bunch by
just using the same thread storage address for all of them (Forsell, 2009). This way a bunch
can use thread slots to execute multiple instructions during a step removing the low TLP
performance bottleneck of the original Eclipse (see Figure 5). The number of concurrent
bunches per processor can be everything from zero (PRAM mode) to Tp/2 and they can
occur in parallel with PRAM mode threads. Bunches can only access local memories since
there is no efficient and easy-to-use mechanism to hide the latency of memory references in
low TLP situations. Required indirect thread storaging is implemented by storing threads
into a multiported and multithreaded register block (like in the SUN Sparc Tx-series) rather
than in the pipeline registers, and by adding a thread address storage pointer for each
thread (see leftmost registers of the TID dual chain in Figure 4). In order to set a group of
threads to use just one thread storage, i.e. to execute a single thread for all the thread slots, a
programmer needs just to set the thread storage pointers to a single value selected out of the
values of the thread storage pointers with the JOIN instruction. Similarly, splitting the
bunch back to separate threads happens by restoring the old numbering of the thread slots
with the SPLIT instruction.

3.1.2 Concurrent access and step caches
The PRAM support machinery of TOTAL ECLIPSE allows for arbitrary concurrent reads
and writes to memory locations. For a concurrent read, all threads participating the access
give the same results. In the case of a concurrent write, the data of an arbitrary thread
participating the write will be written to the target location. This is implemented by using
step caches, which are associative memory buffers in which data stays valid only to the end
of ongoing step of multithreaded execution (Forsell, 2005). The main contribution of step
caches to concurrent accesses is that they step-wisely filter out everything but the first
reference for each referenced memory location. This reduces the number of requests per
location to P allowing them to be processed sequentially on a single ported memory module
assuming Tp ≥ P (see Figure 6).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread 2Tp-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

Concurrent access without step caches Concurrent access with step caches

Step
cache

Step
cache

Step
cache

Step
cache

Memory
location

- P references
 in Tp-cycle step
 resulting P Tp
 cycle total access
 time and no
 slowdown

Memory
location

- PTp references
 in Tp-cycle step
 resulting PTp
 cycle total access
 time and therefore
 P-fold slowdown

Fig. 6. Step caches for implementing concurrent memory access.

Parallel	and	Distributed	Computing48

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <logW>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 49

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <logW>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

Parallel	and	Distributed	Computing48

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <logW>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 49

Step caches operate similarly as ordinary caches with a few notable exceptions: Each time a
multithreaded processor refers to the shared data memory a step cache search is performed.
A hit is detected on a cache line if the line is in use, the address tag matches the tag of the
line, and the least significant bits of step of the reference matches the step of the line. In the
case of a hit, a write is just ignored while a read is just completed by accessing the data from
the cache. In the case of a miss, the reference is stored into the cache using the replacement
policy at hands and marked as pending (for reads). At the same time with storing the
reference information to the cache line, the reference itself is sent to the lower-level memory
system. When a reply of a read arrives from the memory, the data is put to the data field of
the line storing the reference information and the pending field is cleared. The structure of a
step cache is similar to ordinary caches, but it has two extra fields—pending and step—and
a block for decaying (Kaxiras, 2001) the data belonging to previous steps before their step
field matches again to the least significant bits of current step (see Figure 7). Cache
coherency problems are avoided due to a short life-time of references in the cache, since
operations made during a step are independent by the definition parallel execution. The
TOTAL ECLIPSE CMPs involved in our evaluations in Section 4 use As -way set associative
step caches with the least recently used (LRU) replacement policy of size Tp lines attached to
each processor and scratchpads.

Tag Index Word offset

<log M - log Tp - log W> <log Tp> <logW>

In use
<1>

Pending
<1>

Tag
<log M - log Tp - log W>

Data
<W>

Step
<2>

=?

Mux

MBTAC-processor

[address]

[data in][data out]

Set 0:
(log Tp/S
lines)

Set S-1:
(log Tp/S
lines)

=?

Hash
h(x)

[hit/miss]

[hit/miss]

Shared memory system

[miss]

[pending]

[pending]

[step]

Fig. 7. Organization of an As -way associative step cache.

3.1.3 Multioperations and scratchpads
Scratchpads are addressable memory buffers that are used to store memory access data to
keep the associativity of step caches limited in implementing multioperations and thread
bunches with a help of step caches, and minimal on-core and off-core ALUs that take care of
actual intra-processor and inter-processor computation for multioperations (Forsell, 2006)
(see Figures 3 and 4). Scratchpads are organized with step caches to so called scratchpad -
step cache units. A scratchpad - step cache unit for MBTAC processor consists of a Tp-line
scratchpad, a Tp-line step cache, and a simple multioperation ALU for executing incoming
concurrent references, multioperations and arbitrary ordered multiprefixes sequentially (see
Figure 8).

Data

Thread
ID

Address Pending

PendingRead
Data

Write
Address

Write
Data

Op

ALU

mux
Multi-

operation
unit

STEP CACHESCRATCHPAD

Scratchpad
Address Data

Initiator
Thread Pending

Step cache
AddressHit

Initiator
Thread

Op Step

mux

mux

Data
Address

Thread

Step

Op

mux

MultiOp
Pending

=?

=?

Exception

MBTAC PROCESSOR CORE

MEMORY
SEND/
REPLY
RECEIVE
LOGIC

muxReceive

Data

Status

mux

Op

Fig. 8. Implementation of multioperations with scratchpads and step caches. Detailed
description of this logic can be found in (Forsell, 2006).

Ordinary multioperations are implemented as two consecutive single step operations (see
Appendix A for a list of available multioperations). During the first step, a starting
operation (BMxx for multioperations or BMPxx for arbitrary ordered multiprefix operations)
executes a processor-wise multioperation against a step cache location without making any
reference to the external memory system (see Figure 9). During the second step, an ending
operation (EMxx for multioperations or EMPxx for arbitrary ordered multiprefix operations)
performs the rest of the multioperation so that the first reference to a previously initialized
memory location triggers an external memory reference using the processor-wise
multioperation result as an operand. The external memory references that are targeted to the
same location are processed in the active memory unit of the corresponding memory
module according to the type of the multioperation. In the case of arbitrary ordered
multiprefixes the reply data is sent back to scratchpads of participating processors. The
consecutive references are completed against the step cached reply data. It can happen that a
consecutive reference is made to a location while the external reference is being processed.

Parallel	and	Distributed	Computing50

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 51

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

Parallel	and	Distributed	Computing50

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 51

In that case, the operation is marked as pending and completed as the result is available.
This does not slow down the processing any way since one additional simple ALU is located
to the end of memory access pipeline segment in MBTAC (see Figure 4). Since MBTAC uses
limited associativity step caches, scratchpads are used to store the id of the initiator thread
of each multioperation sequence to the step cache and internal initiator thread id (IT)
register as well as reference information to a storage that saves the information regardless of
possible conflicts that may wipe away information on references from the step cache. A
scratchpad has a field for data, address and pending for each thread of the processor. With a
help of scratchpads, multioperations are implemented by using sequences of two
instructions: Data to be written in the step cache is also written to the scratchpad, id of the
first thread referencing a certain location is stored to the step cache and IT register (for the
rest of references), the pending bit for multioperations is kept in the scratchpad rather than
in the step cache, reply data is stored to the scratchpad rather than to the step cache, and
reply data for the ending operation is retrieved from the scratchpad rather than from the
step cache (Forsell, 2006).

Processor 0:
 Thread 0
 Thread 1
 Thread 2

 Thread Tp-1

Processor 1:
 Thread Tp
 Thread Tp+1
 Thread Tp+2

 Thread TpK-1

Processor 2:
 Thread 2Tp
 Thread 2Tp+1
 Thread 2Tp+2

 Thread 3Tp-1

Processor P-1:
 Thread (P-1)Tp
 Thread (P-1)Tp+1
 Thread (P-1)Tp+2

 Thread PTp-1

1. Determine intra-processor
 multiprefixes

2. Send processorwise results to modules
 to determine inter processor multiprefixes
 (one result per processor only)

3. Spread and compute the final
 arbitrary ordered multiprefixes
 within processors

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

BMPxx instruction EMPxx instruction
- the processor-wise offset
 is computed to thread-wise
 results
- threads that have already
 used their execution slot
 will be updated in the end
 of the memory reply
 pipeline segment

EMPxx instruction
- first reference triggers an
 external memory reference
- ordering is lost here since
 memory references arrive
 in non-deterministic order

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Scratchpad
step cache unit

Memory location
and active
memory unit

Fig. 9. Implementation of multioperations with scratchpads and step caches.

Since many efficient parallel algorithms make use of limited concurrent access, constituting
of, say, at most square root T references per step, we have implemented faster single
instruction limited multioperations that execute in single step. These instructions do not use
multioperation units of processors but just active memory ALUs to perform their operations.

3.2 Memory modules
Total ECLIPSE has three types of memory modules—local data memory modules, shared
data memory modules, and instruction memory modules. For performance reasons, they are
accessed via dedicated local data, shared data, and instruction memory ports of processors,
respectively (see Figure 10). The local memory modules are aimed for storing data local to
threads of a processor and NUMA mode data while all the shared data is located to
distributed shared data memory modules emulating the ideal PRAM memory. Instruction
memory modules are aimed to keep the program code for each processor. The modules are
connected together so that all memory locations can be accessed via the shared data memory
port but giving high priority to accesses from local data memory and instruction memory
ports (see Figure 10).

Common clock or independent clocks

Distributed shared data memory

High-bandwidth synchronous network

M1 M2 M3 Mp

P1 PpP3P2

Low-
overhead
multi-

threading L1 L2 L3 Lp

I1 I2 I3 Ip

Local data memory module

Local instruction memory module

A A A A Active memory unit

Shared data memory module

Low priority access paths

Fig. 10. Organization of the memory system

During normal operation, the on-chip shared data, local data, and instruction memory
modules are isolated from each other to guarantee high-bandwidth local data, shared data,
and instruction streams to processors. The access (and cycle) times of local data and
instruction modules equal to one system clock cycle. The access time of shared data modules
need to be half of the system clock cycle or alternatively Tp must be at least 2P or a small and
fast module-level cache (allowing for multioperation related data to be read and written
during a single clock cycle) is needed for each memory module. A local data memory
module is just a standard memory module. A shared data memory module consists of an
active memory unit and data memory itself (see Figure 3). An active memory unit consists of
a simple ALU and fetcher (Forsell, 2006). Active memory units allow one to perform
arbitrary ordered multiprefix operations and multioperations that e.g. sum all the references
that are targeted to a memory location during a step helping to drop the lower bound of the
execution time of some parallel algorithms by a logarithmic factor and perform flexible
synchronizations (including arbitrary number of simultaneous barriers) between threads.
Instruction memory modules are similar to data memory modules except they do not have
active memory units, the length of instruction words is different to that of data words
depending on the architectural parameters, and there are no write lines from the

Parallel	and	Distributed	Computing52

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Memory
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memory
output
decoder

Memory
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 53

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Memory
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memory
output
decoder

Memory
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

Parallel	and	Distributed	Computing52

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Memory
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memory
output
decoder

Memory
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 53

instructions fetcher to instruction memory modules. If the data or program code of the
application does not fit into the on-chip memory, expensive external memory access
prefetches with interleaving, banking and module-level caching are needed. In this chapter,
however, we consider on-chip memory configurations only.

3.3 Interconnection network
The TOTAL ECLIPSE network is a Mc-way double acyclic two-dimensional multi mesh
(Forsell and Leppänen, 2005) (see Figure 11). It has separate lines for references going from
processors to memories and for replies from memories to processors to maximize the
throughput for read-intensive portions of code. Memory locations are distributed across the
data modules by a randomly chosen polynomial hashing function for avoiding congestion
of messages and hot spots (Ranade, 1991; Dietzfelbinger et.al., 1994). References are routed
by using a simple greedy algorithm on a randomly selected submesh. Deadlocks are not
possible during communication because the network is acyclic. Separation of steps and their
synchronization is guaranteed with the synchronization wave technique allowing for
independent clocking or asynchronous links between the processor cores.
To exploit locality, the switches related to processor-memory module pairs are grouped as
superswitches (see Figure 11). This kind of a two-level structure allows for sending a
message from a resource to any of the switches belonging to a superswitch in a single clock
cycle. A superswitch consists of Mc switches that are connected to a processor and memory
module via dedicated output decoders and switch elements. Each switch consists of 8 switch
elements that have two to three input and output links. A switch element consists of logic
blocks for determining the right output link (select direction), arbitration logic, and output
queues storing the outgoing messages (see Figure 11). A switch element routes an incoming
message to an output buffer according to the target information of the message if there is
room for it in the buffer. If multiple incoming messages need to be routed to a single output
buffer simultaneously it is waited until there is room in the buffer for all of them before
transferring them simultaneously to the output buffer. If an incoming message is not
allowed to proceed to the output buffer, the busy signal is activated in the corresponding
input.
The processors send memory requests (reads and writes) and synchronization messages to
the memory modules and modules send replies and synchronization messages back to
processors. A message is built of a single parallel flit consisting of dedicated fields for
message type, data access width, target address, return address and data (Forsell, 2005).
Messages are routed at the rate of at most one hop per clock cycle by using a simple greedy
algorithm with two intermediate targets (see Figure 11): A message is first sent to a first
intermediate target, which is a randomly chosen switch in a superswitch related to the
sending resource (this determines the submesh to be used for routing). Then the message is
routed greedily (go to the right row and then go to the right column) to the second
intermediate target, which is the switch of the selected submesh in the superswitch related
to the target resource. Finally the message is routed from the second intermediate target to
the target resource. Routing memory replies back to the processors is made in the same way,
but using the memory reply network. Synchronization messages follow the same paths from
processors to memories and back to processors.

Memory
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memory
output
decoder

Memory
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:

Fig. 11. Block diagrams of a Mc-way double acyclic multimesh network (top), superswitch
(middle), and switch element (bottom) for a 64-processor TOTAL ECLIPSE CMP.

Parallel	and	Distributed	Computing54

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 55

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

Parallel	and	Distributed	Computing54

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 55

4. Evaluation

In order to evaluate the performance and scalability achievable with the TOTAL ECLIPSE
architecture on realistic and physically feasible CMPs we made a number of simulations on
different CMP configurations and estimated the silicon area and power consumption of the
used configurations with analytical modeling.
For performance tests, we mapped parallel and sequential e-language versions of seven
parallel computational problems of which three are fixed size and others depend on the
number of threads in a processor core (see Table 1) to PRAM thread groups and NUMA
bunches, compiled, optimized (e-compiler options -O2 -ilp -fast) and loaded them to three
CMP configurations having 4, 16 and 64 ten-FU 512-threaded MBTAC processors (see Table
2), and executed them with our clock accurate CMP simulator modified for the TOTAL
ECLIPSE architecture.
 In order to evaluate the PRAM mode execution performance, we executed the parallel
versions of the programs in the TOTAL ECLIPSE CMPs in the PRAM mode and in ideal
PRAMs having similar configurations. The results as relative execution time are shown in
Figure 12. We can observe that the PRAM mode execution speed of TOTAL ECLIPSE is very
close to that of ideal PRAM, mean overheads being 0.8%, 1.7%, and 1.4% for E4, E16, and
E64, respectively.

 SEQUENTIAL PARALLEL
Name N E P W E P=W Explanation
aprefix T N 1 N 1 N Determine an

arbitrary ordered
multiprefix of an
array of N integers

fft 64 N log N 1 N log N 1 N2 Perform a 64-point
complex Fourier
transform using
fixed point
arithmetic on
integer ALUs

max T N 1 N 1 N Find the
maximum of a
table of N words

mmul 16 N3 1 N3 1 N3 Compute the
product of two 16-
element matrixes

sort 64 N log N 1 N log N 1 N2 Sort a table of 64
integers

spread T N 1 N 1 N Spread an integer
to all N threads

sum T N 1 N 1 N Compute the sum
of an array of N
integers

Table 1. Evaluated computational problems and features of their sequential and parallel
implementations (E=execution time, M=size of the key string, N=size of the problem,
P=number of processors, T=number of threads, W=work). Note that fft, mmul, and sort are
fixed size problems, while others depend on T.

 Symbol E4 E16 E64 DLX
Model of computing Mtlp PRAM

/
NUMA

PRAM
/
NUMA

PRAM
/
NUMA

RAM

ILP model in the PRAM
mode

Milpp chained
VLIW

chained
VLIW

chained
VLIW

ILP model in the NUMA
mode

Milpn VLIW VLIW VLIW 5-stage
pipelin
e

Processors P 4 16 64 1
Threads per processors Tp 512 512 512 1
Total number of threads T 2048 8192 32768 1
FUs in the PRAM mode Fp 10 10 10 -
FUs in the NUMA mode Fn 3 3 3 4
On-chip shared data
memory

Msd 2 MB 8 MB 32 MB -

On-chip local data
memory

Mld 2 MB 8 MB 32 MB -

On-chip banks access
time

Ab 1 c 1 c 1 c 1 c

On-chip bank cycle time Cb 1 c 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4 -

Table 2. Evaluated configurations (c=processor clock cycles). DLX is a single threaded RISC
processor described in (Hennessy and Patterson, 2003). The Random Access Machine (RAM)
model is a computing model used in sequential computers.

Fig. 12. The relative execution time of TOTAL ECLIPSE CMPs compared to ideal PRAMs
with similar configuration (PRAM=1.0, shorter is better).

The NUMA mode performance was measured by executing the sequential versions of the
programs in a single thread of a CMP in both PRAM and NUMA modes. In NUMA mode

Parallel	and	Distributed	Computing56

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 57

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

Parallel	and	Distributed	Computing56

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 57

execution all the threads of a single processor were joined to a single NUMA bunch. The
results of these simulations as execution time are illustrated in Figure 13. We see that the
NUMA mode indeed provides better performance for sequential programs than the PRAM
mode, but is not able to exploit virtual ILP up to degree possible in the PRAM mode. The
mean speedups of using the NUMA mode are 13200%, 13196%, and 13995% for E4, E16, and
E64, respectively. This does not, however, mean that these NUMA bunches can solve these
computational problems faster than the PRAM mode if parallel solutions are used. Namely,
the parallel solutions are 1421%, 3111%, and 6889% faster than the best sequential ones for
E4, E16, and E64, respectively. Note that the speedup is not linear with respect to the
number of processors, since 3 out of 7 benchmarks are fixed size computational problems.

Fig. 13. The execution time of sequential solutions of the computational problems on a single
thread of a singe MBTAC processor core in the PRAM mode and on a 512-thread NUMA
bunch in a single MBTAC processor core.

 To show seamless configurability between NUMA and PRAM modes in the TOTAL
ECLIPSE architecture, we measured the NUMA mode execution time for sort algorithm for
a bunch with different number of threads ranging from 1 to 512 threads per bunch in the E4
configuration. The results are shown in Figure 14. We can see linear performance increase as
the number of threads per the bunch increases (note that the thread scale is exponential).

Fig. 14. Execution time of as a function of number of threads in the bunch for E4 CESM
configuration.

We compared also the NUMA mode performance of TOTAL ECLIPSE CMPs to that of a
single threaded five-stage basic pipelined RISC processor DLX (Hennessy and Patterson,

2003) by executing all the sequential programs in a single DLX processor with a single step
accessible on-chip memory (like the local memories of TOTAL ECLIPSE cores) and in a
single NUMA bunch composed of the threads of a single processor of TOTAL ECLIPSE. In
order to commit fair comparison, we took the variable size of the problems aprefix, max,
spread, and sum into account in our measurements so that the amount of actual
computation (and the computational problem itself) is the same for the both architectures. In
addition, the same compiler and even compilation were used to eliminate the effect of the
compiler. TOTAL ECLIPSE code was obtained from DLX code just by doing binary
translation (Forsell, 2003). The results are shown in Figure 15. Although the code is not
optimized with a VLIW compiler for TOTAL ECLIPSE’s NUMA bunching, it provides a bit
better performance than DLX, the average speedup being 8.8%. This is due to more efficient
ILP architecture of TOTAL ECLIPSE cores.
 Finally, we estimated silicon area, power consumption, and maximum clock frequency
figures for E4, E16, and E64 with configurable memory modules implemented on a high-
performance 65 nm silicon process. The estimations are based on models presented
(Pamunuwa et. al., 2003), ITRS 2007, and careful counting of architectural elements broken
down to gate counts. The wire delay model gives maximum clock frequency 1.29 GHz for
E4, E16 and E64 assuming 135 nm global interconnect wiring with repeaters. The area and
power results are shown in Figure 16. These figures except the clock frequency are
somewhat comparable to those of a X86 class multi-core high-frequency superscalar
processor.

Fig. 15. Relative execution time of 512-thread NUMA bunches compared to 5-stage
pipelined DLX processor with the same memory setup (DLX=1.0, shorter is better).

Parallel	and	Distributed	Computing58

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 59

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

Parallel	and	Distributed	Computing58

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 59

Fig. 16. Silicon area and power consumption estimates for E4, E16, and E64 with
configurable memory module at 1.29 MHz on a high-performance 65 nm technology
(Com=communication network, Mem=memory modules, and Proc=processors).

5. Conclusion

We have introduced the TOTAL ECLIPSE CMP architecture providing an efficient
realization of PRAM. In addition to providing synchronous access to the shared memory, it
allows for concurrent references to memory location, special multioperations performing
computations between the participating threads, modes for efficient parallel execution and
fast sequential operation combining the computational power of threads and seamless
configurability between these modes. According to our evaluation TOTAL ECLIPSE
provides in many cases performance close to similarly configured ideal PRAM, while the
silicon area and power consumption are somewhat comparable to the current commercial
CMPs. This chapter acts also as a case-driven introduction to novel parallel architecture
techniques, including synchronization wave, cacheless memory organization, chaining, step
caching, bunching, and scratchpads, that are unknown from the theory of sequential
architectures. Our future research interests related to this topic include building FPGA and
silicon prototypes of TOTAL ECLIPSE, addressing the off-chip memory efficiency problem,
as well as investigating the limits of practical scalability of this kind of architectures.

6. Acknowledgements

This work was supported by the grants 122462 and 128733 of the Academy of Finland.

7. References

Abolhassan, F., Drefenstedt, R., Keller, J., Paul, W. Scheerer, D. (1993) On the Physical
Design of PRAMs, Computer Journal 36, 8 (1993), 756-762.

Alverson, R., Callahan, D., Cummings, D., Kolblenz, B., Porterfield, A., Smith, B. (1990). The
Tera Computer System, Proceedings of the International Conference on Supercomputing,
Association for Computing Machinery, New York, 1990, 1-6.

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K., Santos, E., Subramonian, R., von
Eicken, T. (1993). LogP: Towards a Realistic Model of Parallel Computation,
Proceedings of the 4th ACM Conference on Principles & Practicies of Parallel
Programming, 1-12.

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Mayer auf der Heide, F., Rohnert, H., Tarjan, R.
(1994). Dynamic Perfect Hashing: Upper and Lower Bounds, SIAM Journal on
Computing 23, (August 1994), 738-761.

Forsell, M. (1994). Are Multiport Memories Physically Feasible?, Computer Architecture News
22, 4 (September 1994), 47-54.

Forsell, M. (1997). Implementation of Instruction-Level and Thread-Level Parallelism in
Computers, Dissertations 2, Department of Computer Science, University of
Joensuu, Joensuu, 1997.

Forsell, M. (2002). A Scalable High-Performance Computing Solution for Network on Chips,
IEEE Micro 22, 5 (September-October 2002), 46-55.

Forsell, M. (2003). Using Parallel Slackness for Extracting ILP from Sequential Threads,
Proceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet, July 28 - August 3, 2003, L’Aquila, Italy.

Forsell, M., Leppänen, V. (2005). High-Bandwidth on-chip Communication Architecture for
General Purpose Computing, Proceedings of the 9th World Multiconference on
Systemics, Cybernetics and Informatics (WMSCI 2005) Volume IV, July 10-13, 2005,
Orlando, USA, 1-6.

Forsell, M. (2005). Step Caches—a Novel Approach to Concurrent Memory Access on
Shared Memory MP-SOCs, Proceedings of the 23th IEEE NORCHIP Conference,
November 21-22, 2005, Oulu, Finland, 74-77.

Forsell, M. (2006). Realizing Multioperations for Step Cached MP-SOCs, Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006,
Tampere, Finland, 77-82.

Forsell, M., Roivainen, J. (2008). Performance, Area and Power Trade-Offs in Mesh-Based
Emulated Shared Memory CMP Architectures, Proceedings of the 2008 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’08), July 14-17, 2008, Las Vegas, USA, 471-477.

Forsell, M. (2009). Configurable Emulated Shared Memory Architecture for general purpose
MP-SOCs and NOC regions, Proceedings of the 3rd ACM/IEEE International
Symposium on Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

Fortune, S., Wyllie, J. (1978). Parallelism in Random Access Machines, Proceedings of 10th
ACM STOC, Association for Computing Machinery, New York, 1978, 114-118.

Hennessy, J., Patterson, D. (2003). Computer Architecture: A Quantitative Approach, third
edition, Morgan Kaufmann Publishers Inc., Palo Alto, 2003.

Imai, M., Hayakawa, Y., Kawanaka, H., Chen, W., Wada, K., Castanho, C., Okajima, Y.,
Okamoto, H. (2000). A Hardware Implementation of PRAM and Its Performance
Evaluation, Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed
Processing, May 1-5, 2000, Cancun, Mexico, LNCS 1800, 143 - 148.

Intel. (2006). Research at Intel From a Few Cores to Many: A Tera-scale Computing Research
Overview, White Paper, Intel, 2006.

ITRS (2007). International Technology Roadmap for Semiconductors, Semiconductor
Industry Assoc., 2007; http://public.itrs.net/.

Parallel	and	Distributed	Computing60

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 61

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

Parallel	and	Distributed	Computing60

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 61

Jaja, J. (1992). Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.
Jantch, A. (2003). Networks on Chip (edited by A. Jantsch and H. Tenhunen), Kluver

Academic Publishers, Boston, 2003, 173-192.
Kaxiras, S., Hu, Z. (2001). Cache Decay: Exploiting Generational Behavior to Reduce Cache

Leakage Power, Proceedings of the International Symposium on Computer Architecture,
June 30-July 4, 2001, Göteborg, Sweden, 240-251.

Karp, R., Miller, R. (1969). Parallel Program Schemata, Journal of Computer and System
Sciences 3, 2 (1969), 147-195.

Keller, J., Keßler, C., Träff, J. (2001). Practical PRAM Programming, Wiley, New York, 2001.
Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Hennessy, J., Horowitz, M.,

Lam, M. (1992). The Stanford Dash Multiprocessor, IEEE Computer 25, (March
1992), 63-79.

Leppänen, V. (1996). Studies on the realization of PRAM, Dissertation 3, Turku Centre for
Computer Science, University of Turku, Turku, 1996.

Pamunuwa, D., Zheng, L-R., Tenhunen, H. (2003). Maximizing Throughput Over Parallel
Wire Structures in the Deep Submicrometer Regime, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 11, 2 (April 2003), 224-243.

Ranade, A., Bhatt, S., Johnson, S. (1987). The Fluent Abstract Machine, Technical Report Series
BA87-3, Thinking Machines Corporation, Bedford, 1987.

Ranade, A. (1991). How to Emulate Shared Memory, Journal of Computer and System Sciences
42, (1991), 307--326.

Schwarz, J. (1966). Large Parallel Computers, Journal of the ACM 13, 1 (1966), 25-32.
Schwarz J. (1980). Ultracomputers, ACM Transactions on Programming Languages and Systems

2, 4 (1980), 484-521.
Swan, R., Fuller, S., Siewiorek, D. (1977). Cm*—A Modular Multiprocessor, Proceedings of

NCC, 645-655, 1977.
Valiant L. (1990). A Bridging Model for Parallel Computation, Communications of the ACM

33, 8 (1990), 103-111.
Vishkin, U. (2007). Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel

Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see
http://www.hppc-workshop.org/HPPC07/talks.html).

Vishkin, U., Caragea, G., Lee, B. (2008). Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, Handbook of Parallel
Computing—Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif),
Chapman & Hall/CRC, Boca Raton, 2008, 5-1—5-60.

Appendix A. Core instruction set of TOTAL ECLIPSE

The core instruction set of the integer-only version of the proposed MBTAC processor of
TOTAL ECLIPSE consists of an instruction that can be further divided to the A ALU
subinstructions, M memory subinstructions, a single compare unit subinstruction, a single
sequencer subinstruction, O immediate operand subinstructions, and Wb write back
subinstructions in the PRAM mode and to an ALU subinstruction, a memory subinstruction,
a sequencer subinstruction, and two write back subinstructions in the NUMA mode. The
following list shows the available subinstructions for each class of units:

Memory Unit subinstructions
LDBn Xx Load byte from memory n address Xx in MU n
LDBUn Xx Load byte from memory n address Xx unsigned in MU n
LDHn Xx Load halfword from memory n address Xx in MU n
LDHUn Xx Load halfword from memory n address Xx unsigned in MU n
LDn Xx Load word from memory n address Xx in MU n
STBn Xx,Xy Store byte Xx to memory n address Xy in MU n
STHn Xx,Xy Store halfword Xx to memory n address Xy in MU n
STn Xx,Xy Store word Xx to memory n address Xy in MU n
MADDn Xx,Xy Add multiple Xx to active memory Xy in MU n
MSUBn Xx,Xy Subtract multiple Xx to active memory Xy in MU n
MANDn Xx,Xy And multiple Xx to active memory Xy in MU n
MORn Xx,Xy Or multiple Xx to active memory Xy in MU n
MMAXn Xx,Xy Max multiple Xx to active memory Xy in MU n
MMAXUn Xx,Xy Max unsigned multiple Xx to active memory Xy in MU n
MMINn Xx,Xy Min multiple Xx to active memory Xy in MU n
MMINUn Xx,Xy Min unsigned multiple Xx to active memory Xy in MU n
MPADDn Xx,Xy Arbitrary multiprefix add Xx to active memory Xy in MU n
MPSUBn Xx,Xy Arbitrary multiprefix subtract Xx to active memory Xy in MU n
MPANDn Xx,Xy Arbitrary multiprefix and Xx to active memory Xy in MU n
MPORn Xx,Xy Arbitrary multiprefix or Xx to active memory Xy in MU n
MPMAXn Xx,Xy Arbitrary multiprefix max Xx to active memory Xy in MU n
MPMAXUn Xx,Xy Arbitrary multiprefix max unsigned Xx to active memory Xy in

 MU n
MPMINn Xx,Xy Arbitrary multiprefix min Xx to active memory Xy in MU n
MPMINUn Xx,Xy Arbitrary multiprefix min unsigned Xx to active memory Xy in MU n
BMADDn Xx,Xy Begin add multiple Xx to active memory Xy in MU n
BMSUBn Xx,Xy Begin subtract multiple Xx to active memory Xy in MU n
BMANDn Xx,Xy Begin and multiple Xx to active memory Xy in MU n
BMORn Xx,Xy Begin or multiple Xx to active memory Xy in MU n
BMMAXn Xx,Xy Begin max multiple Xx to active memory Xy in MU n
BMMAXUn Xx,Xy Begin max unsigned multiple Xx to active memory Xy in MU n
BMMINn Xx,Xy Begin min multiple Xx to active memory Xy in MU n
BMMINUn Xx,Xy Begin min unsigned multiple Xx to active memory Xy in MU n
EMADDn Xx,Xy End add multiple Xx to active memory Xy in MU n
EMSUBn Xx,Xy End subtract multiple Xx to active memory Xy in MU n
EMANDn Xx,Xy End and multiple Xx to active memory Xy in MU n
EMORn Xx,Xy End or multiple Xx to active memory Xy in MU n
EMMAXn Xx,Xy End max multiple Xx to active memory Xy in MU n
EMMAXUn Xx,Xy End max unsigned multiple Xx to active memory Xy in MU n
EMMINn Xx,Xy End min multiple Xx to active memory Xy in MU n
EMMINUn Xx,Xy End min unsigned multiple Xx to active memory Xy in MU n
BMPADDn Xx,Xy Begin arbitrary multiprefix add Xx to active memory Xy in MU n
BMPSUBn Xx,Xy Begin arbitrary multiprefix subtract Xx to active memory Xy in MU n
BMPANDn Xx,Xy Begin arbitrary multiprefix and Xx to active memory Xy in MU n
BMPORn Xx,Xy Begin arbitrary multiprefix or Xx to active memory Xy in MU n

Parallel	and	Distributed	Computing62

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 63

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

Parallel	and	Distributed	Computing62

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

TOTAL	ECLIPSE—An	Efficient	Architectural		
Realization	of	the	Parallel	Random	Access	Machine 63

BMPMAXn Xx,Xy Begin arbitrary multiprefix max Xx to active memory Xy in MU n
BMPMAXUn Xx,Xy Begin arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
BMPMINn Xx,Xy Begin arbitrary multiprefix min Xx to active memory Xy in MU n
BMPMINUn Xx,Xy Begin arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n
EMPADDn Xx,Xy End arbitrary multiprefix add Xx to active memory Xy in MU n
EMPSUBn Xx,Xy End arbitrary multiprefix subtract Xx to active memory Xy in MU n
EMPANDn Xx,Xy End arbitrary multiprefix and Xx to active memory Xy in MU n
EMPORn Xx,Xy End arbitrary multiprefix or Xx to active memory Xy in MU n
EMPMAXn Xx,Xy End arbitrary multiprefix max Xx to active memory Xy in MU n
EMPMAXUn Xx,Xy End arbitrary multiprefix max unsigned Xx to active memory Xy in
 MU n
EMPMINn Xx,Xy End arbitrary multiprefix min Xx to active memory Xy in MU n
EMPMINUn Xx,Xy End arbitrary multiprefix min unsigned Xx to active memory Xy in
 MU n

Write Back subinstructions
WBn Xx Write Xx to register Rn.

Arithmetic and Logical Unit subinstructions
ADDn Xx,Xy Add Xx and Xy in ALU n
SUBn Xx,Xy Subtract Xy from Xx in ALU n
MULn Xx,Xy Multiply Xx by Xy in ALU n
MULUn Xx,Xy Multiply Xx by Xy in ALU n unsigned
DIVn Xx,Xy Divide Xx by Xy in ALU n
DIVUn Xx,Xy Divide Xx by Xy in ALU n unsigned
MODn Xx,Xy Determine Xx modulo Xy in ALU n
MODUn Xx,Xy Determine Xx modulo Xy in ALU n unsigned
LOGDn Xx Determine ROUNDDOWN(Log2 Xx) in ALU n
LOGUn Xx Determine ROUNDUP(Log2 Xx) in ALU n
SELn Xx,Xy Select Xx or Xy according to the result of previous compare operation
 in functional unit chain (Xx if res=1, Xy if res=0)
MAXU Xx,Xy Determine maximum of Xx,Xy in ALU n unsigned
MAX Xx,Xy Determine maximum of Xx,Xy in ALU n
MINU Xx,Xy Determine minimum of Xx,Xy in ALU n unsigned
MIN Xx,Xy Determine minimum of Xx,Xy in ALU n
SHRn Xx,Xy Shift right Xx by Xy in ALU n
SHLn Xx,Xy Shift left Xx by Xy in ALU n
SHRAn Xx,Xy Shift right Xx by Xy in ALU n arithmetic
RORn Xx,Xy Rotate right Xx by Xy in ALU n
ROLn Xx,Xy Rotate left Xx by Xy in ALU n
ANDn Xx,Xy And of Xx and Xy in ALU n
ORn Xx,Xy Or of Xx and Xy in ALU n
XORn Xx,Xy Exclusive or of Xx and Xy in ALU n
ANDNn Xx,Xy And not of Xx and Xy in ALU n

ORNn Xx,Xy Or not of Xx and Xy in ALU n
XNORn Xx,Xy Exclusive nor of Xx and Xy in ALU n
CSYNCn Xx Set up barrier synchronization group Xx in ALU n
SEQn Xx,Xy Set result=-1 if Xx = Xy else result=0 in ALU n
SNEn Xx,Xy Set result=-1 if Xx ≠ Xy else result=0 in ALU n
SLTn Xx,Xy Set result=-1 if Xx < Xy else result=0 in ALU n
SLEn Xx,Xy Set result=-1 if Xx ≤ Xy else result=0 in ALU n
SGTn Xx,Xy Set result=-1 if Xx > Xy else result=0 in ALU n
SGEn Xx,Xy Set result=-1 if Xx ≥ Xy else result=0 in ALU n
SLTUn Xx,Xy Set result=-1 if Xx < Xy unsigned else result=0 in ALU n
SLEUn Xx,Xy Set result=-1 if Xx ≤ Xy unsigned else result=0 in ALU n
SGTUn Xx,Xy Set result=-1 if Xx > Xy unsigned else result=0 in ALU n
SGEUn Xx,Xy Set result=-1 if Xx ≥ Xy unsigned else result=0 in ALU n

Immediate Operand Input subinstructions
OPn d Input value d into operand n

Compare Unit subinstructions
SEQ Xx,Xy Set IC if Xx equals Xy
SNE Xx,Xy Set IC if Xx not equals Xy
SLT Xx,Xy Set IC if Xx is less than Xy
SLE Xx,Xy Set IC if Xx is less than or equals Xy
SGT Xx,Xy Set IC if Xx is greater than Xy
SGE Xx,Xy Set IC if Xx is greater than or equals Xy
SLTU Xx,Xy Set IC if Xx is less than Xy unsigned
SLEU Xx,Xy Set IC if Xx is less than or equals Xy unsigned
SGTU Xx,Xy Set IC if Xx is greater than Xy unsigned
SGEU Xx,Xy Set IC if Xx is greater than or equals Xy unsigned

Sequencer subinstructions
BEQZ Ox Branch to Ox if IC equals zero
BNEZ Ox Branch to Ox if IC not equals zero
JMP Xx Jump to Xx
JMPL Xx Jump and link PC+1 to register RA
TRAP Xx Trap
JOIN Xx Join all the threads to a NUMA bunch Xx
SPLIT Xx Split all the current NUMA bunches back to PRAM mode threads

Parallel	and	Distributed	Computing64 Facts,	Issues	and	Questions	-	GPUs	for	Dependability 65

Facts,	Issues	and	Questions	-	GPUs	for	Dependability	

Bernhard	Fechner

X

Facts, Issues and Questions -

GPUs for Dependability

Bernhard Fechner
FernUniversität in Hagen

Parallel Computing and VLSI Group

1. Introduction

Graphics Processing Units (GPUs) offer massive parallelism, comprising many actual
paradigms like manycore, multithreading and SIMD. Today, nearly every computer is
equipped with at least one graphics card, containing one or more GPUs bringing massive
parallelism to the desktop. GPUs are usually used in their main function, that is, to compute
visibility, lightning, perspective, etc. in games. As this technology is widely used, it is low-
cost. In the majority of the cases, graphic cards do not spend their entire lives by executing
game code. Thus, such a massive parallel system is underchallenged most of the time.
Shortly after the availability of comfortable programming environments, based on CUDA
(Compute Unified Device Architecture) or HLSL (high-level shader language), researchers
have become interested in using this power for general-purpose computing (GPGPU,
General-Purpose computing on the GPU). Thus, different applications originated, e.g.
physics, cryptography 0, DNA sequencing 0 and medical imaging. For further examples and
overview, see 0 and 0.
The trend to compute such workloads with GPUs will go on as the DirectX 11 (compute) or
the OpenCL 0 standards show. The fault-tolerant execution of (sensible) workloads on GPUs
was – to the knowledge of the author – never proposed. Sensible computations should be
carried out in a reliable way. What is the sense of a computation to find a private key if the
program is correct but the hardware is subjected to faults and the program never finds the
key? E.g. transient faults can be caused from fluctuations in the main current, radiation or
RAMs not running within their specification etc. What if an encryption is faulty due to
temporal faults or how can we detect a faulty medical diagnosis? The need to do
computations precisely has led to the development of more sophisticated and sometimes
expensive graphics processing units 0, needed by CAD applications. Larrabee 0 is a many-
core visual computing architecture. It uses multiple in-order x86 CPU cores that are
augmented by a wide vector processor unit, as well as some fixed function logic blocks. This
provides much higher performance per watt and per unit of area than out-of-order CPUs on
highly parallel workloads. Vision4ce 0 launched a new line of General-purpose Rugged
Image Processing (GRIP) products at the recent SPIE Defense and Security Symposium. The
GRIP-Beta showed GPGPU-based image processing demonstrations, analog and Gigabit

4

Parallel	and	Distributed	Computing64 Facts,	Issues	and	Questions	-	GPUs	for	Dependability 65

Facts,	Issues	and	Questions	-	GPUs	for	Dependability	

Bernhard	Fechner

X

Facts, Issues and Questions -

GPUs for Dependability

Bernhard Fechner
FernUniversität in Hagen

Parallel Computing and VLSI Group

1. Introduction

Graphics Processing Units (GPUs) offer massive parallelism, comprising many actual
paradigms like manycore, multithreading and SIMD. Today, nearly every computer is
equipped with at least one graphics card, containing one or more GPUs bringing massive
parallelism to the desktop. GPUs are usually used in their main function, that is, to compute
visibility, lightning, perspective, etc. in games. As this technology is widely used, it is low-
cost. In the majority of the cases, graphic cards do not spend their entire lives by executing
game code. Thus, such a massive parallel system is underchallenged most of the time.
Shortly after the availability of comfortable programming environments, based on CUDA
(Compute Unified Device Architecture) or HLSL (high-level shader language), researchers
have become interested in using this power for general-purpose computing (GPGPU,
General-Purpose computing on the GPU). Thus, different applications originated, e.g.
physics, cryptography 0, DNA sequencing 0 and medical imaging. For further examples and
overview, see 0 and 0.
The trend to compute such workloads with GPUs will go on as the DirectX 11 (compute) or
the OpenCL 0 standards show. The fault-tolerant execution of (sensible) workloads on GPUs
was – to the knowledge of the author – never proposed. Sensible computations should be
carried out in a reliable way. What is the sense of a computation to find a private key if the
program is correct but the hardware is subjected to faults and the program never finds the
key? E.g. transient faults can be caused from fluctuations in the main current, radiation or
RAMs not running within their specification etc. What if an encryption is faulty due to
temporal faults or how can we detect a faulty medical diagnosis? The need to do
computations precisely has led to the development of more sophisticated and sometimes
expensive graphics processing units 0, needed by CAD applications. Larrabee 0 is a many-
core visual computing architecture. It uses multiple in-order x86 CPU cores that are
augmented by a wide vector processor unit, as well as some fixed function logic blocks. This
provides much higher performance per watt and per unit of area than out-of-order CPUs on
highly parallel workloads. Vision4ce 0 launched a new line of General-purpose Rugged
Image Processing (GRIP) products at the recent SPIE Defense and Security Symposium. The
GRIP-Beta showed GPGPU-based image processing demonstrations, analog and Gigabit

4

Parallel	and	Distributed	Computing66

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 67

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

Parallel	and	Distributed	Computing66

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 67

Ethernet video streams and the functionality in the Gripworkx image processing
framework. Vision4ce addresses rugged embedded computing challenges that might
normally be served by more expensive FPGA approaches.
This work presents fundamental research, answering the question of how a system,
equipped with multiple graphics cards can be harnessed to detect, predict, prevent and
tolerate faults. Naturally, we do not restrict ourselves to computations running on the GPUs
alone and also consider the outsourcing of application parts from the CPU to the GPU. We
are aware of the fact that this evaluation can only be exemplary – but it can serve as a
starting point and a priming of future work. All mechanisms are fully implementable in
software and do not require special or modified hardware.
This work is structured as follows: we first present examples of current GPU
implementations in Section 2. Section 0 shows how the massive parallelism of modern GPUs
can be exploited for dependability. Section 0 summarizes and concludes the chapter.

2. Case Study and Programming Model

2.1 Case Study: The NVidia GeForce 8800 GTX
In this Section, we describe the basic architecture of the G80 GPU family from NVidia as this
will help to understand the possibilities for dependability. The GeForce 8800 GTX is divided
into 16 streaming multiprocessors (SMs), each containing eight streaming processors (SPs),
making a total of 128 SPs. Each SM has 8,192 registers that are shared among all threads
assigned to the SM. The threads on a SM core execute in SIMD (single-instruction, multiple-
data) fashion, with the instruction unit (IU) broadcasting the current instruction to the eight
SPs. Each SP has one arithmetic unit that performs single-precision floating point arithmetic
and 32-bit integer operations. Fig. 1 shows an overview of the GeForce 8800 GTX.

Fig. 1. The NVidia GeForce 8800 GTX

Each SM has two special functional units (SFUs), which perform more complex FP operations
such as transcendental functions. The arithmetic units and the SFUs are fully pipelined.
Each FP instruction is operating on up to 8 bytes of data. An important factor that affects
both performance and quality is the precision for operations and registers. The GeForce
Series support 32 bit and 16 bit floating point formats (called float and half, respectively) 0.
The float data type resembles IEEE754 (s23e8), half has an s10e5 format. Some models, e.g.
the G200 also support double precision in IEEE754R-format (one double-precision unit per
SM). The processors support gathering and scattering. Thus, they are capable of reading and
writing anywhere in local memory on the graphics card or in other parts of the system. The
G80 has several on-chip memories that can exploit data locality and data sharing, e.g. a
64 KB off-chip constant memory and an 8 KB single-ported constant memory cache in each
SM. If multiple threads access the same address during the same cycle, the cache broadcasts
the address to those threads with the same latency as a register access. In addition to the
constant memory cache, each SM has a 16 KB shared (data) memory that is either written and
reused or shared among threads. Finally, for read-only data that is shared by threads but not
necessarily to be accessed simultaneously, the off-chip texture memory and the on-chip
texture caches exploit 2D data locality.

2.2 The CUDA Programming Model
The CUDA programming model consists of ANSI C supported by several keywords and
constructs. CUDA treats the GPU as a coprocessor that executes data-parallel kernel
functions. The developer supplies a single source program encompassing both host (CPU, c)
and kernel (GPU, cu) code. The host code transfers data and code to and from the GPU's
global memory via API calls and initiates the kernel. At the highest level, each kernel creates
a single grid, which consists of many thread blocks. Each thread block is assigned to a single
SM for the duration of its execution. A thread block consists of a limited number of threads
which can cooperate. The maximum number of threads per block is 512. Threads from
different blocks cannot cooperate. Each thread can read/write from/to thread registers,
thread-local memory, shared memory in a block, the global memory and read from constant
memory or the texture memory in a grid. The host has read/write access on the constant,
global and texture memory. Threads in the same block can share data through the shared
memory and can perform barrier synchronization. Threads are otherwise independent, and
synchronization across thread blocks is safely accomplished only by terminating the kernel.
The IU manages things in groups of parallel threads, called warps. SMs can perform zero-
overhead scheduling to interleave warps on an instruction-by-instruction basis to hide the
latency of global memory accesses and long-latency arithmetic operations. When one warp
stalls, the SM can switch to a ready warp in the same or different thread block assigned to
the SM. Each warp executes in SIMD fashion, with the IU broadcasting the same instruction
to the eight cores on a SM on four consecutive clock cycles. Since one pixel equals one
thread, and since the SPs are scalar, the compiler schedules pixel elements for execution
sequentially: red, then green, then blue, and then alpha.
Fig. 2 shows a Thread Processing Cluster (TPC) used on the G200 series with 10 TPCs in
total. As depicted, a TPC comprises multiple IUs, SPs and local memory.

Parallel	and	Distributed	Computing68

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00

Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 69

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00

Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

Parallel	and	Distributed	Computing68

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00

Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 69

Fig. 2. A Thread Processing Cluster (TPC)

2.3 Experimental Setup and Clock Variation
In this Section we present the results from a first experimental evaluation by clock variation,
since we wanted to artificially increase the fault rate, observe the system behavior
concerning reliability and depict basic performance figures.
Our experimental setup consists of a 6 GB main memory Core i7 system, configured with
two NVidia GTX260 cards (PCIe 2.0 x16). The two hard disks (500 GB) are in RAID 0 mode.
In the first experiment with SLI, we adjusted the engine, shader and memory clock
frequency. A SLI-system is constructed on hardware level and must be configured on
software level. Either the GPUs work independently in non-SLI mode to support multi-view
displays or all GPUs in a SLI configuration appear as a single unit, mainly used to speed up
3D applications and computations. For the CUDA programming environment, a non-SLI
system appears as a set of graphics cards, a SLI system as one graphics card. Multiple GPUs
appear as multiple host threads. The clock rate adjustment in SLI mode is done for both
cards simultaneously, in non-SLI mode, both cards have to be configured separately. The
maximum clock rate of (engine=800, shader=1650, memory=2700) MHz sometimes resulted
in execution faults of a kernel in non-SLI mode and complete system failures in SLI mode.
Therefore, we applied less aggressive settings and varied the clock frequency between
(engine=500, shader=1150, memory=1900) and (700, 1400, 2500) MHz. The workload
consisted of a computation of the blackscholes formula for 512 iterations. The same
workload was also computed on the CPU. Besides precision issues (see Section 0) no
deviation except for the highest clock settings occurred. Fig. 3 shows the influence of the
variation of the clock frequencies of the engine, shader and memory on performance (SLI).
Note that the bandwidth is the internal card bandwidth and not the bandwidth of the
external interface (PCIe). From the experiments two simple but important conclusions can
be derived:

1) a system in SLI mode is less reliable than one in non-SLI mode. Reliable
calculations should be carried out on a non-SLI system. A SLI system has more
advantage in computing-intensive applications. For bandwidth-intensive
applications a non-SLI system should be preferred.

2) Within the overclocking experiments, the GPU rather tended to completely reject
the execution of a kernel instead of doing faulty computations (overclocking
applied at the beginning of the execution).

We are aware of the fact that these figures are only exemplary, but the results can serve as
an orientation.

Fig. 3. System performance while varying clock frequencies

2.4 Bandwidth Experiments
The question in this Section is to determine the bandwidth in Mbytes per second for
different transfer sizes and different configurations of a SLI and non-SLI system. The
bandwidth is important e.g. when the results of a redundant computation must be
transferred back to the CPU for a comparison. The basic bandwidths of PCIe 2.0 interfaces
are depicted in Table 1.

PCIe-Slot Lanes/ Direction Bandwidth Clock

x1 1 0.5 GByte/s 2.5 GHz

x4 4 2 GByte/s 2.5 GHz

x8 8 4 GByte/s 2.5 GHz

x16 16 8 GByte/s 2.5 GHz

x32 32 16 GByte/s 2.5 GHz

Table 1. Basic bandwidths of PCIe 2.0

Blocks with a certain size were either transferred from the host to the device, from the
device to the host and from device to device. The maximum bandwidth for each device
within the experiments is 8 GBytes/s. Fig. 4 shows the bandwidths for pageable and pinned
memory. Pinned memory allows the compute kernels to access and share the host’s
memory. We applied the lowest clock settings (engine=500, shader=1150, memory=1900) to

7

70

10
92

50

13
69

14

18
62

00

19
60

00

20
58

00

21
56

00

22
54

00

23
52

00

24
50

00

25
48

00

Engine * Shader * Memory (MHz)

Time (s)

GB/s

GOps/s

Parallel	and	Distributed	Computing70

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 71

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

Parallel	and	Distributed	Computing70

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 71

determine a lower bandwith bound. From the results, we see that the host to device transfer
(pinned memory) is the slowest form to transfer data, followed by the device to host
(pageable) communication. Starting from block sizes greater than 65536 bytes, the device to
device communication is the fastest way to transfer data.

Fig. 4. Bandwidth for different block transfer sizes

We note that the experimental bandwidth for the device to device communication is well
above the limit of the PCIe 2.0 x16 specification. The reason for this is that transfers are done
on the graphics card and do not pass the external PCIe bus.

2.5Precision Experiments
The realm of (COTS) GPUs is not precision, it is speed. Thus, applications running on GPUs
must be questioned in general. Most GPUs use IEEE754R as floating-point format. In
comparison to IEEE754 rounding occurs, leading to imprecision. But there are several work-
arounds, including mixed-precision 0.
In this Section, we do not focus on rounding errors. We prefer an empirical analysis, since
we do not know the implementation of the floating-point algorithms within the GPU.
Especially the implementation of transcendental functions implies approximation
algorithms, which we cannot know if we do not have a disclosure of the GPU
implementation, which is not available to the public due to commercial reasons. To the
knowledge of the author, this approach to examine the precision of GPUs is a novelty.
We present benchmarks to compute the deviation of GPU operations in comparison to a
CPU implementation and regard three different data types: integer, float and double. Half-
floats are supported by shaders and thus are not directly accessible by CUDA. As the half-
float is inspired by IEEE754, infinity exists if all bits of the exponent are one and the

1

10

100

1000

10000

100000

10
24

51
20

92
16

13
31

2

17
40

8

21
50

4

25
60

0

29
69

6

33
79

2

37
88

8

41
98

4

46
08

0

50
17

6

54
27

2

58
36

8

62
46

4

66
56

0

70
65

6

74
75

2

78
84

8

82
94

4

87
04

0

91
13

6

95
23

2

99
32

8

Ba
nd

w
id
th
 in

 M
by

te
s/
s

Block size in Bytes

Device to Host Pinned memory

Host to Device Pinned memory

Device to Host Pageable
memory

mantissa is zero. A half-float is a NaN if all exponent bits are one and the mantissa is not
zero. The set of precision benchmarks can be downloaded from 0.
The benchmarks implement vector operations in dim(224) with different data types and
operations, listed in Table 2. The vector data is randomized in each run. Each cell in Table 2
contains the maximum unsigned deviation from the CPU implementation. For
computations which could cause overflows, such as the exponential function, the size of the
numbers within the randomized vectors was limited.

Type Single Double INT32
Add 0 0 0
Sub 0 0 0
Mul 0 0 0
Div 0.125 0 0
Sqrt 0.0000152588 0 0
Sin 0.000000119209 1*10-16 0
Cos 0.000000119209 1*10-16 0
Log 0.000000953674 9*10-16 0
Exp 0.00195313 4*10-16 0

Table 2. Maximum absolute deviation from CPU implementation

Astonishingly, basic arithmetic operations such as add and sub or mul and all integer
operations do not lead to imprecision. From this, we can conclude that a scaling of small
floats to integers can improve the precision in such a way that the CPU and the GPU results
will not differ.

2.6Timing and mid-term Experiments
In this Section, we present the results of mid-term experiments to determine the timing
variance and reliability/ stability of results. By a mid-term evaluation, we mean an
observation interval of one week. A longer observation interval, e.g. over more than one
month would be appreciated, but was not feasible due to the timely restrictions of this work.
The precision benchmarks from subsection 0 were calculated 185 times. Additionally, we
calculated the workload on the CPU with one core and a parallelized version on the 8
available cores. We measured the time for each calculation, GPU and CPU and calculated
the average arithmetic mean. The graphics cards were configured in non-SLI mode. The
results are depicted in Fig. 5. For some cases (INT operations), the OpenMP implementation
was even faster than the GPU.

Parallel	and	Distributed	Computing72

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s
GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark
Co

s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 73

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s
GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark
Co

s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

Parallel	and	Distributed	Computing72

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s

GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark

Co
s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 73

Fig

Fro
mo
ap
tha
GP
bo

Fig

g. 5. Timing Resu

om the results, w
ore time – which
proximately need
an integers (in a
PU and CPU. Thu
th implementatio

g. 6. Benchmark t

1

10

100

1000

10000

Ti
m
e
in
 m

s

GPU

CPU 1

CPU 8

0

50

100

150

200

250

Ti
m
e
in
 m

s

ults

we first see that
h is not surprisin
d twice the same
verage). We noti

us, we calculated
ons, GPU and mu

timing, variation,

1 Core

8 Cores

A
dd Su
b

M
ul

complex operati
ng, since there ar
e time than floats
iced that the tim
 the maximum, m

ulticore (even colu

 lowest, highest,

Bench

M
ul D
iv Si
n

Benchm

ons and transcen
re only two SFU

s, doubles approx
mings varied for
minimum and ave
umns), depicted i

average

hmark

Co
s

Ex
p

Lo
g

mark

ndental functions
Us on one SM. In
ximately twice th
both implement
erage timing valu
in Fig. 6. (floats).

g

Sq
rt

s need
ntegers
he time
ations,
ues for

The variations are e.g. caused by normal user interactions. We conclude that results cannot
be expected at a certain time. Thus, computations on graphics cards may not be currently
suitable for realtime applications. Interesting is that the timings from CPU and GPU have a
connection, i.e. if the timing for the GPU was large, the timing of the corresponding CPU
implementation was also higher. The deviation resulted in each run and the results seem to
correlate. This is surprising, since we implemented an asynchronous version for the GPU
which ran independently from the CPU. During the experiments, no unusual deviation
(except precision) between CPU and GPU occurred. The results were stable during the
whole observation period.

3. Opportunities for Dependability

In this Section, we will discuss the opportunities for dependability offered by graphics
cards. Note, that our terminology is based on 0. We will first have a look at the section means
from the dependability tree (from 0) in Fig. 7. Then we will discuss the means fault
prevention, fault-tolerance, fault removal and fault forecasting in the following subsections.
We do not specify the exact nature (e.g. bit-flip faults, transmission faults, permanent) of
faults within a model, since we do not want to restrict our horizon by regarding at a special
set of fault types but we are aware of the fact, that a fault model has to be developed later
on.

Fig. 7: A section from the dependability tree

We distinguish different levels on which different dependability means can be applied.
Therefore, we depict the notational conventions in Table 3 and note the level, where zero (0)
means the top level.

Parallel	and	Distributed	Computing74

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 75

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

Parallel	and	Distributed	Computing74

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 75

Level Name Meaning
0 Host The host or the system;

a computing system containing one or more CPUs and
graphics hardware

Integrated Computing Hardware
1 CPU The central processing unit
2 Processing core A core within a CPU
3 Thread A hardware thread, consisting of registers etc.

Graphics Hardware
1 Device A single graphics card
2 GPU A graphics processing unit
3 GP core A core within a GPU
4 Grid A set of thread blocks
5 Thread Block (TB) A thread block consists of multiple threads

Table 3. Notational Conventions

3.1 Fault Prevention
We note that the development of an additional GPU kernel, doing the same task as the CPU
at the same time, automatically involves diversity in hardware, software and design, since
through different implementations and by using different compilers, we have diversity,
considering the fact that we have only one system, but multiple versions of a program and
multiple hardware realizations. Note, that the forecast of faults can also be seen as essential
part of fault prevention (see Section 0 for details).

3.2 Fault-Tolerance
Basic means of fault-tolerance are structural, temporal, informational and functional
redundancy. Naturally, all codes involving informational redundancy can be computed by
graphics cards. An interesting idea is to speed up the calculation of Reed-Solomon-Codes by
GPUs 0. Functional redundancy can be easily achieved by either computing a calculation on
the CPU and the GPU, involving diversity in software or by programming a set of functions
again for the GPU. When voting between the results, we can use the inherent voting
capability supported by CUDA.

3.2.1 Structural Redundancy
Structural redundancy can be achieved by integrating multiple graphics cards into a single
computing system. The result is massive redundancy, e.g. via dual, triple, quadruple
configurations. Naturally, we are not able to tolerate permanent CPU faults, but permanent
GPU faults. Note, that it is also possible to combine mainboard GPUs and external graphics
cards. One should be aware of the fact that multiple (PCIe) graphics cards can be installed
simultaneously, deriving diversity in hardware. The multiprocessing-paradigm has also
arrived for GPUs. NVidia's GeForce 9800 GX2 contains a pair of 65 nm G92 graphics

processors running at 600 MHz. The ATI Radeon™ HD 4870 X2 has two 55 nm GPUs, a 512-
bit GDDR3 memory interface and the option to construct a dual-mode CrossfireX
configuration, resulting in a total of four GPUs. To lower physical dependencies, one should
carry out redundant computations on different cards, then on different GPUs, then on
different grids. The program/ operating system can additionally implement a scheduler,
issuing different redundant computations to different parts of the graphics subsystem. The
redundant computations can be called from the main program and run in parallel to the
CPU calculation. A comparison can be done by the CPU or the GPU. However, the
production of results must be synchronized. Fig. 8 shows the integration. Disadvantages
besides synchronization are that the user must decide which code should be verified by the
GPU and the source code of the application must be modified. Additionally, only system
relevant routines could be modified.

Fig. 8. CPU/ GPU redundant computations

From Fig. 8 we see that the combination of multiple host thread callers and GPU threads is
possible. To do a synchronization without waiting times for the CPU and/ or the GPU, the
results could be written into a buffer, where each calculation receives its very own
identification. Thus, we do not have to wait for the results to arrive. A disadvantage is that
in case of a rollback, already calculated results must be discarded. The synchronization of
host and GPU threads offers a new perspective for research.

3.2.2 Temporal Redundancy
Temporal redundancy is an essential property of a multithreaded system, thus also for
graphics cards comprising hundreds or thousands of threads. A temporal redundant
computation can be done on every accessible element of the graphics card by redoing the
calculation on the same or (better) on a different component. The only point where
structural or temporal redundant threads are dependent is at the checking of results. The
implementation in software is difficult, since CUDA does not differ between physical and

Parallel	and	Distributed	Computing76

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU  GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event

Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU  GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU  CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 77

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU  GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event

Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU  GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU  CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

Parallel	and	Distributed	Computing76

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU  GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event

Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU  GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU  CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 77

virtual threads. Here, data dependencies have to be regarded. Fig. 9 illustrates two possible
forms of temporal redundancy.

Independent Data Dependent Data
Fig. 9. Temporal Redundancy, Data Dependencies

Temporal redundancy on GPUs leads again to synchronization problems.

3.3 Fault Removal
Apart from the ECC fault removal within the GPU memory 0, fault removal is a hard thing
to implement by using GPUs, because the faulty unit must be located and a prior and sane
state must be restored. On a fault-free computation we must store a checkpoint. Here, we
can fallback to classical schemes storing the checkpoint on hard disks or to store the
checkpoint on the cards. The first thing is to use a triple card configuration to detect, locate
and remove the fault within the graphics configuration. Here, the graphics cards ought to
execute the same code, not strictly synchronously, but in a way that faults cannot propagate
between cards. We do not discuss the removal of faults initiated from the CPU to the GPU
(CPU  GPU) here, since our aim is to assist CPU calculations.

3.3.1 Watchdogs
A GPU can be periodically triggered by an external timer to monitor activities. The timer
routine must be able to directly access the memory of the graphics card. The external timer
is needed, because GPUs do not possess such a capability at the moment. The activities are
e.g. CPU or fixed disk functionalities. Any activity and the current time are e.g. written to
the texture memory. On a write of the current time, the last time will be copied to a different
location within memory. If the new timer value does not differ from the last one, a fault is
signaled. Furthermore, the GPU checks the activities. If no activities are recorded in the
timer interval (no value has been written to memory) a wakeup signal can be issued. Fig. 10
shows the algorithm.

Startup: E={} // Empty event list E in mem
On timer: // Compare new timestamp N with previous P in mem

If N>P: write P to previous timestamp in mem (P=>PP)
Else Signal “Timer Fault”

 If E={}:Signal “Event List Empty - Wakeup”

On event: Write event to E // Note that timer is also an event

Fig. 10. Watchdog Algorithm

The wakeup signal can be issued by writing to a dedicated memory location within the
host’s memory. If no OS restrictions apply, the GPU could write the recovery entry address
to the CPU program counter.

3.3.2 Fault Removal GPU  GPU
We can imagine something like a RAIGx configuration (Redundant Array of Independent
Graphics cards, according to a RAIDx – Redundant Array of Independent Disks). As we
have not hardware controller to support RAIG, we only support Software-RAIG. As RAIG,
we can consider the usual modes, listed in Table 4.

Mode Meaning, Configuration
0 Two or more graphics cards doing independent calculations
1 Two of more graphics cards doing the same calculations in parallel
5 Two graphics cards doing the same calculations in parallel,

securing the operands and the results in memory by a checksum, e.g. parity
Table 4. RAIG Modes

On the detection of a fault, we can vote among the results. If we include the CPU in the
calculations, we have a TMR configuration and therefore can locate the faulty unit, if two
results are equal. If the kernels are data independent, we can simply continue. If we have
dependencies among the calculations, we have the option to either copy all memory
contents and processing states of an assumed fault-free card to other all cards or copy the
modified parts (see subsection 0).

3.3.3 Removal GPU  CPU
Fault removal within a CPU from a GPU is possible but far more difficult. CPU states must
be written into the memory of the graphics card, also updated memory locations. We
suggest checkpoint intervals between 106 (~4 MBytes written) and 107 (~40 MBytes written)
memory writes. The checkpoint interval is restricted by the main memory of the graphics
card, expected reliability and system performance. The CPU state is also stored in the main
memory of the card. On a fault, the memory and CPU state must be transferred back. In Fig.
4 it is shown what bandwidth can be achieved. Since we cannot usually map the whole main
memory of the host to the device memory, since it is smaller than that of the host’s memory,
we must either do every memory write of the CPU simultaneously on the card, significantly
decreasing performance or do a fault removal for a single (system relevant) application
running on the CPU such as a daemon. For CPU states, there is no problem, because the

Parallel	and	Distributed	Computing78

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 79

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

Parallel	and	Distributed	Computing78

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

Facts,	Issues	and	Questions	-	GPUs	for	Dependability 79

amount of data to transfer is very small. Difficult is the injection of a previous state in the
CPU. Here we can imagine a state memory for each CPU which can be written from the
GPU and read by the CPU. Within a multicore system another (healthy) CPU can inject the
state into the faulty CPU.

3.4 Fault Forecasting (with GPUs)
For the prediction of faults, a history of faults must be stored in the graphics card memory,
because without knowledge of the past, we cannot predict future faults. The prediction can
be done with various methods, e.g. causal Bayesian networks, Hidden Markov Models
(HMMs) and the forward algorithm, etc. We propose to use the MCE (machine check
exception) of modern processors to enter a special routine to compute the prediction. We
assume the history to be organized as simple ring buffer of length N. The algorithm in Fig.
11 briefly sketches the method without going into details.

Startup: History (h2) location h=0;

CPU:

On_MCE: Write MCE-Flag, time to GPU memory, location h2
 h=h+1 % N
 Call prediction on GPU

GPU:
 On_Call: Do prediction using h2

Fig. 11. Basic (abstract) prediction of faults

Note, that the forecast with HMMs implies very small numbers and hence precision
problems. A small deviation can lead to faulty results. The scaling to big integers can limit
these effects.

4. Summary and Outlook

This work presents a first step and innovative approach to use GPUs for dependability. We
are aware of the fact that this work is rudimentary – but it can serve as a starting point and a
priming of future work. It has been shown how the existing parallelism of GPUs can be
exploited for dependability. Although we did not specify the exact nature of faults, since we
did not want to restrict our horizon by regarding at a special set of fault types, the results
and the physical context of the experimental setup strongly suggest to model transient
faults. To lower physical dependencies, one should carry out redundant computations on
different cards, then on different GPUs, then on different grids. From the experimental
results some conclusions can be derived: a system in SLI mode is less reliable than one in
non-SLI mode. Reliable calculations should be carried out on a non-SLI system. A system
configured in SLI has more (proven) advantage in computing-intensive applications. For
bandwidth-intensive applications a non-SLI system should be preferred. During the mid-
term experiments, no unusual deviation (except precision) between CPU and GPU results
occurred. The results were stable during the whole observation period.
Not everything is golden in this new world of opportunities. There are a few critical points
which must be regarded by future research:

 The precision of results: fortunately all basic arithmetic operations such as add, sub
and mul and all integer operations do not lead to imprecise results. A scaling of
small floats to integers can improve the precision in such a way that the CPU and
the GPU results will not differ.

 The synchronization of host and GPU threads offers a whole new perspective for
research. The varying timings from CPU and GPU have a connection per
computation, i.e. if the timing for the GPU was large, the timing of the
corresponding CPU implementation was also higher. This is surprising, since we
implemented an asynchronous version for the GPU which ought to run
independently on the CPU. In their current implementation, graphics cards are not
suitable for realtime applications.

Future work will include the implementation and analysis of the discussed dependability
means and a long-term reliability evaluation.

5. References

[1]ACM Queue, GPUs Not Just for Graphics, Vol. 6, No. 2, March/ April 2008, ISSN: 1542-7730.
[2]J.-S. Huang et al. (NVidia corporation), United States Patent 7053901, System and method

for accelerating a special purpose processor
[3]GPGPU. General-Purpose Computation Using Graphics Hardware, http://gpgpu.org,

checked 05/15/2008.
[4]NVidia. Technical Brief. NVidia GeForce 8800 GPU Architecture Overview, Nov. 2006.

http://www.NVidia.com/object/IO_37100.html, checked 05/15/2008.
[5]Larrabee: A Many-Core x86 Architecture for Visual Computing. Seiler, L., Carmean, D.,

Sprangle, D., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J.,
Cavin, R., Espasa, R., Grochowski, E., Juan, T., Hanrahan, P. Proceedings of
SIGGRAPH 2008.

[6]www.vision4ce.com, checked 06/16/2009.
[7]Schatz, M.C., Trapnell, C., Delcher, A.L., Varshney, A. (2007). "High-throughput sequence

alignment using Graphics Processing Units". BMC Bioinformatics 8:474: 474.
doi:10.1186/1471-2105-8-474

[8]J.C. Laprie, Dependability: Basic Concepts and Terminology Springer-Verlag, 1992. ISBN
0387822968

[9]I. Pharr, Matt. II. Fernando, Randima. GPU gems 2: programming techniques for high-
performance graphics and general-purpose computation, edited by Matt Pharr;
Randima Fernando, series editor. ISBN 0-321-33559-7.

[10]John D. Owens et al. A Survey of General-Purpose Computation on Graphics Hardware,
Computer Graphics Forum", 2007, http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x , pp. 80-113, vol. 26 , no. 1

[11]Khronos OpenCL Working Group. The OpenCL Specification. Version: 1.0, Revision: 33,
Aaftab Munshi (ed.), http://www.khronos.org/registry/cl/specs/opencl-
1.0.33.pdf

[12]http://pv.fernuni-hagen.de/~fechner/GPU.html, checked 06/03/2009
[13]http://www.NVidia.de/page/tesla_computing_solutions.html, checked, 06/03/2009.

Parallel	and	Distributed	Computing80

[14]Curry, M.L.; Skjellum, A.; Ward, H.L.; Brightwell, R. Accelerating Reed-Solomon coding in
RAID systems with GPUs. In Proc. Of the IEEE International Symposium on Parallel
and Distributed Processing, pp. 1 – 6, 2008.

[15]R. Strzodka, D. Göddeke. Mixed precision methods for convergent iterative schemes. In Proc.
of the 2006 Workshop on Edge Computing Using New Commodity Architectures,
pp. D–59–60, 2006.

[16]A. Moss, D. Page, N. Smart, Toward Acceleration of RSA Using 3D Graphics Hardware.
Cryptography and Coding, pp. 369–388. December 2007.

[17]N. Maruyama, A. Nukada, S. Matsuoka, Software-Based ECC for GPUs, Symp. on
Application Accelerators in High Performance Computing, 2009.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 81

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip

Reza	Sabbaghi-Nadooshan,	Mehdi	Modarressi	and	Hamid	Sarbazi-Azad

X

Shuffle-Exchange Mesh
Topology for Networks-on-Chip

Reza Sabbaghi-Nadooshan1, Mehdi Modarressi2,3

and Hamid Sarbazi-Azad2,3
1Islamic Azad University Central Tehran Branch, Tehran, Iran

2IPM School of computer science, Tehran, Iran
3Sharif University of Technology, Tehran, Iran

1. Introduction

Network-on-Chip (NoC) is a promising communication paradigm for multiprocessor
system-on-chips. This communication paradigm has been inspired from the packet-based
communication networks and aims at overcoming the performance and scalability problems
of the shared buses in multi-core SoCs (System on Chips)(Benini & Mecheli, 2002).
Although the concept of NoCs is inspired from the traditional interconnection networks,
they have some special properties which are different from the traditional networks.
Compared to traditional networks, power consumption is the first-order constraint in NoC
design (Ogras et al., 2005). As a result, not only should the designer optimize the NoC for
delay (for traditional networks), but also for power consumption.
The choice of network topology is an important issue in designing a NoC. Different NoC
topologies can dramatically affect the network characteristics, such as average inter-IP
distance, total wire length, and communication flow distributions. These characteristics, in
turn, determine the power consumption and average packet latency of NoC architectures.
In general, the topologies proposed for NoCs can be classified into two major classes,
namely regular tile-based and application-specific. Compared to regular tile-based
topologies, application-specific topologies are customized to give a higher performance for a
specific application. Moreover, if the sizes of the IP cores of a NoC vary significantly, regular
tile-based topologies may impose a high area overhead. This area overhead can be
compensated by some advantages of regular tile-based architectures. Regular NoC
architectures provide standard structured interconnects which ensures well-controlled
electrical parameters. Moreover, usual physical design problems like crosstalk, timing
closure, and wire routing and architectural problems such as routing, switching strategies
and network protocols can be designed and optimized for a regular NoC and be reused in
several SoCs.
The mesh topology is the simplest and most popular topology for today’s regular tile-based
NoCs. On the other hand, the shuffle-exchange topology is a well-known network structure
which was initially proposed by stone (Stone, 1971) as an efficient topology for
multicomputer interconnection networks. Several researchers have studied the topological

5

Parallel	and	Distributed	Computing80

[14]Curry, M.L.; Skjellum, A.; Ward, H.L.; Brightwell, R. Accelerating Reed-Solomon coding in
RAID systems with GPUs. In Proc. Of the IEEE International Symposium on Parallel
and Distributed Processing, pp. 1 – 6, 2008.

[15]R. Strzodka, D. Göddeke. Mixed precision methods for convergent iterative schemes. In Proc.
of the 2006 Workshop on Edge Computing Using New Commodity Architectures,
pp. D–59–60, 2006.

[16]A. Moss, D. Page, N. Smart, Toward Acceleration of RSA Using 3D Graphics Hardware.
Cryptography and Coding, pp. 369–388. December 2007.

[17]N. Maruyama, A. Nukada, S. Matsuoka, Software-Based ECC for GPUs, Symp. on
Application Accelerators in High Performance Computing, 2009.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 81

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip

Reza	Sabbaghi-Nadooshan,	Mehdi	Modarressi	and	Hamid	Sarbazi-Azad

X

Shuffle-Exchange Mesh
Topology for Networks-on-Chip

Reza Sabbaghi-Nadooshan1, Mehdi Modarressi2,3

and Hamid Sarbazi-Azad2,3
1Islamic Azad University Central Tehran Branch, Tehran, Iran

2IPM School of computer science, Tehran, Iran
3Sharif University of Technology, Tehran, Iran

1. Introduction

Network-on-Chip (NoC) is a promising communication paradigm for multiprocessor
system-on-chips. This communication paradigm has been inspired from the packet-based
communication networks and aims at overcoming the performance and scalability problems
of the shared buses in multi-core SoCs (System on Chips)(Benini & Mecheli, 2002).
Although the concept of NoCs is inspired from the traditional interconnection networks,
they have some special properties which are different from the traditional networks.
Compared to traditional networks, power consumption is the first-order constraint in NoC
design (Ogras et al., 2005). As a result, not only should the designer optimize the NoC for
delay (for traditional networks), but also for power consumption.
The choice of network topology is an important issue in designing a NoC. Different NoC
topologies can dramatically affect the network characteristics, such as average inter-IP
distance, total wire length, and communication flow distributions. These characteristics, in
turn, determine the power consumption and average packet latency of NoC architectures.
In general, the topologies proposed for NoCs can be classified into two major classes,
namely regular tile-based and application-specific. Compared to regular tile-based
topologies, application-specific topologies are customized to give a higher performance for a
specific application. Moreover, if the sizes of the IP cores of a NoC vary significantly, regular
tile-based topologies may impose a high area overhead. This area overhead can be
compensated by some advantages of regular tile-based architectures. Regular NoC
architectures provide standard structured interconnects which ensures well-controlled
electrical parameters. Moreover, usual physical design problems like crosstalk, timing
closure, and wire routing and architectural problems such as routing, switching strategies
and network protocols can be designed and optimized for a regular NoC and be reused in
several SoCs.
The mesh topology is the simplest and most popular topology for today’s regular tile-based
NoCs. On the other hand, the shuffle-exchange topology is a well-known network structure
which was initially proposed by stone (Stone, 1971) as an efficient topology for
multicomputer interconnection networks. Several researchers have studied the topological

5

Parallel	and	Distributed	Computing82

properties, routing algorithms, efficient VLSI layout and other aspects of shuffle-exchange
networks (Steinberg & Rodeh, 1981; Sparso et al., 1991).
The fact that shuffle-exchange networks have smaller diameter than equal sized meshes
motivates us to investigate them as the underlying topology for on-chip networks. In this
chapter, we propose a 2D shuffle-exchange mesh (SEM) topology for NoC implementation.
We compare the two most important NoC factors (latency and power) of the same sized
mesh and SEM NoC architectures. To this end, we have implemented the networks in
question in a NoC simulator. Using this simulator, a routing scheme for the SEM has been
developed and the performance and power consumption of the two networks have been
evaluated under similar working conditions. The simulation results show that the SEM,
while having equal implementation cost, consumes lesser energy and exhibits higher
performance compared to the traditional mesh network.
In this chapter, we will introduce the two-dimensional SEM topology, and develop a
deadlock-free routing algorithm for it. We also compare the power consumption and
network performance of equal sized SEM and mesh NoCs.

2. The 2D SEM topology

2.1 The structure
The traditional shuffle–exchange network (Figure 1 shows an 8-node shuffle exchange
network) is first proposed in (Stone, 1971). This topology is one of the most popular
interconnection architectures for multiprocessors and multicomputers due to its scalability
and distributed self routing capability (Kim & Veidenbaum, 1995). Several researchers have
studied the topological properties (Park & Agrawal, 1995; Pifarre et al., 1994) and efficient
VLSI layout (Steinberg & Rodeh, 1981; Sparso et al., 1991) of the shuffle-exchange networks.
In a shuffle-exchange network, each node is identified by a unique n-bit binary address,
hence the network size (number of nodes), N, equals 2n. Two nodes are connected to each
other if either their addresses differ in the last bit or one is a one-bit cyclic shift of the other.
To establish these connections, two operations namely, shuffle and exchange, are used. With
shuffle and exchange operations, message is circulated among network nodes until it
reaches the destination node.
These operators that are defined on an n-bit address pattern (An-1An-2 . . . A1A0) as follows:

Shuffle: (An-1An-2 . . . A1A0) = An-2An-3 . . . A1A0 An-1
Exchange: (An-1An-2 . . . A1A0) = An-1An-2 . . . A1A0

Each node generates two connections to other nodes via shuffle and exchange operations
and accepts two connections from other nodes. Since these connections are unidirectional,
the degree of the network is the same as the one-dimensional mesh (linear array). The
diameter of a shuffle-exchange network with size N is 2×log(N)-1 which is the minimum
distance between nodes 0 and 2n-1.
Some researchers, e.g. in (Padmanabhan, 1991), have proposed different flavors of shuffle-
exchange network structures and corresponding routing algorithms to allow more flexible
network sizes instead of a complete size of 2n.
In this chapter we propose a two-dimensional shuffle-exchange network architecture for
network-on-chips. The architecture of this network is depicted in Figure 2. In this network,
the nodes in each row and column form a shuffle-exchange network.

Fig. 1. An 8-node shuffle-exchange network; the bold lines are generated by exchange
operation and other lines are generated by shuffle operation (Dally & seitz, 1987).

In each direction, each node has two outgoing edges along which it can send data packets to
other nodes and two incoming links in each dimension and thus, has 8 unidirectional links
in two dimensions. Thus, the number of links per node in the 2D SEM is equal to that in a
traditional mesh network (i.e., 4 bidirectional links). Since the node degree of a topology has
an important contribution in (and usually acts as the dominant factor of) the network cost,
the 2D SEM and mesh NoCs have almost the same cost.
However, the network diameter of the 2D SEM is smaller than the diameter of the
equivalent mesh. More precisely, the diameters of a 2D SEM and a mesh are 4×log(2N0.5)-2
and 2(N0.5-1), respectively where N is the network size.

Fig. 2. A 2D SEM with 64 nodes

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 83

properties, routing algorithms, efficient VLSI layout and other aspects of shuffle-exchange
networks (Steinberg & Rodeh, 1981; Sparso et al., 1991).
The fact that shuffle-exchange networks have smaller diameter than equal sized meshes
motivates us to investigate them as the underlying topology for on-chip networks. In this
chapter, we propose a 2D shuffle-exchange mesh (SEM) topology for NoC implementation.
We compare the two most important NoC factors (latency and power) of the same sized
mesh and SEM NoC architectures. To this end, we have implemented the networks in
question in a NoC simulator. Using this simulator, a routing scheme for the SEM has been
developed and the performance and power consumption of the two networks have been
evaluated under similar working conditions. The simulation results show that the SEM,
while having equal implementation cost, consumes lesser energy and exhibits higher
performance compared to the traditional mesh network.
In this chapter, we will introduce the two-dimensional SEM topology, and develop a
deadlock-free routing algorithm for it. We also compare the power consumption and
network performance of equal sized SEM and mesh NoCs.

2. The 2D SEM topology

2.1 The structure
The traditional shuffle–exchange network (Figure 1 shows an 8-node shuffle exchange
network) is first proposed in (Stone, 1971). This topology is one of the most popular
interconnection architectures for multiprocessors and multicomputers due to its scalability
and distributed self routing capability (Kim & Veidenbaum, 1995). Several researchers have
studied the topological properties (Park & Agrawal, 1995; Pifarre et al., 1994) and efficient
VLSI layout (Steinberg & Rodeh, 1981; Sparso et al., 1991) of the shuffle-exchange networks.
In a shuffle-exchange network, each node is identified by a unique n-bit binary address,
hence the network size (number of nodes), N, equals 2n. Two nodes are connected to each
other if either their addresses differ in the last bit or one is a one-bit cyclic shift of the other.
To establish these connections, two operations namely, shuffle and exchange, are used. With
shuffle and exchange operations, message is circulated among network nodes until it
reaches the destination node.
These operators that are defined on an n-bit address pattern (An-1An-2 . . . A1A0) as follows:

Shuffle: (An-1An-2 . . . A1A0) = An-2An-3 . . . A1A0 An-1
Exchange: (An-1An-2 . . . A1A0) = An-1An-2 . . . A1A0

Each node generates two connections to other nodes via shuffle and exchange operations
and accepts two connections from other nodes. Since these connections are unidirectional,
the degree of the network is the same as the one-dimensional mesh (linear array). The
diameter of a shuffle-exchange network with size N is 2×log(N)-1 which is the minimum
distance between nodes 0 and 2n-1.
Some researchers, e.g. in (Padmanabhan, 1991), have proposed different flavors of shuffle-
exchange network structures and corresponding routing algorithms to allow more flexible
network sizes instead of a complete size of 2n.
In this chapter we propose a two-dimensional shuffle-exchange network architecture for
network-on-chips. The architecture of this network is depicted in Figure 2. In this network,
the nodes in each row and column form a shuffle-exchange network.

Fig. 1. An 8-node shuffle-exchange network; the bold lines are generated by exchange
operation and other lines are generated by shuffle operation (Dally & seitz, 1987).

In each direction, each node has two outgoing edges along which it can send data packets to
other nodes and two incoming links in each dimension and thus, has 8 unidirectional links
in two dimensions. Thus, the number of links per node in the 2D SEM is equal to that in a
traditional mesh network (i.e., 4 bidirectional links). Since the node degree of a topology has
an important contribution in (and usually acts as the dominant factor of) the network cost,
the 2D SEM and mesh NoCs have almost the same cost.
However, the network diameter of the 2D SEM is smaller than the diameter of the
equivalent mesh. More precisely, the diameters of a 2D SEM and a mesh are 4×log(2N0.5)-2
and 2(N0.5-1), respectively where N is the network size.

Fig. 2. A 2D SEM with 64 nodes

Parallel	and	Distributed	Computing82

properties, routing algorithms, efficient VLSI layout and other aspects of shuffle-exchange
networks (Steinberg & Rodeh, 1981; Sparso et al., 1991).
The fact that shuffle-exchange networks have smaller diameter than equal sized meshes
motivates us to investigate them as the underlying topology for on-chip networks. In this
chapter, we propose a 2D shuffle-exchange mesh (SEM) topology for NoC implementation.
We compare the two most important NoC factors (latency and power) of the same sized
mesh and SEM NoC architectures. To this end, we have implemented the networks in
question in a NoC simulator. Using this simulator, a routing scheme for the SEM has been
developed and the performance and power consumption of the two networks have been
evaluated under similar working conditions. The simulation results show that the SEM,
while having equal implementation cost, consumes lesser energy and exhibits higher
performance compared to the traditional mesh network.
In this chapter, we will introduce the two-dimensional SEM topology, and develop a
deadlock-free routing algorithm for it. We also compare the power consumption and
network performance of equal sized SEM and mesh NoCs.

2. The 2D SEM topology

2.1 The structure
The traditional shuffle–exchange network (Figure 1 shows an 8-node shuffle exchange
network) is first proposed in (Stone, 1971). This topology is one of the most popular
interconnection architectures for multiprocessors and multicomputers due to its scalability
and distributed self routing capability (Kim & Veidenbaum, 1995). Several researchers have
studied the topological properties (Park & Agrawal, 1995; Pifarre et al., 1994) and efficient
VLSI layout (Steinberg & Rodeh, 1981; Sparso et al., 1991) of the shuffle-exchange networks.
In a shuffle-exchange network, each node is identified by a unique n-bit binary address,
hence the network size (number of nodes), N, equals 2n. Two nodes are connected to each
other if either their addresses differ in the last bit or one is a one-bit cyclic shift of the other.
To establish these connections, two operations namely, shuffle and exchange, are used. With
shuffle and exchange operations, message is circulated among network nodes until it
reaches the destination node.
These operators that are defined on an n-bit address pattern (An-1An-2 . . . A1A0) as follows:

Shuffle: (An-1An-2 . . . A1A0) = An-2An-3 . . . A1A0 An-1
Exchange: (An-1An-2 . . . A1A0) = An-1An-2 . . . A1A0

Each node generates two connections to other nodes via shuffle and exchange operations
and accepts two connections from other nodes. Since these connections are unidirectional,
the degree of the network is the same as the one-dimensional mesh (linear array). The
diameter of a shuffle-exchange network with size N is 2×log(N)-1 which is the minimum
distance between nodes 0 and 2n-1.
Some researchers, e.g. in (Padmanabhan, 1991), have proposed different flavors of shuffle-
exchange network structures and corresponding routing algorithms to allow more flexible
network sizes instead of a complete size of 2n.
In this chapter we propose a two-dimensional shuffle-exchange network architecture for
network-on-chips. The architecture of this network is depicted in Figure 2. In this network,
the nodes in each row and column form a shuffle-exchange network.

Fig. 1. An 8-node shuffle-exchange network; the bold lines are generated by exchange
operation and other lines are generated by shuffle operation (Dally & seitz, 1987).

In each direction, each node has two outgoing edges along which it can send data packets to
other nodes and two incoming links in each dimension and thus, has 8 unidirectional links
in two dimensions. Thus, the number of links per node in the 2D SEM is equal to that in a
traditional mesh network (i.e., 4 bidirectional links). Since the node degree of a topology has
an important contribution in (and usually acts as the dominant factor of) the network cost,
the 2D SEM and mesh NoCs have almost the same cost.
However, the network diameter of the 2D SEM is smaller than the diameter of the
equivalent mesh. More precisely, the diameters of a 2D SEM and a mesh are 4×log(2N0.5)-2
and 2(N0.5-1), respectively where N is the network size.

Fig. 2. A 2D SEM with 64 nodes

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 83

properties, routing algorithms, efficient VLSI layout and other aspects of shuffle-exchange
networks (Steinberg & Rodeh, 1981; Sparso et al., 1991).
The fact that shuffle-exchange networks have smaller diameter than equal sized meshes
motivates us to investigate them as the underlying topology for on-chip networks. In this
chapter, we propose a 2D shuffle-exchange mesh (SEM) topology for NoC implementation.
We compare the two most important NoC factors (latency and power) of the same sized
mesh and SEM NoC architectures. To this end, we have implemented the networks in
question in a NoC simulator. Using this simulator, a routing scheme for the SEM has been
developed and the performance and power consumption of the two networks have been
evaluated under similar working conditions. The simulation results show that the SEM,
while having equal implementation cost, consumes lesser energy and exhibits higher
performance compared to the traditional mesh network.
In this chapter, we will introduce the two-dimensional SEM topology, and develop a
deadlock-free routing algorithm for it. We also compare the power consumption and
network performance of equal sized SEM and mesh NoCs.

2. The 2D SEM topology

2.1 The structure
The traditional shuffle–exchange network (Figure 1 shows an 8-node shuffle exchange
network) is first proposed in (Stone, 1971). This topology is one of the most popular
interconnection architectures for multiprocessors and multicomputers due to its scalability
and distributed self routing capability (Kim & Veidenbaum, 1995). Several researchers have
studied the topological properties (Park & Agrawal, 1995; Pifarre et al., 1994) and efficient
VLSI layout (Steinberg & Rodeh, 1981; Sparso et al., 1991) of the shuffle-exchange networks.
In a shuffle-exchange network, each node is identified by a unique n-bit binary address,
hence the network size (number of nodes), N, equals 2n. Two nodes are connected to each
other if either their addresses differ in the last bit or one is a one-bit cyclic shift of the other.
To establish these connections, two operations namely, shuffle and exchange, are used. With
shuffle and exchange operations, message is circulated among network nodes until it
reaches the destination node.
These operators that are defined on an n-bit address pattern (An-1An-2 . . . A1A0) as follows:

Shuffle: (An-1An-2 . . . A1A0) = An-2An-3 . . . A1A0 An-1
Exchange: (An-1An-2 . . . A1A0) = An-1An-2 . . . A1A0

Each node generates two connections to other nodes via shuffle and exchange operations
and accepts two connections from other nodes. Since these connections are unidirectional,
the degree of the network is the same as the one-dimensional mesh (linear array). The
diameter of a shuffle-exchange network with size N is 2×log(N)-1 which is the minimum
distance between nodes 0 and 2n-1.
Some researchers, e.g. in (Padmanabhan, 1991), have proposed different flavors of shuffle-
exchange network structures and corresponding routing algorithms to allow more flexible
network sizes instead of a complete size of 2n.
In this chapter we propose a two-dimensional shuffle-exchange network architecture for
network-on-chips. The architecture of this network is depicted in Figure 2. In this network,
the nodes in each row and column form a shuffle-exchange network.

Fig. 1. An 8-node shuffle-exchange network; the bold lines are generated by exchange
operation and other lines are generated by shuffle operation (Dally & seitz, 1987).

In each direction, each node has two outgoing edges along which it can send data packets to
other nodes and two incoming links in each dimension and thus, has 8 unidirectional links
in two dimensions. Thus, the number of links per node in the 2D SEM is equal to that in a
traditional mesh network (i.e., 4 bidirectional links). Since the node degree of a topology has
an important contribution in (and usually acts as the dominant factor of) the network cost,
the 2D SEM and mesh NoCs have almost the same cost.
However, the network diameter of the 2D SEM is smaller than the diameter of the
equivalent mesh. More precisely, the diameters of a 2D SEM and a mesh are 4×log(2N0.5)-2
and 2(N0.5-1), respectively where N is the network size.

Fig. 2. A 2D SEM with 64 nodes

Parallel	and	Distributed	Computing84

In shuffle-exchange networks, every link generated by an exchange operation has one
corresponding link in the mesh network. However, the links generated by shuffle operations
connect some non-adjacent nodes (in equivalent mesh) and reduce the distance between two
end points of the network. Compared to a mesh, although establishing the shuffle links
remove the link between some adjacent nodes (for example 2 to 1, 6 to 5 and 3 to 4
connections in Figure 1) and increases their distance by one hop, the distance between a
larger number of nodes is decreased by one or multiple hops and this leads to a considerable
reduction in average distance of the network.
Although the dominant factor of the network cost, the node degree, in 2D SEM and mesh
networks are exactly the same, unlike the mesh topology the 2D SEM links do not always
connect the adjacent nodes and hence, their lengths are not the same. This can lead to some
variations in the delay and power of the network links and may also have link placement
difficulty. The latter can be solved by a number of efficient VLSI layouts proposed for
shuffle-exchange networks (Steinberg & Rodeh, 1981; Sparso et al., 1991). Moreover, since
the operating frequency of a NoC is often determined by the router critical path, the long
wires may not degrade the NoC speed. However, in the case of frequency degradation, the
pipelined packet switching technique (Duato et al., 2002) which involves inserting some
one-flit buffers for the links can solve the problem. The effect of longer links on power
consumption has been considered in our simulation results (presented in the next section).

2.2 Routing algorithm
During past years, a number of routing algorithms have been developed for traditional
shuffle-exchange networks. Dally (Dally & Seitz, 1987) presented a routing algorithm which
routes the packets from the source node toward the destination by changing the address one
bit at a time, starting from the most significant bit of the n-bit source address in a 2n–node
network. At the i-th step of the algorithm, the (n-i)-th bit of the destination address is
compared to the LSB of the current address. If these two bits are equal, the message is
routed over the shuffle channel to keep the bit unchanged and rotate the address.
Otherwise, the message is routed over the exchange channel to make the two bits identical
and then over to exchange channel to rotate the address. This algorithm involves a
maximum of 2n communication steps between adjacent nodes along the path from the
source to the destination node. However, this algorithm can not always find the shortest
path for some source and destination pairs (Dally & Seitz, 1987). In order to be deadlock-
free, this algorithm requires n virtual channels per physical channel and the message uses
the i-th virtual channel at the (n-i)-th step. Since in this virtual channel selection scenario
routing is performed in order of decreasing order of virtual channel number, the
dependency graph of virtual channels is acyclic and the routing is deadlock-free (Dally &
Seitz, 1987).
Park (Park & Agrawal, 1995) improved Dally’s routing (Dally & Seitz, 1987) using lower
number of virtual channels per physical channel. They logically partition the network into
several acyclic sub-networks and assign a rank to the sub-networks. Applying Dally’s
routing, the virtual channel number is increased only if the message enters a new partition
with higher rank. As a result, the number of required virtual channels is reduced to

 2/)1( nn .

Pifarre (Pifarre et al., 1994) introduced another deadlock-free routing algorithm for shuffle-
exchange networks using only 4 virtual channels per physical channel regardless of the
network size. However, in this algorithm, the maximum number of hops taken by a message
increases from 2n (in Dally’s algorithm (Dally & Seitz, 1987)) to 3n. It first decomposes the
network into some so called shuffle cycles by considering the network without exchange
links. Note that every node in a shuffle cycle has the same number of 1s in its binary address
which is defined as the level of a shuffle cycle. The routing algorithm involves two phases.
In phase 1, at any step, a message stays in a shuffle cycle (if it is routed along a shuffle arc)
or it is routed to a shuffle cycle of a higher level (if it is routed along a shuffle-exchange arc).
In phase 2, the message is successively routed in shuffle cycles of decreasing levels.
Consequently, every path has at most 3n steps: at most 2n shuffle steps and n exchange
steps. The shuffle cycles can be made deadlock-free, in phase 1, by allocating two virtual
channels. By allocating two more virtual channels for each shuffle arc, routing in shuffle
cycles can be made deadlock-free, in phase 2.
For shuffle-exchange, we use a routing algorithm based on the algorithm proposed in
(Pifarre et al., 1994). The algorithm decomposes the entire graph into several shuffle-cycles
and constructs two increasing (in which the nodes are traversed in increasing number) and
decreasing (in which the nodes are traversed in decreasing number) graphs as shown Figure
3. The algorithm involves two phases. The first phase, the increasing phase, visits the shuffle
cycles in increasing order and the bit positions which are ‘0’ in the source address and ‘1’ in
the destination address are changed to ‘1’. The other phase (the decreasing phase) visits the
nodes in decreasing order in respect to their levels and bit positions which are ‘1’ in the
source address and ‘0’ in the destination address are changed to ‘0’. We used the modified
algorithm which removes the self loops and makes the path shorter.
As can be seen in Figure 3, the shuffle cycles in the increasing graph can be made deadlock-
free by allocating two virtual channels which break the cycle. By allocating two more virtual
channels for each shuffle cycle, routing in shuffle cycles can be made deadlock-free along
the decreasing graph in phase 2, as well. Therefore, the network should have 4 virtual
channels per physical channel to make our algorithm deadlock-free.
Now, after designing a routing scheme for the shuffle-exchange, we develop a deterministic
and an adaptive routing mechanism for the 2D SEM. Like XY routing algorithm in mesh
networks, the deterministic routing applies the above-mentioned routing mechanism in
rows first in order to deliver the packet to the column at which the destination is located.
Afterwards, the message is routed to the destination by applying the same routing
algorithm in that column. Obviously, adding the second dimension in this routing scheme
does not generate a cycle and is deadlock-free provided that the routing in each dimension
is deadlock-free (Duato et al., 2002).
In the adaptive routing mechanism, on the other hand, all possible minimal paths between a
source and a destination node are of potential use along the path depending on the traffic
congestion and network conditions. Since each node is connected to the nodes in its row and
column via a shuffle-exchange network, in each node, the routing algorithm routes the
packets along one of the two networks based on the traffic congestion and resource
availability. We avoid deadlocks using a deadlock-free routing methodology presented in
(Duato, 1995) which divides the virtual channels into two adaptive and deterministic parts
and uses the deterministic part upon message blockage in adaptive part.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 85

In shuffle-exchange networks, every link generated by an exchange operation has one
corresponding link in the mesh network. However, the links generated by shuffle operations
connect some non-adjacent nodes (in equivalent mesh) and reduce the distance between two
end points of the network. Compared to a mesh, although establishing the shuffle links
remove the link between some adjacent nodes (for example 2 to 1, 6 to 5 and 3 to 4
connections in Figure 1) and increases their distance by one hop, the distance between a
larger number of nodes is decreased by one or multiple hops and this leads to a considerable
reduction in average distance of the network.
Although the dominant factor of the network cost, the node degree, in 2D SEM and mesh
networks are exactly the same, unlike the mesh topology the 2D SEM links do not always
connect the adjacent nodes and hence, their lengths are not the same. This can lead to some
variations in the delay and power of the network links and may also have link placement
difficulty. The latter can be solved by a number of efficient VLSI layouts proposed for
shuffle-exchange networks (Steinberg & Rodeh, 1981; Sparso et al., 1991). Moreover, since
the operating frequency of a NoC is often determined by the router critical path, the long
wires may not degrade the NoC speed. However, in the case of frequency degradation, the
pipelined packet switching technique (Duato et al., 2002) which involves inserting some
one-flit buffers for the links can solve the problem. The effect of longer links on power
consumption has been considered in our simulation results (presented in the next section).

2.2 Routing algorithm
During past years, a number of routing algorithms have been developed for traditional
shuffle-exchange networks. Dally (Dally & Seitz, 1987) presented a routing algorithm which
routes the packets from the source node toward the destination by changing the address one
bit at a time, starting from the most significant bit of the n-bit source address in a 2n–node
network. At the i-th step of the algorithm, the (n-i)-th bit of the destination address is
compared to the LSB of the current address. If these two bits are equal, the message is
routed over the shuffle channel to keep the bit unchanged and rotate the address.
Otherwise, the message is routed over the exchange channel to make the two bits identical
and then over to exchange channel to rotate the address. This algorithm involves a
maximum of 2n communication steps between adjacent nodes along the path from the
source to the destination node. However, this algorithm can not always find the shortest
path for some source and destination pairs (Dally & Seitz, 1987). In order to be deadlock-
free, this algorithm requires n virtual channels per physical channel and the message uses
the i-th virtual channel at the (n-i)-th step. Since in this virtual channel selection scenario
routing is performed in order of decreasing order of virtual channel number, the
dependency graph of virtual channels is acyclic and the routing is deadlock-free (Dally &
Seitz, 1987).
Park (Park & Agrawal, 1995) improved Dally’s routing (Dally & Seitz, 1987) using lower
number of virtual channels per physical channel. They logically partition the network into
several acyclic sub-networks and assign a rank to the sub-networks. Applying Dally’s
routing, the virtual channel number is increased only if the message enters a new partition
with higher rank. As a result, the number of required virtual channels is reduced to

 2/)1( nn .

Pifarre (Pifarre et al., 1994) introduced another deadlock-free routing algorithm for shuffle-
exchange networks using only 4 virtual channels per physical channel regardless of the
network size. However, in this algorithm, the maximum number of hops taken by a message
increases from 2n (in Dally’s algorithm (Dally & Seitz, 1987)) to 3n. It first decomposes the
network into some so called shuffle cycles by considering the network without exchange
links. Note that every node in a shuffle cycle has the same number of 1s in its binary address
which is defined as the level of a shuffle cycle. The routing algorithm involves two phases.
In phase 1, at any step, a message stays in a shuffle cycle (if it is routed along a shuffle arc)
or it is routed to a shuffle cycle of a higher level (if it is routed along a shuffle-exchange arc).
In phase 2, the message is successively routed in shuffle cycles of decreasing levels.
Consequently, every path has at most 3n steps: at most 2n shuffle steps and n exchange
steps. The shuffle cycles can be made deadlock-free, in phase 1, by allocating two virtual
channels. By allocating two more virtual channels for each shuffle arc, routing in shuffle
cycles can be made deadlock-free, in phase 2.
For shuffle-exchange, we use a routing algorithm based on the algorithm proposed in
(Pifarre et al., 1994). The algorithm decomposes the entire graph into several shuffle-cycles
and constructs two increasing (in which the nodes are traversed in increasing number) and
decreasing (in which the nodes are traversed in decreasing number) graphs as shown Figure
3. The algorithm involves two phases. The first phase, the increasing phase, visits the shuffle
cycles in increasing order and the bit positions which are ‘0’ in the source address and ‘1’ in
the destination address are changed to ‘1’. The other phase (the decreasing phase) visits the
nodes in decreasing order in respect to their levels and bit positions which are ‘1’ in the
source address and ‘0’ in the destination address are changed to ‘0’. We used the modified
algorithm which removes the self loops and makes the path shorter.
As can be seen in Figure 3, the shuffle cycles in the increasing graph can be made deadlock-
free by allocating two virtual channels which break the cycle. By allocating two more virtual
channels for each shuffle cycle, routing in shuffle cycles can be made deadlock-free along
the decreasing graph in phase 2, as well. Therefore, the network should have 4 virtual
channels per physical channel to make our algorithm deadlock-free.
Now, after designing a routing scheme for the shuffle-exchange, we develop a deterministic
and an adaptive routing mechanism for the 2D SEM. Like XY routing algorithm in mesh
networks, the deterministic routing applies the above-mentioned routing mechanism in
rows first in order to deliver the packet to the column at which the destination is located.
Afterwards, the message is routed to the destination by applying the same routing
algorithm in that column. Obviously, adding the second dimension in this routing scheme
does not generate a cycle and is deadlock-free provided that the routing in each dimension
is deadlock-free (Duato et al., 2002).
In the adaptive routing mechanism, on the other hand, all possible minimal paths between a
source and a destination node are of potential use along the path depending on the traffic
congestion and network conditions. Since each node is connected to the nodes in its row and
column via a shuffle-exchange network, in each node, the routing algorithm routes the
packets along one of the two networks based on the traffic congestion and resource
availability. We avoid deadlocks using a deadlock-free routing methodology presented in
(Duato, 1995) which divides the virtual channels into two adaptive and deterministic parts
and uses the deterministic part upon message blockage in adaptive part.

Parallel	and	Distributed	Computing84

In shuffle-exchange networks, every link generated by an exchange operation has one
corresponding link in the mesh network. However, the links generated by shuffle operations
connect some non-adjacent nodes (in equivalent mesh) and reduce the distance between two
end points of the network. Compared to a mesh, although establishing the shuffle links
remove the link between some adjacent nodes (for example 2 to 1, 6 to 5 and 3 to 4
connections in Figure 1) and increases their distance by one hop, the distance between a
larger number of nodes is decreased by one or multiple hops and this leads to a considerable
reduction in average distance of the network.
Although the dominant factor of the network cost, the node degree, in 2D SEM and mesh
networks are exactly the same, unlike the mesh topology the 2D SEM links do not always
connect the adjacent nodes and hence, their lengths are not the same. This can lead to some
variations in the delay and power of the network links and may also have link placement
difficulty. The latter can be solved by a number of efficient VLSI layouts proposed for
shuffle-exchange networks (Steinberg & Rodeh, 1981; Sparso et al., 1991). Moreover, since
the operating frequency of a NoC is often determined by the router critical path, the long
wires may not degrade the NoC speed. However, in the case of frequency degradation, the
pipelined packet switching technique (Duato et al., 2002) which involves inserting some
one-flit buffers for the links can solve the problem. The effect of longer links on power
consumption has been considered in our simulation results (presented in the next section).

2.2 Routing algorithm
During past years, a number of routing algorithms have been developed for traditional
shuffle-exchange networks. Dally (Dally & Seitz, 1987) presented a routing algorithm which
routes the packets from the source node toward the destination by changing the address one
bit at a time, starting from the most significant bit of the n-bit source address in a 2n–node
network. At the i-th step of the algorithm, the (n-i)-th bit of the destination address is
compared to the LSB of the current address. If these two bits are equal, the message is
routed over the shuffle channel to keep the bit unchanged and rotate the address.
Otherwise, the message is routed over the exchange channel to make the two bits identical
and then over to exchange channel to rotate the address. This algorithm involves a
maximum of 2n communication steps between adjacent nodes along the path from the
source to the destination node. However, this algorithm can not always find the shortest
path for some source and destination pairs (Dally & Seitz, 1987). In order to be deadlock-
free, this algorithm requires n virtual channels per physical channel and the message uses
the i-th virtual channel at the (n-i)-th step. Since in this virtual channel selection scenario
routing is performed in order of decreasing order of virtual channel number, the
dependency graph of virtual channels is acyclic and the routing is deadlock-free (Dally &
Seitz, 1987).
Park (Park & Agrawal, 1995) improved Dally’s routing (Dally & Seitz, 1987) using lower
number of virtual channels per physical channel. They logically partition the network into
several acyclic sub-networks and assign a rank to the sub-networks. Applying Dally’s
routing, the virtual channel number is increased only if the message enters a new partition
with higher rank. As a result, the number of required virtual channels is reduced to

 2/)1( nn .

Pifarre (Pifarre et al., 1994) introduced another deadlock-free routing algorithm for shuffle-
exchange networks using only 4 virtual channels per physical channel regardless of the
network size. However, in this algorithm, the maximum number of hops taken by a message
increases from 2n (in Dally’s algorithm (Dally & Seitz, 1987)) to 3n. It first decomposes the
network into some so called shuffle cycles by considering the network without exchange
links. Note that every node in a shuffle cycle has the same number of 1s in its binary address
which is defined as the level of a shuffle cycle. The routing algorithm involves two phases.
In phase 1, at any step, a message stays in a shuffle cycle (if it is routed along a shuffle arc)
or it is routed to a shuffle cycle of a higher level (if it is routed along a shuffle-exchange arc).
In phase 2, the message is successively routed in shuffle cycles of decreasing levels.
Consequently, every path has at most 3n steps: at most 2n shuffle steps and n exchange
steps. The shuffle cycles can be made deadlock-free, in phase 1, by allocating two virtual
channels. By allocating two more virtual channels for each shuffle arc, routing in shuffle
cycles can be made deadlock-free, in phase 2.
For shuffle-exchange, we use a routing algorithm based on the algorithm proposed in
(Pifarre et al., 1994). The algorithm decomposes the entire graph into several shuffle-cycles
and constructs two increasing (in which the nodes are traversed in increasing number) and
decreasing (in which the nodes are traversed in decreasing number) graphs as shown Figure
3. The algorithm involves two phases. The first phase, the increasing phase, visits the shuffle
cycles in increasing order and the bit positions which are ‘0’ in the source address and ‘1’ in
the destination address are changed to ‘1’. The other phase (the decreasing phase) visits the
nodes in decreasing order in respect to their levels and bit positions which are ‘1’ in the
source address and ‘0’ in the destination address are changed to ‘0’. We used the modified
algorithm which removes the self loops and makes the path shorter.
As can be seen in Figure 3, the shuffle cycles in the increasing graph can be made deadlock-
free by allocating two virtual channels which break the cycle. By allocating two more virtual
channels for each shuffle cycle, routing in shuffle cycles can be made deadlock-free along
the decreasing graph in phase 2, as well. Therefore, the network should have 4 virtual
channels per physical channel to make our algorithm deadlock-free.
Now, after designing a routing scheme for the shuffle-exchange, we develop a deterministic
and an adaptive routing mechanism for the 2D SEM. Like XY routing algorithm in mesh
networks, the deterministic routing applies the above-mentioned routing mechanism in
rows first in order to deliver the packet to the column at which the destination is located.
Afterwards, the message is routed to the destination by applying the same routing
algorithm in that column. Obviously, adding the second dimension in this routing scheme
does not generate a cycle and is deadlock-free provided that the routing in each dimension
is deadlock-free (Duato et al., 2002).
In the adaptive routing mechanism, on the other hand, all possible minimal paths between a
source and a destination node are of potential use along the path depending on the traffic
congestion and network conditions. Since each node is connected to the nodes in its row and
column via a shuffle-exchange network, in each node, the routing algorithm routes the
packets along one of the two networks based on the traffic congestion and resource
availability. We avoid deadlocks using a deadlock-free routing methodology presented in
(Duato, 1995) which divides the virtual channels into two adaptive and deterministic parts
and uses the deterministic part upon message blockage in adaptive part.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 85

In shuffle-exchange networks, every link generated by an exchange operation has one
corresponding link in the mesh network. However, the links generated by shuffle operations
connect some non-adjacent nodes (in equivalent mesh) and reduce the distance between two
end points of the network. Compared to a mesh, although establishing the shuffle links
remove the link between some adjacent nodes (for example 2 to 1, 6 to 5 and 3 to 4
connections in Figure 1) and increases their distance by one hop, the distance between a
larger number of nodes is decreased by one or multiple hops and this leads to a considerable
reduction in average distance of the network.
Although the dominant factor of the network cost, the node degree, in 2D SEM and mesh
networks are exactly the same, unlike the mesh topology the 2D SEM links do not always
connect the adjacent nodes and hence, their lengths are not the same. This can lead to some
variations in the delay and power of the network links and may also have link placement
difficulty. The latter can be solved by a number of efficient VLSI layouts proposed for
shuffle-exchange networks (Steinberg & Rodeh, 1981; Sparso et al., 1991). Moreover, since
the operating frequency of a NoC is often determined by the router critical path, the long
wires may not degrade the NoC speed. However, in the case of frequency degradation, the
pipelined packet switching technique (Duato et al., 2002) which involves inserting some
one-flit buffers for the links can solve the problem. The effect of longer links on power
consumption has been considered in our simulation results (presented in the next section).

2.2 Routing algorithm
During past years, a number of routing algorithms have been developed for traditional
shuffle-exchange networks. Dally (Dally & Seitz, 1987) presented a routing algorithm which
routes the packets from the source node toward the destination by changing the address one
bit at a time, starting from the most significant bit of the n-bit source address in a 2n–node
network. At the i-th step of the algorithm, the (n-i)-th bit of the destination address is
compared to the LSB of the current address. If these two bits are equal, the message is
routed over the shuffle channel to keep the bit unchanged and rotate the address.
Otherwise, the message is routed over the exchange channel to make the two bits identical
and then over to exchange channel to rotate the address. This algorithm involves a
maximum of 2n communication steps between adjacent nodes along the path from the
source to the destination node. However, this algorithm can not always find the shortest
path for some source and destination pairs (Dally & Seitz, 1987). In order to be deadlock-
free, this algorithm requires n virtual channels per physical channel and the message uses
the i-th virtual channel at the (n-i)-th step. Since in this virtual channel selection scenario
routing is performed in order of decreasing order of virtual channel number, the
dependency graph of virtual channels is acyclic and the routing is deadlock-free (Dally &
Seitz, 1987).
Park (Park & Agrawal, 1995) improved Dally’s routing (Dally & Seitz, 1987) using lower
number of virtual channels per physical channel. They logically partition the network into
several acyclic sub-networks and assign a rank to the sub-networks. Applying Dally’s
routing, the virtual channel number is increased only if the message enters a new partition
with higher rank. As a result, the number of required virtual channels is reduced to

 2/)1( nn .

Pifarre (Pifarre et al., 1994) introduced another deadlock-free routing algorithm for shuffle-
exchange networks using only 4 virtual channels per physical channel regardless of the
network size. However, in this algorithm, the maximum number of hops taken by a message
increases from 2n (in Dally’s algorithm (Dally & Seitz, 1987)) to 3n. It first decomposes the
network into some so called shuffle cycles by considering the network without exchange
links. Note that every node in a shuffle cycle has the same number of 1s in its binary address
which is defined as the level of a shuffle cycle. The routing algorithm involves two phases.
In phase 1, at any step, a message stays in a shuffle cycle (if it is routed along a shuffle arc)
or it is routed to a shuffle cycle of a higher level (if it is routed along a shuffle-exchange arc).
In phase 2, the message is successively routed in shuffle cycles of decreasing levels.
Consequently, every path has at most 3n steps: at most 2n shuffle steps and n exchange
steps. The shuffle cycles can be made deadlock-free, in phase 1, by allocating two virtual
channels. By allocating two more virtual channels for each shuffle arc, routing in shuffle
cycles can be made deadlock-free, in phase 2.
For shuffle-exchange, we use a routing algorithm based on the algorithm proposed in
(Pifarre et al., 1994). The algorithm decomposes the entire graph into several shuffle-cycles
and constructs two increasing (in which the nodes are traversed in increasing number) and
decreasing (in which the nodes are traversed in decreasing number) graphs as shown Figure
3. The algorithm involves two phases. The first phase, the increasing phase, visits the shuffle
cycles in increasing order and the bit positions which are ‘0’ in the source address and ‘1’ in
the destination address are changed to ‘1’. The other phase (the decreasing phase) visits the
nodes in decreasing order in respect to their levels and bit positions which are ‘1’ in the
source address and ‘0’ in the destination address are changed to ‘0’. We used the modified
algorithm which removes the self loops and makes the path shorter.
As can be seen in Figure 3, the shuffle cycles in the increasing graph can be made deadlock-
free by allocating two virtual channels which break the cycle. By allocating two more virtual
channels for each shuffle cycle, routing in shuffle cycles can be made deadlock-free along
the decreasing graph in phase 2, as well. Therefore, the network should have 4 virtual
channels per physical channel to make our algorithm deadlock-free.
Now, after designing a routing scheme for the shuffle-exchange, we develop a deterministic
and an adaptive routing mechanism for the 2D SEM. Like XY routing algorithm in mesh
networks, the deterministic routing applies the above-mentioned routing mechanism in
rows first in order to deliver the packet to the column at which the destination is located.
Afterwards, the message is routed to the destination by applying the same routing
algorithm in that column. Obviously, adding the second dimension in this routing scheme
does not generate a cycle and is deadlock-free provided that the routing in each dimension
is deadlock-free (Duato et al., 2002).
In the adaptive routing mechanism, on the other hand, all possible minimal paths between a
source and a destination node are of potential use along the path depending on the traffic
congestion and network conditions. Since each node is connected to the nodes in its row and
column via a shuffle-exchange network, in each node, the routing algorithm routes the
packets along one of the two networks based on the traffic congestion and resource
availability. We avoid deadlocks using a deadlock-free routing methodology presented in
(Duato, 1995) which divides the virtual channels into two adaptive and deterministic parts
and uses the deterministic part upon message blockage in adaptive part.

Parallel	and	Distributed	Computing86

Fig. 3. The logical partitioning of a shuffle-exchange network of size 8

3. Comparison results

In order to compare the energy dissipation and performance of the 2D SEM with the mesh,
we have used a modified version of the Popnet NoC simulator (Popnet, 2007). The simulator
can simulate and calculate the performance measures of NoCs under different traffic
patterns and supports virtual channel-based wormhole switching. It also includes the Orion
power library (Wang et al., 2002) that can calculate the energy dissipated in the NoC under
simulation. For our experiments, we set the network link width to 32 bits (flit size = phit size
=32 bits). The power is calculated based on a NoC with 180 nm technology whose routers
operate at 250 MHz.
The simulation results is obtained for an 88 mesh interconnection network with XY
routing algorithm and an 88 2D SEM using the routing algorithms described in the
previous section. The message length is assumed to be 32 and 64 flits and 4 and 6 virtual
channels per physical channel are used. Messages are generated according to a Poisson
distribution with rate , and the destinations of the messages are uniformly selected from
the network nodes.
In Figure 4, the average message latency is plotted as a function of message generation rate
at each node for the mesh and 2D SEM networks using deterministic routing (which
involves 4 virtual channels) for two different message sizes. As can be seen in the figure, the
2D SEM has smaller average message latency with respect to the equivalent mesh network.
The reason is that the average inter-node distance of the 2D SEM network is lower than the
equivalent mesh network.

a)

b)

Fig 4. The average message latency of deterministic routing in the 64-node 2D SEM and
mesh networks using 4 virtual channels per physical channel with message length a) 32 flits
and b) 64 flits.

Figure 5 compares the latency results of adaptive and deterministic routing schemes in a 2D
SEM. In order to conduct a fair comparison, both routing algorithms use 6 virtual channels
per physical channel (deterministic routing algorithm employs 6 virtual channels per
physical channel while adaptive routing algorithm divides the virtual channels into 2-
virtual channel adaptive and 4-virtual channel deterministic parts). It can be seen that the
adaptive routing algorithm has improved the average message latency compared to the
deterministic routing. The improvement is more significant in high-traffic regions where
adaptivity resolves contentions more effectively.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 87

Fig. 3. The logical partitioning of a shuffle-exchange network of size 8

3. Comparison results

In order to compare the energy dissipation and performance of the 2D SEM with the mesh,
we have used a modified version of the Popnet NoC simulator (Popnet, 2007). The simulator
can simulate and calculate the performance measures of NoCs under different traffic
patterns and supports virtual channel-based wormhole switching. It also includes the Orion
power library (Wang et al., 2002) that can calculate the energy dissipated in the NoC under
simulation. For our experiments, we set the network link width to 32 bits (flit size = phit size
=32 bits). The power is calculated based on a NoC with 180 nm technology whose routers
operate at 250 MHz.
The simulation results is obtained for an 88 mesh interconnection network with XY
routing algorithm and an 88 2D SEM using the routing algorithms described in the
previous section. The message length is assumed to be 32 and 64 flits and 4 and 6 virtual
channels per physical channel are used. Messages are generated according to a Poisson
distribution with rate , and the destinations of the messages are uniformly selected from
the network nodes.
In Figure 4, the average message latency is plotted as a function of message generation rate
at each node for the mesh and 2D SEM networks using deterministic routing (which
involves 4 virtual channels) for two different message sizes. As can be seen in the figure, the
2D SEM has smaller average message latency with respect to the equivalent mesh network.
The reason is that the average inter-node distance of the 2D SEM network is lower than the
equivalent mesh network.

a)

b)

Fig 4. The average message latency of deterministic routing in the 64-node 2D SEM and
mesh networks using 4 virtual channels per physical channel with message length a) 32 flits
and b) 64 flits.

Figure 5 compares the latency results of adaptive and deterministic routing schemes in a 2D
SEM. In order to conduct a fair comparison, both routing algorithms use 6 virtual channels
per physical channel (deterministic routing algorithm employs 6 virtual channels per
physical channel while adaptive routing algorithm divides the virtual channels into 2-
virtual channel adaptive and 4-virtual channel deterministic parts). It can be seen that the
adaptive routing algorithm has improved the average message latency compared to the
deterministic routing. The improvement is more significant in high-traffic regions where
adaptivity resolves contentions more effectively.

Parallel	and	Distributed	Computing86

Fig. 3. The logical partitioning of a shuffle-exchange network of size 8

3. Comparison results

In order to compare the energy dissipation and performance of the 2D SEM with the mesh,
we have used a modified version of the Popnet NoC simulator (Popnet, 2007). The simulator
can simulate and calculate the performance measures of NoCs under different traffic
patterns and supports virtual channel-based wormhole switching. It also includes the Orion
power library (Wang et al., 2002) that can calculate the energy dissipated in the NoC under
simulation. For our experiments, we set the network link width to 32 bits (flit size = phit size
=32 bits). The power is calculated based on a NoC with 180 nm technology whose routers
operate at 250 MHz.
The simulation results is obtained for an 88 mesh interconnection network with XY
routing algorithm and an 88 2D SEM using the routing algorithms described in the
previous section. The message length is assumed to be 32 and 64 flits and 4 and 6 virtual
channels per physical channel are used. Messages are generated according to a Poisson
distribution with rate , and the destinations of the messages are uniformly selected from
the network nodes.
In Figure 4, the average message latency is plotted as a function of message generation rate
at each node for the mesh and 2D SEM networks using deterministic routing (which
involves 4 virtual channels) for two different message sizes. As can be seen in the figure, the
2D SEM has smaller average message latency with respect to the equivalent mesh network.
The reason is that the average inter-node distance of the 2D SEM network is lower than the
equivalent mesh network.

a)

b)

Fig 4. The average message latency of deterministic routing in the 64-node 2D SEM and
mesh networks using 4 virtual channels per physical channel with message length a) 32 flits
and b) 64 flits.

Figure 5 compares the latency results of adaptive and deterministic routing schemes in a 2D
SEM. In order to conduct a fair comparison, both routing algorithms use 6 virtual channels
per physical channel (deterministic routing algorithm employs 6 virtual channels per
physical channel while adaptive routing algorithm divides the virtual channels into 2-
virtual channel adaptive and 4-virtual channel deterministic parts). It can be seen that the
adaptive routing algorithm has improved the average message latency compared to the
deterministic routing. The improvement is more significant in high-traffic regions where
adaptivity resolves contentions more effectively.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 87

Fig. 3. The logical partitioning of a shuffle-exchange network of size 8

3. Comparison results

In order to compare the energy dissipation and performance of the 2D SEM with the mesh,
we have used a modified version of the Popnet NoC simulator (Popnet, 2007). The simulator
can simulate and calculate the performance measures of NoCs under different traffic
patterns and supports virtual channel-based wormhole switching. It also includes the Orion
power library (Wang et al., 2002) that can calculate the energy dissipated in the NoC under
simulation. For our experiments, we set the network link width to 32 bits (flit size = phit size
=32 bits). The power is calculated based on a NoC with 180 nm technology whose routers
operate at 250 MHz.
The simulation results is obtained for an 88 mesh interconnection network with XY
routing algorithm and an 88 2D SEM using the routing algorithms described in the
previous section. The message length is assumed to be 32 and 64 flits and 4 and 6 virtual
channels per physical channel are used. Messages are generated according to a Poisson
distribution with rate , and the destinations of the messages are uniformly selected from
the network nodes.
In Figure 4, the average message latency is plotted as a function of message generation rate
at each node for the mesh and 2D SEM networks using deterministic routing (which
involves 4 virtual channels) for two different message sizes. As can be seen in the figure, the
2D SEM has smaller average message latency with respect to the equivalent mesh network.
The reason is that the average inter-node distance of the 2D SEM network is lower than the
equivalent mesh network.

a)

b)

Fig 4. The average message latency of deterministic routing in the 64-node 2D SEM and
mesh networks using 4 virtual channels per physical channel with message length a) 32 flits
and b) 64 flits.

Figure 5 compares the latency results of adaptive and deterministic routing schemes in a 2D
SEM. In order to conduct a fair comparison, both routing algorithms use 6 virtual channels
per physical channel (deterministic routing algorithm employs 6 virtual channels per
physical channel while adaptive routing algorithm divides the virtual channels into 2-
virtual channel adaptive and 4-virtual channel deterministic parts). It can be seen that the
adaptive routing algorithm has improved the average message latency compared to the
deterministic routing. The improvement is more significant in high-traffic regions where
adaptivity resolves contentions more effectively.

Parallel	and	Distributed	Computing88

a)

b)

Fig. 5. The average message latency of the deterministic and adaptive routing algorithms in
a 64-node 2D SEM using 6 virtual channels per physical channel with a) 32-flit messages and
b) 64-flit messages.

As mentioned before, the effect of wire lengths in power consumption is considered in the
calculation of consumed power by Orion. Based on the core size information presented in
(Mullins et al., 2006), we set the side size of the cores of our simulated 88 NoCs to 2 mm.
The length of the shuffle wires in the 2D SEM is set based on the number of cores they pass.
Figure 6 displays the power consumption of the mesh and 2D SEM networks using
deterministic routing scheme in the scenario used in figure 4. As can be seen in the figure,
the proposed 2D SEM topology can effectively reduce the power consumption of the NoC.
The main source of this reduction is the long wires which bypass some nodes and hence
save the power which is consumed in intermediate routers in an equivalent mesh topology.
Note that when the mesh network reaches to its saturation region, the 2D SEM network still
can handle the traffic and thus the saturation rate for the 2D SEM is higher than that in the
mesh. The extra messages communicated in the network have increased the total power
consumption in the 2D SEM after the saturation rate of the mesh network. This is of course
natural to have more energy consumed for higher traffic crates.

a)

b)

Fig. 6. The power consumption of 64-node mesh and 2D SEM NoCs using deterministic
routing and 4 virtual channels per physical channel with a) 32-flit and b) 64-flit messages.

The area estimation is done based on the hybrid synthesis-analytical area models presented
in (Mullins et al. , 2006; Kim et al., 2006; Kim et al. 2008). In these papers, the area of the
router building blocks is calculated in 90nm standard cell ASIC technology and then
analytically combined to estimate the router total area. Table 1 outlines the parameters. The
analytical area models for NoC and its components are displayed in Table 2. The area of a
router is estimated based on the area of the input buffers, network interface queues, and
crossbar switch, since the router area is dominated by these components.
The area overhead due to the additional inter-router wires is analyzed by calculating the
number channels in a mesh-based NoC. A n×n mesh has 2×n×(n-1) channels. The 2D SEM
has the same channels as mesh with longer wires. In the analysis, the lengths of
packetization and depacketization queues are considered as large as 64 flits.
In Table 3, the area overhead of 2D SEM NoC is calculated for 88 network size in a 32-bit
wide system. The results show that, in an 88 mesh, the total area of the 2mm links and the

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 89

a)

b)

Fig. 5. The average message latency of the deterministic and adaptive routing algorithms in
a 64-node 2D SEM using 6 virtual channels per physical channel with a) 32-flit messages and
b) 64-flit messages.

As mentioned before, the effect of wire lengths in power consumption is considered in the
calculation of consumed power by Orion. Based on the core size information presented in
(Mullins et al., 2006), we set the side size of the cores of our simulated 88 NoCs to 2 mm.
The length of the shuffle wires in the 2D SEM is set based on the number of cores they pass.
Figure 6 displays the power consumption of the mesh and 2D SEM networks using
deterministic routing scheme in the scenario used in figure 4. As can be seen in the figure,
the proposed 2D SEM topology can effectively reduce the power consumption of the NoC.
The main source of this reduction is the long wires which bypass some nodes and hence
save the power which is consumed in intermediate routers in an equivalent mesh topology.
Note that when the mesh network reaches to its saturation region, the 2D SEM network still
can handle the traffic and thus the saturation rate for the 2D SEM is higher than that in the
mesh. The extra messages communicated in the network have increased the total power
consumption in the 2D SEM after the saturation rate of the mesh network. This is of course
natural to have more energy consumed for higher traffic crates.

a)

b)

Fig. 6. The power consumption of 64-node mesh and 2D SEM NoCs using deterministic
routing and 4 virtual channels per physical channel with a) 32-flit and b) 64-flit messages.

The area estimation is done based on the hybrid synthesis-analytical area models presented
in (Mullins et al. , 2006; Kim et al., 2006; Kim et al. 2008). In these papers, the area of the
router building blocks is calculated in 90nm standard cell ASIC technology and then
analytically combined to estimate the router total area. Table 1 outlines the parameters. The
analytical area models for NoC and its components are displayed in Table 2. The area of a
router is estimated based on the area of the input buffers, network interface queues, and
crossbar switch, since the router area is dominated by these components.
The area overhead due to the additional inter-router wires is analyzed by calculating the
number channels in a mesh-based NoC. A n×n mesh has 2×n×(n-1) channels. The 2D SEM
has the same channels as mesh with longer wires. In the analysis, the lengths of
packetization and depacketization queues are considered as large as 64 flits.
In Table 3, the area overhead of 2D SEM NoC is calculated for 88 network size in a 32-bit
wide system. The results show that, in an 88 mesh, the total area of the 2mm links and the

Parallel	and	Distributed	Computing88

a)

b)

Fig. 5. The average message latency of the deterministic and adaptive routing algorithms in
a 64-node 2D SEM using 6 virtual channels per physical channel with a) 32-flit messages and
b) 64-flit messages.

As mentioned before, the effect of wire lengths in power consumption is considered in the
calculation of consumed power by Orion. Based on the core size information presented in
(Mullins et al., 2006), we set the side size of the cores of our simulated 88 NoCs to 2 mm.
The length of the shuffle wires in the 2D SEM is set based on the number of cores they pass.
Figure 6 displays the power consumption of the mesh and 2D SEM networks using
deterministic routing scheme in the scenario used in figure 4. As can be seen in the figure,
the proposed 2D SEM topology can effectively reduce the power consumption of the NoC.
The main source of this reduction is the long wires which bypass some nodes and hence
save the power which is consumed in intermediate routers in an equivalent mesh topology.
Note that when the mesh network reaches to its saturation region, the 2D SEM network still
can handle the traffic and thus the saturation rate for the 2D SEM is higher than that in the
mesh. The extra messages communicated in the network have increased the total power
consumption in the 2D SEM after the saturation rate of the mesh network. This is of course
natural to have more energy consumed for higher traffic crates.

a)

b)

Fig. 6. The power consumption of 64-node mesh and 2D SEM NoCs using deterministic
routing and 4 virtual channels per physical channel with a) 32-flit and b) 64-flit messages.

The area estimation is done based on the hybrid synthesis-analytical area models presented
in (Mullins et al. , 2006; Kim et al., 2006; Kim et al. 2008). In these papers, the area of the
router building blocks is calculated in 90nm standard cell ASIC technology and then
analytically combined to estimate the router total area. Table 1 outlines the parameters. The
analytical area models for NoC and its components are displayed in Table 2. The area of a
router is estimated based on the area of the input buffers, network interface queues, and
crossbar switch, since the router area is dominated by these components.
The area overhead due to the additional inter-router wires is analyzed by calculating the
number channels in a mesh-based NoC. A n×n mesh has 2×n×(n-1) channels. The 2D SEM
has the same channels as mesh with longer wires. In the analysis, the lengths of
packetization and depacketization queues are considered as large as 64 flits.
In Table 3, the area overhead of 2D SEM NoC is calculated for 88 network size in a 32-bit
wide system. The results show that, in an 88 mesh, the total area of the 2mm links and the

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 89

a)

b)

Fig. 5. The average message latency of the deterministic and adaptive routing algorithms in
a 64-node 2D SEM using 6 virtual channels per physical channel with a) 32-flit messages and
b) 64-flit messages.

As mentioned before, the effect of wire lengths in power consumption is considered in the
calculation of consumed power by Orion. Based on the core size information presented in
(Mullins et al., 2006), we set the side size of the cores of our simulated 88 NoCs to 2 mm.
The length of the shuffle wires in the 2D SEM is set based on the number of cores they pass.
Figure 6 displays the power consumption of the mesh and 2D SEM networks using
deterministic routing scheme in the scenario used in figure 4. As can be seen in the figure,
the proposed 2D SEM topology can effectively reduce the power consumption of the NoC.
The main source of this reduction is the long wires which bypass some nodes and hence
save the power which is consumed in intermediate routers in an equivalent mesh topology.
Note that when the mesh network reaches to its saturation region, the 2D SEM network still
can handle the traffic and thus the saturation rate for the 2D SEM is higher than that in the
mesh. The extra messages communicated in the network have increased the total power
consumption in the 2D SEM after the saturation rate of the mesh network. This is of course
natural to have more energy consumed for higher traffic crates.

a)

b)

Fig. 6. The power consumption of 64-node mesh and 2D SEM NoCs using deterministic
routing and 4 virtual channels per physical channel with a) 32-flit and b) 64-flit messages.

The area estimation is done based on the hybrid synthesis-analytical area models presented
in (Mullins et al. , 2006; Kim et al., 2006; Kim et al. 2008). In these papers, the area of the
router building blocks is calculated in 90nm standard cell ASIC technology and then
analytically combined to estimate the router total area. Table 1 outlines the parameters. The
analytical area models for NoC and its components are displayed in Table 2. The area of a
router is estimated based on the area of the input buffers, network interface queues, and
crossbar switch, since the router area is dominated by these components.
The area overhead due to the additional inter-router wires is analyzed by calculating the
number channels in a mesh-based NoC. A n×n mesh has 2×n×(n-1) channels. The 2D SEM
has the same channels as mesh with longer wires. In the analysis, the lengths of
packetization and depacketization queues are considered as large as 64 flits.
In Table 3, the area overhead of 2D SEM NoC is calculated for 88 network size in a 32-bit
wide system. The results show that, in an 88 mesh, the total area of the 2mm links and the

Parallel	and	Distributed	Computing90

routers are 0.0633 mm2 and 0.1089 mm2, respectively. Based on these area estimations, the
area of the network part of the 2D SEM network shows a 27% increase compared to a simple
2D mesh with equal size. Considering 2mm×2mm processing elements, the increase in the
entire chip area is less than 2%. Obviously, by increasing the buffer sizes, the network
node/configuration switch area increases, leading to much reduction in the area overhead
of the proposed architecture.

Parameter Symbol
Flit Size F
Buffer Depth B
No. of Virtual channels V
Buffer area (0.00002 mm2/bit (Kim et al., 2008)) Barea
Wire pitch (0.00024 mm (ITRS, 2007) Wpitch
No. of Ports P
Network Size N (= n×n)
Packetization queue capacity PQ
Depacketization queue capacity DQ
Channel Area (0.00099 mm2/bit/mm (Mullinset al. , 2006) Warea
Channel Length (2mm) L
No. of Channels Nchannel

Table 1. Parameters

 Symbol Model
Crossbar RCXarea W2pitch×P×P×F2
Buffer (per
port)

RBFarea Barea×F×V×B

Router Rarea RCXarea+P×RBFarea
Network
Adaptor

NAarea PQ× Barea +DQ ×Barea

Channel CHarea F×Warea×L×Nchannel
NoC Area NoCarea n2× (Rarea+ NAarea)+ CHarea

Table 2. Area analytical model

Network Link Area Router Area Increase percent
to mesh

increase percent in
the entire chip

 mesh .06338 .1089 0 0
 2D SEM .0905 .1089 27.69 1.91

Table 3. 2D SEM area overhead

4. Conclusion

The mesh topology has been used in a variety of interconnection network applications
especially for NoC designs due to its desirable properties in VLSI implementation. In this
chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

shuffle-exchange mesh (2D SEM), and conducted latency and power consumption
comparative simulation experiments for the proposed topology and mesh network.
Simulation results showed that the 2D SEM can improve the latency of the network
especially for high traffic loads. The power consumption in the 2D SEM is also shown to be
less than that of the equivalent mesh network.
We also analyzed the effects of the various wire lengths in the implementation of the 2D
SEM. Finding an optimal mapping scheme for the 2D SEM NoCs and also a VLSI layout
based on the design considerations in deep sub-micron era is the future work in this line.

5. References

http://www.princeton.edu/~lshang/popnet.html, August 2007.
Benini, L. & Micheli GD. (2002). Networks on Chip: A New Paradigm for Systems on Chip

Design, Design Automation and Test in Europe (DATE), pp. 418–419.
Dally, WJ. & Seitz, C. (1987). Deadlock-free Message Routing in Multiprocessor

Interconnection Networks, IEEE Trans. on Computers, Vol. 36, No. 5, pp. 547-553.
Duato, J. (1995). A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing

in Wormhole Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 6,
No. 10, pp. 1055–1067.

Duato, J.; Yalamanchili, S. & Ni, L. (2002). Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers.

ITRS. (2006). International technology roadmap for semiconductors. Tech. rep., International
Technology Roadmap for Semiconductors.

Kim, M.; Kim, D. & Sobelman, E. (2006). NoC link analysis under power and performance
constraints, IEEE International Symposium on Circuits and Systems (ISCAS), Greece.

Kim, MM.; Davis, JD.; Oskin, M & Austin, T. (2008). Polymorphic on-Chip Networks,
International Symposium on Computer Architecture(ISCA), pp. 101 -112.

Kim, S. & Veidenbaum, AV. (1995). On Shortest Path Routing in Single Stage Shuffle-
Exchange Networks, In Proc. 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 298-307.

Mullins, R.; West, A. & Moore, S. (2006). The Design and Implementation of a Low-Latency
On-Chip Network, Asia and South Pacific Design Automation Conference(ASP-DAC),
pp. 164-169.

Ogras, UY.; HU, J. & Marculescu, R. (2005). Key Research Problems in NoC Design: A
Holistic Perspective, CODES+ISSS, Jersey City, NJ, pp. 69-74.

Padmanabhan, K. (1991). Design and Analysis of Even-Sized Binary Shuffle-Exchange
Networks for Multiprocessors, IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, pp. 385-397.

Park, H.; Agrawal, DP. (1995). Efficient Deadlock-free Wormhole Routing in Shuffle-based
Networks, 7th IEEE Symposium on Parallel and Distributed Processing, pp. 92-99.

Pifarre, GD. et al. (1994). Fully Adaptive Minimal Deadlock-Free Packet Routing in
Hypercubes, Meshes, and other Networks: Algorithms and Simulations, IEEE
transaction on Parallel and Distributed Systems, Vol. 4, pp. 247-263.

Sparso, J. et al. (1991). An Area-efficient Topology for VLSI Implementation of Viterbi
decoders and Other Shuffle-Exchange type Structures, IEEE journal of solid-state
circuits, Vol. 24, No. 2, pp.90-97.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 91

routers are 0.0633 mm2 and 0.1089 mm2, respectively. Based on these area estimations, the
area of the network part of the 2D SEM network shows a 27% increase compared to a simple
2D mesh with equal size. Considering 2mm×2mm processing elements, the increase in the
entire chip area is less than 2%. Obviously, by increasing the buffer sizes, the network
node/configuration switch area increases, leading to much reduction in the area overhead
of the proposed architecture.

Parameter Symbol
Flit Size F
Buffer Depth B
No. of Virtual channels V
Buffer area (0.00002 mm2/bit (Kim et al., 2008)) Barea
Wire pitch (0.00024 mm (ITRS, 2007) Wpitch
No. of Ports P
Network Size N (= n×n)
Packetization queue capacity PQ
Depacketization queue capacity DQ
Channel Area (0.00099 mm2/bit/mm (Mullinset al. , 2006) Warea
Channel Length (2mm) L
No. of Channels Nchannel

Table 1. Parameters

 Symbol Model
Crossbar RCXarea W2pitch×P×P×F2
Buffer (per
port)

RBFarea Barea×F×V×B

Router Rarea RCXarea+P×RBFarea
Network
Adaptor

NAarea PQ× Barea +DQ ×Barea

Channel CHarea F×Warea×L×Nchannel
NoC Area NoCarea n2× (Rarea+ NAarea)+ CHarea

Table 2. Area analytical model

Network Link Area Router Area Increase percent
to mesh

increase percent in
the entire chip

 mesh .06338 .1089 0 0
 2D SEM .0905 .1089 27.69 1.91

Table 3. 2D SEM area overhead

4. Conclusion

The mesh topology has been used in a variety of interconnection network applications
especially for NoC designs due to its desirable properties in VLSI implementation. In this
chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

shuffle-exchange mesh (2D SEM), and conducted latency and power consumption
comparative simulation experiments for the proposed topology and mesh network.
Simulation results showed that the 2D SEM can improve the latency of the network
especially for high traffic loads. The power consumption in the 2D SEM is also shown to be
less than that of the equivalent mesh network.
We also analyzed the effects of the various wire lengths in the implementation of the 2D
SEM. Finding an optimal mapping scheme for the 2D SEM NoCs and also a VLSI layout
based on the design considerations in deep sub-micron era is the future work in this line.

5. References

http://www.princeton.edu/~lshang/popnet.html, August 2007.
Benini, L. & Micheli GD. (2002). Networks on Chip: A New Paradigm for Systems on Chip

Design, Design Automation and Test in Europe (DATE), pp. 418–419.
Dally, WJ. & Seitz, C. (1987). Deadlock-free Message Routing in Multiprocessor

Interconnection Networks, IEEE Trans. on Computers, Vol. 36, No. 5, pp. 547-553.
Duato, J. (1995). A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing

in Wormhole Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 6,
No. 10, pp. 1055–1067.

Duato, J.; Yalamanchili, S. & Ni, L. (2002). Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers.

ITRS. (2006). International technology roadmap for semiconductors. Tech. rep., International
Technology Roadmap for Semiconductors.

Kim, M.; Kim, D. & Sobelman, E. (2006). NoC link analysis under power and performance
constraints, IEEE International Symposium on Circuits and Systems (ISCAS), Greece.

Kim, MM.; Davis, JD.; Oskin, M & Austin, T. (2008). Polymorphic on-Chip Networks,
International Symposium on Computer Architecture(ISCA), pp. 101 -112.

Kim, S. & Veidenbaum, AV. (1995). On Shortest Path Routing in Single Stage Shuffle-
Exchange Networks, In Proc. 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 298-307.

Mullins, R.; West, A. & Moore, S. (2006). The Design and Implementation of a Low-Latency
On-Chip Network, Asia and South Pacific Design Automation Conference(ASP-DAC),
pp. 164-169.

Ogras, UY.; HU, J. & Marculescu, R. (2005). Key Research Problems in NoC Design: A
Holistic Perspective, CODES+ISSS, Jersey City, NJ, pp. 69-74.

Padmanabhan, K. (1991). Design and Analysis of Even-Sized Binary Shuffle-Exchange
Networks for Multiprocessors, IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, pp. 385-397.

Park, H.; Agrawal, DP. (1995). Efficient Deadlock-free Wormhole Routing in Shuffle-based
Networks, 7th IEEE Symposium on Parallel and Distributed Processing, pp. 92-99.

Pifarre, GD. et al. (1994). Fully Adaptive Minimal Deadlock-Free Packet Routing in
Hypercubes, Meshes, and other Networks: Algorithms and Simulations, IEEE
transaction on Parallel and Distributed Systems, Vol. 4, pp. 247-263.

Sparso, J. et al. (1991). An Area-efficient Topology for VLSI Implementation of Viterbi
decoders and Other Shuffle-Exchange type Structures, IEEE journal of solid-state
circuits, Vol. 24, No. 2, pp.90-97.

Parallel	and	Distributed	Computing90

routers are 0.0633 mm2 and 0.1089 mm2, respectively. Based on these area estimations, the
area of the network part of the 2D SEM network shows a 27% increase compared to a simple
2D mesh with equal size. Considering 2mm×2mm processing elements, the increase in the
entire chip area is less than 2%. Obviously, by increasing the buffer sizes, the network
node/configuration switch area increases, leading to much reduction in the area overhead
of the proposed architecture.

Parameter Symbol
Flit Size F
Buffer Depth B
No. of Virtual channels V
Buffer area (0.00002 mm2/bit (Kim et al., 2008)) Barea
Wire pitch (0.00024 mm (ITRS, 2007) Wpitch
No. of Ports P
Network Size N (= n×n)
Packetization queue capacity PQ
Depacketization queue capacity DQ
Channel Area (0.00099 mm2/bit/mm (Mullinset al. , 2006) Warea
Channel Length (2mm) L
No. of Channels Nchannel

Table 1. Parameters

 Symbol Model
Crossbar RCXarea W2pitch×P×P×F2
Buffer (per
port)

RBFarea Barea×F×V×B

Router Rarea RCXarea+P×RBFarea
Network
Adaptor

NAarea PQ× Barea +DQ ×Barea

Channel CHarea F×Warea×L×Nchannel
NoC Area NoCarea n2× (Rarea+ NAarea)+ CHarea

Table 2. Area analytical model

Network Link Area Router Area Increase percent
to mesh

increase percent in
the entire chip

 mesh .06338 .1089 0 0
 2D SEM .0905 .1089 27.69 1.91

Table 3. 2D SEM area overhead

4. Conclusion

The mesh topology has been used in a variety of interconnection network applications
especially for NoC designs due to its desirable properties in VLSI implementation. In this
chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

shuffle-exchange mesh (2D SEM), and conducted latency and power consumption
comparative simulation experiments for the proposed topology and mesh network.
Simulation results showed that the 2D SEM can improve the latency of the network
especially for high traffic loads. The power consumption in the 2D SEM is also shown to be
less than that of the equivalent mesh network.
We also analyzed the effects of the various wire lengths in the implementation of the 2D
SEM. Finding an optimal mapping scheme for the 2D SEM NoCs and also a VLSI layout
based on the design considerations in deep sub-micron era is the future work in this line.

5. References

http://www.princeton.edu/~lshang/popnet.html, August 2007.
Benini, L. & Micheli GD. (2002). Networks on Chip: A New Paradigm for Systems on Chip

Design, Design Automation and Test in Europe (DATE), pp. 418–419.
Dally, WJ. & Seitz, C. (1987). Deadlock-free Message Routing in Multiprocessor

Interconnection Networks, IEEE Trans. on Computers, Vol. 36, No. 5, pp. 547-553.
Duato, J. (1995). A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing

in Wormhole Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 6,
No. 10, pp. 1055–1067.

Duato, J.; Yalamanchili, S. & Ni, L. (2002). Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers.

ITRS. (2006). International technology roadmap for semiconductors. Tech. rep., International
Technology Roadmap for Semiconductors.

Kim, M.; Kim, D. & Sobelman, E. (2006). NoC link analysis under power and performance
constraints, IEEE International Symposium on Circuits and Systems (ISCAS), Greece.

Kim, MM.; Davis, JD.; Oskin, M & Austin, T. (2008). Polymorphic on-Chip Networks,
International Symposium on Computer Architecture(ISCA), pp. 101 -112.

Kim, S. & Veidenbaum, AV. (1995). On Shortest Path Routing in Single Stage Shuffle-
Exchange Networks, In Proc. 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 298-307.

Mullins, R.; West, A. & Moore, S. (2006). The Design and Implementation of a Low-Latency
On-Chip Network, Asia and South Pacific Design Automation Conference(ASP-DAC),
pp. 164-169.

Ogras, UY.; HU, J. & Marculescu, R. (2005). Key Research Problems in NoC Design: A
Holistic Perspective, CODES+ISSS, Jersey City, NJ, pp. 69-74.

Padmanabhan, K. (1991). Design and Analysis of Even-Sized Binary Shuffle-Exchange
Networks for Multiprocessors, IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, pp. 385-397.

Park, H.; Agrawal, DP. (1995). Efficient Deadlock-free Wormhole Routing in Shuffle-based
Networks, 7th IEEE Symposium on Parallel and Distributed Processing, pp. 92-99.

Pifarre, GD. et al. (1994). Fully Adaptive Minimal Deadlock-Free Packet Routing in
Hypercubes, Meshes, and other Networks: Algorithms and Simulations, IEEE
transaction on Parallel and Distributed Systems, Vol. 4, pp. 247-263.

Sparso, J. et al. (1991). An Area-efficient Topology for VLSI Implementation of Viterbi
decoders and Other Shuffle-Exchange type Structures, IEEE journal of solid-state
circuits, Vol. 24, No. 2, pp.90-97.

Shuffle-Exchange	Mesh	Topology	for	Networks-on-Chip 91

routers are 0.0633 mm2 and 0.1089 mm2, respectively. Based on these area estimations, the
area of the network part of the 2D SEM network shows a 27% increase compared to a simple
2D mesh with equal size. Considering 2mm×2mm processing elements, the increase in the
entire chip area is less than 2%. Obviously, by increasing the buffer sizes, the network
node/configuration switch area increases, leading to much reduction in the area overhead
of the proposed architecture.

Parameter Symbol
Flit Size F
Buffer Depth B
No. of Virtual channels V
Buffer area (0.00002 mm2/bit (Kim et al., 2008)) Barea
Wire pitch (0.00024 mm (ITRS, 2007) Wpitch
No. of Ports P
Network Size N (= n×n)
Packetization queue capacity PQ
Depacketization queue capacity DQ
Channel Area (0.00099 mm2/bit/mm (Mullinset al. , 2006) Warea
Channel Length (2mm) L
No. of Channels Nchannel

Table 1. Parameters

 Symbol Model
Crossbar RCXarea W2pitch×P×P×F2
Buffer (per
port)

RBFarea Barea×F×V×B

Router Rarea RCXarea+P×RBFarea
Network
Adaptor

NAarea PQ× Barea +DQ ×Barea

Channel CHarea F×Warea×L×Nchannel
NoC Area NoCarea n2× (Rarea+ NAarea)+ CHarea

Table 2. Area analytical model

Network Link Area Router Area Increase percent
to mesh

increase percent in
the entire chip

 mesh .06338 .1089 0 0
 2D SEM .0905 .1089 27.69 1.91

Table 3. 2D SEM area overhead

4. Conclusion

The mesh topology has been used in a variety of interconnection network applications
especially for NoC designs due to its desirable properties in VLSI implementation. In this
chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

shuffle-exchange mesh (2D SEM), and conducted latency and power consumption
comparative simulation experiments for the proposed topology and mesh network.
Simulation results showed that the 2D SEM can improve the latency of the network
especially for high traffic loads. The power consumption in the 2D SEM is also shown to be
less than that of the equivalent mesh network.
We also analyzed the effects of the various wire lengths in the implementation of the 2D
SEM. Finding an optimal mapping scheme for the 2D SEM NoCs and also a VLSI layout
based on the design considerations in deep sub-micron era is the future work in this line.

5. References

http://www.princeton.edu/~lshang/popnet.html, August 2007.
Benini, L. & Micheli GD. (2002). Networks on Chip: A New Paradigm for Systems on Chip

Design, Design Automation and Test in Europe (DATE), pp. 418–419.
Dally, WJ. & Seitz, C. (1987). Deadlock-free Message Routing in Multiprocessor

Interconnection Networks, IEEE Trans. on Computers, Vol. 36, No. 5, pp. 547-553.
Duato, J. (1995). A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing

in Wormhole Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 6,
No. 10, pp. 1055–1067.

Duato, J.; Yalamanchili, S. & Ni, L. (2002). Interconnection Networks: An Engineering Approach,
Morgan Kaufmann Publishers.

ITRS. (2006). International technology roadmap for semiconductors. Tech. rep., International
Technology Roadmap for Semiconductors.

Kim, M.; Kim, D. & Sobelman, E. (2006). NoC link analysis under power and performance
constraints, IEEE International Symposium on Circuits and Systems (ISCAS), Greece.

Kim, MM.; Davis, JD.; Oskin, M & Austin, T. (2008). Polymorphic on-Chip Networks,
International Symposium on Computer Architecture(ISCA), pp. 101 -112.

Kim, S. & Veidenbaum, AV. (1995). On Shortest Path Routing in Single Stage Shuffle-
Exchange Networks, In Proc. 7th Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 298-307.

Mullins, R.; West, A. & Moore, S. (2006). The Design and Implementation of a Low-Latency
On-Chip Network, Asia and South Pacific Design Automation Conference(ASP-DAC),
pp. 164-169.

Ogras, UY.; HU, J. & Marculescu, R. (2005). Key Research Problems in NoC Design: A
Holistic Perspective, CODES+ISSS, Jersey City, NJ, pp. 69-74.

Padmanabhan, K. (1991). Design and Analysis of Even-Sized Binary Shuffle-Exchange
Networks for Multiprocessors, IEEE Transactions on Parallel and Distributed Systems,
Vol. 2, No. 4, pp. 385-397.

Park, H.; Agrawal, DP. (1995). Efficient Deadlock-free Wormhole Routing in Shuffle-based
Networks, 7th IEEE Symposium on Parallel and Distributed Processing, pp. 92-99.

Pifarre, GD. et al. (1994). Fully Adaptive Minimal Deadlock-Free Packet Routing in
Hypercubes, Meshes, and other Networks: Algorithms and Simulations, IEEE
transaction on Parallel and Distributed Systems, Vol. 4, pp. 247-263.

Sparso, J. et al. (1991). An Area-efficient Topology for VLSI Implementation of Viterbi
decoders and Other Shuffle-Exchange type Structures, IEEE journal of solid-state
circuits, Vol. 24, No. 2, pp.90-97.

Parallel	and	Distributed	Computing92

Steinberg, D. & Rodeh, M. (1981). A Layout for the Shuffle-Exchange Network with
O(N2/log3/2N) Area, IEEE Trans. On Computers, Vol. C-30, No. 12, pp. 971-982.

Stone, H. (1971). Parallel Processing With Perfect Shuffle, IEEE Trans. on Computers, Vol. 20,
pp. 153–161.

Wang, H.; Zhu, X.; Peh, L. & Malik, S. (2002). Orion: A Power-Performance Simulator for
Interconnection Networks, 35th International Symposium on Microarchitecture
(MICRO) , Turkey, pp. 294-305.

Cache	Coherence	Protocols	for	Many-Core	CMPs 93

Cache	Coherence	Protocols	for	Many-Core	CMPs

Alberto	Ros,	Manuel	E.	Acacio	and	Jos´e	M.	Garc´ıa

0

Cache Coherence Protocols for Many-Core CMPs

Alberto Ros, Manuel E. Acacio and José M. Garcı́a
Universidad de Murcia

Spain

1. Introduction

Multi-core architectures have emerged as the best alternative to take advantage of the increas-
ing number of transistors currently offered in a single die. For example, the dual-core IBM
Power6 (Le et al., 2007) and the eight-core Sun UltraSPARC T2 (Shah et al., 2007) have a rela-
tively small number of cores, which are typically connected through a shared medium, i.e., a
bus or a crossbar. However, CMP architectures that integrate tens of processor cores (usually
known as many-core CMPs) are expected for the near future, after Intel recently unveiled the
80-core Polaris prototype (Azimi et al., 2007). Since the area required by a shared intercon-
nect becomes impractical as the number of cores grows (Kumar et al., 2005), it seems that the
processing cores of future CMPs will be connected by means of unordered point-to-point net-
works. Hence, tiled CMP architectures (Taylor et al., 2002; Zhang & Asanovic, 2005), which
are designed as arrays of replicated tiles connected over a point-to-point network, have arisen
as a scalable alternative to current small-scale CMP designs and they will help in keeping
complexity manageable.
On the other hand, most CMP systems provide programmers with the intuitive shared-
memory model, which requires efficient support for cache coherence. Although a great deal
of attention was devoted to scalable cache coherence protocols in the last decades in the con-
text of shared-memory multiprocessors, the technological parameters and constraints entailed
by many-core CMPs demand new solutions to the cache coherence problem (Bosschere et al.,
2007; Azimi et al., 2007).
In this chapter, we focus on three main design goals for cache coherence protocols aimed
at being employed in many-core CMPs: performance, on-chip network traffic, and area re-
quirements. For example, area constraints prevent from using an ordered interconnection
network and, consequently, the popular snooping-based cache coherence protocol. Addition-
ally, on-chip network traffic has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power (Wang et al., 2003; Magen et al.,
2004).
We will firstly describe two cache coherence protocols which are used in current commodity
chip multiprocessors, discussing their scalability constraints and bottlenecks: Hammer, imple-
mented in the AMD OpteronTM(Ahmed et al., 2002), and Directory used in Piranha (Barroso
et al., 2000). Hammer avoids keeping coherence information at the cost of broadcasting re-
quests to all cores. Although it is very efficient in terms of area requirements, it generates a
prohibitive amount of network traffic, which translates into excessive power consumption.
On the other hand, Directory reduces network traffic compared to Hammer by storing in a di-
rectory structure precise information about the private caches holding memory blocks. Unfor-

6

Parallel	and	Distributed	Computing92

Steinberg, D. & Rodeh, M. (1981). A Layout for the Shuffle-Exchange Network with
O(N2/log3/2N) Area, IEEE Trans. On Computers, Vol. C-30, No. 12, pp. 971-982.

Stone, H. (1971). Parallel Processing With Perfect Shuffle, IEEE Trans. on Computers, Vol. 20,
pp. 153–161.

Wang, H.; Zhu, X.; Peh, L. & Malik, S. (2002). Orion: A Power-Performance Simulator for
Interconnection Networks, 35th International Symposium on Microarchitecture
(MICRO) , Turkey, pp. 294-305.

Cache	Coherence	Protocols	for	Many-Core	CMPs 93

Cache	Coherence	Protocols	for	Many-Core	CMPs

Alberto	Ros,	Manuel	E.	Acacio	and	Jos´e	M.	Garc´ıa

0

Cache Coherence Protocols for Many-Core CMPs

Alberto Ros, Manuel E. Acacio and José M. Garcı́a
Universidad de Murcia

Spain

1. Introduction

Multi-core architectures have emerged as the best alternative to take advantage of the increas-
ing number of transistors currently offered in a single die. For example, the dual-core IBM
Power6 (Le et al., 2007) and the eight-core Sun UltraSPARC T2 (Shah et al., 2007) have a rela-
tively small number of cores, which are typically connected through a shared medium, i.e., a
bus or a crossbar. However, CMP architectures that integrate tens of processor cores (usually
known as many-core CMPs) are expected for the near future, after Intel recently unveiled the
80-core Polaris prototype (Azimi et al., 2007). Since the area required by a shared intercon-
nect becomes impractical as the number of cores grows (Kumar et al., 2005), it seems that the
processing cores of future CMPs will be connected by means of unordered point-to-point net-
works. Hence, tiled CMP architectures (Taylor et al., 2002; Zhang & Asanovic, 2005), which
are designed as arrays of replicated tiles connected over a point-to-point network, have arisen
as a scalable alternative to current small-scale CMP designs and they will help in keeping
complexity manageable.
On the other hand, most CMP systems provide programmers with the intuitive shared-
memory model, which requires efficient support for cache coherence. Although a great deal
of attention was devoted to scalable cache coherence protocols in the last decades in the con-
text of shared-memory multiprocessors, the technological parameters and constraints entailed
by many-core CMPs demand new solutions to the cache coherence problem (Bosschere et al.,
2007; Azimi et al., 2007).
In this chapter, we focus on three main design goals for cache coherence protocols aimed
at being employed in many-core CMPs: performance, on-chip network traffic, and area re-
quirements. For example, area constraints prevent from using an ordered interconnection
network and, consequently, the popular snooping-based cache coherence protocol. Addition-
ally, on-chip network traffic has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power (Wang et al., 2003; Magen et al.,
2004).
We will firstly describe two cache coherence protocols which are used in current commodity
chip multiprocessors, discussing their scalability constraints and bottlenecks: Hammer, imple-
mented in the AMD OpteronTM(Ahmed et al., 2002), and Directory used in Piranha (Barroso
et al., 2000). Hammer avoids keeping coherence information at the cost of broadcasting re-
quests to all cores. Although it is very efficient in terms of area requirements, it generates a
prohibitive amount of network traffic, which translates into excessive power consumption.
On the other hand, Directory reduces network traffic compared to Hammer by storing in a di-
rectory structure precise information about the private caches holding memory blocks. Unfor-

6

Parallel	and	Distributed	Computing94

tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
ire

cto
ry

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent

Cache	Coherence	Protocols	for	Many-Core	CMPs 95

tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
ire

cto
ry

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent

Parallel	and	Distributed	Computing94

tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
ire

cto
ry

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent

Cache	Coherence	Protocols	for	Many-Core	CMPs 95

tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
ire

cto
ry

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent

Parallel	and	Distributed	Computing96

to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.

R

H M

II
I

2 I
nv

3 Ack

1
G
e
t
X

2 Inv

3 Dat a4
U
n
b
l

(a) Hammer-CMP.

R

H M

II
I

1
G
e
t
X

2 Fwd

3 Dat a

3 Unbl

(b) Directory-CMP.

R

H M

II
I

1 Ge t X

1
G
e
t
X 1

Ge t X

2 Dat a

(c) Token-CMP.

R

H M

II
I

1
Ge t X

2 Dat a

2 ChOwn

3
A
ck

C
h

(d) DiCo-CMP.

Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the

Cache	Coherence	Protocols	for	Many-Core	CMPs 97

to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.

R

H M

II
I

2 I
nv

3 Ack

1
G
e
t
X

2 Inv

3 Dat a4
U
n
b
l

(a) Hammer-CMP.

R

H M

II
I

1
G
e
t
X

2 Fwd

3 Dat a

3 Unbl

(b) Directory-CMP.

R

H M

II
I

1 Ge t X

1
G
e
t
X 1

Ge t X

2 Dat a

(c) Token-CMP.

R

H M

II
I

1
Ge t X

2 Dat a

2 ChOwn

3
A
ck

C
h

(d) DiCo-CMP.

Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the

Parallel	and	Distributed	Computing96

to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.

R

H M

II
I

2 I
nv

3 Ack

1
G
e
t
X

2 Inv

3 Dat a4
U
n
b
l

(a) Hammer-CMP.

R

H M

II
I

1
G
e
t
X

2 Fwd

3 Dat a

3 Unbl

(b) Directory-CMP.

R

H M

II
I

1 Ge t X

1
G
e
t
X 1

Ge t X

2 Dat a

(c) Token-CMP.

R

H M

II
I

1
Ge t X

2 Dat a

2 ChOwn

3
A
ck

C
h

(d) DiCo-CMP.

Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the

Cache	Coherence	Protocols	for	Many-Core	CMPs 97

to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.

R

H M

II
I

2 I
nv

3 Ack

1
G
e
t
X

2 Inv

3 Dat a4
U
n
b
l

(a) Hammer-CMP.

R

H M

II
I

1
G
e
t
X

2 Fwd

3 Dat a

3 Unbl

(b) Directory-CMP.

R

H M

II
I

1 Ge t X

1
G
e
t
X 1

Ge t X

2 Dat a

(c) Token-CMP.

R

H M

II
I

1
Ge t X

2 Dat a

2 ChOwn

3
A
ck

C
h

(d) DiCo-CMP.

Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the

Parallel	and	Distributed	Computing98

critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.

Cache	Coherence	Protocols	for	Many-Core	CMPs 99

critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.

Parallel	and	Distributed	Computing98

critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.

Cache	Coherence	Protocols	for	Many-Core	CMPs 99

critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.

Parallel	and	Distributed	Computing100

R O

H&D

1
Ge t S 2

F
w
d

3 Dat a

3
U
nb

l
(a) Directory protocols.

R

O&D1 Ge t S

2 Dat a

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-

Cache	Coherence	Protocols	for	Many-Core	CMPs 101

R O

H&D

1
Ge t S 2

F
w
d

3 Dat a

3
U
nb

l
(a) Directory protocols.

R

O&D1 Ge t S

2 Dat a

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-

Parallel	and	Distributed	Computing100

R O

H&D

1
Ge t S 2

F
w
d

3 Dat a

3
U
nb

l

(a) Directory protocols.

R

O&D1 Ge t S

2 Dat a

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-

Cache	Coherence	Protocols	for	Many-Core	CMPs 101

R O

H&D

1
Ge t S 2

F
w
d

3 Dat a

3
U
nb

l

(a) Directory protocols.

R

O&D1 Ge t S

2 Dat a

(b) Direct coherence protocols.

Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-

Parallel	and	Distributed	Computing102

O

H&D

S

2
In
v

3 Ack

1
Upgr

2
A
ck

4
U
nbl

(a) Directory protocols.

O&D

S
1 Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.

Cache	Coherence	Protocols	for	Many-Core	CMPs 103

O

H&D

S

2
In
v

3 Ack

1
Upgr

2
A
ck

4
U
nbl

(a) Directory protocols.

O&D

S
1 Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.

Parallel	and	Distributed	Computing102

O

H&D

S

2
In
v

3 Ack

1
Upgr

2
A
ck

4
U
nbl

(a) Directory protocols.

O&D

S
1 Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.

Cache	Coherence	Protocols	for	Many-Core	CMPs 103

O

H&D

S

2
In
v

3 Ack

1
Upgr

2
A
ck

4
U
nbl

(a) Directory protocols.

O&D

S
1 Inv

2 Ack

(b) Direct coherence protocols.

Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.

Parallel	and	Distributed	Computing104

R O

HS

2
In
v3

A
ck

1 Ge t X

2 Dat a

2
C
h
O
w
n

3 AckCh

Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.

R3 H

R2

R1

1
G
e
t
X2

D
a
t
a

2 ChOwn

3 Ack
Ch

1
G
e
t
X 2

D
a
t
a

2 ChO
wn

3 AckCh

1 Ge t X

2*
Fw

d

3*
Fw

d

4* Fwd

5* Fwd

Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.

Cache	Coherence	Protocols	for	Many-Core	CMPs 105

R O

HS

2
In
v3

A
ck

1 Ge t X

2 Dat a

2
C
h
O
w
n

3 AckCh

Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.

R3 H

R2

R1

1
G
e
t
X2

D
a
t
a

2 ChOwn

3 Ack
Ch

1
G
e
t
X 2

D
a
t
a

2 ChO
wn

3 AckCh

1 Ge t X

2*
Fw

d

3*
Fw

d

4* Fwd

5* Fwd

Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.

Parallel	and	Distributed	Computing104

R O

HS

2
In
v3

A
ck

1 Ge t X

2 Dat a

2
C
h
O
w
n

3 AckCh

Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.

R3 H

R2

R1

1
G
e
t
X2

D
a
t
a

2 ChOwn

3 Ack
Ch

1
G
e
t
X 2

D
a
t
a

2 ChO
wn

3 AckCh

1 Ge t X

2*
Fw

d

3*
Fw

d

4* Fwd

5* Fwd

Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.

Cache	Coherence	Protocols	for	Many-Core	CMPs 105

R O

HS

2
In
v3

A
ck

1 Ge t X

2 Dat a

2
C
h
O
w
n

3 AckCh

Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.

R3 H

R2

R1

1
G
e
t
X2

D
a
t
a

2 ChOwn

3 Ack
Ch

1
G
e
t
X 2

D
a
t
a

2 ChO
wn

3 AckCh

1 Ge t X

2*
Fw

d

3*
Fw

d

4* Fwd

5* Fwd

Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.

Parallel	and	Distributed	Computing106

DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order
DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
DiCo-BT Binary Tree �log2(1 + log2n)� log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 2. Bits required for storing coherence information.

is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-

Cache	Coherence	Protocols	for	Many-Core	CMPs 107

DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order
DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
DiCo-BT Binary Tree �log2(1 + log2n)� log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 2. Bits required for storing coherence information.

is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-

Parallel	and	Distributed	Computing106

DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order
DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
DiCo-BT Binary Tree �log2(1 + log2n)� log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 2. Bits required for storing coherence information.

is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-

Cache	Coherence	Protocols	for	Many-Core	CMPs 107

DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order
DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
DiCo-BT Binary Tree �log2(1 + log2n)� log2n O(log2n)
DiCo-NoSC None 0 log2n O(log2n)

Table 2. Bits required for storing coherence information.

is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-

Parallel	and	Distributed	Computing108

GEMS Parameters SICOSYS Parameters
Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits

L2 cache 6 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection
In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,

Cache	Coherence	Protocols	for	Many-Core	CMPs 109

GEMS Parameters SICOSYS Parameters
Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits

L2 cache 6 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection
In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,

Parallel	and	Distributed	Computing108

GEMS Parameters SICOSYS Parameters
Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits

L2 cache 6 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection
In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,

Cache	Coherence	Protocols	for	Many-Core	CMPs 109

GEMS Parameters SICOSYS Parameters
Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits

L2 cache 6 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection
In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,

Parallel	and	Distributed	Computing110

Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time
Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).

Cache	Coherence	Protocols	for	Many-Core	CMPs 111

Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time
Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).

Parallel	and	Distributed	Computing110

Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time
Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).

Cache	Coherence	Protocols	for	Many-Core	CMPs 111

Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time
Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).

Parallel	and	Distributed	Computing112

(a) Overhead in terms of bits. (b) Overhead in terms of area (mm
2).

Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead
Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
L2 cache. However, this structure introduces a slight overhead which keeps constant with the
number of cores.
Directory-CMP stores the directory information either in the L2 tags, when the L2 cache holds
a copy of the block, or in a distributed directory cache, when the block is stored in any of the
L1 caches but not in the L2 cache. Since the information is stored using a full-map sharing
code, the number of required bits is n, and consequently the width of each directory entry
grows linearly with the number of cores.
Token-CMP keeps the token count for any block stored both in the L1 and L2 caches. This
information only requires �log2(n + 1)� bits for both the owner-token bit and the non-owner
token count. These additional bits are stored in the tags’ part of both cache levels. In this way,
Token-CMP has acceptable scalability in terms of area.
DiCo-FM stores directory information along with each owner block held in the L1 and L2
caches. Therefore, a full-map sharing code is added to the tags’ part of each cache entry.
Moreover, it uses two structures that store the identity of the owner tile, the L1C$ and the
L2C$. Each entry in these structures contains a tag and an owner field, which requires log2n
bits. Therefore, this is the protocol that more area overhead entails.
We propose to reduce this overhead by introducing compressed sharing codes in DiCo-CMP.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In contrast, DiCo-

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

Fig. 13. Trade-off of the three main design goals.

LP-1, which only adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. DiCo-BT reduces even more the area requirements
compared to DiCo-LP-1, and it scales better than Token-CMP. Finally, DiCo-NoSC, which does
not require to modify data caches to add coherence information, is the implementation of
DiCo with less overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small overhead in
the number of required bits results in a significant overhead when the area of the structures is
considered.

7.5 Trade-off analysis
Figure 13 shows the trade-off among execution time, network traffic, and area requirements
for the base protocols evaluated in this chapter, DiCo-FM, and DiCo-BT, which constitutes
a good alternative when the three metrics evaluated in this chapter are considered. In this
way, this graph summarizes the evaluation carried out in this chapter. Results in terms of
execution time and network traffic represent the average of all applications, normalized with
respect to Hammer-CMP. Results in terms of area requirements correspond to the area in mm2

of each protocol considering both the data caches and the extra structures required to keep the
coherence information.
We can see that, in general, the base protocols aimed to be used with tiled CMPs do not have
a good trade-off. Hammer-CMP has the highest traffic levels and execution times, but also the
lowest area requirements (7.4mm2). In contrast, Directory-CMP, which reduces both execution
time and network traffic compared to Hammer-CMP (by 10% and 61%, respectively), at the cost
of increasing area requirements (8.59mm2 for a 16-tiled CMP, and O(n)). Although Token-CMP
has acceptable area requirements (7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring
twice the traffic required by Directory-CMP. Finally, DiCo-FM, that reduces both execution time
and traffic requirements when compared to Token-CMP (by 4% and 47%, respectively), is the
one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and O(n)).
However, the use of different compressed sharing codes for DiCo-CMP can lead to a good
compromise between network traffic and area requirements, and still guaranteeing low av-
erage execution time. In general, DiCo-LP-1, DiCo-BT and DiCo-NoSC are very close to an

Cache	Coherence	Protocols	for	Many-Core	CMPs 113

(a) Overhead in terms of bits. (b) Overhead in terms of area (mm
2).

Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead
Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
L2 cache. However, this structure introduces a slight overhead which keeps constant with the
number of cores.
Directory-CMP stores the directory information either in the L2 tags, when the L2 cache holds
a copy of the block, or in a distributed directory cache, when the block is stored in any of the
L1 caches but not in the L2 cache. Since the information is stored using a full-map sharing
code, the number of required bits is n, and consequently the width of each directory entry
grows linearly with the number of cores.
Token-CMP keeps the token count for any block stored both in the L1 and L2 caches. This
information only requires �log2(n + 1)� bits for both the owner-token bit and the non-owner
token count. These additional bits are stored in the tags’ part of both cache levels. In this way,
Token-CMP has acceptable scalability in terms of area.
DiCo-FM stores directory information along with each owner block held in the L1 and L2
caches. Therefore, a full-map sharing code is added to the tags’ part of each cache entry.
Moreover, it uses two structures that store the identity of the owner tile, the L1C$ and the
L2C$. Each entry in these structures contains a tag and an owner field, which requires log2n
bits. Therefore, this is the protocol that more area overhead entails.
We propose to reduce this overhead by introducing compressed sharing codes in DiCo-CMP.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In contrast, DiCo-

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

Fig. 13. Trade-off of the three main design goals.

LP-1, which only adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. DiCo-BT reduces even more the area requirements
compared to DiCo-LP-1, and it scales better than Token-CMP. Finally, DiCo-NoSC, which does
not require to modify data caches to add coherence information, is the implementation of
DiCo with less overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small overhead in
the number of required bits results in a significant overhead when the area of the structures is
considered.

7.5 Trade-off analysis
Figure 13 shows the trade-off among execution time, network traffic, and area requirements
for the base protocols evaluated in this chapter, DiCo-FM, and DiCo-BT, which constitutes
a good alternative when the three metrics evaluated in this chapter are considered. In this
way, this graph summarizes the evaluation carried out in this chapter. Results in terms of
execution time and network traffic represent the average of all applications, normalized with
respect to Hammer-CMP. Results in terms of area requirements correspond to the area in mm2

of each protocol considering both the data caches and the extra structures required to keep the
coherence information.
We can see that, in general, the base protocols aimed to be used with tiled CMPs do not have
a good trade-off. Hammer-CMP has the highest traffic levels and execution times, but also the
lowest area requirements (7.4mm2). In contrast, Directory-CMP, which reduces both execution
time and network traffic compared to Hammer-CMP (by 10% and 61%, respectively), at the cost
of increasing area requirements (8.59mm2 for a 16-tiled CMP, and O(n)). Although Token-CMP
has acceptable area requirements (7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring
twice the traffic required by Directory-CMP. Finally, DiCo-FM, that reduces both execution time
and traffic requirements when compared to Token-CMP (by 4% and 47%, respectively), is the
one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and O(n)).
However, the use of different compressed sharing codes for DiCo-CMP can lead to a good
compromise between network traffic and area requirements, and still guaranteeing low av-
erage execution time. In general, DiCo-LP-1, DiCo-BT and DiCo-NoSC are very close to an

Parallel	and	Distributed	Computing112

(a) Overhead in terms of bits. (b) Overhead in terms of area (mm
2).

Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead
Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
L2 cache. However, this structure introduces a slight overhead which keeps constant with the
number of cores.
Directory-CMP stores the directory information either in the L2 tags, when the L2 cache holds
a copy of the block, or in a distributed directory cache, when the block is stored in any of the
L1 caches but not in the L2 cache. Since the information is stored using a full-map sharing
code, the number of required bits is n, and consequently the width of each directory entry
grows linearly with the number of cores.
Token-CMP keeps the token count for any block stored both in the L1 and L2 caches. This
information only requires �log2(n + 1)� bits for both the owner-token bit and the non-owner
token count. These additional bits are stored in the tags’ part of both cache levels. In this way,
Token-CMP has acceptable scalability in terms of area.
DiCo-FM stores directory information along with each owner block held in the L1 and L2
caches. Therefore, a full-map sharing code is added to the tags’ part of each cache entry.
Moreover, it uses two structures that store the identity of the owner tile, the L1C$ and the
L2C$. Each entry in these structures contains a tag and an owner field, which requires log2n
bits. Therefore, this is the protocol that more area overhead entails.
We propose to reduce this overhead by introducing compressed sharing codes in DiCo-CMP.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In contrast, DiCo-

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

Fig. 13. Trade-off of the three main design goals.

LP-1, which only adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. DiCo-BT reduces even more the area requirements
compared to DiCo-LP-1, and it scales better than Token-CMP. Finally, DiCo-NoSC, which does
not require to modify data caches to add coherence information, is the implementation of
DiCo with less overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small overhead in
the number of required bits results in a significant overhead when the area of the structures is
considered.

7.5 Trade-off analysis
Figure 13 shows the trade-off among execution time, network traffic, and area requirements
for the base protocols evaluated in this chapter, DiCo-FM, and DiCo-BT, which constitutes
a good alternative when the three metrics evaluated in this chapter are considered. In this
way, this graph summarizes the evaluation carried out in this chapter. Results in terms of
execution time and network traffic represent the average of all applications, normalized with
respect to Hammer-CMP. Results in terms of area requirements correspond to the area in mm2

of each protocol considering both the data caches and the extra structures required to keep the
coherence information.
We can see that, in general, the base protocols aimed to be used with tiled CMPs do not have
a good trade-off. Hammer-CMP has the highest traffic levels and execution times, but also the
lowest area requirements (7.4mm2). In contrast, Directory-CMP, which reduces both execution
time and network traffic compared to Hammer-CMP (by 10% and 61%, respectively), at the cost
of increasing area requirements (8.59mm2 for a 16-tiled CMP, and O(n)). Although Token-CMP
has acceptable area requirements (7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring
twice the traffic required by Directory-CMP. Finally, DiCo-FM, that reduces both execution time
and traffic requirements when compared to Token-CMP (by 4% and 47%, respectively), is the
one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and O(n)).
However, the use of different compressed sharing codes for DiCo-CMP can lead to a good
compromise between network traffic and area requirements, and still guaranteeing low av-
erage execution time. In general, DiCo-LP-1, DiCo-BT and DiCo-NoSC are very close to an

Cache	Coherence	Protocols	for	Many-Core	CMPs 113

(a) Overhead in terms of bits. (b) Overhead in terms of area (mm
2).

Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead
Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
L2 cache. However, this structure introduces a slight overhead which keeps constant with the
number of cores.
Directory-CMP stores the directory information either in the L2 tags, when the L2 cache holds
a copy of the block, or in a distributed directory cache, when the block is stored in any of the
L1 caches but not in the L2 cache. Since the information is stored using a full-map sharing
code, the number of required bits is n, and consequently the width of each directory entry
grows linearly with the number of cores.
Token-CMP keeps the token count for any block stored both in the L1 and L2 caches. This
information only requires �log2(n + 1)� bits for both the owner-token bit and the non-owner
token count. These additional bits are stored in the tags’ part of both cache levels. In this way,
Token-CMP has acceptable scalability in terms of area.
DiCo-FM stores directory information along with each owner block held in the L1 and L2
caches. Therefore, a full-map sharing code is added to the tags’ part of each cache entry.
Moreover, it uses two structures that store the identity of the owner tile, the L1C$ and the
L2C$. Each entry in these structures contains a tag and an owner field, which requires log2n
bits. Therefore, this is the protocol that more area overhead entails.
We propose to reduce this overhead by introducing compressed sharing codes in DiCo-CMP.
DiCo-CV-2 saves storage compared to DiCo-FM but it is still non-scalable. In contrast, DiCo-

Execution time (normalized)

Area required (mm2)

1.00

0.95

0.90

0.85

0.80

1.00

0.75

0.50

0.25

0.00

9.0

8.5

8.0

7.5

7.0

Hammer-CMP y
Directory-CMP y
Token-CMP y
DiCo-FM y
DiCo-BT y

Fig. 13. Trade-off of the three main design goals.

LP-1, which only adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. DiCo-BT reduces even more the area requirements
compared to DiCo-LP-1, and it scales better than Token-CMP. Finally, DiCo-NoSC, which does
not require to modify data caches to add coherence information, is the implementation of
DiCo with less overhead (although it still has order O(log2n) due to the need of the coherence
caches), at the cost of increasing network traffic. Finally, we can see that a small overhead in
the number of required bits results in a significant overhead when the area of the structures is
considered.

7.5 Trade-off analysis
Figure 13 shows the trade-off among execution time, network traffic, and area requirements
for the base protocols evaluated in this chapter, DiCo-FM, and DiCo-BT, which constitutes
a good alternative when the three metrics evaluated in this chapter are considered. In this
way, this graph summarizes the evaluation carried out in this chapter. Results in terms of
execution time and network traffic represent the average of all applications, normalized with
respect to Hammer-CMP. Results in terms of area requirements correspond to the area in mm2

of each protocol considering both the data caches and the extra structures required to keep the
coherence information.
We can see that, in general, the base protocols aimed to be used with tiled CMPs do not have
a good trade-off. Hammer-CMP has the highest traffic levels and execution times, but also the
lowest area requirements (7.4mm2). In contrast, Directory-CMP, which reduces both execution
time and network traffic compared to Hammer-CMP (by 10% and 61%, respectively), at the cost
of increasing area requirements (8.59mm2 for a 16-tiled CMP, and O(n)). Although Token-CMP
has acceptable area requirements (7.68mm2 for a 16-tiled CMP) it is limited by traffic, requiring
twice the traffic required by Directory-CMP. Finally, DiCo-FM, that reduces both execution time
and traffic requirements when compared to Token-CMP (by 4% and 47%, respectively), is the
one with the highest area requirements (8.74mm2 for a 16-tiled CMP, and O(n)).
However, the use of different compressed sharing codes for DiCo-CMP can lead to a good
compromise between network traffic and area requirements, and still guaranteeing low av-
erage execution time. In general, DiCo-LP-1, DiCo-BT and DiCo-NoSC are very close to an

Parallel	and	Distributed	Computing114

ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).

10. Acknowledgements

This work has been jointly supported by Spanish MEC under grant “TIN2006-15516-C04-
03” and European Comission FEDER funds under grant “Consolider Ingenio-2010 CSD2006-
00046”. Alberto Ros is supported by a research grant from Spanish MEC under the FPU na-
tional plan (AP2004-3735).

11. References

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2001). A new scalable directory archi-
tecture for large-scale multiprocessors, 7th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 97–106.

Cache	Coherence	Protocols	for	Many-Core	CMPs 115

ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).

10. Acknowledgements

This work has been jointly supported by Spanish MEC under grant “TIN2006-15516-C04-
03” and European Comission FEDER funds under grant “Consolider Ingenio-2010 CSD2006-
00046”. Alberto Ros is supported by a research grant from Spanish MEC under the FPU na-
tional plan (AP2004-3735).

11. References

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2001). A new scalable directory archi-
tecture for large-scale multiprocessors, 7th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 97–106.

Parallel	and	Distributed	Computing114

ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).

10. Acknowledgements

This work has been jointly supported by Spanish MEC under grant “TIN2006-15516-C04-
03” and European Comission FEDER funds under grant “Consolider Ingenio-2010 CSD2006-
00046”. Alberto Ros is supported by a research grant from Spanish MEC under the FPU na-
tional plan (AP2004-3735).

11. References

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2001). A new scalable directory archi-
tecture for large-scale multiprocessors, 7th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 97–106.

Cache	Coherence	Protocols	for	Many-Core	CMPs 115

ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).

10. Acknowledgements

This work has been jointly supported by Spanish MEC under grant “TIN2006-15516-C04-
03” and European Comission FEDER funds under grant “Consolider Ingenio-2010 CSD2006-
00046”. Alberto Ros is supported by a research grant from Spanish MEC under the FPU na-
tional plan (AP2004-3735).

11. References

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2001). A new scalable directory archi-
tecture for large-scale multiprocessors, 7th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 97–106.

Parallel	and	Distributed	Computing116

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002a). Owner prediction for accelerat-
ing cache-to-cache transfer misses in cc-NUMA multiprocessors, SC2002 High Perfor-
mance Networking and Computing.

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002b). The use of prediction for accel-
erating upgrade misses in cc-NUMA multiprocessors, 11th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–164.

Agarwal, A., Simoni, R., Hennessy, J. L. & Horowitz, M. A. (1988). An evaluation of direc-
tory schemes for cache coherence, 15th Int’l Symp. on Computer Architecture (ISCA),
pp. 280–289.

Agarwal, N., Peh, L.-S. & Jha, N. K. (2009). In-Network Snoop Ordering (INSO): Snoopy
coherence on unordered interconnects, 15th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 67–78.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures, 27th Int’l Symp. on Computer
Architecture (ISCA), pp. 248–259.

Ahmed, A., Conway, P., Hughes, B. & Weber, F. (2002). AMD OpteronTM shared-memory MP
systems, 14th HotChips Symp.

Azimi, M., Cherukuri, N., Jayasimha, D. N., Kumar, A., Kundu, P., Park, S., Schoinas, I. &
Vaidya, A. S. (2007). Integration challenges and tradeoffs for tera-scale architectures,
Intel Technology Journal 11(3): 173–184.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R. & Verghese, B. (2000). Piranha: A scalable architecture based on single-chip
multiprocessing, 27th Int’l Symp. on Computer Architecture (ISCA), pp. 12–14.

Beckmann, B. M., Marty, M. R. & Wood, D. A. (2006). ASR: Adaptive selective replication for
CMP caches, 39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 443–454.

Bosschere, K. D., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnevmatikatos, D., Ramirez,
A., Sainrat, P., Seznec, A., Stenstrom, P. & Temam, O. (2007). High-performance
embedded architecture and compilation roadmap, Transactions on HiPEAC I pp. 5–
29.

Cantin, J. F., Smith, J. E., Lipasti, M. H., Moshovos, A. & Falsafi, B. (2006). Coarse-grain
coherence tracking: RegionScout and region coherence arrays, IEEE Micro 26(1): 70–
79.

Chaiken, D., Kubiatowicz, J. & Agarwal, A. (1991). LimitLESS directories: A scalable cache
coherence scheme, 4th Int. Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pp. 224–234.

Cheng, L., Carter, J. B. & Dai, D. (2007). An adaptive cache coherence protocol optimized for
producer-consumer sharing, 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), pp. 328–339.

Culler, D. E., Singh, J. P. & Gupta, A. (1999). Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann Publishers, Inc.

Gupta, A., Weber, W.-D. & Mowry, T. C. (1990). Reducing memory traffic requirements for
scalable directory-based cache coherence schemes, Int’l Conference on Parallel Process-
ing (ICPP), pp. 312–321.

Ho, R., Mai, K. W. & Horowitz, M. A. (2001). The future of wires, Proceedings of the IEEE
89(4): 490–504.

Horel, T. & Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit perfor-
mance, IEEE Micro 19(3): 73–85.

Hossain, H., Dwarkadas, S. & Huang, M. C. (2008). Improving support for locality and fine-
grain sharing in chip multiprocessors, 17th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 155–165.

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D. & Keckler, S. W. (2005). A NUCA substrate for
flexible CMP cache sharing, 19th Int’l Conference on Supercomputing (ICS), pp. 31–40.

Jerger, N. D. E., Peh, L.-S. & Lipasti, M. H. (2008). Virtual tree coherence: Leveraging re-
gions and in-network multicast tree for scalable cache coherence, 41th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), pp. 35–46.

Kim, C., Burger, D. & Keckler, S. W. (2002). An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, 10th Int. Conf. on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS), pp. 211–222.

Kumar, R., Zyuban, V. & Tullsen, D. M. (2005). Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling, 32nd Int’l Symp. on Computer
Architecture (ISCA), pp. 408–419.

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W. M., Schwarz, E. M. & Vaden, M. T. (2007). IBM POWER6 microarchitecture, IBM
Journal of Research and Development 51(6): 639–662.

Li, M.-L., Sasanka, R., Adve, S. V., Chen, Y.-K. & Debes, E. (2005). The ALPBench benchmark
suite for complex multimedia applications, Int’l Symp. on Workload Characterization,
pp. 34–45.

Magen, N., Kolodny, A., Weiser, U. & Shamir, N. (2004). Interconnect-power dissipation in a
microprocessor, Int’l workshop on System Level Interconnect Prediction (SLIP’04), pp. 7–
13.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Lars-
son, F., Moestedt, A. & Werner, B. (2002). Simics: A full system simulation platform,
IEEE Computer 35(2): 50–58.

Martin, M. M. (2003). Token Coherence, PhD thesis, University of Wisconsin-Madison.
Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D. & Wood, D. A. (2003). Using destination-set

prediction to improve the latency/bandwidth tradeoff in shared-memory multipro-
cessors, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 206–217.

Martin, M. M., Hill, M. D. & Wood, D. A. (2003). Token coherence: Decoupling performance
and correctness, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 182–193.

Martin, M. M., Sorin, D. J., Ailamaki, A., Alameldeen, A. R., Dickson, R. M., Mauer, C. J.,
Moore, K. E., Plakal, M., Hill, M. D. & Wood, D. A. (2000). Timestamp snooping: An
approach for extending SMPs, 9th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pp. 25–36.

Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M., Alameldeen, A. R., Moore,
K. E., Hill, M. D. & Wood, D. A. (2005). Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset, Computer Architecture News 33(4): 92–99.

Marty, M. R., Bingham, J., Hill, M. D., Hu, A., Martin, M. M. & Wood, D. A. (2005). Improving
multiple-cmp systems using token coherence, 11th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pp. 328–339.

Mukherjee, S. S. & Hill, M. D. (1994). An evaluation of directory protocols for medium-scale
shared-memory multiprocessors, 8th Int’l Conference on Supercomputing (ICS), pp. 64–
74.

Owner, J. M., Hummel, M. D., Meyer, D. R. & Keller, J. B. (2006). System and method of main-
taining coherency in a distributed communication system, U.S. Patent 7069361.

Cache	Coherence	Protocols	for	Many-Core	CMPs 117

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002a). Owner prediction for accelerat-
ing cache-to-cache transfer misses in cc-NUMA multiprocessors, SC2002 High Perfor-
mance Networking and Computing.

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002b). The use of prediction for accel-
erating upgrade misses in cc-NUMA multiprocessors, 11th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–164.

Agarwal, A., Simoni, R., Hennessy, J. L. & Horowitz, M. A. (1988). An evaluation of direc-
tory schemes for cache coherence, 15th Int’l Symp. on Computer Architecture (ISCA),
pp. 280–289.

Agarwal, N., Peh, L.-S. & Jha, N. K. (2009). In-Network Snoop Ordering (INSO): Snoopy
coherence on unordered interconnects, 15th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 67–78.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures, 27th Int’l Symp. on Computer
Architecture (ISCA), pp. 248–259.

Ahmed, A., Conway, P., Hughes, B. & Weber, F. (2002). AMD OpteronTM shared-memory MP
systems, 14th HotChips Symp.

Azimi, M., Cherukuri, N., Jayasimha, D. N., Kumar, A., Kundu, P., Park, S., Schoinas, I. &
Vaidya, A. S. (2007). Integration challenges and tradeoffs for tera-scale architectures,
Intel Technology Journal 11(3): 173–184.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R. & Verghese, B. (2000). Piranha: A scalable architecture based on single-chip
multiprocessing, 27th Int’l Symp. on Computer Architecture (ISCA), pp. 12–14.

Beckmann, B. M., Marty, M. R. & Wood, D. A. (2006). ASR: Adaptive selective replication for
CMP caches, 39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 443–454.

Bosschere, K. D., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnevmatikatos, D., Ramirez,
A., Sainrat, P., Seznec, A., Stenstrom, P. & Temam, O. (2007). High-performance
embedded architecture and compilation roadmap, Transactions on HiPEAC I pp. 5–
29.

Cantin, J. F., Smith, J. E., Lipasti, M. H., Moshovos, A. & Falsafi, B. (2006). Coarse-grain
coherence tracking: RegionScout and region coherence arrays, IEEE Micro 26(1): 70–
79.

Chaiken, D., Kubiatowicz, J. & Agarwal, A. (1991). LimitLESS directories: A scalable cache
coherence scheme, 4th Int. Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pp. 224–234.

Cheng, L., Carter, J. B. & Dai, D. (2007). An adaptive cache coherence protocol optimized for
producer-consumer sharing, 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), pp. 328–339.

Culler, D. E., Singh, J. P. & Gupta, A. (1999). Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann Publishers, Inc.

Gupta, A., Weber, W.-D. & Mowry, T. C. (1990). Reducing memory traffic requirements for
scalable directory-based cache coherence schemes, Int’l Conference on Parallel Process-
ing (ICPP), pp. 312–321.

Ho, R., Mai, K. W. & Horowitz, M. A. (2001). The future of wires, Proceedings of the IEEE
89(4): 490–504.

Horel, T. & Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit perfor-
mance, IEEE Micro 19(3): 73–85.

Hossain, H., Dwarkadas, S. & Huang, M. C. (2008). Improving support for locality and fine-
grain sharing in chip multiprocessors, 17th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 155–165.

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D. & Keckler, S. W. (2005). A NUCA substrate for
flexible CMP cache sharing, 19th Int’l Conference on Supercomputing (ICS), pp. 31–40.

Jerger, N. D. E., Peh, L.-S. & Lipasti, M. H. (2008). Virtual tree coherence: Leveraging re-
gions and in-network multicast tree for scalable cache coherence, 41th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), pp. 35–46.

Kim, C., Burger, D. & Keckler, S. W. (2002). An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, 10th Int. Conf. on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS), pp. 211–222.

Kumar, R., Zyuban, V. & Tullsen, D. M. (2005). Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling, 32nd Int’l Symp. on Computer
Architecture (ISCA), pp. 408–419.

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W. M., Schwarz, E. M. & Vaden, M. T. (2007). IBM POWER6 microarchitecture, IBM
Journal of Research and Development 51(6): 639–662.

Li, M.-L., Sasanka, R., Adve, S. V., Chen, Y.-K. & Debes, E. (2005). The ALPBench benchmark
suite for complex multimedia applications, Int’l Symp. on Workload Characterization,
pp. 34–45.

Magen, N., Kolodny, A., Weiser, U. & Shamir, N. (2004). Interconnect-power dissipation in a
microprocessor, Int’l workshop on System Level Interconnect Prediction (SLIP’04), pp. 7–
13.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Lars-
son, F., Moestedt, A. & Werner, B. (2002). Simics: A full system simulation platform,
IEEE Computer 35(2): 50–58.

Martin, M. M. (2003). Token Coherence, PhD thesis, University of Wisconsin-Madison.
Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D. & Wood, D. A. (2003). Using destination-set

prediction to improve the latency/bandwidth tradeoff in shared-memory multipro-
cessors, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 206–217.

Martin, M. M., Hill, M. D. & Wood, D. A. (2003). Token coherence: Decoupling performance
and correctness, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 182–193.

Martin, M. M., Sorin, D. J., Ailamaki, A., Alameldeen, A. R., Dickson, R. M., Mauer, C. J.,
Moore, K. E., Plakal, M., Hill, M. D. & Wood, D. A. (2000). Timestamp snooping: An
approach for extending SMPs, 9th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pp. 25–36.

Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M., Alameldeen, A. R., Moore,
K. E., Hill, M. D. & Wood, D. A. (2005). Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset, Computer Architecture News 33(4): 92–99.

Marty, M. R., Bingham, J., Hill, M. D., Hu, A., Martin, M. M. & Wood, D. A. (2005). Improving
multiple-cmp systems using token coherence, 11th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pp. 328–339.

Mukherjee, S. S. & Hill, M. D. (1994). An evaluation of directory protocols for medium-scale
shared-memory multiprocessors, 8th Int’l Conference on Supercomputing (ICS), pp. 64–
74.

Owner, J. M., Hummel, M. D., Meyer, D. R. & Keller, J. B. (2006). System and method of main-
taining coherency in a distributed communication system, U.S. Patent 7069361.

Parallel	and	Distributed	Computing116

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002a). Owner prediction for accelerat-
ing cache-to-cache transfer misses in cc-NUMA multiprocessors, SC2002 High Perfor-
mance Networking and Computing.

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002b). The use of prediction for accel-
erating upgrade misses in cc-NUMA multiprocessors, 11th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–164.

Agarwal, A., Simoni, R., Hennessy, J. L. & Horowitz, M. A. (1988). An evaluation of direc-
tory schemes for cache coherence, 15th Int’l Symp. on Computer Architecture (ISCA),
pp. 280–289.

Agarwal, N., Peh, L.-S. & Jha, N. K. (2009). In-Network Snoop Ordering (INSO): Snoopy
coherence on unordered interconnects, 15th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 67–78.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures, 27th Int’l Symp. on Computer
Architecture (ISCA), pp. 248–259.

Ahmed, A., Conway, P., Hughes, B. & Weber, F. (2002). AMD OpteronTM shared-memory MP
systems, 14th HotChips Symp.

Azimi, M., Cherukuri, N., Jayasimha, D. N., Kumar, A., Kundu, P., Park, S., Schoinas, I. &
Vaidya, A. S. (2007). Integration challenges and tradeoffs for tera-scale architectures,
Intel Technology Journal 11(3): 173–184.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R. & Verghese, B. (2000). Piranha: A scalable architecture based on single-chip
multiprocessing, 27th Int’l Symp. on Computer Architecture (ISCA), pp. 12–14.

Beckmann, B. M., Marty, M. R. & Wood, D. A. (2006). ASR: Adaptive selective replication for
CMP caches, 39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 443–454.

Bosschere, K. D., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnevmatikatos, D., Ramirez,
A., Sainrat, P., Seznec, A., Stenstrom, P. & Temam, O. (2007). High-performance
embedded architecture and compilation roadmap, Transactions on HiPEAC I pp. 5–
29.

Cantin, J. F., Smith, J. E., Lipasti, M. H., Moshovos, A. & Falsafi, B. (2006). Coarse-grain
coherence tracking: RegionScout and region coherence arrays, IEEE Micro 26(1): 70–
79.

Chaiken, D., Kubiatowicz, J. & Agarwal, A. (1991). LimitLESS directories: A scalable cache
coherence scheme, 4th Int. Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pp. 224–234.

Cheng, L., Carter, J. B. & Dai, D. (2007). An adaptive cache coherence protocol optimized for
producer-consumer sharing, 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), pp. 328–339.

Culler, D. E., Singh, J. P. & Gupta, A. (1999). Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann Publishers, Inc.

Gupta, A., Weber, W.-D. & Mowry, T. C. (1990). Reducing memory traffic requirements for
scalable directory-based cache coherence schemes, Int’l Conference on Parallel Process-
ing (ICPP), pp. 312–321.

Ho, R., Mai, K. W. & Horowitz, M. A. (2001). The future of wires, Proceedings of the IEEE
89(4): 490–504.

Horel, T. & Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit perfor-
mance, IEEE Micro 19(3): 73–85.

Hossain, H., Dwarkadas, S. & Huang, M. C. (2008). Improving support for locality and fine-
grain sharing in chip multiprocessors, 17th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 155–165.

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D. & Keckler, S. W. (2005). A NUCA substrate for
flexible CMP cache sharing, 19th Int’l Conference on Supercomputing (ICS), pp. 31–40.

Jerger, N. D. E., Peh, L.-S. & Lipasti, M. H. (2008). Virtual tree coherence: Leveraging re-
gions and in-network multicast tree for scalable cache coherence, 41th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), pp. 35–46.

Kim, C., Burger, D. & Keckler, S. W. (2002). An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, 10th Int. Conf. on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS), pp. 211–222.

Kumar, R., Zyuban, V. & Tullsen, D. M. (2005). Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling, 32nd Int’l Symp. on Computer
Architecture (ISCA), pp. 408–419.

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W. M., Schwarz, E. M. & Vaden, M. T. (2007). IBM POWER6 microarchitecture, IBM
Journal of Research and Development 51(6): 639–662.

Li, M.-L., Sasanka, R., Adve, S. V., Chen, Y.-K. & Debes, E. (2005). The ALPBench benchmark
suite for complex multimedia applications, Int’l Symp. on Workload Characterization,
pp. 34–45.

Magen, N., Kolodny, A., Weiser, U. & Shamir, N. (2004). Interconnect-power dissipation in a
microprocessor, Int’l workshop on System Level Interconnect Prediction (SLIP’04), pp. 7–
13.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Lars-
son, F., Moestedt, A. & Werner, B. (2002). Simics: A full system simulation platform,
IEEE Computer 35(2): 50–58.

Martin, M. M. (2003). Token Coherence, PhD thesis, University of Wisconsin-Madison.
Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D. & Wood, D. A. (2003). Using destination-set

prediction to improve the latency/bandwidth tradeoff in shared-memory multipro-
cessors, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 206–217.

Martin, M. M., Hill, M. D. & Wood, D. A. (2003). Token coherence: Decoupling performance
and correctness, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 182–193.

Martin, M. M., Sorin, D. J., Ailamaki, A., Alameldeen, A. R., Dickson, R. M., Mauer, C. J.,
Moore, K. E., Plakal, M., Hill, M. D. & Wood, D. A. (2000). Timestamp snooping: An
approach for extending SMPs, 9th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pp. 25–36.

Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M., Alameldeen, A. R., Moore,
K. E., Hill, M. D. & Wood, D. A. (2005). Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset, Computer Architecture News 33(4): 92–99.

Marty, M. R., Bingham, J., Hill, M. D., Hu, A., Martin, M. M. & Wood, D. A. (2005). Improving
multiple-cmp systems using token coherence, 11th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pp. 328–339.

Mukherjee, S. S. & Hill, M. D. (1994). An evaluation of directory protocols for medium-scale
shared-memory multiprocessors, 8th Int’l Conference on Supercomputing (ICS), pp. 64–
74.

Owner, J. M., Hummel, M. D., Meyer, D. R. & Keller, J. B. (2006). System and method of main-
taining coherency in a distributed communication system, U.S. Patent 7069361.

Cache	Coherence	Protocols	for	Many-Core	CMPs 117

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002a). Owner prediction for accelerat-
ing cache-to-cache transfer misses in cc-NUMA multiprocessors, SC2002 High Perfor-
mance Networking and Computing.

Acacio, M. E., González, J., Garcı́a, J. M. & Duato, J. (2002b). The use of prediction for accel-
erating upgrade misses in cc-NUMA multiprocessors, 11th Int’l Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 155–164.

Agarwal, A., Simoni, R., Hennessy, J. L. & Horowitz, M. A. (1988). An evaluation of direc-
tory schemes for cache coherence, 15th Int’l Symp. on Computer Architecture (ISCA),
pp. 280–289.

Agarwal, N., Peh, L.-S. & Jha, N. K. (2009). In-Network Snoop Ordering (INSO): Snoopy
coherence on unordered interconnects, 15th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pp. 67–78.

Agarwal, V., Hrishikesh, M. S., Keckler, S. W. & Burger, D. (2000). Clock rate versus IPC:
the end of the road for conventional microarchitectures, 27th Int’l Symp. on Computer
Architecture (ISCA), pp. 248–259.

Ahmed, A., Conway, P., Hughes, B. & Weber, F. (2002). AMD OpteronTM shared-memory MP
systems, 14th HotChips Symp.

Azimi, M., Cherukuri, N., Jayasimha, D. N., Kumar, A., Kundu, P., Park, S., Schoinas, I. &
Vaidya, A. S. (2007). Integration challenges and tradeoffs for tera-scale architectures,
Intel Technology Journal 11(3): 173–184.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R. & Verghese, B. (2000). Piranha: A scalable architecture based on single-chip
multiprocessing, 27th Int’l Symp. on Computer Architecture (ISCA), pp. 12–14.

Beckmann, B. M., Marty, M. R. & Wood, D. A. (2006). ASR: Adaptive selective replication for
CMP caches, 39th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 443–454.

Bosschere, K. D., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnevmatikatos, D., Ramirez,
A., Sainrat, P., Seznec, A., Stenstrom, P. & Temam, O. (2007). High-performance
embedded architecture and compilation roadmap, Transactions on HiPEAC I pp. 5–
29.

Cantin, J. F., Smith, J. E., Lipasti, M. H., Moshovos, A. & Falsafi, B. (2006). Coarse-grain
coherence tracking: RegionScout and region coherence arrays, IEEE Micro 26(1): 70–
79.

Chaiken, D., Kubiatowicz, J. & Agarwal, A. (1991). LimitLESS directories: A scalable cache
coherence scheme, 4th Int. Conf. on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pp. 224–234.

Cheng, L., Carter, J. B. & Dai, D. (2007). An adaptive cache coherence protocol optimized for
producer-consumer sharing, 13th Int’l Symp. on High-Performance Computer Architec-
ture (HPCA), pp. 328–339.

Culler, D. E., Singh, J. P. & Gupta, A. (1999). Parallel Computer Architecture: A Hardware/Software
Approach, Morgan Kaufmann Publishers, Inc.

Gupta, A., Weber, W.-D. & Mowry, T. C. (1990). Reducing memory traffic requirements for
scalable directory-based cache coherence schemes, Int’l Conference on Parallel Process-
ing (ICPP), pp. 312–321.

Ho, R., Mai, K. W. & Horowitz, M. A. (2001). The future of wires, Proceedings of the IEEE
89(4): 490–504.

Horel, T. & Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit perfor-
mance, IEEE Micro 19(3): 73–85.

Hossain, H., Dwarkadas, S. & Huang, M. C. (2008). Improving support for locality and fine-
grain sharing in chip multiprocessors, 17th Int’l Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 155–165.

Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D. & Keckler, S. W. (2005). A NUCA substrate for
flexible CMP cache sharing, 19th Int’l Conference on Supercomputing (ICS), pp. 31–40.

Jerger, N. D. E., Peh, L.-S. & Lipasti, M. H. (2008). Virtual tree coherence: Leveraging re-
gions and in-network multicast tree for scalable cache coherence, 41th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), pp. 35–46.

Kim, C., Burger, D. & Keckler, S. W. (2002). An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches, 10th Int. Conf. on Architectural Support for Pro-
gramming Language and Operating Systems (ASPLOS), pp. 211–222.

Kumar, R., Zyuban, V. & Tullsen, D. M. (2005). Interconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling, 32nd Int’l Symp. on Computer
Architecture (ISCA), pp. 408–419.

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W. M., Schwarz, E. M. & Vaden, M. T. (2007). IBM POWER6 microarchitecture, IBM
Journal of Research and Development 51(6): 639–662.

Li, M.-L., Sasanka, R., Adve, S. V., Chen, Y.-K. & Debes, E. (2005). The ALPBench benchmark
suite for complex multimedia applications, Int’l Symp. on Workload Characterization,
pp. 34–45.

Magen, N., Kolodny, A., Weiser, U. & Shamir, N. (2004). Interconnect-power dissipation in a
microprocessor, Int’l workshop on System Level Interconnect Prediction (SLIP’04), pp. 7–
13.

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Lars-
son, F., Moestedt, A. & Werner, B. (2002). Simics: A full system simulation platform,
IEEE Computer 35(2): 50–58.

Martin, M. M. (2003). Token Coherence, PhD thesis, University of Wisconsin-Madison.
Martin, M. M., Harper, P. J., Sorin, D. J., Hill, M. D. & Wood, D. A. (2003). Using destination-set

prediction to improve the latency/bandwidth tradeoff in shared-memory multipro-
cessors, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 206–217.

Martin, M. M., Hill, M. D. & Wood, D. A. (2003). Token coherence: Decoupling performance
and correctness, 30th Int’l Symp. on Computer Architecture (ISCA), pp. 182–193.

Martin, M. M., Sorin, D. J., Ailamaki, A., Alameldeen, A. R., Dickson, R. M., Mauer, C. J.,
Moore, K. E., Plakal, M., Hill, M. D. & Wood, D. A. (2000). Timestamp snooping: An
approach for extending SMPs, 9th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), pp. 25–36.

Martin, M. M., Sorin, D. J., Beckmann, B. M., Marty, M. R., Xu, M., Alameldeen, A. R., Moore,
K. E., Hill, M. D. & Wood, D. A. (2005). Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset, Computer Architecture News 33(4): 92–99.

Marty, M. R., Bingham, J., Hill, M. D., Hu, A., Martin, M. M. & Wood, D. A. (2005). Improving
multiple-cmp systems using token coherence, 11th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pp. 328–339.

Mukherjee, S. S. & Hill, M. D. (1994). An evaluation of directory protocols for medium-scale
shared-memory multiprocessors, 8th Int’l Conference on Supercomputing (ICS), pp. 64–
74.

Owner, J. M., Hummel, M. D., Meyer, D. R. & Keller, J. B. (2006). System and method of main-
taining coherency in a distributed communication system, U.S. Patent 7069361.

Parallel	and	Distributed	Computing118

Puente, V., Gregorio, J. A. & Beivide, R. (2002). SICOSYS: An integrated framework for study-
ing interconnection network in multiprocessor systems, 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing, pp. 15–22.

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008a). DiCo-CMP: Efficient cache coherency in tiled
cmp architectures, 22nd Int’l Parallel and Distributed Processing Symp. (IPDPS).

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008b). Scalable directory organization for tiled cmp
architectures, Int’l Conference on Computer Design (CDES), pp. 112–118.

Shah, M., Barreh, J., Brooks, J., Golla, R., Grohoski, G., Gura, N., Hetherington, R., Jordan,
P., Luttrell, M., Olson, C., Saha, B., Sheahan, D., Spracklen, L. & Wynn, A. (2007).
UltraSPARC T2: A highly-threaded, power-efficient, SPARC SoC, IEEE Asian Solid-
State Circuits Conference, pp. 22–25.

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H., Lee,
J.-W., Johnson, P., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen,
V., Frank, M., Amarasinghe, S. & Agarwal, A. (2002). The raw microprocessor: A
computational fabric for software circuits and general purpose programs, IEEE Micro
22(2): 25–35.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H. & Jouppi, N. P. (2008). Cacti 5.1, Technical Report
HPL-2008-20, HP Labs.

Wang, H., Peh, L.-S. & Malik, S. (2003). Power-driven design of router microarchitectures in
on-chip networks, 36th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 105–
111.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P. & Gupta, A. (1995). The SPLASH-2 programs:
Characterization and methodological considerations, 22nd Int’l Symp. on Computer
Architecture (ISCA), pp. 24–36.

Zhang, M. & Asanovic, K. (2005). Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors, 32nd Int’l Symp. on Computer Architecture (ISCA),
pp. 336–345.

Using	hardware	resource	allocation	to	balance	HPC	applications 119

Using	hardware	resource	allocation	to	balance	HPC	applications	

Carlos	Boneti,	Roberto	Gioiosa,	Francisco	J.	Cazorla	and	Mateo	Valero

x

Using hardware resource allocation
to balance HPC applications

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero

Barcelona Supercomputing Center
Spain

1. Introduction

High Performance Computing (HPC) applications are usually Single Process-Multiple Data
(SPMD) and are implemented using an MPI or an OpenMP library. In MPI applications, all
the processes execute the same code on different data sets and use synchronization
primitives (such as barriers or collective operations) to coordinate their work. Since the
processes execute the same code, they are supposed to reach their synchronization points
roughly at the same time.
However, this is not always the case, as many applications suffer from imbalance, where a
parallel application has multiple inter-dependent tasks1 and these tasks have to wait for
others to complete in order to continue their execution (in Section 2 we will see some causes
of applications' imbalance). During this waiting time, the CPUs of the waiting tasks are idle,
thus, not performing any useful job. If one process has to complete its execution while all
the other processes are waiting for it to reach the synchronization point; then several
processors may be idle, resulting in a significant loss of performance and waste of resources.
In fact, imbalance is a very common problem that has been studied by many researchers.
Since there are several different factors that may create or make variable imbalance, there is
no trivial solution and no solution solves all application's imbalance. A more detailed
survey about solutions for the problem of imbalance is presented at Section 5.
Most of the current Supercomputers use processors with some multi-threaded features
(TOP500, 2007). In the last years, the performance achievable by traditional super-scalar
processor designs has almost saturated due to the limitation imposed by Instruction-Level
Parallelism (ILP). As a consequence, Thread-Level Parallelism (TLP) has become a common
strategy for improving processor performance. Since it is difficult to extract more
Instruction-Level Parallelism from a single program, MultiThreaded (MT) processors, that
is, processors that execute multiple threads at the same time, obtain more parallelism by
simultaneously executing several tasks. This strategy has led to a wide range of MT
processor architectures, from Simultaneous Multi-Threaded processors (SMT) (Serrano et
al., 1993; Tullsen et al., 1995; Marr et all, 2002), in which most processor resources are shared

1In this chapter, the term task refers to a software entity representing an MPI process, a software thread or
simply a process.

7

Parallel	and	Distributed	Computing118

Puente, V., Gregorio, J. A. & Beivide, R. (2002). SICOSYS: An integrated framework for study-
ing interconnection network in multiprocessor systems, 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing, pp. 15–22.

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008a). DiCo-CMP: Efficient cache coherency in tiled
cmp architectures, 22nd Int’l Parallel and Distributed Processing Symp. (IPDPS).

Ros, A., Acacio, M. E. & Garcı́a, J. M. (2008b). Scalable directory organization for tiled cmp
architectures, Int’l Conference on Computer Design (CDES), pp. 112–118.

Shah, M., Barreh, J., Brooks, J., Golla, R., Grohoski, G., Gura, N., Hetherington, R., Jordan,
P., Luttrell, M., Olson, C., Saha, B., Sheahan, D., Spracklen, L. & Wynn, A. (2007).
UltraSPARC T2: A highly-threaded, power-efficient, SPARC SoC, IEEE Asian Solid-
State Circuits Conference, pp. 22–25.

Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., Hoffman, H., Lee,
J.-W., Johnson, P., Lee, W., Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen,
V., Frank, M., Amarasinghe, S. & Agarwal, A. (2002). The raw microprocessor: A
computational fabric for software circuits and general purpose programs, IEEE Micro
22(2): 25–35.

Thoziyoor, S., Muralimanohar, N., Ahn, J. H. & Jouppi, N. P. (2008). Cacti 5.1, Technical Report
HPL-2008-20, HP Labs.

Wang, H., Peh, L.-S. & Malik, S. (2003). Power-driven design of router microarchitectures in
on-chip networks, 36th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pp. 105–
111.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P. & Gupta, A. (1995). The SPLASH-2 programs:
Characterization and methodological considerations, 22nd Int’l Symp. on Computer
Architecture (ISCA), pp. 24–36.

Zhang, M. & Asanovic, K. (2005). Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors, 32nd Int’l Symp. on Computer Architecture (ISCA),
pp. 336–345.

Using	hardware	resource	allocation	to	balance	HPC	applications 119

Using	hardware	resource	allocation	to	balance	HPC	applications	

Carlos	Boneti,	Roberto	Gioiosa,	Francisco	J.	Cazorla	and	Mateo	Valero

x

Using hardware resource allocation
to balance HPC applications

Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla and Mateo Valero

Barcelona Supercomputing Center
Spain

1. Introduction

High Performance Computing (HPC) applications are usually Single Process-Multiple Data
(SPMD) and are implemented using an MPI or an OpenMP library. In MPI applications, all
the processes execute the same code on different data sets and use synchronization
primitives (such as barriers or collective operations) to coordinate their work. Since the
processes execute the same code, they are supposed to reach their synchronization points
roughly at the same time.
However, this is not always the case, as many applications suffer from imbalance, where a
parallel application has multiple inter-dependent tasks1 and these tasks have to wait for
others to complete in order to continue their execution (in Section 2 we will see some causes
of applications' imbalance). During this waiting time, the CPUs of the waiting tasks are idle,
thus, not performing any useful job. If one process has to complete its execution while all
the other processes are waiting for it to reach the synchronization point; then several
processors may be idle, resulting in a significant loss of performance and waste of resources.
In fact, imbalance is a very common problem that has been studied by many researchers.
Since there are several different factors that may create or make variable imbalance, there is
no trivial solution and no solution solves all application's imbalance. A more detailed
survey about solutions for the problem of imbalance is presented at Section 5.
Most of the current Supercomputers use processors with some multi-threaded features
(TOP500, 2007). In the last years, the performance achievable by traditional super-scalar
processor designs has almost saturated due to the limitation imposed by Instruction-Level
Parallelism (ILP). As a consequence, Thread-Level Parallelism (TLP) has become a common
strategy for improving processor performance. Since it is difficult to extract more
Instruction-Level Parallelism from a single program, MultiThreaded (MT) processors, that
is, processors that execute multiple threads at the same time, obtain more parallelism by
simultaneously executing several tasks. This strategy has led to a wide range of MT
processor architectures, from Simultaneous Multi-Threaded processors (SMT) (Serrano et
al., 1993; Tullsen et al., 1995; Marr et all, 2002), in which most processor resources are shared

1In this chapter, the term task refers to a software entity representing an MPI process, a software thread or
simply a process.

7

Parallel	and	Distributed	Computing120

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

Using	hardware	resource	allocation	to	balance	HPC	applications 121

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

Parallel	and	Distributed	Computing120

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

Using	hardware	resource	allocation	to	balance	HPC	applications 121

among hardware threads2, to Chip Multi-Processors (CMP) (Bossen et al, 2002), in which
every hardware thread has its own dedicated processor resources, only sharing the highest
levels of the memory hierarchy (for example the L2 cache), and a combination of both
(Sinharoy et al., 2005; IBM et al. 2006; Le et al, 2007). Resource sharing makes multi-threaded
processors have good performance/cost and performance/power consumption ratios
(Alpert, 2003), two desirable characteristics for a supercomputer.
Usually, software has no control over how processor resources are distributed among the
active hardware threads in multi-threaded processors. For example, in an SMT processor the
instruction fetch policy, decides how instructions are fetched from the threads, thereby
implicitly determining the way internal processor resources are allocated to the threads.
This is an undesirable characteristic that makes the execution time of programs
unpredictable (Cazorla et al., 2006). In order to alleviate this problem, recently, some
processor vendors have equipped their MT processors with mechanisms that allow the
software to control processor's internals resource allocation, and thus, control application's
speed.
There are several ways to reassign hardware resources in multi-threaded processors. In
theory, every shared resource in a system can be partitioned or biased to satisfy a load-
balancing target. For instance, cache replacement policy, processor fetch or decode cycles,
power and several other split or shared resources can be controlled to improve the
execution of a set of critical tasks in order to balance a parallel application.
In practice, currently, not every system allows such control over its hardware resources. For
instance, dynamic voltage scaling can be used to save power for the slower tasks without
sacrificing the performance of the critical tasks (the ones that limit the application's
execution time), but it will not provide performance speedup. In cases where it is possible to
give more resources to the critical tasks, increasing its speed, there is potential to decrease
the overall program's execution time. These mechanisms open new opportunities to
improve the performance of parallel applications.
The work presented in this chapter is a first step toward the use of hardware resource
allocation to improve software targets: re-assigning hardware resources in a multi-threaded
processor can reduce the imbalance in parallel applications, and hence improve their
performance. In particular, this work presents a way to regain balance assigning more
hardware resources to processes that compute the longer. The solution is transparent to the
users and is implemented at the Operating System (OS) or run-time levels. In order to use it,
users do not need to adapt their programming model or to know specific processor's
implementation details when writing or compiling their applications.
In this chapter, the idea of load balancing through smart hardware resource allocation is
explored experimentally on a real system with an MT processor, the IBM POWER5™ (Kalla
et al., 2004). The POWER5 is a dual-core, 2-way SMT processor that allows us to change the
way hardware resources are assigned to the core's SMT contexts by means of a software-
controlled hardware priority (or hardware thread priority3) that controls the number of
resources each context receives. This machine runs a Linux kernel that we modified in order
to allow the HPC application to exploit the advantage of assigning the processor's resources.

2The terms thread, hardware thread and context are employed interchangeably to refer to a hardware
context of an SMT processor.
3The hardware thread priorities mentioned here are independent of the operating system's concept of
software thread priority.

As case studies, we performed several experiments with MPI applications, focused on the
IBM POWER5. We present them in increasing order of complexity, that is, when their
imbalance becomes more and more variable:

1. We started from a micro-benchmark (Metbench), developed at the Barcelona
Supercomputing Center (BSC), where we introduce some artificial imbalance.

2. In the second experiment, we ran the widely used the NAS BT-MZ (NASA, 2009)
benchmark; this version suffers of load imbalance, as shown in Section 4.2.

3. We demonstrate the effect of the proposal on a dynamic application
(MetbenchVar), motivating the push for dynamic mechanisms that use hardware
resource allocation, effectively using resource redistribution to perform load
balancing.

4. Finally, we present a real application running on MareNostrum, SIESTA (SIESTA,
2009; Soler et al., 2002). With this specific input, SIESTA exhibits a very
unpredictable imbalance.

Our results show that controlling hardware resources is a powerful tool that can
significantly decrease applications' execution time. However, if used incorrectly, it may lead
to significant performance loss. Moreover, non-HPC applications may benefit differently
from re-assigning hardware resources.
The rest of this chapter is organized as follows: Section 2 shows the imbalance problem in
HPC applications, classifying and discussing its sources; Section 3 introduces the concept of
load-balancing based on smart allocation of hardware resources; we present the POWER5
processor and its prioritization mechanism, and the Linux kernel interface required to use
the prioritization system. Section 4 shows our case-studies; Section 5 presents similar works
in the same area; finally Section 6 provides our conclusion and future work.

2. Imbalance in HPC applications

HPC applications are usually SPMD, which means that every process executes the same
code on different data. For example, let's assume that an HPC application is performing a
matrix-vector multiplication and that each process receives a sub-matrix and the part of the
vector required to compute the sub-matrix by vector multiplication. If the matrix can be
divided into homogeneous parts (i.e., they require the same amount of time to be
processed), all the processes in the parallel application would finish, ideally, at the same
time.
However, the data set could be very different: let's suppose that, in the previous example,
the matrix is sparse or triagonal, hence, the time required to process the data sub-set could
vary as well. In this scenario the amount of time required to complete the sub-matrix by
vector multiplication depends on the number of non-zero values present in the sub-matrix.
In the extreme case, one process could receive a full sub-matrix while another gets an empty
one. The former process requires much more time to reach the synchronization point than
the latter.

Parallel	and	Distributed	Computing122

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

Using	hardware	resource	allocation	to	balance	HPC	applications 123

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

Parallel	and	Distributed	Computing122

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

Using	hardware	resource	allocation	to	balance	HPC	applications 123

Fig. 1. Two iterations of NAS BT-MZ showing the message exchanges. In this trace, black
areas represent computation, grey areas represent waiting time.

The NAS BT-MZ benchmark, explained in Section 4.2, is a clear example of an imbalanced
application due to data distribution. As shown in Figure 1, each MPI process communicates
with its two neighborhoods, exchanging data after each iteration. The processes get different
amount of work and the process P4 gets to perform the largest part of the computations. At
the end, because of the communications, all other processes are slowed down by P4 and
have to wait for most of their time in order to allow P4 to complete its job.
We classify the sources of imbalance in two main classes: intrinsic and extrinsic factors of
imbalance. Bellow we detail issues and possible reasons for both of the classes.

2.1. Intrinsic imbalance
We refer to intrinsic imbalance as the imbalance an application experiences because of data
(for example a sparse matrix) or algorithm (as for instance, a branch and bound
implementation where some branches may be cut much earlier than others and each task
gets a set of branches). The causes for the intrinsic imbalance are internal to the application's
code, input set or both. It could be caused by several factors; here we point some of them
out:
Input set: As we already said, this scenario happens when a process has a small input set to
work on while another has a large amount of data to process. One example of application
that is strongly dependent on the input set is SIESTA (Soler et al., 2002) (described in better
details in Section 4.4).
SIESTA analyzes materials at the atom level. Depending on the distribution and density of
the atoms across the material, some processes may perform more work than others. Very
homogeneous materials tend to be well balanced, although SIESTA may also present
imbalance caused by the algorithm. Figure 2 shows the trace of SIESTA when processing
atoms of graphite (C6). In this case, the four MPI processes execute, respectively for 92.82%,
91.44%, 91.81% and 91.68% of the time. In fact, if we discard the initialization phase, they all
have more than 98.80% of CPU utilization.
In another case, shown in Figure 3, when processing PTCDA molecules (perylene-3,4,9,10-
tetracarboxylic-3,4,9,10-dianhydride), it exhibits a highly imbalanced execution: the MPI
processes show respectively 92.94%, 21.79%, 96.60%, 21.71% of utilization.
Domain: Iterative methods approximate the solution of a problem (for example, Partial
Differential Equations, PDE) with a function in some domain starting from an initial
condition. The domain is divided in several sub-domains and each process computes its
part of the solution. At the end of every iteration, the error made in the approximation is
computed and, eventually, another iteration is to be started. If the function in some part of
the domain is smooth, only few iterations are required to converge to a good
approximation. Conversely, if the function has several peaks in the sub-domain, more

iterations are necessary to find a good solution and/or more points in the domain have to be
considered during the computing phase.

Fig. 2. Siesta execution with graphite input.

Fig. 3. Siesta execution with PTCDA input. Only part of the execution is pictured.

Data exchanging: During their execution, processes may require to exchange data among
themselves. If the two peers are on the same node, the latency of the communication is
small; if a process needs to exchange data with a neighbor on another node the latency is
large, even larger if the destination process is far away in the network.
In all the previous cases, the application may result to be imbalanced.

2.2. Extrinsic imbalance
Even if both the application's algorithm and the input set are balanced, the execution of the
parallel application can still be imbalanced. This is caused by external factors that slow some
processes down (but not others). For example, the Operating System (OS) might decide to
run another process (say a kernel daemon) in place of the MPI process running on one CPU.
Since that MPI process is not able to run all the time while the others are running, it takes
longer to complete, making all the other processes wait for it. Those external factors are the
sources of extrinsic imbalance. There may be several causes for the imbalance:
OS noise: The CPU is used by the OS to perform services such as handling interrupts, page
reclaiming, assigning memory on demand, etc. The OS noise has been recognized as one of
the major source of extrinsic imbalance (Gioiosa et al., 2004; Petrini et al., 2003; Tsafrir et al.,
2005). A classical example is the interrupt annoyance problem present in Intel processors: all
the interrupts coming from external devices are routed to CPU0; therefore, the OS noise
caused by executing the interrupt handlers on CPU0 is higher than the noise on the other
CPUs.
User daemons: HPC systems often run profile or statistic collectors together with the HPC
applications. These activities could steal computing power from one process, delaying its
execution.
Network topology: Exchanging data between processes in the same sub-network is faster
than exchanging data between processes in different sub-networks. In general, if the job
scheduler has placed processes that need to communicate ``far away'', their communication
latency could increase so much that the whole application will be affected.

Parallel	and	Distributed	Computing124

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

Using	hardware	resource	allocation	to	balance	HPC	applications 125

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

Parallel	and	Distributed	Computing124

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

Using	hardware	resource	allocation	to	balance	HPC	applications 125

Memory management: Even inside a single node, it is common to have NUMA (Non-
Uniform Memory Access). A process that requests a large amount of memory may have it
allocated in a memory region that is comparably slower than the memory allocated to the
other processes of a parallel application (maybe because there is not enough memory close
enough to this processor). In this case, the performance of this process will be significantly
impacted and, depending on the application, this process may delay the execution of the
entire program, making the others wait for its results.
An expert programmer could reduce the intrinsic imbalance in the application. However,
this is not an easy task, as the imbalance can be caused by the algorithm, but it can also be
caused by the input data set, changing distribution and intensity according to different
inputs. Balancing a HPC application by hand is a time-consuming task and may require
quite a lot of effort. In fact, the programmer has to distribute the data among the processes
considering the way the algorithm has been implemented and the correctness of the
application. Moreover, on many applications this work has to be done every time the input
or the machine change.
Even worse is the case of extrinsic imbalance, as those factors are neither under the control
of the application nor of the programmer and there is no straightforward way to solve this
problem. Thus, it is clear that a mechanism that aims to solve the imbalance of an
application should be transparent to the user, dynamic and independent from the
programming model, libraries or input set. As we will see later, the proposal presented in
this chapter is both transparent and independent from the programming model, libraries
and input set.

3. Hardware Resource Allocation

With the arrival of MT architectures, and in particular those that allow the software to
control processor's resource allocation, new opportunities arise to mitigate the problem of
imbalance in HPC applications. This is mainly due to the fact that the software is allowed to
exercise a fine control over the progress of tasks, by allocating or deallocating processor
resources to them. Such a fine-grain control cannot be achieved by previous solutions for
load imbalance; in fact, even if a lot of processors with shared resources have been
introduced in the market since early 90s, very few of them allow the software to control how
internal resources are allocated. Allowing the software to control how to assign shared
resources is a key factor for HPC systems. In this view, having MT processors able to
provide such mechanism will be essential for improving the performance of HPC systems.
The solution presented in this chapter for balancing HPC applications, consists of assigning
more hardware resources to the most compute-intensive processes (the bottleneck). Giving
this process more hardware resource shall decrease its execution time and, since this process
is the bottleneck of the application, the execution time of the whole MPI application.
Clearly the underlying processor has to support the capability of re-assigning processor
resources among running contexts. Currently, multi-threaded processors like the IBM
POWER5 (Kalla et al., 2004), the POWER6 (Le et al., 2007) or the Cell processor (IBM et al.,
2006; IBM, 2008) provide such a capability with their hardware thread priority mechanisms.
More details about the POWER5 prioritization mechanism are available in Section 3.1.
Even if in this chapter we focus on the IBM POWER5, the idea presented is general and can
be applied to other MT processors that allow the OS to the control or influence the allocation
of processor's resources (for example, partitioning a shared L2 cache in a multi-core CPU

(Moreto et al., 2008; Qureshi and Patt, 2006). The IBM POWER5 processor is used, among
others, by ASC Purple, installed at the Lawrence Livermore National Laboratory4.

(a) Imbalanced HPC application (b) More balanced HPC application
Fig. 4. Expected effect of the proposed solution (T' < T).

We should point out that increasing the performance of one process by giving it more
hardware resources, does not come for free. In fact, at the same time, the performance of the
other process running on the same core, therefore sharing the resources with the former
process, may reduce. Figure 4 shows a synthetic example that illustrates this case: in Figure
4(a), process P1 shares resources with P2, while P3 shares them with P4; P2, P3 and P4 take
the same amount of time to reach their synchronization point but P1 takes much longer. As
a result, P2, P3 and P4 are idle for a long time. In Figure 4(b), we increase the priority of P1,
so it uses more hardware resources and its execution time decreases; P2's execution time,
instead, increases since it runs with less hardware resources. Since P2 is not the bottleneck
and has enough “spare time”, its slowdown does not affect the application's performance.
On the other hand, the performance improvement of P1 directly translates into a
performance improvement for the whole application, as it is possible to see comparing
Figures 4(a) and 4(b).
No assumption is made on what kind of application, programming model or input set the
programmer has to use. The only assumption made is that the underlying processor must
provide a mechanism, visible at software level, to control the hardware shared resources.
The solution for load balancing through hardware resource allocation works at OS level and
is completely transparent to the users, who are free to use the MPI, OpenMP or any other
programming model or library they wish. Moreover, the approach can be adjusted so the
amount of resources assigned to a process can change according to the input set provided to
the application.
It is important to notice that not all the POWER5 priorities are available from the user-level
and a special kernel patch was needed to enable the use of the full spectrum of software-
controlled hardware priorities. For the technique presented in the current chapter, we
employ the same patch developed to perform the characterization in (Boneti et al., 2008a).
The patch only provides a mechanism to set all the priorities (available at OS level) from
user applications. It is the responsibility of the user applications (or run time systems) to
balance the system load using this interface.

4The 3rd supercomputer in the Top500 list of 06/2006, the 11th at the list of 11/2007.

Parallel	and	Distributed	Computing126

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

Using	hardware	resource	allocation	to	balance	HPC	applications 127

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

Parallel	and	Distributed	Computing126

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

Using	hardware	resource	allocation	to	balance	HPC	applications 127

3.1. The IBM POWER5 processor
The IBM POWER5 (IBM, 2005a; IBM, 2005b; IBM, 2005c; Sinharoy et al., 2005) processor is a
dual-core chip where each core is a 2-way SMT core (Kalla et al., 2004). Each core has its
own private first-level data and instruction caches. The unified second- and third-level
caches are shared between cores.
The forms of Multi-Threading implemented in the POWER5 are Simultaneous Multi-
threading and Chip-Multiprocessing. The main characteristic of SMT processors is their
ability to issue instructions from different threads in the same cycle. As a result, SMTs not
only can switch to a different thread to use the idle issue cycles in a long-latency operation,
like coarse-grain multi-threading, or in a short-latency operation, like in a fine-grain multi-
threaded, but also fill unused issue slots in a given cycle.
What makes the IBM POWER5 ideal for testing our proposal is the capability that each core
has to assign some hardware resources to one context rather than to the other. Each context
in a core has a hardware thread priority (Boneti et al, 2008a; Gibbs et al., 2005; Kalla et al.,
2003), an integer value in the range of 0 (the context is off) to 7 (the other context is off and
the core is running in Single Thread (ST) mode), as illustrated in Table 1. As the hardware
thread priority of a context increases (keeping the other constant) the amount of hardware
resources assigned to that context increases too.

Priority Priority level Privilege level or-nop inst.
0 Thread shut off Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User or 1,1,1

3 Medium-Low User or 6,6,6

4 Medium User or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Table 1. Hardware thread priorities in the IBM POWER5 processor

3.1.1. Thread priorities implementation
The way each core assigns more hardware resources to a given hardware thread is by
decoding more instructions from that thread than from the other. In other words, the
number of decode cycles assigned to each thread depends on its hardware priority. In
general, the higher the priority, the higher the number of decode cycles assigned to the
thread (and, therefore, the higher the number of shared resources held by the thread).
Let's assume two threads (ThreadA and ThreadB) are running on a POWER5 core with
priorities X and Y, respectively. In POWER5 the decode time is divided in time-slices of R
cycles: the lower priority thread receives 1 of those cycles, while the higher priority thread
receives (R-1) cycles. R is computed as:

12  YXR
(1)

Table 2 shows the possible values of R and how many decode slots are assigned to the two
threads as the difference between ThreadA's and ThreadB's priority moves from 0 to 4. In

fact, the amount of resources assigned to a thread is determined using the difference
between the thread priorities, X and Y. For example, assuming that ThreadA has hardware
priority 6 and ThreadB has hardware priority 2 (the difference is 4), then the core fetches 31
times from context0 and once from context1 (more details on the hardware implementation
are provided in (Gibbs et al., 2005). It is clear that the performance of the process running on
Context0 shall increase to the detriment of the one running on Context1. When any of the
threads has priority 0 or 1, the behavior of the hardware prioritization mechanism is
different, as shown in Table 3.

Priority difference
(X-Y)

R Decode cycles
for A

Decode cycles
for B

0 2 1 1
1 4 3 1
2 8 7 1
3 16 15 1
4 32 31 1

Table 2. Decode cycle allocation in the IBM POWER5 with different priorities.

Thread A Thread B Action
>1 >1 Decode cycles are given to the two threads as

according with the thread's priorities.
1 >1 ThreadB gets all the execution resources;

ThreadA takes what is left over.
1 1 Power save mode; both ThreadA and ThreadB

receive 1 of 64 decode cycles.
0 >1 Processor in ST mode. ThreadB receives all the

resources.
0 1 1 of 32 cycles are given to ThreadB.
0 0 Processor is stopped.

Table 3. Resource allocation in the IBM POWER5 when the priority of any of the threads is 0
or 1.

3.1.2. Hardware interface for priority management
The IBM POWER5 provides two different interfaces to change the priority of a thread:
issuing an or-nop instruction or using the Thread Status Register (TSR). We used the former
interface, in which case a thread has to execute an instruction like or X,X,X, where X is an
specific register number (see Table 1). This operation does not do anything but changing the
hardware thread priority. Table 1 also shows the privilege level required to set each priority
and how to change priority using this interface. The second interface consists of writing the
hardware priority into the local (i.e., per-context) TSR by means of a mtspr operation. The
actual thread priority can be read from the local TSR using a mfspr instruction.

3.2. The Linux kernel interface to hardware priorities
By default, users can only set three hardware priorities: MEDIUM (4), MEDIUM-LOW (3) and
LOW (2). This basically means that users are only allowed to reduce their priority, since the
MEDIUM priority is the default case. If the user reduces the thread priority when a process

Parallel	and	Distributed	Computing128

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

Using	hardware	resource	allocation	to	balance	HPC	applications 129

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

Parallel	and	Distributed	Computing128

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

Using	hardware	resource	allocation	to	balance	HPC	applications 129

does not require lot or resources (for example because the process is waiting for a lock), the
overall performance might increase (because the other thread receives more resources and,
therefore, may go faster). Thus, it is recommended that the user reduces the thread priority
whenever the thread processor is executing a low-priority operation (such as spinning for a
lock, polling, etc.).
Modern Linux kernels running on IBM POWER5 processors make use of the hardware
priority mechanism the chip provides. In this Section we will first explore the standard
behavior of the Linux kernel when dealing with hardware priorities, and then present how
we modified the standard kernel in order to solve the imbalance problem by means of the
IBM POWER5 hardware prioritization mechanism.

3.2.1. The use of priorities in the standard Linux Kernel
The Linux kernel only exploits hardware priorities in a limited number of cases: the general
idea is to reduce the priority of a process that is not performing any useful operation and to
give more resources to the process running on the other context.
The standard Linux kernel makes use of the thread priorities in three cases:

1. The processor is spinning for a lock in kernel mode. In this case the priority of the
spinning process is reduced (the process is not really advancing in its job).

2. The kernel is waiting for some operations to complete. This happens, for example,
when the kernel wants a specific CPU to perform some operation by means of a
smp_call_function() (for example, invalidating its TLB) and cannot proceed until
the operation has completed. In this case the priority of the CPU is decreased until
the operation completes.

3. The kernel is running the idle process because there is no other process ready to
run. In this case the kernel reduces the priority of the idle CPU and, eventually, put
the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of the context, restoring the priority to
MEDIUM when there is some job to perform. The hardware thread priority is also reset to
MEDIUM as soon as the kernel executes an interrupt or an exception handler as well as a
system call. In fact, since the kernel does not keep track of the current priority, it cannot
restore the process' priority. Therefore, the kernel simply resets the priority to MEDIUM every
time it starts to execute an interrupt handler (or a system call), so that it can be sure that
those critical operations will be performed with enough resources.

3.2.2. Modification to the Linux kernel
In order to use the hardware prioritization for balancing the HPC application, we modified
the original kernel code for two reasons:

1. Every time the CPU receives an interrupt, the interrupt handler sets the priority
back to MEDIUM, regardless of the current priority. We want to maintain the given
priority even after an interrupt is received or during the interrupt handler itself;
thus, we removed the code that makes use of the hardware thread priority
capabilities from the handlers.

2. Only hardware priorities 2 (LOW), 3 (MEDIUM-LOW) and 4 (MEDIUM) can be set by a
user-level program. Priorities 1 (VERY LOW), 5 (MEDIUM-HIGH) and 6 (HIGH) can only
be set by the Operating System (OS). Priorities 0 (context off) and 7 (VERY HIGH, ST
mode) can only be set by the Hypervisor. We developed an interface that allows

the user to set all the possible priorities available in kernel mode. A user who
wants to set priority N to process <PID> shall simply write to a proc file, like:

echo N > /proc/<PID>/hmt_priority

This patch provides a mechanism to set all the priorities from user applications. It is
developed for several standard kernel versions (2.6.19, 2.6.24, 2.6.28, etc) in a way that it is
not intrusive and has no impact on the performance of our experiments. With this patch, it
is the responsibility of the user applications, system scheduler or run time systems to
balance the system load. It is the building block that can be used for other mechanisms, like
the transparent load balancer proposed in (Boneti et al., 2008b).

4. Case Studies on the IBM POWER5 processor

In this section, we present some experiments on an IBM OpenPower 710 server, with one
POWER5 processor. Since MPI is the most common protocol, the test cases in this section
are MPI applications (in the experiments we used the MPI-CH 1.0.4p1 implementation of
MPI protocol).
We present four different cases: Section 4.1 shows how the IBM POWER5 priority
mechanism works using our micro-benchmark (Metbench); Section 4.2 provides details on
how the hardware priorities can be used to balance a widely used benchmark (NAS BT-MZ)
and improve its performance. Section 4.3 presents a different version of Metbench that
presents dynamic behavior and, thus, variable imbalance. Finally, 4.4 shows how the
hardware prioritization improves the performance of a real application frequently executed
on MareNostrum (SIESTA). In this case, SIESTA receives an input that makes it exhibit a
variable behavior and imbalance.
In order to present experiments in a simple way, we use as metric the total execution time of
the application. We use PARAVER (Labarta et al., 1996), a visualization and performance
analysis tool developed at CEPBA, to collect data and statistics and to show the trace of each
process during the tests.

4.1. Metbench
Metbench (Minimum Execution Time Benchmark) is a suite of MPI micro-benchmarks
developed at BSC whose structure is representative of the real applications running on
MareNostrum. Metbench consists of a framework and several loads. The framework is
composed by a master process and several workers: each worker executes its assigned load
and then waits for all the others to complete their task. The role of the master is to maintain
a strict synchronization between the workers: once all the workers have finished their tasks,
the master eventually starts another iteration (the number of iterations to perform is a run-
time parameter). The master and the workers only exchange data during the initialization
phase and use an mpi_barrier() to get synchronized. In the traces shown in this section,
the master process corresponds to the first process and is not balanced as it will be always
idle, waiting for the conclusion of all worker processes.
One of the goals of Metbench is to allow researchers at BSC to understand the performance
and capabilities of a processor or a cluster. In order to do that, we developed several loads,
each one stressing a different processor resource (for example, the Floating Point Unit, the
L2 cache, the branch predictor, etc) for a given amount of time.

Parallel	and	Distributed	Computing130

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

Using	hardware	resource	allocation	to	balance	HPC	applications 131

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

Parallel	and	Distributed	Computing130

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

Using	hardware	resource	allocation	to	balance	HPC	applications 131

In this experiment we introduce imbalance in the MPI application by assigning to a worker
a larger load than the one assigned to the worker on the same core. In this way, the faster
worker will spend most of its time waiting for the slower worker to process its load. As we
will see in Section 4.2 this scenario is quite common for both standard benchmarks and real
applications. Figure 5 shows the effect of the hardware resource allocation on Metbench.
Each horizontal line represents the activity of a process and each color represents a different
state: dark bars show computing time while grey bars show waiting time. In this example,
processes P1 (the master), P2, and P3 are mapped to the first core of the POWER5, while
processes P4 and P5 are mapped to the other core. The x-axis represents time.

(a) Metbench Case A

(b) Metbench Case B

(c) Metbench Case C

(d) Metbench Case D

Fig. 5. Effect of the hardware thread prioritization on Metbench. Each trace represents only
some iterations of the application.

Case A: Figure 5(a) represents our reference case, i.e., the MPI application is running with
default priorities (4). As we can see from Figure 5(a) Metbench shows a great imbalance:

more specifically, processes P2 and P4 spend about 75.6% of their time waiting for processes
P3 and P5 to complete their computing phase.
Case B: Using the software-controlled hardware prioritization, we increased the priority of
P3 and P5 (the most computing intensive processes) up to 6, while the priority of P2 and P4
are set to 5 (remember that what really matters is the difference between the thread
priorities, here P2 and P4 are running with less priority than in Case A).
Figure 5(b) shows how the imbalance has been reduced, also reducing the total execution
time (from 81.64 sec to 76.98 sec, 5.71% of improvement).
Case C: We increased again the amount of hardware resources assigned to P3 and P5 in
order to speed them up.
Indeed, we obtained an even more balanced situation where all the processes compute for
(roughly) the same amount of time. The total execution time reduces to 74.90 sec (8.26% of
improvement over Case A).
Case D: Next, we increased again the amount of resources given to P3 and P5. As we can
see from Figure 5(d) we reversed the imbalance, i.e., now P3 and P5 are much faster than P2
and P4 and spend most of their time waiting. As a result the execution time (95.71 sec)
increases.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.02
24.32
98.99
24.31
99.99

4
4
4
4
4

81.64s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.02
51.16
99.82
51.18
99.98

4
5
6
5
6

76.98s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.03
98.96
98.56
97.01
98.37

4
4
6
4
6

74.90s

D P1
P2
P3
P4
P5

1
1
1
2
2

0.02
99.87
73.25
99.72
73.25

4
3
6
3
6

95.71s

Table 4. Metbench balanced and imbalanced characterization

Case D shows an interesting property of the IBM POWER5 hardware priority mechanism:
the hardware thread priority implementation is a powerful tool but the performance of the
penalized process can be reduced more than linearly (in fact, exponentially) (Boneti et al.
2008a), thus, P2 and P4 can become the new bottlenecks.

Parallel	and	Distributed	Computing132

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

Using	hardware	resource	allocation	to	balance	HPC	applications 133

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

Parallel	and	Distributed	Computing132

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

Using	hardware	resource	allocation	to	balance	HPC	applications 133

4.2. BT-MZ
Block Tri-diagonal (BT) is one of the NAS Parallel Benchmarks (NPB) suite. BT solves
discretized versions of the unsteady, compressible Navier-Stokes equations in three spatial
dimensions, operating on a structured discretization mesh. BT Multi-Zone (BT-MZ) (Jin and
der Wijngaart, 2006) is a variation of the BT benchmark which uses several meshes (named
zones) for, in realistic applications, a single mesh is not enough to describe a complex
domain.
Besides the complexity of the algorithm, BT-MZ shows a behavior very similar to our
Metbench benchmark: every process in the MPI application performs some computation on
its part of the data set and then exchanges data with its neighbors asynchronously (using
mpi_isend() and mpi_irecv()); after this communication phase (which lasts for a very
short time, around 0.10% of the total execution time) each process waits (with a
mpi_waitall() function) for its neighbors to complete their communication phases. In this
way, each process gets synchronized with its neighbors (note that this does not mean that
each process gets synchronized with all the other processes). Once a process has exchanged
all the data it had to exchange, a new iteration can start and the previous behavior repeats
again until the end of the application (in our experiments we used BT-MZ with default
values: class A with 200 iterations).

(a) BT-MZ Case A

(b) BT-MZ Case B

(C) BT-MZ Case C

(D) BT-MZ Case D

Fig. 6. Effect of the hardware thread prioritization on BT-MZ. Each trace represents only
some iterations of the application. Communication has been removed to increase clearness

Case A: Figure 6(a) shows the BT behavior in the reference case, i.e. when process Pi is
assigned to CPUi and the priority of all the processes is 4. After an initialization phase
(white bars at the beginning of the execution of each task), all the processes reach a barrier
(synchronization point). From this point on, the real algorithm starts: during every iteration,
each process alternate computing phases (black) with synchronization phases (grey).
It is easy to see from Figure 6(a) that BT-MZ shows a great imbalance5. The imbalance is
caused by the fact that some processes (for example process P1) have a small part of the data
to work on, while other processes (for example, processes P4) have a large amount of data to
take care of. It is also clear that process P4 is the bottleneck of the application and that
speeding up this process will improve overall performance.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

49.33
99.46

7
7

108.32s

A P1
P2
P3
P4

1
1
2
2

17.63
28.91
66.47
99.72

4
4
4
4

81.64s

B P1
P2
P3
P4

1
2
2
1

52.33
99.64
28.87
46.26

3
3
6
6

127.91s

C P1
P2
P3
P4

1
2
2
1

65.32
99.68
53.78
85.88

4
4
6
6

75.62s

D P1
P2
P3
P4

1
2
2
1

82.73
73.68
66.40
99.72

4
4
5
6

66.88s

Table 5. BT-MZ balanced and imbalanced characterization

Case B: In order to solve the imbalance introduced by data repartition in BT-MZ, we ran
process P1 and P4 on the same core and assigned more hardware resources to the latter,
improving its performance while decreasing P1’s performance. This mapping seems
reasonable, as our goal is to increase the performance of P4 (the most computing intensive
process) and we know that, with this operation, we will reduce the performance of the
process running on the same core with P4. We chose P1 because it is the process with the
shortest computation phase.
In our first attempt to reduce the imbalance we assigned priority 3 to processes P1 and P2
and priority 6 to processes P3 and P4. Figure 6(b) shows how the imbalance has been
inverted: process P1 now takes longer than P4 and the new bottleneck is now process P2,
which is also running with priority 3. As a consequence, the total execution time increases

5Even if the goal of this chapter is not to show whether SMT processors are useful in HPC or not, the
table also shows the ST mode performance (only one process per core) of the application.

Parallel	and	Distributed	Computing134

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

Using	hardware	resource	allocation	to	balance	HPC	applications 135

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

Parallel	and	Distributed	Computing134

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

Using	hardware	resource	allocation	to	balance	HPC	applications 135

(127.91 sec instead of 81.62 sec), which means the new bottleneck runs for much longer than
the previous one.
Case C: In order to restore the original relative behavior between process P1 and P4 we
incremented the resources assigned to process P1 and P2. Figure 6(c) shows that P1 now
runs for less time than P4, as in Case A. In addition, giving more resource to P2 (which is
again the bottleneck) reduced the total execution time to 75.62 sec, with a 7.37% of
improvement with respect to Case A.
Case D: Finally, we can argue that P2 and P3 execute their operation on a similar amount of
data, therefore the amount of resources given to each process should not be as different as
for P1 and P4. In our last test, we still assigned priority 4 to P1 and 6 to P4, as in the
previous case, but we assigned priority 5 to P2 and 6 to P3, sharing resources between these
two processes running on the same core more equally. Figure 6(d) shows that the imbalance
has been reduced again with respect to Case C, in fact, now P2 and P3 compute more or less
for the same amount of time. Also the new bottleneck is P4, which is much shorter than P2
in Case C. Table 5 shows how the total execution time has also been reduced to 66.88 sec,
with an 18.08% of improvement over the reference Case A.

4.3. MetbenchVar

(a) MetbenchVar Case A

(b) MetbenchVar Case B

(c) MetbenchVar Case C

Fig. 7. Effect of the hardware thread prioritization on MetbenchVar

MetbenchVar is a slightly modified version of Metbench where the workers change their
behavior after k iteration. Figure 7(a) shows the standard execution of MetbenchVar with

k=15: at the beginning P2 and P4 execute a small load while P3 and P5 a large load. At the
15th iteration, P2 and P4 start to execute the large load while P3 and P5 perform their task
on the small load. In this way, we reverse the load imbalance at run time making the
application's behavior dynamic. At the 30th iteration, we switch again the behavior of the
tasks. Recall that, as it was the case for Metbench (Section 4.1), P1 does not perform any job
and presents no significant impact on performance, as it only waits for P2 to P5 to finish
their execution.
Figure 7(b) shows how the static prioritization works in this case: the application is perfectly
balanced in the first (iterations 1-15) and third period (iteration 31-45) but the imbalance is
reversed in the second period (iterations 16-30), as a result, in the second period the
application performs worst than in the standard case. Furthermore, for this workload, the
negative impact of applying the wrong prioritization is extremely high and, although for
two thirds of the cases the benchmark runs with the right priorities (4,6), the performance
degradation of running with the wrong priorities is by far more important. Overall, for this
program, the static prioritization presents 50% of performance degradation when compared
to the standard case of this benchmark.
Figure 7(c) shows that trying to decrease the priority difference between P2 and P3, and
between P4 and P5 does not improve the baseline either. In this case, when comparing to the
standard execution, statically applying a hardware prioritization still degrades performance
by 13.20%.

Fig. 8. Effect of the HPCSched on MetbenchVar.

The case where the application presents a dynamic behavior makes a strong motivation for
dynamic mechanisms. In fact, dynamic mechanisms proposed in (Boneti et al., 2008b) are
able to transparently balance this application and improve its execution time by 12.5%.
Figure 8 shows the trace of MetbenchVar when running with HPCSched's uniform
prioritization mechanism. The key of the improvement is the ability to change the priorities
during the application’s execution time, following the changes in its behavior.
Another very interesting point is that, for applications with very variable behavior, using
the overall relative computational time (or utilization) of a task can be tricky. For instance, if
we refer to the case A in Table 6, we can see that process P2 computes for 49.34% of the time,
while P3 processed for 74.65% of the time. It becomes intuitive that we should always
prioritize P2. However, let’s take a look at the utilization per phase: during the first phase,
the utilizations are 24.17%, 100.00%, 24.16%, 99.97%, during the second, they are 100%,
23.65%, 99.94%, 23.65%, finally, the third iteration has the same behavior as the first one. It
becomes clear why a constant prioritization is not good, and furthermore, that the overall
utilization is not a good indicator of imbalance for this application.

Parallel	and	Distributed	Computing136

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

Using	hardware	resource	allocation	to	balance	HPC	applications 137

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

Parallel	and	Distributed	Computing136

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

Using	hardware	resource	allocation	to	balance	HPC	applications 137

On Case B of Table 6, the measured overall utilization is also misleading. We may believe
that the imbalance is not so different from the baseline Case A, however, for initial and final
phases the utilizations are: 99.63%, 99.90%, 98.52%, 99.94% and for the middle phase:
99.95%, 4.90%, 99.87%, 4.89%. On the previous cases, as the imbalance was constant, it was
not necessary to use per-phase utilization. Clearly, in the case of MetbenchVar, if the
utilization is used as a metric, it must be evaluated for each of the phases of the program.

Test Proc Core % Comp Priority Exec. Time
A P1

P2
P3
P4
P5

1
1
1
2
2

0.01
49.34
74.65
49.31
76.63

4
4
4
4
4

259.79s

B P1
P2
P3
P4
P5

1
1
1
2
2

0.00
99.43
40.65
99.35
40.64

4
4
6
4
6

388.75s

C P1
P2
P3
P4
P5

1
1
1
2
2

0.01
75.36
56.34
75.32
56.35

4
4
5
4
5

294.10s

HPCSched P1
P2
P3
P4
P5

1
1
1
2
2

0.01
90.11
93.95
89.28
93.75

-
-
-
-
-

227.33s

Table 6. MetbenchVar balanced and imbalanced characterization

4.4. Siesta
Our last experiment consists of running SIESTA as an example of real application. SIESTA
(SIESTA, 2009; Soler et al., 2002) is a method for ab initio order-N materials simulation,
specifically it is a self-consistent density functional method that uses standard norm-
conserving pseudo-potentials and a flexible, numerical linear combination of atomic orbitals
basis set, which includes multiple-zeta and polarization orbitals.
The application presents an imbalance caused by both the algorithm and the input set. For
this very interesting input set, a nanoparticle of barium titanate, SIESTA behavior is not
constant during each iteration, as can be seen in Figure 9(a); this makes our static balancing
solution not as good as for the BT-MZ case. Yet, we achieved an improvement of 8.1% of
execution time reduction with respect to the reference case (Case A).
Case A: Like for BT-MZ, Case A is the reference case, i.e., where process Pi is assigned to
CPUi and the priority of all the processes is set to 4. Figure 9(a) shows the trace for this
reference case. The program starts with an initialization phase (11.99% of the total time) at
the end of which each process in the application must reach a barrier. The initialization
phase already presents some little imbalance, which evidences how the input set makes

SIESTA imbalanced. In the internal parts, each process exchanges data only with a subset of
the other processes in the application, and then reaches a synchronization point
(WaitAll()), waiting for all the others to complete their jobs. In the last part, the processes
finalize their work (13.41% of the total time): after the last barrier, each process computes its
function on its sub-set of data and then ends. A complete execution of the program in this
configuration takes 858.57 secs.
Case B: As we can see from the trace in Figure 9(a) is not easy to understand how to balance
the application and whether our balancing approach is worth. However, Table 7 shows
some more information about SIESTA (hard to retrieve from the trace): processes P1 and P2
spend a considerable amount of time waiting for P3 and P4 to reach the barrier. Thus, the
first hint would be to put P1 and P3 on one core and P2 and P4 on the other and then play
with priority. We tried this case but then we realized that P2 and P3 have almost the same
amount of data to work on. Thus, in Case B we put P2 and P3 on the first core and P1 and
P4 on the second one and increased the priority of P3 and P4 to 5. In this case we achieved a
little improvement of 1.24% (the total execution time is 847.91 sec). Figure 9(b) shows that, in
this new configuration, P2 is the new bottleneck of the finalization part.

(a) SIESTA Case A

(b) SIESTA Case B

(c) SIESTA Case C

 (d) SIESTA Case D

Fig. 9. Effect of the hardware thread prioritization on SIESTA

Parallel	and	Distributed	Computing138

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

Using	hardware	resource	allocation	to	balance	HPC	applications 139

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

Parallel	and	Distributed	Computing138

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

Using	hardware	resource	allocation	to	balance	HPC	applications 139

Case C: In the previous case we obtained a little improvement, still the application results
quite imbalanced. We realized that, since P2 and P3 work, more or less, on the same amount
of data, using a different priority for these two processes may introduce even more
imbalance. Figure 9(b) shows that, indeed, this is the case. In Case C we restored the original
relative behavior between process P2 and P3 setting both their priority to 4 (i.e., the
difference is 0). Figure 9(c) shows how the application is now more balanced. For example,
looking at the initialization and the finalization part, it is possible to see that the processes
are much more balanced than in Case A and Case B. In fact, re-balancing SIESTA reduces
the total execution time to 798.20 sec, an improvement of 8.1% with respect to the reference
case.
Case D: Following the same idea of the previous case (i.e., leave P2 and P3 with the same
priority and play with P1 and P4), we increased the amount of resources assigned to P4,
penalizing P1. Figure 9(d) shows how we reverse the imbalance: SIESTA is again
imbalanced, though in a different way than in the reference case. In Case D, P1 (the process
with less hardware resources) is the bottleneck (in the initialization, finalization and most of
the internal phases) and the total execution time increases to 976.35 sec, with a loss of
13.72%.

Test Proc Core % Comp Priority Exec. Time
ST P1

P2
1
2

81.79
93.72

7
7

1236.05s

A P1
P2
P3
P4

1
1
2
2

75.94
75.24
82.08
93.47

4
4
4
4

858.57s

B P1
P2
P3
P4

2
1
1
2

79.57
87.06
72.04
77.73

4
4
5
5

847.91s

C P1
P2
P3
P4

2
1
1
2

83.04
79.66
80.78
78.74

4
4
4
5

789.20s

D P1
P2
P3
P4

2
1
1
2

90.76
65.74
68.08
63.95

4
4
4
6

976.35s

Table 7. SIESTA balanced and imbalanced characterization

BT-MZ and SIESTA are two cases of non-balanced HPC applications, though their
imbalance is quite different. BT-MZ executes several iterations, all of them similar from the
execution time, CPU utilization and imbalance point of view. SIESTA also executes several
iterations, but each iteration is not necessarily similar to the previous or the next one. In
particular, the process that computes the most is not the same across all the iterations. For
example, in the i-th iteration P1 could be the bottleneck while in the (i+1)-th the most
computing process could be P4. This behavior suggests that a good balancing mechanism

would prioritize P1 in the i-th and P4 in the i+1-th iteration. Our static approach does not
allow us to play in this way as we assign the priority at the beginning of the execution and
never change them during the execution. We argue that a dynamic mechanism is required
to correctly set priorities for applications that change their behavior throughout their
execution.

5. Related work

Traditional solutions to attack the problem of load imbalance in HPC applications typically
use dynamic data re-distribution. For OpenMP applications load balancing may be
performed using some of the existing loop scheduling algorithms that assigns iterations to
software threads dynamically (Aygade et al., 2003). MPI applications are much more
complex because data communications are defined explicitly in the algorithm by
programmers. Static approaches for distributing data using sophisticated tools have been
proposed: for example, METIS (METIS, 2009) analyzes data and tries to find the best data
distribution. These approaches achieve good performance results but have the drawback
that they must be repeated for each input data set and architecture. Dynamic approaches
have also been proposed in the literature (Schloegel et al., 2000) and (Walshaw and Cross,
2002). The authors try to solve the load-balancing problem of irregular applications by
proposing mesh repartitioning algorithms and evaluating the convenience of repartitioning
the mesh or adjusting it.
Processing re-distribution is another approach that consists of assigning more resources to
those processes that compute for longer. In the case of OpenMP, this can be useful when
using nested parallelism, assigning more software threads to those groups with high load
(Duran et al., 2005). The case of MPI is much more complex because the number of processes
is statically determined when starting the job (in case of malleable jobs), or when compiling
the application (in case of rigid jobs). This problem has been also approached through
hybrid programming models, combining MPI and OpenMP. Huang and Tafti (Huang and
Tafti, 1999) balance irregular applications by modifying the computational power rather
than using the typical mesh redistribution. In their work, the application detects the
overloading of some of its processes and tries to solve the problem by creating new software
threads at run time. They observe that one of the difficulties of this method is that they do
not control the operating system decisions which could oppose their own ones.
Concerning the use of SMT architectures for HPC applications, several studies (Curtis-
Maury and Wang, 2005; Celebioglu et al, 2004) show that Hyper-Threading (the SMT
implementation of Intel Processors) improve performance for some workloads. However,
for other workloads there are many conflicts when accessing shared resources, creating a
negative impact on the performance. In (Curtis-Maury and Wang, 2005) the study is
performed for MPI applications while in (Celebioglu et al, 2004) the study focuses in
OpenMP applications. In (Celebioglu et al, 2004) the authors propose a mechanism that,
given a multiprocessor machine with Hyper-Threading processors, dynamically deactivates
the Hyper-Threading in some processors in order to improve the performance of the
workload under study.
The solution presented in this chapter is orthogonal to both the software thread re-
distribution and the dynamically activating Hyper-Threading. Let's assume that we want to
run an HPC application on a cluster having several IBM POWER5 processors. The proposal
in (Celebioglu et al, 2004) can be used to determine in which cores SMT has to be

Parallel	and	Distributed	Computing140

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

Using	hardware	resource	allocation	to	balance	HPC	applications 141

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

Parallel	and	Distributed	Computing140

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

Using	hardware	resource	allocation	to	balance	HPC	applications 141

deactivated. For those cores with the SMT feature active, hardware prioritization can be
used to select the appropriate hardware priority to reduce imbalance. Compared with
software thread-distribution, hardware prioritization can be seen as low level solution for
load balancing.

6. Summary

In this chapter we present the problem of imbalance in HPC applications. In fact, some
applications show an imbalanced behavior, i.e., some processes require more time to
complete their computing phase while all the other processes are waiting at some
synchronization point and cannot move forward. We show the reasons for imbalance and
some examples where the application is imbalanced because of data distribution (NAS BT-
MZ), or because of the application's input (SIESTA).
We also present the idea of using software controlled allocation of the hardware resources
to perform load-balance of HPC applications. Experimental cases show how using a
modified Linux kernel to control a processor capable to dynamically assign processor
resources to running contexts (the IBM POWER5 in this case), reduces the application
imbalance and, therefore, improves overall performance. The experiments performed show
an improvement up to 18% for a widely used BT-MZ benchmark and up to 8.1% for a real
application (SIESTA). These results do not require putting the burden of balancing the
application on the programmer and are independent from the used programming model. In
addition, we show cases where the application presents variable behavior. We discuss on
why it motivates the use of automatic load-balancers based on software-controlled
hardware resource allocation.
From the case studies presented, it is possible to conclude that the hardware resource
allocation in multithreaded processors is an important tool that allows to load-balance HPC
applications, improving significantly their performance.

7. References

Alpert, D. (2003). Will microprocessor become simpler? Microprocessor Report.
Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X., and Silvera, R.

(2003). Is the schedule clause really necessary in openMP? In Proceedings of the 4th
International Workshop on OpenMP Applications and Tools (WOMPAT’03), volume
2716 of Lecture Notes in Computer Science (LNCS), pages 147–159, Toronto,
Canada. Springer-Verlag (New York).

Boneti, C., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu, A., Cher, C.-Y., and Valero, M.
(2008a). Software-controlled priority characterization of POWER5 processor. In
Proceedings of the 35th International Symposium on Computer Architecture (ISCA’08),
Beijing. ACM SIGARCH.

Boneti, C., Gioiosa, R., Cazorla, F. J., and Valero, M. (2008b). A dynamic scheduler for
balancing HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’08), Austin, TX.
IEEE/ACM.

Bossen, D. C., Tendler, J. M., and Reick, K. (2002). Power4 system design for high reliability.
IEEE Micro, 22(2):16–24.

Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., and Valero,
M. (2006). Predictable performance in SMT processors: Synergy between the OS
and SMTs. IEEE Transactions on Computers, 55(7):785– 799.

Celebioglu, O., Saify, A., Leng, T., Hsieh, J., Mashayekhi, V., and Rooholamini, R. (2004).
The performance impact of computational efficiency on HPC clusters with hyper-
threading technology. In Proceedings of the 3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems
(PMEOPDS’04), Santa Fe, New Mexico, USA. IEEE Computer Society (Los
Alamitos, CA).

Curtis-Maury, M. and Wang, T. (2005). Integrating multiple forms of multithreaded
execution on multi-SMT systems: A study with scientific applications. In
Proceedings of the 2nd International Conference on the Quantitative Evaluation of Systems
(QEST’05), pages 199–209, Torino, Italy. IEEE Computer Society.

Duran, A., Gonzalez, M., Corbalan, J., Martorell, X., Ayguade, E., Labarta, J., and Silvera, R.
(2005). Automatic thread distribution for nested parallelism in OpenMP. In
Proceedings of the 19th ACM International Conference on Supercomputing (ICS’05),
pages 121–130, Cambridge, Massachusetts, USA.

Gibbs, B., Atyam, B., Berres, F., Blanchard, B., Castillo, L., Coelho, P., Guerin, N., Liu, L.,
Maciel, C. D., Sosa, C., and Thirumalai, R. (2005). Advanced POWER Virtualization
on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM Redbook.
IBM, International Technical Support Organization, Austin, TX, USA.

Gioiosa, R., Petrini, F., Davis, K., and Lebaillif-Delamare, F. (2004). Analysis of system
overhead on parallel computers. In Proceedings of the 4th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’04), pages 387–
390, Rome, Italy.

Huang, W. and Tafti, D. (1999). A parallel computing framework for dynamic power
balancing in adaptive mesh refinement applications. In Proceedings of the Parallel
Computational Fluid Dynamics (PCFD’99).

IBM (2005a). User Instruction Set Architecture version 2.02. Number 1 in PowerPC
Architecture books.

IBM (2005b). PowerPC Operating Environment Architecture version 2.02. Number 3 in PowerPC
Architecture books.

IBM (2005c). PowerPC Virtual Environment Architecture version 2.02. Number 2 in PowerPC
Architecture books.

IBM (2008). Cell broadband engine programming handbook v1.11.
IBM, Sony, and Toshiba (2006). Cell broadband engine architecture v1.01.
Jin, H. and der Wijngaart, R. F. V. (2006). Performance characteristics of the multi-zone NAS

parallel benchmarks. Journal of Parallel and Distributed Computing, 66(5):674– 685.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2003). SMT implementation in POWER5. In Hot

Chips, volume 15.
Kalla, R. N., Sinharoy, B., and Tendler, J. M. (2004). IBM POWER5 Chip: a dual-core

multithreaded processor. IEEE Micro, 24(2):40–47.
Labarta, J., Girona, S., Pillet, V., Cortes, T., and Gregoris, L. (1996). DiP: A parallel program

development environment. In Proceedings of the 2nd International Conference on
Parallel Processing (Euro-Par’96), volume II of Lecture Notes in Computer Science,
pages 665–674, Lyon, France. Springer.

Parallel	and	Distributed	Computing142

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W., Schwarz, E. M., and Vaden, M. T. (2007). IBM POWER6 microarchitecture. IBM
Journal of Research and Development, 51(6):639– 662.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., and Upton, M.
(2002). Hyper-threading technology architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15.

Metis - family of multilevel partitioning algorithms (2009).
http://glaros.dtc.umn.edu/gkhome/views/metis.

Moreto, M., Cazorla, F. J., Ramirez, A., and Valero, M. (2008). MLP-aware dynamic cache
partitioning. In Proceedins of the 3rd International Conference on High Performance
Embedded Architectures and Compilers (HiPEAC’08), volume 4917 of Lecture Notes in
Computer Science, pages 337–352, Goteborg, Sweden. Springer.

NASA. NAS parallel benchmarks (2009).
http://www.nas.nasa.gov/Resources/Software/npb.html

Petrini, F., Kerbyson, D. J., and Pakin, S. (2003). The case of the missing supercomputer
performance: Achieving optimal performance on the 8, 192 processors of ASCI Q.
In International Conference for High Perfromance Computing, Networking, Storage and
Analysis (SC’03), page 55. IEEE/ACM SIGARCH.

Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Proceedings of
the 39th International Symposium on Microar- chitecture (MICRO’06), pages 423–432.
IEEE Computer Society.

Schloegel, K., Karypis, G., and Kumar, V. (2000). Parallel multilevel algorithms for multi-
constraint graph partitioning. In Proceedings of the 6th International Conference on
Parallel Processing (Euro-Par’00), volume 1900 of LNCS, pages 296–310. Springer-
Verlag, Berlin.

Serrano, M. J., Wood, R. C., and Nemirovsky, M. (1993). A study on multistreamed
superscalar processors. Technical Report 93-05, University of California Santa
Barbara.

SIESTA: A linear-scaling density-functional method (2009). http://www.uam.es/siesta/
Sinharoy, B., Kalla, R. N., Tendler, J. M., Eickemeyer, R. J., and Joyner, J. B. (2005). POWER5

system microarchitecture. IBM Journal of Research and Development, 49(4/5):505– 521.
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal,

D. (2002). The SIESTA method for ab initio order-n materials simulation. Journal of
Physics: Condensed Matter, 14(11).

The TOP500 Supercomputing Sites (2007). http://www.top500.org/lists/2007/06.
Tsafrir, D., Etsion, Y., Feitelson, D. G., and Kirkpatrick, S. (2005). System noise, os clock

ticks, and fine- grained parallel applications. In Proceedings of the 19th International
Conference on Supercomputing (ICS ’05), pages 303–312, New York, NY, USA. ACM
Press.

Tullsen, D. M., Eggers, S. J., and Levy, H. M. (1995). Simultaneous multithreading:
Maximizing on-chip parallelism. Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA’95), pages 392–403.

Walshaw, C. H. and Cross, M. (2002). Dynamic mesh partitioning and load-balancing for
parallel computational mechanics codes. In Computational Mechanics Using High
Performance Computing, pages 79–94. Saxe-Coburg Publications, Stirling

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 143

A	 Fixed-Priority	 Scheduling	 Algorithm	 for	 Multiprocessor	 Real-Time	
Systems

Shinpei	Kato

0

A Fixed-Priority Scheduling Algorithm for
Multiprocessor Real-Time Systems

Shinpei Kato
The University of Tokyo

Japan

1. Introduction

Major chip manufacturers have adopted multicore technologies in recent years, due to the
thermal problems that distress traditional single-core chip designs in terms of processor per-
formance and power consumption. Nowadays, multiprocessor platforms have proliferated
in the marketplace, not only for servers and personal computers but also for embedded ma-
chines. The research on real-time systems has been therefore renewed for those multiprocessor
platforms, especially in the context of real-time scheduling.
Real-time scheduling techniques for multiprocessors are mainly classified into partitioned
scheduling and global scheduling. In the partitioned scheduling class, tasks are first assigned to
specific processors, and then executed on those processors without migrations. In the global
scheduling class, on the other hand, all tasks are stored in a global queue, and the same num-
ber of the highest priority tasks as processors are selected for execution.
The partitioned scheduling class has such an advantage that can reduce a problem of multi-
processor scheduling into a set of uniprocessor one, after tasks are partitioned. In addition,
it does not incur runtime overhead as much as global scheduling, since tasks never migrate
across processors. However, there is a disadvantage in theoretical scheduling performance,
i.e., schedulability a likelihood of a system being schedulable. Specifically, the worst-case
leads to that a periodic task system can cause deadline misses in partitioned scheduling, if the
system utilization exceeds 50% (Lopez et al., 2004).
The global scheduling class is meanwhile attractive in the worst-case schedulability. In this
class, Pfair (Baruah et al., 1996) and LLREF (Cho et al., 2006) are known to be optimal algo-
rithms. Any task sets are scheduled successfully by those algorithms, if the processor utiliza-
tion does not exceed 100%. However, the number of migrations and context switches is often
criticized. This scheduling class also provides concise and efficient algorithms, such as EDZL
(Cho et al., 2002) and EDCL (Kato & Yamasaki, 2008a), which perform with less preemptions
than the optimal ones, but the absolute worst-case processor utilization is still 50%.
For the purpose of finding a balance point between partitioned scheduling and global schedul-
ing, recent work have made available a new class, called semi-partitioned scheduling in this pa-
per. In this scheduling class, most tasks are fixed to specific processors as partitioned schedul-
ing to reduce the number of migrations, while a few tasks may migrate across processors to
improve available processor utilization as much as possible.
In addition to scheduling classes, the real-time systems community often argue priority-
driven scheduling policies. Commodity operating systems for practical use usually pre-

8

Parallel	and	Distributed	Computing142

Le, H. Q., Starke, W. J., Fields, J. S., O’Connell, F. P., Nguyen, D. Q., Ronchetti, B. J., Sauer,
W., Schwarz, E. M., and Vaden, M. T. (2007). IBM POWER6 microarchitecture. IBM
Journal of Research and Development, 51(6):639– 662.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., and Upton, M.
(2002). Hyper-threading technology architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15.

Metis - family of multilevel partitioning algorithms (2009).
http://glaros.dtc.umn.edu/gkhome/views/metis.

Moreto, M., Cazorla, F. J., Ramirez, A., and Valero, M. (2008). MLP-aware dynamic cache
partitioning. In Proceedins of the 3rd International Conference on High Performance
Embedded Architectures and Compilers (HiPEAC’08), volume 4917 of Lecture Notes in
Computer Science, pages 337–352, Goteborg, Sweden. Springer.

NASA. NAS parallel benchmarks (2009).
http://www.nas.nasa.gov/Resources/Software/npb.html

Petrini, F., Kerbyson, D. J., and Pakin, S. (2003). The case of the missing supercomputer
performance: Achieving optimal performance on the 8, 192 processors of ASCI Q.
In International Conference for High Perfromance Computing, Networking, Storage and
Analysis (SC’03), page 55. IEEE/ACM SIGARCH.

Qureshi, M. K. and Patt, Y. N. (2006). Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Proceedings of
the 39th International Symposium on Microar- chitecture (MICRO’06), pages 423–432.
IEEE Computer Society.

Schloegel, K., Karypis, G., and Kumar, V. (2000). Parallel multilevel algorithms for multi-
constraint graph partitioning. In Proceedings of the 6th International Conference on
Parallel Processing (Euro-Par’00), volume 1900 of LNCS, pages 296–310. Springer-
Verlag, Berlin.

Serrano, M. J., Wood, R. C., and Nemirovsky, M. (1993). A study on multistreamed
superscalar processors. Technical Report 93-05, University of California Santa
Barbara.

SIESTA: A linear-scaling density-functional method (2009). http://www.uam.es/siesta/
Sinharoy, B., Kalla, R. N., Tendler, J. M., Eickemeyer, R. J., and Joyner, J. B. (2005). POWER5

system microarchitecture. IBM Journal of Research and Development, 49(4/5):505– 521.
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., and Sanchez-Portal,

D. (2002). The SIESTA method for ab initio order-n materials simulation. Journal of
Physics: Condensed Matter, 14(11).

The TOP500 Supercomputing Sites (2007). http://www.top500.org/lists/2007/06.
Tsafrir, D., Etsion, Y., Feitelson, D. G., and Kirkpatrick, S. (2005). System noise, os clock

ticks, and fine- grained parallel applications. In Proceedings of the 19th International
Conference on Supercomputing (ICS ’05), pages 303–312, New York, NY, USA. ACM
Press.

Tullsen, D. M., Eggers, S. J., and Levy, H. M. (1995). Simultaneous multithreading:
Maximizing on-chip parallelism. Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA’95), pages 392–403.

Walshaw, C. H. and Cross, M. (2002). Dynamic mesh partitioning and load-balancing for
parallel computational mechanics codes. In Computational Mechanics Using High
Performance Computing, pages 79–94. Saxe-Coburg Publications, Stirling

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 143

A	 Fixed-Priority	 Scheduling	 Algorithm	 for	 Multiprocessor	 Real-Time	
Systems

Shinpei	Kato

0

A Fixed-Priority Scheduling Algorithm for
Multiprocessor Real-Time Systems

Shinpei Kato
The University of Tokyo

Japan

1. Introduction

Major chip manufacturers have adopted multicore technologies in recent years, due to the
thermal problems that distress traditional single-core chip designs in terms of processor per-
formance and power consumption. Nowadays, multiprocessor platforms have proliferated
in the marketplace, not only for servers and personal computers but also for embedded ma-
chines. The research on real-time systems has been therefore renewed for those multiprocessor
platforms, especially in the context of real-time scheduling.
Real-time scheduling techniques for multiprocessors are mainly classified into partitioned
scheduling and global scheduling. In the partitioned scheduling class, tasks are first assigned to
specific processors, and then executed on those processors without migrations. In the global
scheduling class, on the other hand, all tasks are stored in a global queue, and the same num-
ber of the highest priority tasks as processors are selected for execution.
The partitioned scheduling class has such an advantage that can reduce a problem of multi-
processor scheduling into a set of uniprocessor one, after tasks are partitioned. In addition,
it does not incur runtime overhead as much as global scheduling, since tasks never migrate
across processors. However, there is a disadvantage in theoretical scheduling performance,
i.e., schedulability a likelihood of a system being schedulable. Specifically, the worst-case
leads to that a periodic task system can cause deadline misses in partitioned scheduling, if the
system utilization exceeds 50% (Lopez et al., 2004).
The global scheduling class is meanwhile attractive in the worst-case schedulability. In this
class, Pfair (Baruah et al., 1996) and LLREF (Cho et al., 2006) are known to be optimal algo-
rithms. Any task sets are scheduled successfully by those algorithms, if the processor utiliza-
tion does not exceed 100%. However, the number of migrations and context switches is often
criticized. This scheduling class also provides concise and efficient algorithms, such as EDZL
(Cho et al., 2002) and EDCL (Kato & Yamasaki, 2008a), which perform with less preemptions
than the optimal ones, but the absolute worst-case processor utilization is still 50%.
For the purpose of finding a balance point between partitioned scheduling and global schedul-
ing, recent work have made available a new class, called semi-partitioned scheduling in this pa-
per. In this scheduling class, most tasks are fixed to specific processors as partitioned schedul-
ing to reduce the number of migrations, while a few tasks may migrate across processors to
improve available processor utilization as much as possible.
In addition to scheduling classes, the real-time systems community often argue priority-
driven scheduling policies. Commodity operating systems for practical use usually pre-

8

Parallel	and	Distributed	Computing144

fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description
As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 145

fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description
As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition

Parallel	and	Distributed	Computing144

fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description
As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 145

fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description
As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition

Parallel	and	Distributed	Computing146

for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 147

for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The

Parallel	and	Distributed	Computing146

for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 147

for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The

Parallel	and	Distributed	Computing148

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P5

Ti

Tj

Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet

P1

P2

P3

inter-arrival time of Ti

P4

P5

inter-arrival time of Tj

Fig. 4. Example of scheduling two shared tasks on one processor.

deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = �di/pj� denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 149

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P5

Ti

Tj

Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet

P1

P2

P3

inter-arrival time of Ti

P4

P5

inter-arrival time of Tj

Fig. 4. Example of scheduling two shared tasks on one processor.

deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = �di/pj� denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)

Parallel	and	Distributed	Computing148

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P5

Ti

Tj

Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet

P1

P2

P3

inter-arrival time of Ti

P4

P5

inter-arrival time of Tj

Fig. 4. Example of scheduling two shared tasks on one processor.

deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = �di/pj� denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 149

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P5

Ti

Tj

Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet

P1

P2

P3

inter-arrival time of Ti

P4

P5

inter-arrival time of Tj

Fig. 4. Example of scheduling two shared tasks on one processor.

deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = �di/pj� denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)

Parallel	and	Distributed	Computing150

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 5. Case 1: di ≥ Fpj + cj.

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 6. Case 2: di ≤ Fpj + cj.

For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈
di
ps

⌉
c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = �di/ps�.

c′s,k = min
{

di − Ri,k
G

∣∣∣∣ Ti ∈ Pk

}
(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/�di/ps�;
7. else
8. x := (di − Ri,k)/�di/ps�;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k �= 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/�di/pi� but by
(di − ci)/�di/pi� (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/�di/ps�
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 151

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 5. Case 1: di ≥ Fpj + cj.

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 6. Case 2: di ≤ Fpj + cj.

For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈
di
ps

⌉
c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = �di/ps�.

c′s,k = min
{

di − Ri,k
G

∣∣∣∣ Ti ∈ Pk

}
(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/�di/ps�;
7. else
8. x := (di − Ri,k)/�di/ps�;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k �= 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/�di/pi� but by
(di − ci)/�di/pi� (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/�di/ps�
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-

Parallel	and	Distributed	Computing150

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 5. Case 1: di ≥ Fpj + cj.

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 6. Case 2: di ≤ Fpj + cj.

For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈
di
ps

⌉
c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = �di/ps�.

c′s,k = min
{

di − Ri,k
G

∣∣∣∣ Ti ∈ Pk

}
(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/�di/ps�;
7. else
8. x := (di − Ri,k)/�di/ps�;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k �= 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/�di/pi� but by
(di − ci)/�di/pi� (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/�di/ps�
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 151

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 5. Case 1: di ≥ Fpj + cj.

pj pj pj

cj

t d

time
cj cj cj

0 i

Fig. 6. Case 2: di ≤ Fpj + cj.

For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈
di
ps

⌉
c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = �di/ps�.

c′s,k = min
{

di − Ri,k
G

∣∣∣∣ Ti ∈ Pk

}
(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/�di/ps�;
7. else
8. x := (di − Ri,k)/�di/ps�;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k �= 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/�di/pi� but by
(di − ci)/�di/pi� (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/�di/ps�
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-

Parallel	and	Distributed	Computing152

sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(2
1/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us � 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 153

sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(2
1/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us � 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-

Parallel	and	Distributed	Computing152

sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(2
1/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us � 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 153

sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(2
1/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us � 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-

Parallel	and	Distributed	Computing154

rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup
A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 155

rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup
A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.

Parallel	and	Distributed	Computing154

rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup
A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 155

rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup
A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.

Parallel	and	Distributed	Computing156

On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.

7. References

Anderson, J., Bud, V. & Devi, U. (2005). An EDF-based Scheduling Algorithm for Multipro-
cessor Soft Real-Time Systems, Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 199–208.

Andersson, B. (2008). Global Static-Priority Preemptive Multiprocessor Scheduling with Uti-
lization Bound 38%, Proceedings of the International Conference on Principles of Dis-
tributed Systems, pp. 73–88.

Andersson, B., Baruah, S. & Jonsson, J. (2001). Static-priority Scheduling on Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 193–202.

Andersson, B. & Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemp-
tions, Proceedings of the Euromicro Conference on Real-Time Systems, pp. 243–252.

Andersson, B., Bletsas, K. & Baruah, S. (2008). Scheduling Arbitrary-Deadline Sporadic
Task Systems Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium,
pp. 385–394.

Andersson, B. & Jonsson, J. (2003). The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 33–40.

Andersson, B. & Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions, Proceed-
ings of the IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 322–334.

Baker, T. (2005). An Analysis of EDF Schedulability on a Multiprocessor, IEEE Transactions on
Parallel and Distributed Systems 16: 760–768.

Baker, T. (2006). An Analysis of Fixed-Priority Schedulability on a Multiprocessor, Real-Time
Systems 32: 49–71.

Baruah, S., Cohen, N., Plaxton, C. & Varvel, D. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation, Algorithmica 15: 600–625.

Buttazzo, G. (1997). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Algo-
rithms and Applications, Kluwer Academic Publishers.

Cho, H., Ravindran, B. & Jensen, E. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, pp. 101–110.

Cho, S., Lee, S., Han, A. & Lin, K. (2002). Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems, IEICE Transactions on Communications E85-B(12): 2859–2867.

Dhall, S. K. & Liu, C. L. (1978). On a Real-Time Scheduling Problem, Operations Research
26: 127–140.

Fisher, N., Baruah, S. & Baker, T. (2006). The Partitioned Multiprocessor Scheduling of Spo-
radic Task Systems according to Static Priorities, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 118–127.

Kato, S. & Yamasaki, N. (2007). Real-Time Scheduling with Task Splitting on Multiprocessors,
Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441–450.

Kato, S. & Yamasaki, N. (2008a). Global EDF-based Scheduling with Efficient Priority Promo-
tion, Proceedings of the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 197–206.

Kato, S. & Yamasaki, N. (2008b). Portioned EDF-based Scheduling on Multiprocessors, Pro-
ceedings of the ACM International Conference on Embedded Software.

Kato, S. & Yamasaki, N. (2008c). Portioned Static-Priority Scheduling on Multiprocessors,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

Kato, S. & Yamasaki, N. (2009). Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors, Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 23–32.

Lauzac, S., Melhem, R. & Mosses, D. (1998). An Efficient RMS Admission Control and Its
Application to Multiprocessor Scheduling, Proceedings of the IEEE International Parallel
Processing Symposium, pp. 511–518.

Lehoczky, J., Sha, L. & Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact
Charaterization and Average Case Behavior, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166–171.

Leung, J. & Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks, Performance Evaluation, Elsevier Science 22: 237–250.

Liu, C. L. & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the ACM 20: 46–61.

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 157

On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.

7. References

Anderson, J., Bud, V. & Devi, U. (2005). An EDF-based Scheduling Algorithm for Multipro-
cessor Soft Real-Time Systems, Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 199–208.

Andersson, B. (2008). Global Static-Priority Preemptive Multiprocessor Scheduling with Uti-
lization Bound 38%, Proceedings of the International Conference on Principles of Dis-
tributed Systems, pp. 73–88.

Andersson, B., Baruah, S. & Jonsson, J. (2001). Static-priority Scheduling on Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 193–202.

Andersson, B. & Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemp-
tions, Proceedings of the Euromicro Conference on Real-Time Systems, pp. 243–252.

Andersson, B., Bletsas, K. & Baruah, S. (2008). Scheduling Arbitrary-Deadline Sporadic
Task Systems Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium,
pp. 385–394.

Andersson, B. & Jonsson, J. (2003). The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 33–40.

Andersson, B. & Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions, Proceed-
ings of the IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 322–334.

Baker, T. (2005). An Analysis of EDF Schedulability on a Multiprocessor, IEEE Transactions on
Parallel and Distributed Systems 16: 760–768.

Baker, T. (2006). An Analysis of Fixed-Priority Schedulability on a Multiprocessor, Real-Time
Systems 32: 49–71.

Baruah, S., Cohen, N., Plaxton, C. & Varvel, D. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation, Algorithmica 15: 600–625.

Buttazzo, G. (1997). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Algo-
rithms and Applications, Kluwer Academic Publishers.

Cho, H., Ravindran, B. & Jensen, E. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, pp. 101–110.

Cho, S., Lee, S., Han, A. & Lin, K. (2002). Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems, IEICE Transactions on Communications E85-B(12): 2859–2867.

Dhall, S. K. & Liu, C. L. (1978). On a Real-Time Scheduling Problem, Operations Research
26: 127–140.

Fisher, N., Baruah, S. & Baker, T. (2006). The Partitioned Multiprocessor Scheduling of Spo-
radic Task Systems according to Static Priorities, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 118–127.

Kato, S. & Yamasaki, N. (2007). Real-Time Scheduling with Task Splitting on Multiprocessors,
Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441–450.

Kato, S. & Yamasaki, N. (2008a). Global EDF-based Scheduling with Efficient Priority Promo-
tion, Proceedings of the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 197–206.

Kato, S. & Yamasaki, N. (2008b). Portioned EDF-based Scheduling on Multiprocessors, Pro-
ceedings of the ACM International Conference on Embedded Software.

Kato, S. & Yamasaki, N. (2008c). Portioned Static-Priority Scheduling on Multiprocessors,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

Kato, S. & Yamasaki, N. (2009). Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors, Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 23–32.

Lauzac, S., Melhem, R. & Mosses, D. (1998). An Efficient RMS Admission Control and Its
Application to Multiprocessor Scheduling, Proceedings of the IEEE International Parallel
Processing Symposium, pp. 511–518.

Lehoczky, J., Sha, L. & Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact
Charaterization and Average Case Behavior, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166–171.

Leung, J. & Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks, Performance Evaluation, Elsevier Science 22: 237–250.

Liu, C. L. & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the ACM 20: 46–61.

Parallel	and	Distributed	Computing156

On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.

7. References

Anderson, J., Bud, V. & Devi, U. (2005). An EDF-based Scheduling Algorithm for Multipro-
cessor Soft Real-Time Systems, Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 199–208.

Andersson, B. (2008). Global Static-Priority Preemptive Multiprocessor Scheduling with Uti-
lization Bound 38%, Proceedings of the International Conference on Principles of Dis-
tributed Systems, pp. 73–88.

Andersson, B., Baruah, S. & Jonsson, J. (2001). Static-priority Scheduling on Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 193–202.

Andersson, B. & Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemp-
tions, Proceedings of the Euromicro Conference on Real-Time Systems, pp. 243–252.

Andersson, B., Bletsas, K. & Baruah, S. (2008). Scheduling Arbitrary-Deadline Sporadic
Task Systems Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium,
pp. 385–394.

Andersson, B. & Jonsson, J. (2003). The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 33–40.

Andersson, B. & Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions, Proceed-
ings of the IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 322–334.

Baker, T. (2005). An Analysis of EDF Schedulability on a Multiprocessor, IEEE Transactions on
Parallel and Distributed Systems 16: 760–768.

Baker, T. (2006). An Analysis of Fixed-Priority Schedulability on a Multiprocessor, Real-Time
Systems 32: 49–71.

Baruah, S., Cohen, N., Plaxton, C. & Varvel, D. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation, Algorithmica 15: 600–625.

Buttazzo, G. (1997). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Algo-
rithms and Applications, Kluwer Academic Publishers.

Cho, H., Ravindran, B. & Jensen, E. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, pp. 101–110.

Cho, S., Lee, S., Han, A. & Lin, K. (2002). Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems, IEICE Transactions on Communications E85-B(12): 2859–2867.

Dhall, S. K. & Liu, C. L. (1978). On a Real-Time Scheduling Problem, Operations Research
26: 127–140.

Fisher, N., Baruah, S. & Baker, T. (2006). The Partitioned Multiprocessor Scheduling of Spo-
radic Task Systems according to Static Priorities, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 118–127.

Kato, S. & Yamasaki, N. (2007). Real-Time Scheduling with Task Splitting on Multiprocessors,
Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441–450.

Kato, S. & Yamasaki, N. (2008a). Global EDF-based Scheduling with Efficient Priority Promo-
tion, Proceedings of the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 197–206.

Kato, S. & Yamasaki, N. (2008b). Portioned EDF-based Scheduling on Multiprocessors, Pro-
ceedings of the ACM International Conference on Embedded Software.

Kato, S. & Yamasaki, N. (2008c). Portioned Static-Priority Scheduling on Multiprocessors,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

Kato, S. & Yamasaki, N. (2009). Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors, Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 23–32.

Lauzac, S., Melhem, R. & Mosses, D. (1998). An Efficient RMS Admission Control and Its
Application to Multiprocessor Scheduling, Proceedings of the IEEE International Parallel
Processing Symposium, pp. 511–518.

Lehoczky, J., Sha, L. & Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact
Charaterization and Average Case Behavior, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166–171.

Leung, J. & Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks, Performance Evaluation, Elsevier Science 22: 237–250.

Liu, C. L. & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the ACM 20: 46–61.

A	Fixed-Priority	Scheduling	Algorithm	for	Multiprocessor	Real-Time	Systems 157

On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.

7. References

Anderson, J., Bud, V. & Devi, U. (2005). An EDF-based Scheduling Algorithm for Multipro-
cessor Soft Real-Time Systems, Proceedings of the Euromicro Conference on Real-Time
Systems, pp. 199–208.

Andersson, B. (2008). Global Static-Priority Preemptive Multiprocessor Scheduling with Uti-
lization Bound 38%, Proceedings of the International Conference on Principles of Dis-
tributed Systems, pp. 73–88.

Andersson, B., Baruah, S. & Jonsson, J. (2001). Static-priority Scheduling on Multiprocessors,
Proceedings of the IEEE Real-Time Systems Symposium, pp. 193–202.

Andersson, B. & Bletsas, K. (2008). Sporadic Multiprocessor Scheduling with Few Preemp-
tions, Proceedings of the Euromicro Conference on Real-Time Systems, pp. 243–252.

Andersson, B., Bletsas, K. & Baruah, S. (2008). Scheduling Arbitrary-Deadline Sporadic
Task Systems Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium,
pp. 385–394.

Andersson, B. & Jonsson, J. (2003). The Utilization Bounds of Partitioned and Pfair Static-
Priority Scheduling on Multiprocessors are 50%, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 33–40.

Andersson, B. & Tovar, E. (2006). Multiprocessor Scheduling with Few Preemptions, Proceed-
ings of the IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pp. 322–334.

Baker, T. (2005). An Analysis of EDF Schedulability on a Multiprocessor, IEEE Transactions on
Parallel and Distributed Systems 16: 760–768.

Baker, T. (2006). An Analysis of Fixed-Priority Schedulability on a Multiprocessor, Real-Time
Systems 32: 49–71.

Baruah, S., Cohen, N., Plaxton, C. & Varvel, D. (1996). Proportionate Progress: A Notion of
Fairness in Resource Allocation, Algorithmica 15: 600–625.

Buttazzo, G. (1997). HARD REAL-TIME COMPUTING SYSTEMS: Predictable Scheduling Algo-
rithms and Applications, Kluwer Academic Publishers.

Cho, H., Ravindran, B. & Jensen, E. (2006). An Optimal Real-Time Scheduling Algorithm for
Multiprocessors, Proceedings of the IEEE Real-Time Systems Symposium, pp. 101–110.

Cho, S., Lee, S., Han, A. & Lin, K. (2002). Efficient Real-Time Scheduling Algorithms for
Multiprocessor Systems, IEICE Transactions on Communications E85-B(12): 2859–2867.

Dhall, S. K. & Liu, C. L. (1978). On a Real-Time Scheduling Problem, Operations Research
26: 127–140.

Fisher, N., Baruah, S. & Baker, T. (2006). The Partitioned Multiprocessor Scheduling of Spo-
radic Task Systems according to Static Priorities, Proceedings of the Euromicro Confer-
ence on Real-Time Systems, pp. 118–127.

Kato, S. & Yamasaki, N. (2007). Real-Time Scheduling with Task Splitting on Multiprocessors,
Proceedings of the IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pp. 441–450.

Kato, S. & Yamasaki, N. (2008a). Global EDF-based Scheduling with Efficient Priority Promo-
tion, Proceedings of the IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications, pp. 197–206.

Kato, S. & Yamasaki, N. (2008b). Portioned EDF-based Scheduling on Multiprocessors, Pro-
ceedings of the ACM International Conference on Embedded Software.

Kato, S. & Yamasaki, N. (2008c). Portioned Static-Priority Scheduling on Multiprocessors,
Proceedings of the IEEE International Parallel and Distributed Processing Symposium.

Kato, S. & Yamasaki, N. (2009). Semi-Partitioned Fixed-Priority Scheduling on Multiproces-
sors, Proceedings of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pp. 23–32.

Lauzac, S., Melhem, R. & Mosses, D. (1998). An Efficient RMS Admission Control and Its
Application to Multiprocessor Scheduling, Proceedings of the IEEE International Parallel
Processing Symposium, pp. 511–518.

Lehoczky, J., Sha, L. & Ding, Y. (1989). The Rate Monotonic Scheduling Algorithm: Exact
Charaterization and Average Case Behavior, Proceedings of the IEEE Real-Time Systems
Symposium, pp. 166–171.

Leung, J. & Whitehead, J. (1982). On the Complexity of Fixed-Priority Scheduling of Periodic
Real-Time Tasks, Performance Evaluation, Elsevier Science 22: 237–250.

Liu, C. L. & Layland, J. W. (1973). Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment, Journal of the ACM 20: 46–61.

Parallel	and	Distributed	Computing158

Lopez, J., Diaz, J. & Garcia, D. (2004). Utilization Bounds for EDF Scheduling on Real-Time
Multiprocessor Systems, Real-Time Systems 28: 39–68.

Oh, Y. & Son, S. (1995). Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems,
Real-Time Systems 9: 207–239.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 159

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	
Collectives

Lucas	A.	Wilson,	Michael	C.	Scherger	&	John	A.	Lockman	III

X

Plagued by Work: Using Immunity to Manage
the Largest Computational Collectives

Lucas A. Wilson1, Michael C. Scherger2 & John A. Lockman III1

1Texas Advanced Computing Center, The University of Texas at Austin
2Texas A&M University – Corpus Christi

United States

1. Introduction

Modern computational collectives, ranging from loosely-coupled Grids and Clouds to
tightly-coupled clusters, are progressively increasing in both capability and complexity.
This has created a need for more efficient methods to schedule tasks to hosts. Typically,
system resources in these environments are managed with a combination of simple
heuristics and bin-packing algorithms to perform common operations such as backfill.
However, as the size and scope of these computational collectives grows ever larger,
different approaches must be employed to cope with both the number of resources to
manage and the volume of jobs to schedule. One possible avenue is to distribute the task
of managing these massive-scale systems across the participants, giving each resource a
say in how the final scheduling solution will appear.
The introduction of multi-/many-core architectures has complicated the problem of
performing effective scheduling on large-scale systems. The number of allocatable
elements per system is now increasing at a staggering rate as hardware manufacturers
attempt to keep pace with Moore's Law (Moore 1965). In clusters, for example, the
number of "nodes" - standalone physical systems with a network connection - has
stabilized due to limitations in current switching technology and power/cooling capacity.
However, each node now has more allocatable cores, increasing the cores per node
"density" of the system overall. Scheduling algorithms will be required to cope with
scheduling quantities of elements increasing by orders of magnitude every few years,
while still providing timely decision information.
The Asynchronous Lymphocytic Agent-based Resource Manager (ALARM) was first
proposed as a novel method of distributing the task of managing a large set of resources
by mimicking the actions of the mammalian immune system (Wilson 2008). Previously
reported results demonstrated the viability of using the immune system as a metaphor for
distributed resource management and provided a comparison of ALARM to other, more
widely-recognized scheduling heuristics (Scherger 2009).
In this chapter we detail how the scheduling problem can be described in terms of the
mammalian immune system and provide a description of the ALARM method. We
provide comparative results against common scheduling heuristics on large-scale

9

Parallel	and	Distributed	Computing158

Lopez, J., Diaz, J. & Garcia, D. (2004). Utilization Bounds for EDF Scheduling on Real-Time
Multiprocessor Systems, Real-Time Systems 28: 39–68.

Oh, Y. & Son, S. (1995). Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems,
Real-Time Systems 9: 207–239.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 159

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	
Collectives

Lucas	A.	Wilson,	Michael	C.	Scherger	&	John	A.	Lockman	III

X

Plagued by Work: Using Immunity to Manage
the Largest Computational Collectives

Lucas A. Wilson1, Michael C. Scherger2 & John A. Lockman III1

1Texas Advanced Computing Center, The University of Texas at Austin
2Texas A&M University – Corpus Christi

United States

1. Introduction

Modern computational collectives, ranging from loosely-coupled Grids and Clouds to
tightly-coupled clusters, are progressively increasing in both capability and complexity.
This has created a need for more efficient methods to schedule tasks to hosts. Typically,
system resources in these environments are managed with a combination of simple
heuristics and bin-packing algorithms to perform common operations such as backfill.
However, as the size and scope of these computational collectives grows ever larger,
different approaches must be employed to cope with both the number of resources to
manage and the volume of jobs to schedule. One possible avenue is to distribute the task
of managing these massive-scale systems across the participants, giving each resource a
say in how the final scheduling solution will appear.
The introduction of multi-/many-core architectures has complicated the problem of
performing effective scheduling on large-scale systems. The number of allocatable
elements per system is now increasing at a staggering rate as hardware manufacturers
attempt to keep pace with Moore's Law (Moore 1965). In clusters, for example, the
number of "nodes" - standalone physical systems with a network connection - has
stabilized due to limitations in current switching technology and power/cooling capacity.
However, each node now has more allocatable cores, increasing the cores per node
"density" of the system overall. Scheduling algorithms will be required to cope with
scheduling quantities of elements increasing by orders of magnitude every few years,
while still providing timely decision information.
The Asynchronous Lymphocytic Agent-based Resource Manager (ALARM) was first
proposed as a novel method of distributing the task of managing a large set of resources
by mimicking the actions of the mammalian immune system (Wilson 2008). Previously
reported results demonstrated the viability of using the immune system as a metaphor for
distributed resource management and provided a comparison of ALARM to other, more
widely-recognized scheduling heuristics (Scherger 2009).
In this chapter we detail how the scheduling problem can be described in terms of the
mammalian immune system and provide a description of the ALARM method. We
provide comparative results against common scheduling heuristics on large-scale

9

Parallel	and	Distributed	Computing160

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 161

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

Parallel	and	Distributed	Computing160

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 161

simulations of a tightly-coupled parallel cluster, as well as an analysis of the networking
overhead created by using ALARM on the same simulations.

2. Background

As in many tightly or loosely coupled distributed systems, process scheduling is an
integral component in determining the efficiency of a high performance computer system.
Continuing research in process scheduling algorithms is conducted to ensure that sub-
systems in high performance computing will be able to simultaneously maximize
utilization and ensure process completion in a specified time period.
Scheduling plays an important role in distributed systems in which it enhances overall
system performance metrics such as process completion time and processor utilization
(Tel 1998). There are two main classes of distributed process scheduling algorithms:
sender-initiated and receiver-initiated algorithms (Chow 1997). A third class of
distributed process scheduling algorithms is the hybrid sender-receiver algorithm and is a
compromise to overcome the problem from the two algorithms (Ramamritham 2002).
The role of a distributed process scheduler is the same as normal scheduling: improve
system performance metrics (Audsley 1994). In distributed systems the existence of
multiple processing nodes is a challenging problem for scheduling processes onto
processors. One cause for this complex problem is that process scheduling must be
performed locally and globally across the whole system. A process created at a node can
move to other nodes in the system to redistribute work load as to achieve an improved
system performance. Global scheduling performs load sharing between processors. Load
sharing allows busy processors to load some of their work to less busy, or even idle,
processors (Boger 2001).
Load balancing is a special case of load sharing. In load balancing the global scheduling
algorithm is to keep the load even (or balanced) across all processors (Malik 2003).
Sender-initiated load sharing occurs when busy processors try to find idle processors to
load some work. Receiver-initiated load sharing occurs when idle processors seek busy
processors (Stankovic 1999). While load sharing is worthwhile, load balancing is generally
not worth the extra effort. Small gains in execution time of tasks are offset by extra effort
expended in maintaining a balanced load.
In a distributed system individual nodes have their own policy for determining when to
accept or remove tasks. The characteristics of the distributed scheduling algorithm are
normally depended on the reason of its existence such as information exchange, resource
sharing, and increased reliability through replication and increased performance through
parallelization (Boger 2001). Scheduling algorithms have four distinct policies: the transfer
policy, the selection policy, the location policy, and the information policy. The transfer
policy decides when a node should migrate a particular task, and the selection policy
decides which task to migrate. The location policy determines a partner node for the task
migration, and the information policy triggers and contains the collection of system state
from all nodes: when, what and where (Chaptin 2003).
Scheduling algorithms can also be classified as static or dynamic (Tel 1998). These
decisions are based on task characteristics and the current system state. Scheduling
algorithms that use a static approach calculates (pre-determine) schedules for the system.
It requires a-priori knowledge of the tasks characteristics and does not require any

overhead at run-time. Scheduling algorithms that use a dynamic approach determines
schedules at run-time which provide a flexible system that can adapt with non-predicted
events. Dynamic scheduling algorithms have a much higher run-time cost overhead but
can give greater processor utilization.
Comparison of scheduling algorithms has been researched by (Tel 1998) to evaluate the
performance between sender-initiated policy and receiver-initiated policies. Their results
prove that sender-initiated policy is better than receiver-initiated policy in light to
moderate system loads while receiver-initiated policy is better than sender-initiated
policy in high system loads. In addition, (Ramamritham 2002) and (Audsley 1994) have
conducted a study towards the performance of sender-initiated and receiver-initiated
policies in both homogenous and heterogeneous distributed system with regards to First
Come First Serve (FCFS) and Round Robin (RR) scheduling policies. Apart from that, the
study also includes the impact of variance in job service times and inter-arrival times.
(Boger 2001) provides the explanation on performance sensitivity of the sender-initiated
and receiver-initiated policies, to three factors: node-scheduling policy, variance in job
inter-arrival, while (Chaptin 2003) has reported the performance of several load sharing
policies based on their implementation of both sender-initiated and receiver initiated
policies on a five node system connected by a 10Mbps communication network.
Alternatively, (Stankovic 1999) has conducted a study and compared the sender-initiated,
receiver-initiated and hybrid (it is called symmetrical-initiated in that literature) policies
pertaining to system workload and the effect of probing to overall system performance.

3. Scheduling Tasks on Large-scale Distributed Systems

In general, the scheduling problem is NP-Complete, meaning that a guaranteed optimal
solution cannot be found in polynomial time (Cormen 2001). As a result, many resource
managers schedule tasks by either building a scheduling matrix (processors x time-
window) (Fig. 1) and using an algorithm to solve this packing problem in order to most-
efficiently (although not optimally) allocate tasks within that particular time window, by
using less expensive heuristics, or through a combination of both. These approaches
typically require categorizing tasks into classes of importance.

Fig. 1. Example Scheduling Matrix

Parallel	and	Distributed	Computing162

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 163

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

Parallel	and	Distributed	Computing162

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 163

This is done by either having multiple bins for tasks (e.g. multiple queues on a batch
system) or by using a series of priority rules and weighted functions to generate a multi-
objective importance factor that can be used to reorder tasks.

3.1 Matrix-based Scheduling Approaches
Managers that use a scheduling matrix have several obvious weaknesses, although they
are most likely to generate near-optimal solutions. The primary problem is that they are
static in nature. Like many centralized algorithms, solutions to the packing problem can
only be performed given the information present when the algorithm begins execution. If
new tasks arrive while the algorithm is running, those tasks must either be ignored until
the next scheduling period or the algorithm must be restarted. This process can also
become extremely expensive both computationally and spatially. Most scheduling
algorithms tend to be written with dynamic programming or greedy approaches, the
computational costs of which are O(n) (Sadfi 2002) and O(n2) (Hwang 1991) on small
computational sets, respectively. It is important to note, however, that these solutions are
pseudo-polynomial in nature, meaning that although they provide solutions in a
polynomial fashion for small cases, at extremely large scale they are still NP-Complete
(Garey 1979).
Generating complete matrices requires p*t memory locations, where p is the number of
processing elements (PEs) in the system and t is the size of the scheduling window. This
presents an enormous scaling problem, as the only options when increasing the size of the
system (p) is to either increase the amount of memory consumed or reduce the size of the
scheduling window (t). As many systems have execution policies that allow for maximum
runtimes of 48 hours or more, this typically requires reducing the resolution of the time
axis (i.e. changing the smallest time element from 1 minute to 15 minutes). Reducing the
resolution will degrade solution quality by creating pockets of idle time on the system,
and increasing available memory is a costly alternative, thus limiting the effectiveness of
this particular scheduling approach on massive-scale machines exceeding 100,000 or even
1,000,000 PEs.

Fig. 2. Memory Requirements for Large-scale Scheduling Matrix

As Fig. 2 demonstrates, scheduling a 1,000,000 PE system using a 96 hr window (which
would allow 2 back-to-back 48 hour jobs to be scheduled) with 1 minute resolution would
require 1x106 * 96 * 60 = 5.76x109 matrix locations. If each matrix location needed to store
an 8-byte long integer, such as a job ID, then the scheduling matrix would need to be
5.76x109 * 8 = 46.08x109 bytes, or 46.08GB.

3.2 Heuristic-based Scheduling Approaches
Unlike matrix-based scheduling algorithms, heuristic scheduling approaches tend to
require less computational and spatial overhead. However, like all other centralized
algorithms, they are inherently susceptible to failures in system components that may
drastically alter how jobs need to be coordinated. Additionally, many heuristics tend to be
static in nature, unable to account for jobs that arrive after the scheduling algorithm has
begun. These techniques are typically used in conjunction with matrix-based approaches
in batch-processing systems, where weighted functions are used to generate multi-
constraint priorities to determine job execution order.

4. Artificial Immune Systems (AIS)

Research into the usability and effectiveness of AIS has been ongoing for the last decade.
Although AIS is a relatively new concept in the field of nature-inspired computing, it
already shows remarkable ability to adapt to extremely dynamic environments and is
well suited to distributed applications (de Castro 2002). Many existing systems are based
on the clonal selection model, and very closely resemble other evolutionary computation
techniques, most specifically genetic algorithms and genetic programming (Cutello 2002,
de Castro 2000).
Because of the noticeable parallels between protecting the body and protecting networks,
AIS have been widely used in the field of network security and access management
(Boukerche 2004, Kim 2001). Relying heavily on Immune Network Theory (INT), these
AIS solutions analyze typical network traffic patterns, determine when abnormal traffic is
on the system, then alerts managers to possible security risks. Although some work has
been done in automatically protecting network systems from intrusion, many AIS
solutions are simply for the detection of abnormal traffic, and not for blocking out the
intruder.

4.1 Immune Network Theory
Scientists first believed that the mammalian immune system developed immunities to
infection through one process – clonal selection. Clonal selection resembles the
evolutionary process, with many thousands of white blood cells created through the act of
cloning an existing, activated white blood cell. During the cloning process, called clonal
expansion, these cells undergo "hypermutation," making the antibodies on the surface of
these cloned cells different from the source. The "affinity" of these clones – the ability of
these cells to identify the set of antigens of the infection currently being combated – is
then established, and those with the greatest affinity survive while the others are
destroyed. By repeating this process again and again when an infection was present,
immunity to that infection would eventually be found (Jerne 1955).

Parallel	and	Distributed	Computing164

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 165

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

Parallel	and	Distributed	Computing164

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 165

The first major theoretical shift in the operation of the immune system came in the 1970's
with Immune Network Theory (Jerne 1974). Unlike clonal selection, which creates
antibodies through a method of repeated affinity determination and hypermutation, INT
attacks new antigens by building up complex antibodies from smaller, more basic
antibodies. Like clonal selection, INT relies on linking random combinations of antibody
building blocks together to form a single immunity. However, the building blocks in INT
are much larger than in clonal selection, reducing the time required to find an appropriate
immunity.

4.2 Danger Theory
Danger Theory is a debated concept in immunological research that looks at how the
immune system can identify potential problems not by attacking things that are foreign,
but by attacking only those things which create "danger." According to danger theory,
chemical signals released when a cell is damaged are received by nearby antigen-
presenting cells, and then carried to local lymph nodes (Matzinger 1994). The strength of
these chemical signals weaken with distance, and because a certain threshold is required
for white blood cells to recognize these signals, a set region, or "danger zone," exists
around the site of the incident. When antibodies in the lymph nodes "match" antigens
collected from within the danger zone, the corresponding B-cells are activated and
undergo clonal expansion in order to combat the infection (Aickelin 2002).

5. Applying the Immune System Metaphor to the Scheduling Problem

With all nature-inspired meta-heuristics, a mapping of naturally occurring phenomena to
concepts and events in the problem space first must be performed to successfully apply
the lessons and processes of the natural system to the target problem. The mammalian
immune system consists of myriad chemicals, cells and organs working in concert with
one another to perform the task of destroying or preventing infections. (a) Several
infections likely occur simultaneously, (b) the immune system must cope with the fact
that infections can be spread out over the entirety of the mammalian body, (c) infections
cannot all be treated by the same immunological response, and (d) new infections may
appear at any time.
The scheduling of tasks in distributed memory environments presents the same type of
situational difficulties as dealing with infections in the body. (a) There may be many tasks
to be scheduled simultaneously, (b) tasks may be parallel in nature and need resources
from many of the distributed memory resources in the system, (c) many tasks have
hardware or software dependencies that require the scheduler to act accordingly by
ensuring that those tasks are mapped to locations that can accommodate the dependency
requirements, and (d) the task space is extremely dynamic, with many new tasks being
generated at any given time.

5.1 Defining a Set of Terms for an Immune System-based Resource Manager
Tasks can clearly be seen as infections from the perspective of a distributed-memory
system. The job of the resource manager is then to complete as many tasks, or kill as many
infections, as possible. This means that the system or environment to be managed can be

likened to the body; each task that is submitted to the system must be executed, just as
each infection that enters the body must be destroyed.
To accomplish the goal of destroying infections entering the body, the immune system
makes use of special blood cells known as lymphocytes. Although the biological model
contains many types of lymphocytes that perform various sets of actions, for the purposes
of applying this metaphor to resource management they can all be considered a single
type of entity. In a distributed-memory environment, the individual resources that
compose the system are responsible for executing tasks.
All infections have a set of chemical “hooks” on their surface called antigens. Conversely,
each lymphocyte contains a chemical marker known as an antibody. The job of the
immune system is to create an immunological response that properly maps a series of
lymphocyte antibodies to the sequence of antigens on the infection. A resource manger,
whether controlling a homogeneous or a heterogeneous environment, must similarly map
the resource requirements of a task to the appropriate set of resources to effectively
execute that task.
Based on these astonishing similarities between the mammalian immune system and the
operating requirements of resource managers, we can create a set of terms that frame the
distributed-memory environment, its individual resources, and the tasks it executes in the
context of the immune system. Table 1 defines the terminology set that will be used.

Immunological Term Resource Management
Term

Body System to be managed
Lymphocyte Resource in the system
Infection Task to be executed
Antigen Resource requirement of task
Antibody Resource capability

Table 1. Defined terms of immune system metaphor

5.2 Defining Events and Responses for an Immune System-based Resource
Manager
Now that a set of terms has been established that places the scheduling problem in the
context of the immune system, we must define both the events that occur over the life-
cycle of a resource manager, as well as the appropriate responses by the resource manager
to those events in the context of the immune system metaphor. Although there are many
differing and competing theories on how the immune system both detects malicious
activity and responds to that activity, we will use a combination of two theories that fit
best with our distributed management environment. Danger Theory provides a simple,
distributed method for performing the detection component, while INT gives us a simple
method for forming proper responses to those detected events.
Every scheduler must contend with a series of different time-independent events: (a) A
task being submitted to the system, (b) a task beginning execution on the system, (c) a
task completing execution on the system, either successfully or in error, and (d) resources
becoming available or unavailable. Each of these events can be difficult for static,
centralized scheduling algorithms to contend with, as they would require the re-execution
of the algorithm using a new snapshot of the system.

Parallel	and	Distributed	Computing166

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 167

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

Parallel	and	Distributed	Computing166

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 167

One of Danger Theory’s central concepts is the use of chemical messages to detect the
presence of malicious entities. In a biological system, the distance from which an event
can be detected is limited due to the decay of these chemical signatures as they travel
through the bloodstream. This message-based approach employed in the Danger Theory
model can be applied to a system of distributed resources connected via the network.
Although a computer network is not limited in the distance it can send messages (through
the use of intermediate relays), it would not be beneficial to saturate the network with
broadcast messages every time an event occurs.
If one were to use network messages to signal the occurrence of events, it would allow a
system to provide dynamic, real-time reactions to those events. Each independent agent
in the system (infections and lymphocytes) would be responsible for both transmitting
and reacting to various message signals propagated via the network. If each message was
transmitted to only a limited subset of the entire network, it would allow many
independent events and reactions to occur simultaneously without adversely affecting
one another.
In the mammalian immune system, lymphocytes are alerted to the presence of an
infection when a victim cell is destroyed and releases a particular chemical signature.
Consequently, the infectious agents of an immune system-based resource manger (tasks)
would be responsible for the transmission of a message to signal their own presence.
Since chemical signatures decay over time and distance, only a limited number of
lymphocytes would be close enough to receive that signature and respond to it, or within
the “danger zone,” as it is referred to in Danger Theory. As a result, only a limited
number of lymphocytic agents (system resources) nearby the signaling infectious agent
should be privy to this message.
This limited message distance has several interesting side-effects that can be
advantageous to a resource manger. If “distance” is measured by some network metric
(e.g. hops), then nearby resources will most likely be better localized (such as on the same
switch in a switching hierarchy), and therefore provide better communications
performance for tightly-coupled parallel codes. Additionally, since only a small number
of resources are immediately alerted to the presence of an infection, the likelihood of
saturating the network with response messages is reduced. Lastly, because large parallel
tasks will be unable to secure enough resources to begin execution immediately, the
immune system-based approach provides a natural form of “backfill,” which maximizes
utilization by squeezing smaller jobs into the slots leftover from scheduling larger jobs.
Because large jobs cannot immediately consume available resources, smaller tasks can
begin execution while the large jobs are acquiring the resources necessary to execute.
Once a lymphocyte has been alerted to the presence of an infection in the mammalian
immune system, it must mount some form of immunological response. In INT, this
response would consist of T-cells carrying infection associated antigens back to lymph
nodes, which would then begin generating antibodies which match all or part of the
antigen pattern. This partial pattern-match allows the immune system to begin the
process of mounting a response to infection before a complete, perfect solution is
discovered. The generation of partial solutions and iterative construction of solutions is
crucial in distributed systems as the individual components do not have the ability to
constantly or consistently communicate with one another. In an immune system-based
resource manager, lymphocytes which receive a signal from an infection would check to

see if any of their antibodies, or resources, match any of the antigens, or resource
requirements, presented by the infection. If so, the lymphocyte would respond by binding
itself to the infection.
Although immediate response works well when a lymphocyte is idle and unbound, what
happens when a lymphocyte is busy or bound to another infection? In the case of a
lymphocyte being busy, it should ignore the message. In most cases preemption is not
desired on large-scale systems, so there should be no reason to stop executing a task to
handle another one. In the case of a lymphocyte being bound to an infection but not
running a task, one of two actions could be taken: (1) The lymphocyte could decide that
the infection it is currently bound to has higher precedence, and ignore the incoming
request, or (2) the lymphocyte could decide that the new infection has higher precedence,
and switch from being bound to the first to being bound to the second. By choosing from
these actions, a simple priority system can be developed within the resource manager
with little computational overhead on the part of the lymphocytes, which are also
responsible for executing tasks.
After an infectious agent has received a response from a lymphocyte, it will associate that
binding response with a particular antigen subset, indicating that those pieces of the
solution have been discovered. When the entire antigen set has been associated with a
binding lymphocyte, the infectious agent will signal the lymphocytes associated with that
solution to begin execution. When this occurs, the lymphocytes will begin execution of the
binary or script associated with that infectious agent.
Unfortunately in many cases an infectious agent cannot receive enough binding responses
after the first signaling, either because there are insufficient resources within the danger
zone, or those resources are busy executing other tasks. In a biological system, the effect
of an insufficient immunological response would be the spreading of the infection to other
cells or parts of the body. This has the effect of increasing the size of the danger zone, as
more chemical signals are created as the infection spreads. In an immune system-based
resource manager, the spreading of an infection can be accomplished not through the
replication of the infectious agent, but by increasing the size of the danger zone
surrounding the infectious agent. Instead of being able to signal only the most local
lymphocytes, an infection would then be able to signal lymphocytes beyond those, up to a
certain limit. Theoretically, this limit could expand to the size of the system, if no
sufficient response is provided in a timely fashion.
Once a task begins execution, it will continue to execute until “completion,” defined as
successful or in error, or until an external signal requires that it terminate, such as
through user request or the extinguishing of a preset time limit. The completion of a job,
regardless of return code, can be considered normal termination. Conversely, the
termination of a job through user request, extinguishing of a preset time limit, or by other
external means can be considered abnormal termination. Cells in a biological system also
terminate in normal and abnormal fashions. Normal cell death is defined as necrosis,
whereas abnormal cell death is defined as apoptosis. We shall use the same nomenclature
to describe the completion of tasks in the immune system-based resource manager.
When a task completes, the lymphocytes executing that task will transmit a message back
to the infectious agent denoting that the task terminated normally, via necrosis. When a
task is terminated by external means, the infectious agent will notify the lymphocytes
executing that task that the task terminated via apoptosis. The lymphocytes will then

Parallel	and	Distributed	Computing168

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 169

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

Parallel	and	Distributed	Computing168

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 169

respond back to the infectious agent in the same manner that they would for normal
termination. In both cases, the lymphocytes will transmit back the return code of the task
along with the appropriate signal. When an infectious agent receives termination signals
from all associated lymphocytes, the agent will complete and the task will be considered
done.
Now that we have a complete picture of the life cycle of an infectious agent, from the
moment it appears on the system to the time it terminates, we can see a relatively small
set of signals are exchanged between infections and lymphocytes in order to successfully
execute tasks. Table 2 and Table 3 define the signals that will be needed for an immune
system-based resource manager.

Signal Name Definition
SIG_INFECT Indicate the presence of an infection
SIG_ATTACK Notify lymphocytes that the associated task

should be executed
SIG_APOPTOSIS Notify lymphocytes that a task should be

terminated immediately (abnormal termination)
Table 2. List of infection-produced signals

Signal Name Definition
SIG_BIND Notify an infectious agent of intent to execute
SIG_DELAY Notify an infectious agent that it will be

binding to another infection
SIG_NECROSIS Notify an infectious agent that the associated

task has completed/terminated
Table 3. List of lymphocyte-produced signals

5.3 Design of Autonomous Agents
With both a working set of terms and a series of events, signals and responses defined, we
can begin the process of designing the two types of autonomous agents that form the core
of an immune system-based resource manager. Both infections and lymphocytes would
be represented as autonomous agents, with each resource having a single lymphocytic
agent and each job being "wrapped" in an infectious agent.
Each infectious agent resides on one of the various compute resources in the system, and
makes elementary decisions based on response messages received from lymphocytes. Fig.
3 details the design of an infectious agent.
Each resource houses a single lymphocytic agent, which responds to messages from
various infectious agents. When a lymphocytic agent receives notification of an infectious
agent’s presence (via SIG_INFECT), it must also check its antibody list to ensure that is
has at least one of the necessary resources to execute that job. Fig. 4 outlines the design of
a lymphocytic agent.

Fig. 3. Control flow graph of infectious agent

Fig. 4. Control flow graph of lymphocytic agent

5.4 Design of Signal Messages
In order for the various autonomous agents to communicate with each other, they must be
able to exchange messages over the network. Each message must be small, so as not to
interfere with other user-based network traffic, while containing sufficient information to
effectively perform the scheduling operations.
Each message must contain some identifier of the type of signal being transmitted.
Additionally, some messages need to send auxiliary information. SIG_INFECT must
contain the antigen list in the message, to allow lymphocytes to determine whether or not
they should participate in the solution. Also, SIG_NECROSIS must also contain the return
code of the task(s) in order to provide that information back to the infectious agent. Each
UNIX return code is an integer from 0 to 255, allowing it to be encoded in 8 bits.
Additionally, since only 3 bits are required to encode all 6 signal types, the remaining 5
bits of that byte can be used to encode the antigen list, or resource requirements, of an
infection. An example message layout is given in Fig. 5.

Parallel	and	Distributed	Computing170

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 171

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

Parallel	and	Distributed	Computing170

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 171

Fig. 5. Example message packet

6. Experimental Validation

To help us evaluate the potential benefits and pitfalls of this immune system-based
approach to managing large-scale resource collectives, a series of simulations were
performed to help identify performance in two major areas: schedule generation and
network congestion.

6.1 Evaluating Schedule Quality
Although it can be difficult to quantify the “quality” of a schedule, there are several
metrics that can be used to provide comparisons. By comparing these metrics against
schedules generated by other techniques, we can create a picture of the approximate
quality of schedules produced. Six metrics (Table 4) were used to compare schedule
quality against three basic scheduling heuristics: Smallest Job First (SJF), Largest Job First
(LJF), and Best Fit First (BFF).

Metric Definition
Throughput Avg. number of jobs completed per hour
Turnaround time Avg. time between job submission and completion
Wait time Avg. time between job submission and execution
Load Balance Std. Dev. in number of jobs per node
Utilization Ratio of in-use cores to total cores
Makespan Time from submission of first job to completion of last job

Table 4. Scheduling metrics and definitions used in simulation study

6.2 Evaluating Network Congestion
Although distributing the scheduling problem eases the computational requirements, it
can possibly have adverse affects on network performance, either by consuming
bandwidth or by overloading the network with excessive small messages. Our tests will
examine the aggregate number of signals of each type, in five-minute windows, and then
calculate the overall bandwidth and load burdens on two different networking
technologies – Gigabit Ethernet and Infiniband (IB).
Ethernet II-based User Datagram Protocol/Internet Protocol ver. 4 (UDP/IPv4) packets
consist of a 46 byte message header (IEEE 2005, Braden 1989, Postel 1980) plus a payload
section, which for our purposes would house the two byte message illustrated in Fig. 5.
This means that each message transmitted using IP over Ethernet would be 48 bytes in
length (Fig. 6).

Fig. 6. Ethernet II frame description

In order to send the same UDP/IPv4 message over IB, the IP and UDP packets must be
embedded into a native IB frame (known as IP over IB). To have a multi-network, globally
addressable IB message, 66 bytes of header and CRC information are required (Infiniband
2007). When combined with the previously described 28 bytes of IP and UDP headers
plus the 2 byte message illustrated in Fig. 5, the total size for a UDP/IPv4 over IB message
comes to 96 bytes (Fig. 7).

Fig. 7. Infiniband frame description

7. Results

A simulated 4,096-node, single core per node cluster built on a discrete, event-driven
engine was tasked with executing 100,000 jobs submitted at a rate of one every sixty
seconds. The jobs used in this job deck were taken from the execution logs of the Lonestar
Dell-Linux cluster at the Texas Advanced Computing Center (TACC) in Austin, Texas.
Each job ranged in size from a single core (serial) job to 1,024 cores and had execution
times up to 48 hours.
Each infectious agent simulated had an expansion period of thirty (30) seconds, meaning
that every half minute, an infectious agent's danger zone was expanded to include two
more resources in a linearly-arranged list of the 4,096 nodes.

7.1 Schedule Quality Comparisons
Fig. 8 shows the results of the previously described simulation runs and how the ALARM
method compares to the three basic heuristics (Scherger 2009). Although ALARM was not
the top performer, it was able to compete with all three comparison heuristics, placing
second in both the turnaround time and wait time. The only significant downside for the
immune system-based method was in load balance, although this was most likely caused
by persistent saturation of the scheduler with new jobs. With the three comparison
heuristics, rate of submission does not affect the resulting schedule generation, while
changes in submission rate can affect the binding policies of lymphocytic agents to
infectious agents.

7.2 Network Congestion
When offloading computation into the form of communication, latency and bandwidth
become a topic of great importance which must be investigated. To validate this method
we looked closely at the time period where the largest number of messages were
generated by ALARM. Fig. 9(a) shows the results of the previously described simulation
runs and focuses on the aggregate number of signals generated by the ALARM technique,

Parallel	and	Distributed	Computing172

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 173

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

Parallel	and	Distributed	Computing172

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 173

spanning 144 simulated days. On the 80th day of this simulation ALARM generated a
peak number of signals demonstrating a period of full system saturation where the
number of signals sent totaled 51,818,685.

(a) Throughput

(b) Turnaround Time

(c) Wait Time

(d) Load Balance

(e) Utilization

(f) Makespan

Fig. 8. Schedule quality comparisons

Fig. 9(b) provides a closer examination of the 80th day divided into one hour windows,
showing that in the 15th hour ALARM generated approximately 6,400 signals per second.
Latency of Gigabit Ethernet has been measured between two machines at 135 µsec
(Farrell 2000). Using the figures from the peak of our simulation run, the ALARM method
would utilize 86.4% of the available network frames, while utilizing 0.2% of theoretical
peak bandwidth. InfiniBand, with a latency of 1.5µsec (Koop 2008) , would utilize 0.96%
of the available network frames while utilizing 0.05% of theoretical peak bandwidth.

(a) Signals generated over simulation lifetime

(b) Signals generated on peak day (day 80)

Fig. 9. Network signals produced by ALARM

7.3 Pitfalls of Trivial Decision and Expansion Strategies
ALARM ranked last in nearly all of the metric categories, due mainly to the limitations
inherent in the simple heuristic tiebreaker chosen for lymphocytes. Each lymphocyte – or
resource on the system – used a job ID-based priority for determining which of many
simultaneous SIG_INFECT messages to respond to. In small cases, this can be a very
simple and effective tiebreaker, favoring older jobs over newer jobs. However, as the wait
time of all jobs increases, the ALARM scheduling method reaches an absolute saturation
point where the wait time of each infection submitted exceeds the amount of time
necessary for it’s influence to expand to the entire system. For example, the simulation
system has 4,096 PEs, and each infection increases its danger zone by a radius of 1 PE
every 30 seconds, meaning only 61,440 seconds (17 hrs.) are required for an infection’s
danger zone to encompass the entire system. When this point is reached, lymphocytes
that complete jobs are immediately bombarded with SIG_INFECT requests from all
currently active infections, and each lymphocyte therefore chooses the infection with the

Parallel	and	Distributed	Computing174

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 175

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

Parallel	and	Distributed	Computing174

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 175

smallest job ID. This makes the entire system behave like the simple heuristic “First
Come-First Served” (FCFS), causing large sections of the system to remain idle
periodically as resources are allocated to very large jobs without considering smaller jobs
behind them. Reducing the expansion rate would alter this behavior temporarily,
although a saturation point would eventually be reached that again causes this job ID-
based priority heuristic to resort for FCFS. As Fig. 1010(a) shows, by job 600 the system
had already achieved this level of saturation.

(a) 100,000 jobs with 30 sec. expansion (b) 10,000 jobs with 300 sec. expansion

Fig. 10. Wait time per job approaching saturation point

Additional simulations on the same size system using a reduced expansion rate of once
every five minutes (300 seconds) on a smaller instance (10,000 jobs) of the same job deck
used for this experiment were done on all four scheduling methods, with ALARM
performing significantly better in all 6 categories and generally outperforming all metrics
except for SJF (Fig. 11). This reduced expansion rate delayed complete system saturation
until jobs maintained a minimum wait time of 307,200 seconds (3.5 days) (Fig. 10(b)).
Future investigations into the use of various tiebreaker heuristics and their effects on
overall system behavior could be beneficial in improving the performance of ALARM in
production settings.

(a) Throughput (b) Load Balance

(c) Utilization (d) Turnaround Time

(e) Wait Time (f) Makespan
Fig. 11. Schedule quality comparisons for 10,000 job / 300 sec. expansion case

Additionally, more intelligent signaling and expansion systems for infections could also
be explored to determine if more complex network-based algorithms (e.g. back-off
algorithm in TCP/IP) could be beneficial in improving the overall performance of
ALARM in large-scale production environments.

8. Future Work

As we have demonstrated, a distributed scheduling method - based on the functionality
of the mammalian immune system - can indeed be a viable, scalable solution for
generating timely scheduling information with limited computational and
communications overhead. In our current tests, lymphocytic agents used a trivial decision
strategy (lowest job-ID first) for making binding decisions. However, additional
investigation into improved decision strategies could lead to more efficient scheduling
information without creating additional overhead, thus helping to possibly improve load
balance or reduce total makespan. Investigation into improved expansion strategies on
the part of infectious agents may also aid in reducing communications overhead.
So far, all investigations have been through simulation in order to verify the feasibility of
using an immune system-based scheduling method on large-scale systems. However, the
design and development of an actual resource management tool based on this approach
should be a primary focus of efforts going forward. Once an initial system has been
developed, further research into various decision and expansion strategies can be tested
on real-world tasks and hardware. Additionally, development of a real-world system will
allow research to concentrate on many of the other components of resource management
tools besides the scheduling engine, such as statistics gathering and reporting,
administrative control of resources, fault recovery, etc.

Parallel	and	Distributed	Computing176

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 177

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

Parallel	and	Distributed	Computing176

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

Plagued	by	Work:	Using	Immunity	to	Manage	the	Largest	Computational	Collectives 177

9. Conclusions

Historically, increases in computational performance have been achieved by chip
manufacturers shrinking transistor scale and increasing clock speed. This meant that
although overall performance continued to increase, the number of allocatable elements in
a system remained relatively constant. Today, with the ever-increasing popularity of
computational collectives ranging from Grids and Clouds to clusters and the increase in
unit density with the advent of multi-/many-core architectures, computational
performance is achieved by increasing the number of allocatable elements instead of
increasing the individual performance of each of those elements. For schedulers and
resource managers, this poses a fundamental problem - at what point will traditional,
centralized techniques become inadequate for scheduling jobs on massive-scale machines
encompassing 100,000 or possibly 1,000,000+ PEs?
As we have seen with high-performance computing in the last decade, the solution to
improving performance is to distribute the workload across multiple resources. Meta-
heuristics, such as artificial immune systems, have been demonstrated as viable solutions
to solving complex computational problems in large-scale, dynamic environments.
ALARM, the Asynchronous Lymphocytic Agent-based Resource Manager, uses this
immune-system metaphor to create a distributed, dynamic solution to scheduling jobs on
large scale computational collectives, whether loosely- or tightly-coupled.
Results presented here and in other works (Wilson 2008, Scherger 2009) demonstrate the
viability of this approach and suggest that implementation of a real-world system based
on this technique would be a reasonable near-term goal. Additional investigation into
lymphocyte decision strategies and infection expansion strategies may also yield higher
quality results without significant additional computational or communications cost.

10. References

Aickelin, U. and Cayzer, S. (2002). The danger theory and its application to artificial
immune systems. Proceedings of the 1st International Conference on Artificial Immune
Systems, pp. 141-148.

Audsley, N. and A. Burns, 1994, Real -Time Scheduling, in Department of Computer
Science, University of York.

Boger, M., 2001, Java in Distributed Systems, Wiley.
Boukerche, A, Juca, K., Sobral, J.B. and Notare, M. (2004). An artificial immune based

intrusion detection model for computer and telecommunications systems. Parallel
Comput., 30(5-6), pp. 629-646.

Braden, R. (ed.) (1989). Requirements for Intenet Hosts -- Communication Layers, Network
Working Group Request for Comments (RFC) 1122, Internet Engineering Task Force,
October 1989.

de Castro, L.N. and von Zuben, F.J. (2000). The clonal selection algorithm with
engineering applications. Artificial Immune Systems, pp. 36-39.

de Castro, L.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Approach. Springer-Verlag, London, U.K.

Chaptin, S.J., 2003, Distributed and Multiprocessor Scheduling, University of Minnesota.

Chow, R. and T. Johnson, 1997, Distributed Operating Systems and Algorithms, Addison-
Wesley.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. and Stein, Clifford (2001).
Introduction to Algorithms, Second Edition. MIT Press. 2001.

Cutello, V. and Nicosa, G. (2002). An immunilogical approach to combinatorial
optimization problems. Proceedings of the 8th Ibero-American Conference on AI, pp.
361-370.

Farrell, P.A. and Ong, H. (2000). Communication performance over a gigabit Ethernet
network, Proceedings of the Performance, Computing, and Communications Conference,
pp. 181-189.

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

Hwang, Cheng-Tsung, Lee, Jiang-Humg and Hsu, Yu-Chin. (1991). A Formal Approach to
the Scheduling Problem in High Level Synthesis. IEEE Transactions on Computer-
Aided Design, 10:4, 1991.

IEEE (2005). IEEE Std 802.3-2005, IEEE, 2005.
Infiniband (2007). Infiniband Architecture Specification, 1, rel. 1.2.1, November 2007.
Jerne, N. K. (1955). The natural selection theory of antibody formation. Proceedings of the

National Academy of Science, USA. 41, 1955, 849-857.
Jerne, N.K. (1974). Towards a network theory of the immune system. Ann Immunol (Paris),

125C(1-2), 1974, 373-389.
Kim, J. and Bentley, P.J. (2001). An evalutation of negative selection in an artificial

immune system for network intrusion detection. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pp. 1330-1337.

Koop, M.J., Jones, T., and Panda, D.K. (2008). MVAPICH-Aptus: Scalable high-
performance multi-transport MPI over Infiniband, Proceeding of the International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1-12.

Malik, S., 2003, Dynamic Load Balancing in a Network Workstations, Prentice-Hall.
Matzinger, P. (1994). Tolerance, danger and the extended family. Annu. Rev. Immun.,

12:991, 1994.
Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics,

38(8), April 1965.
Postel, J. (ed.) (1980). User Datagram Protocol, Request for Comments (RFC) 768,

USC/Information Sciences Institute, August 1980.
Ramamritham, K. and Stankovic, J.A. (2002). Dynamic Task Scheduling in Hard Real-

Time Distributed Systems, IEEE Software, 2002. 1(3): p. 65-75.
Sadfi, C., Penz, B. and Rapine, C. (2002). A dynamic programming algorithm for the single

machine total completion time scheduling problem with availability constraints.
Eighth international workshop on project management and scheduling, 2002.

Scherger, M. and Wilson, L. A. (2009). Task Scheduling Using an Artificial Immune
System in a Tightly Coupled Parallel Computing Environment. The 2009
International Conference on Genetic and Evolutionary Methods (GEM'09), July 2009.

Stankovic, J.A. (199). Simulations of three adaptive, decentralized controlled, job
scheduling algorithms. Computer Networks, 1999. 8(3): p. 199-217.

Tel, G.,(1998), Introduction to Distributed Process Scheduling, University of Cambridge.

Parallel	and	Distributed	Computing178

Wilson, L. A. (2008). Distributed, Heterogeneous Resource Management Using Artificial
Immune Systems. Proceedings of the International Parallel and Distributed Processing
Symposium, NIDISC, Apr. 2008.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 179

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems

Abhay	Ghatpande,	Hidenori	Nakazato	and	Olivier	Beaumont

0

Scheduling of Divisible Loads on
Heterogeneous Distributed Systems

Abhay Ghatpande1*, Hidenori Nakazato1 and Olivier Beaumont2

1GITI, Waseda University, Tokyo 169-0051
2LaBRI, France 33405

1. Introduction

Divisible loads are a special class of applications that have regular linear structure, and which
if given a large enough volume, can be partitioned into independently- and identically-
processable load fractions (parts). Examples of applications that satisfy this divisibility prop-
erty include image processing and rendering, signal processing, computation of Hough trans-
forms, tree and database search, Monte Carlo simulations, computational fluid dynamics, and
matrix computations.
The partitioning of a divisible load, the allocation (mapping) of the parts to appropriate pro-
cessors for execution, and the sequencing (ordering) the transfer of the parts to and from the
processors, is together known as Divisible Load Scheduling (DLS). Divisible Load Theory (DLT)
is the framework that studies the optimization of DLS (Bharadwaj et al., 1996). Beaumont,
Casanova, Legrand, Robert & Yang (2005) recently published a review of the work done to
date in DLT. An exhaustive listing of papers regarding DLT and DLS is available on (Rober-
tazzi, 2008).

1.1 Shortcomings of Traditional DLT
The basic principle of DLT to determine an optimal schedule for a master-slave system is the
AFS (All slaves Finish Simultaneously) policy (Barlas, 1998). The AFS policy implies that
after the nodes finish computing their individual load fractions, no results are returned to
the source. This is an unrealistic assumption for many applications, as the result collection
phase can contribute significantly to the total execution time. This is a serious shortcoming of
traditional DLT. Along with the AFS policy, the presence of idle time in the optimal schedule
has been overlooked in DLT work on result collection and heterogeneity. It is a very important
issue because it may sometimes be possible to improve a schedule by inserting idle time.
A few papers that have dealt with DLS on heterogeneous systems to date (Beaumont, Mar-
chal, Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharad-
waj et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001) proved that the sequence of
allocation of data to the processors is important in heterogeneous networks. Without consid-
ering result collection, they proved that for optimum performance, (a) when processors have
equal computation capacity, the optimal schedule results when the fractions are allocated in
the order of decreasing communication link capacity, and (b) when communication capacity

*Corresponding author: abhay.ghatpande@ieee.org

10

Parallel	and	Distributed	Computing178

Wilson, L. A. (2008). Distributed, Heterogeneous Resource Management Using Artificial
Immune Systems. Proceedings of the International Parallel and Distributed Processing
Symposium, NIDISC, Apr. 2008.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 179

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems

Abhay	Ghatpande,	Hidenori	Nakazato	and	Olivier	Beaumont

0

Scheduling of Divisible Loads on
Heterogeneous Distributed Systems

Abhay Ghatpande1*, Hidenori Nakazato1 and Olivier Beaumont2

1GITI, Waseda University, Tokyo 169-0051
2LaBRI, France 33405

1. Introduction

Divisible loads are a special class of applications that have regular linear structure, and which
if given a large enough volume, can be partitioned into independently- and identically-
processable load fractions (parts). Examples of applications that satisfy this divisibility prop-
erty include image processing and rendering, signal processing, computation of Hough trans-
forms, tree and database search, Monte Carlo simulations, computational fluid dynamics, and
matrix computations.
The partitioning of a divisible load, the allocation (mapping) of the parts to appropriate pro-
cessors for execution, and the sequencing (ordering) the transfer of the parts to and from the
processors, is together known as Divisible Load Scheduling (DLS). Divisible Load Theory (DLT)
is the framework that studies the optimization of DLS (Bharadwaj et al., 1996). Beaumont,
Casanova, Legrand, Robert & Yang (2005) recently published a review of the work done to
date in DLT. An exhaustive listing of papers regarding DLT and DLS is available on (Rober-
tazzi, 2008).

1.1 Shortcomings of Traditional DLT
The basic principle of DLT to determine an optimal schedule for a master-slave system is the
AFS (All slaves Finish Simultaneously) policy (Barlas, 1998). The AFS policy implies that
after the nodes finish computing their individual load fractions, no results are returned to
the source. This is an unrealistic assumption for many applications, as the result collection
phase can contribute significantly to the total execution time. This is a serious shortcoming of
traditional DLT. Along with the AFS policy, the presence of idle time in the optimal schedule
has been overlooked in DLT work on result collection and heterogeneity. It is a very important
issue because it may sometimes be possible to improve a schedule by inserting idle time.
A few papers that have dealt with DLS on heterogeneous systems to date (Beaumont, Mar-
chal, Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharad-
waj et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001) proved that the sequence of
allocation of data to the processors is important in heterogeneous networks. Without consid-
ering result collection, they proved that for optimum performance, (a) when processors have
equal computation capacity, the optimal schedule results when the fractions are allocated in
the order of decreasing communication link capacity, and (b) when communication capacity

*Corresponding author: abhay.ghatpande@ieee.org

10

Parallel	and	Distributed	Computing180

is equal, the data should be allocated in the order of decreasing computation capacity. As far
as can be judged, no paper has given a satisfactory solution to the scheduling problem where
both the network bandwidth and computation capacities of the slaves are different, and the
result transfer to the master is explicitly considered.
Cheng & Robertazzi (1990) and Bharadwaj et al. (1996, Chap. 3) addressed the issue of result
collection with a simplistic constant result collection time, which is possible only for a limited
number of applications on homogeneous networks. All other papers that have addressed
result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In, First Out) type
of schedules. In FIFO, results are collected in the same order as that of load allocation, while
in LIFO, the order of result collection is reversed. Barlas (1998) addressed the result collection
phase for single-level and arbitrary tree networks, but the optimal sequences derived were
essentially LIFO or FIFO. Rosenberg (2001) too proposed the LIFO and FIFO sequences for
result collection. He concluded through simulations that FIFO is better when the network
is homogeneous with a large number of processors, while LIFO is advantageous when the
network is heterogeneous with a small number of processors.
For the first time, it was shown in (Beaumont, Marchal & Robert, 2005) that the LIFO and
FIFO orderings are not always optimal for a given set of processors. In (Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006), it was proved that all processors from a given
set of processors may not be used in the optimal solution. For the unidirectional single-port
communication model (see Section 2), (Beaumont, Marchal, Rehn & Robert, 2005; Beaumont
et al., 2006; Beaumont, Marchal & Robert, 2005) proved several interesting features in optimal
schedules.

1.2 Chapter Organisation
Section 2 explains the choices made to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to use
linear models of computation and communication time. Sections 2.3 and 3 provide a detailed
derivation of the DLSRCHETS problem definition. After first laying the theoretical basis, the
DLSRCHETS problem is defined in terms of a linear program. Section 4 lays the foundation of
the two-slave system that forms the basis for the SPORT algorithm. Section 5 introduces the
SPORT algorithm as a solution to the DLSRCHETS problem. Given a set of processors sorted
in the order of decreasing communication speed, the complexity of SPORT is O(m). Section 6
summarizes the chapter and ideas for future work.

2. The System Model

The execution of a divisible job on each slave comprises of three distinct phases in the fol-
lowing order — the allocation phase, where data is sent to the slave from the master, the
computation phase, where the data is processed, and the result collection phase, where the
slave sends the result data back to the source. The computation phase begins only after the
entire load fraction allocated to that slave is received from the source. Similarly, the result
collection phase begins only after the entire load fraction has been processed, and is ready
for transmission back to the master. This is known as the non-preemptive, atomic, or block based
model, and each phase forms a block on the time line as shown in Fig. 1.

Time

p1

p2

p3
T

p4

Allocation Computation Collection

Fig. 1. A general schedule for DLSRCHETS. Processors can do only one thing at a time —
either compute or communicate. There are three phases for each processor — allocation, com-
putation, and result collection, in that order. However, phases of different processors may be
interleaved. Each phase is atomic, i.e., continues to its end without interruption. Communi-
cation phases (either allocation or collection) cannot overlap as shown by the dashed lines.
Computation phases are independent of each other.

2.1 Communication and Computation Model
The non-preemptive communication and computation phases necessitate that the slaves are
continuously and exclusively available during the course of execution of the divisible load.
The master and slaves can do only any one thing at a time — either communicate or com-
pute (the no-overlap model), and if communicating, then either send data or receive data (the
unidirectional one-port model).
A heterogeneous master-slave (sometimes called as star or single-level tree) system H = (P ,L)
is as shown in Fig. 2, where P = {p0, . . . , pm} is the set of m + 1 processors, and L =
{l1, . . . , lm} is the set of m network links that connect the master scheduler (source) p0 at the
center of the star (root of the tree), to the slave processors p1, . . . , pm at the points of the star
(leaves of the tree). E = {E1, . . . , Em} is the set of unit computation times of the slave proces-
sors, and C = {C1, . . . , Cm} is the set of unit communication times of the network links, i.e.,
pk takes Ek time units to process a unit load transmitted to it from p0 in Ck time units over the
link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
on the unit communication and computation time values of the slaves, the master p0 splits J
into parts (fractions) α1, . . . , αm and sends them to the respective slave processors p1, . . . , pm
for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
The source does not retain any part of the load for computation. Since the job J is assumed
to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . , m}. The unit communication and
computation times are conditional upon the job J under consideration. So ideally, the values
should be indexed as CJ

k and EJ
k , to indicate that the values are valid only for the job J . This

index is omitted as the context is clear to be the job J .

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 181

is equal, the data should be allocated in the order of decreasing computation capacity. As far
as can be judged, no paper has given a satisfactory solution to the scheduling problem where
both the network bandwidth and computation capacities of the slaves are different, and the
result transfer to the master is explicitly considered.
Cheng & Robertazzi (1990) and Bharadwaj et al. (1996, Chap. 3) addressed the issue of result
collection with a simplistic constant result collection time, which is possible only for a limited
number of applications on homogeneous networks. All other papers that have addressed
result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In, First Out) type
of schedules. In FIFO, results are collected in the same order as that of load allocation, while
in LIFO, the order of result collection is reversed. Barlas (1998) addressed the result collection
phase for single-level and arbitrary tree networks, but the optimal sequences derived were
essentially LIFO or FIFO. Rosenberg (2001) too proposed the LIFO and FIFO sequences for
result collection. He concluded through simulations that FIFO is better when the network
is homogeneous with a large number of processors, while LIFO is advantageous when the
network is heterogeneous with a small number of processors.
For the first time, it was shown in (Beaumont, Marchal & Robert, 2005) that the LIFO and
FIFO orderings are not always optimal for a given set of processors. In (Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006), it was proved that all processors from a given
set of processors may not be used in the optimal solution. For the unidirectional single-port
communication model (see Section 2), (Beaumont, Marchal, Rehn & Robert, 2005; Beaumont
et al., 2006; Beaumont, Marchal & Robert, 2005) proved several interesting features in optimal
schedules.

1.2 Chapter Organisation
Section 2 explains the choices made to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to use
linear models of computation and communication time. Sections 2.3 and 3 provide a detailed
derivation of the DLSRCHETS problem definition. After first laying the theoretical basis, the
DLSRCHETS problem is defined in terms of a linear program. Section 4 lays the foundation of
the two-slave system that forms the basis for the SPORT algorithm. Section 5 introduces the
SPORT algorithm as a solution to the DLSRCHETS problem. Given a set of processors sorted
in the order of decreasing communication speed, the complexity of SPORT is O(m). Section 6
summarizes the chapter and ideas for future work.

2. The System Model

The execution of a divisible job on each slave comprises of three distinct phases in the fol-
lowing order — the allocation phase, where data is sent to the slave from the master, the
computation phase, where the data is processed, and the result collection phase, where the
slave sends the result data back to the source. The computation phase begins only after the
entire load fraction allocated to that slave is received from the source. Similarly, the result
collection phase begins only after the entire load fraction has been processed, and is ready
for transmission back to the master. This is known as the non-preemptive, atomic, or block based
model, and each phase forms a block on the time line as shown in Fig. 1.

Time

p1

p2

p3
T

p4

Allocation Computation Collection

Fig. 1. A general schedule for DLSRCHETS. Processors can do only one thing at a time —
either compute or communicate. There are three phases for each processor — allocation, com-
putation, and result collection, in that order. However, phases of different processors may be
interleaved. Each phase is atomic, i.e., continues to its end without interruption. Communi-
cation phases (either allocation or collection) cannot overlap as shown by the dashed lines.
Computation phases are independent of each other.

2.1 Communication and Computation Model
The non-preemptive communication and computation phases necessitate that the slaves are
continuously and exclusively available during the course of execution of the divisible load.
The master and slaves can do only any one thing at a time — either communicate or com-
pute (the no-overlap model), and if communicating, then either send data or receive data (the
unidirectional one-port model).
A heterogeneous master-slave (sometimes called as star or single-level tree) system H = (P ,L)
is as shown in Fig. 2, where P = {p0, . . . , pm} is the set of m + 1 processors, and L =
{l1, . . . , lm} is the set of m network links that connect the master scheduler (source) p0 at the
center of the star (root of the tree), to the slave processors p1, . . . , pm at the points of the star
(leaves of the tree). E = {E1, . . . , Em} is the set of unit computation times of the slave proces-
sors, and C = {C1, . . . , Cm} is the set of unit communication times of the network links, i.e.,
pk takes Ek time units to process a unit load transmitted to it from p0 in Ck time units over the
link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
on the unit communication and computation time values of the slaves, the master p0 splits J
into parts (fractions) α1, . . . , αm and sends them to the respective slave processors p1, . . . , pm
for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
The source does not retain any part of the load for computation. Since the job J is assumed
to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . , m}. The unit communication and
computation times are conditional upon the job J under consideration. So ideally, the values
should be indexed as CJ

k and EJ
k , to indicate that the values are valid only for the job J . This

index is omitted as the context is clear to be the job J .

Parallel	and	Distributed	Computing180

is equal, the data should be allocated in the order of decreasing computation capacity. As far
as can be judged, no paper has given a satisfactory solution to the scheduling problem where
both the network bandwidth and computation capacities of the slaves are different, and the
result transfer to the master is explicitly considered.
Cheng & Robertazzi (1990) and Bharadwaj et al. (1996, Chap. 3) addressed the issue of result
collection with a simplistic constant result collection time, which is possible only for a limited
number of applications on homogeneous networks. All other papers that have addressed
result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In, First Out) type
of schedules. In FIFO, results are collected in the same order as that of load allocation, while
in LIFO, the order of result collection is reversed. Barlas (1998) addressed the result collection
phase for single-level and arbitrary tree networks, but the optimal sequences derived were
essentially LIFO or FIFO. Rosenberg (2001) too proposed the LIFO and FIFO sequences for
result collection. He concluded through simulations that FIFO is better when the network
is homogeneous with a large number of processors, while LIFO is advantageous when the
network is heterogeneous with a small number of processors.
For the first time, it was shown in (Beaumont, Marchal & Robert, 2005) that the LIFO and
FIFO orderings are not always optimal for a given set of processors. In (Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006), it was proved that all processors from a given
set of processors may not be used in the optimal solution. For the unidirectional single-port
communication model (see Section 2), (Beaumont, Marchal, Rehn & Robert, 2005; Beaumont
et al., 2006; Beaumont, Marchal & Robert, 2005) proved several interesting features in optimal
schedules.

1.2 Chapter Organisation
Section 2 explains the choices made to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to use
linear models of computation and communication time. Sections 2.3 and 3 provide a detailed
derivation of the DLSRCHETS problem definition. After first laying the theoretical basis, the
DLSRCHETS problem is defined in terms of a linear program. Section 4 lays the foundation of
the two-slave system that forms the basis for the SPORT algorithm. Section 5 introduces the
SPORT algorithm as a solution to the DLSRCHETS problem. Given a set of processors sorted
in the order of decreasing communication speed, the complexity of SPORT is O(m). Section 6
summarizes the chapter and ideas for future work.

2. The System Model

The execution of a divisible job on each slave comprises of three distinct phases in the fol-
lowing order — the allocation phase, where data is sent to the slave from the master, the
computation phase, where the data is processed, and the result collection phase, where the
slave sends the result data back to the source. The computation phase begins only after the
entire load fraction allocated to that slave is received from the source. Similarly, the result
collection phase begins only after the entire load fraction has been processed, and is ready
for transmission back to the master. This is known as the non-preemptive, atomic, or block based
model, and each phase forms a block on the time line as shown in Fig. 1.

Time

p1

p2

p3
T

p4

Allocation Computation Collection

Fig. 1. A general schedule for DLSRCHETS. Processors can do only one thing at a time —
either compute or communicate. There are three phases for each processor — allocation, com-
putation, and result collection, in that order. However, phases of different processors may be
interleaved. Each phase is atomic, i.e., continues to its end without interruption. Communi-
cation phases (either allocation or collection) cannot overlap as shown by the dashed lines.
Computation phases are independent of each other.

2.1 Communication and Computation Model
The non-preemptive communication and computation phases necessitate that the slaves are
continuously and exclusively available during the course of execution of the divisible load.
The master and slaves can do only any one thing at a time — either communicate or com-
pute (the no-overlap model), and if communicating, then either send data or receive data (the
unidirectional one-port model).
A heterogeneous master-slave (sometimes called as star or single-level tree) system H = (P ,L)
is as shown in Fig. 2, where P = {p0, . . . , pm} is the set of m + 1 processors, and L =
{l1, . . . , lm} is the set of m network links that connect the master scheduler (source) p0 at the
center of the star (root of the tree), to the slave processors p1, . . . , pm at the points of the star
(leaves of the tree). E = {E1, . . . , Em} is the set of unit computation times of the slave proces-
sors, and C = {C1, . . . , Cm} is the set of unit communication times of the network links, i.e.,
pk takes Ek time units to process a unit load transmitted to it from p0 in Ck time units over the
link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
on the unit communication and computation time values of the slaves, the master p0 splits J
into parts (fractions) α1, . . . , αm and sends them to the respective slave processors p1, . . . , pm
for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
The source does not retain any part of the load for computation. Since the job J is assumed
to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . , m}. The unit communication and
computation times are conditional upon the job J under consideration. So ideally, the values
should be indexed as CJ

k and EJ
k , to indicate that the values are valid only for the job J . This

index is omitted as the context is clear to be the job J .

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 181

is equal, the data should be allocated in the order of decreasing computation capacity. As far
as can be judged, no paper has given a satisfactory solution to the scheduling problem where
both the network bandwidth and computation capacities of the slaves are different, and the
result transfer to the master is explicitly considered.
Cheng & Robertazzi (1990) and Bharadwaj et al. (1996, Chap. 3) addressed the issue of result
collection with a simplistic constant result collection time, which is possible only for a limited
number of applications on homogeneous networks. All other papers that have addressed
result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In, First Out) type
of schedules. In FIFO, results are collected in the same order as that of load allocation, while
in LIFO, the order of result collection is reversed. Barlas (1998) addressed the result collection
phase for single-level and arbitrary tree networks, but the optimal sequences derived were
essentially LIFO or FIFO. Rosenberg (2001) too proposed the LIFO and FIFO sequences for
result collection. He concluded through simulations that FIFO is better when the network
is homogeneous with a large number of processors, while LIFO is advantageous when the
network is heterogeneous with a small number of processors.
For the first time, it was shown in (Beaumont, Marchal & Robert, 2005) that the LIFO and
FIFO orderings are not always optimal for a given set of processors. In (Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006), it was proved that all processors from a given
set of processors may not be used in the optimal solution. For the unidirectional single-port
communication model (see Section 2), (Beaumont, Marchal, Rehn & Robert, 2005; Beaumont
et al., 2006; Beaumont, Marchal & Robert, 2005) proved several interesting features in optimal
schedules.

1.2 Chapter Organisation
Section 2 explains the choices made to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to use
linear models of computation and communication time. Sections 2.3 and 3 provide a detailed
derivation of the DLSRCHETS problem definition. After first laying the theoretical basis, the
DLSRCHETS problem is defined in terms of a linear program. Section 4 lays the foundation of
the two-slave system that forms the basis for the SPORT algorithm. Section 5 introduces the
SPORT algorithm as a solution to the DLSRCHETS problem. Given a set of processors sorted
in the order of decreasing communication speed, the complexity of SPORT is O(m). Section 6
summarizes the chapter and ideas for future work.

2. The System Model

The execution of a divisible job on each slave comprises of three distinct phases in the fol-
lowing order — the allocation phase, where data is sent to the slave from the master, the
computation phase, where the data is processed, and the result collection phase, where the
slave sends the result data back to the source. The computation phase begins only after the
entire load fraction allocated to that slave is received from the source. Similarly, the result
collection phase begins only after the entire load fraction has been processed, and is ready
for transmission back to the master. This is known as the non-preemptive, atomic, or block based
model, and each phase forms a block on the time line as shown in Fig. 1.

Time

p1

p2

p3
T

p4

Allocation Computation Collection

Fig. 1. A general schedule for DLSRCHETS. Processors can do only one thing at a time —
either compute or communicate. There are three phases for each processor — allocation, com-
putation, and result collection, in that order. However, phases of different processors may be
interleaved. Each phase is atomic, i.e., continues to its end without interruption. Communi-
cation phases (either allocation or collection) cannot overlap as shown by the dashed lines.
Computation phases are independent of each other.

2.1 Communication and Computation Model
The non-preemptive communication and computation phases necessitate that the slaves are
continuously and exclusively available during the course of execution of the divisible load.
The master and slaves can do only any one thing at a time — either communicate or com-
pute (the no-overlap model), and if communicating, then either send data or receive data (the
unidirectional one-port model).
A heterogeneous master-slave (sometimes called as star or single-level tree) system H = (P ,L)
is as shown in Fig. 2, where P = {p0, . . . , pm} is the set of m + 1 processors, and L =
{l1, . . . , lm} is the set of m network links that connect the master scheduler (source) p0 at the
center of the star (root of the tree), to the slave processors p1, . . . , pm at the points of the star
(leaves of the tree). E = {E1, . . . , Em} is the set of unit computation times of the slave proces-
sors, and C = {C1, . . . , Cm} is the set of unit communication times of the network links, i.e.,
pk takes Ek time units to process a unit load transmitted to it from p0 in Ck time units over the
link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
on the unit communication and computation time values of the slaves, the master p0 splits J
into parts (fractions) α1, . . . , αm and sends them to the respective slave processors p1, . . . , pm
for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
The source does not retain any part of the load for computation. Since the job J is assumed
to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . , m}. The unit communication and
computation times are conditional upon the job J under consideration. So ideally, the values
should be indexed as CJ

k and EJ
k , to indicate that the values are valid only for the job J . This

index is omitted as the context is clear to be the job J .

Parallel	and	Distributed	Computing182

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

pk

Ek

lk
Ck

pm

Em

lm
Cm

Fig. 2. The heterogeneous master-slave system H. The processors have different computation
speeds and network bandwidths.

2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
for returned results in literature to date (Adler et al., 2003; Barlas, 1998; Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharadwaj
et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001; Yu & Robertazzi, 2003).

2.3 Communication and Computation Time
The time taken for communication and computation is assumed to be a linearly increasing
function of the size of load fraction. For a load fraction αk, αkCk is the transmission time from
p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
for computation and communication times for the sake of simplicity, all results can be easily
extended to other models.
In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
sors p1, . . . , pm in the minimum possible time. Let T = {1, . . . , m} be the set of tasks corre-
sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
Though the load fractions (tasks) can be processed independently of each other on the respec-
tive processors, the single-port communication model implicitly induces a precedence order on
the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the sequence (order) in which processors
are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
the master. Then, i ≺a j implies that task i precedes task j (or equivalently task j succeeds task i)
in the allocation sequence ≺a, and i ≺c j signifies that result i precedes result j in the collection
sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate predecessor of task j in
≺a, and is denoted as i �a j. Similarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immedi-
ate successor of result i in ≺c, and is denoted as i �c j. Define Bi

≺a
:= {j ∈ T : j ≺a i} ∪ {i} and

Fi
≺a

:= {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi
≺a

is the set of task i and the tasks before i (predecessors of i)
in ≺a, while Fi

≺a
is the set of task i and the followers (successors) of task i in ≺a. Bi

≺c
and Fi

≺c
are

defined accordingly for ≺c. The minimal element of ≺a is defined as ≺+
a := ∃! i ∈ T : Bi

≺a
= {i}

and the maximal element of ≺a is defined as, ≺−
a := ∃! i ∈ T : Fi

≺a
= {i}, i.e., ≺+

a and ≺−
a are

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

Allocation Computation Collection

Fig. 3. A possible schedule with m = 3. The three phases of each processor are atomic and
satisfy the constraints (1) to (9).

the first and last tasks allocated in ≺a. ≺+
c and ≺−

c are similarly defined as the first and last
results returned in ≺c.
For a given load J , the objective is to minimize the total processing time T, which is defined
as the time taken from the point when the master first initiates the allocation of tasks, to the
point when the master completes reception of all the results. The schedule S of DLSRCHETS
for a given load distribution α, is a pair (t, r), where, t : T �→ R+

0 is the task allocation start
time function, and r : R �→ R+

0 is the result collection start time function. In a feasible schedule,
the start times in t and r must satisfy the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . , m}, i �a j (1)

ti ≥ ∑
j∈Bi

≺a \{i}
αjCj ∀ i ∈ {1, . . . , m} (2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . , m}, i �c j (3)

T − ri ≥ ∑
j∈Fi

≺c

δαjCj ∀ i ∈ {1, . . . , m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . , m} (5)

ti �= rj ∀ i, j ∈ {1, . . . , m} (6)

rj − ti ≥ αiCi ∀ j ∈ {1, . . . , m}, ∀ ti < rj (7)

ti − rj ≥ δαjCj ∀ i ∈ {1, . . . , m}, ∀ rj < ti (8)

ti, rj ≥ 0 ∀ i, j ∈ {1, . . . , m} (9)

The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 183

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

pk

Ek

lk
Ck

pm

Em

lm
Cm

Fig. 2. The heterogeneous master-slave system H. The processors have different computation
speeds and network bandwidths.

2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
for returned results in literature to date (Adler et al., 2003; Barlas, 1998; Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharadwaj
et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001; Yu & Robertazzi, 2003).

2.3 Communication and Computation Time
The time taken for communication and computation is assumed to be a linearly increasing
function of the size of load fraction. For a load fraction αk, αkCk is the transmission time from
p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
for computation and communication times for the sake of simplicity, all results can be easily
extended to other models.
In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
sors p1, . . . , pm in the minimum possible time. Let T = {1, . . . , m} be the set of tasks corre-
sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
Though the load fractions (tasks) can be processed independently of each other on the respec-
tive processors, the single-port communication model implicitly induces a precedence order on
the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the sequence (order) in which processors
are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
the master. Then, i ≺a j implies that task i precedes task j (or equivalently task j succeeds task i)
in the allocation sequence ≺a, and i ≺c j signifies that result i precedes result j in the collection
sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate predecessor of task j in
≺a, and is denoted as i �a j. Similarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immedi-
ate successor of result i in ≺c, and is denoted as i �c j. Define Bi

≺a
:= {j ∈ T : j ≺a i} ∪ {i} and

Fi
≺a

:= {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi
≺a

is the set of task i and the tasks before i (predecessors of i)
in ≺a, while Fi

≺a
is the set of task i and the followers (successors) of task i in ≺a. Bi

≺c
and Fi

≺c
are

defined accordingly for ≺c. The minimal element of ≺a is defined as ≺+
a := ∃! i ∈ T : Bi

≺a
= {i}

and the maximal element of ≺a is defined as, ≺−
a := ∃! i ∈ T : Fi

≺a
= {i}, i.e., ≺+

a and ≺−
a are

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

Allocation Computation Collection

Fig. 3. A possible schedule with m = 3. The three phases of each processor are atomic and
satisfy the constraints (1) to (9).

the first and last tasks allocated in ≺a. ≺+
c and ≺−

c are similarly defined as the first and last
results returned in ≺c.
For a given load J , the objective is to minimize the total processing time T, which is defined
as the time taken from the point when the master first initiates the allocation of tasks, to the
point when the master completes reception of all the results. The schedule S of DLSRCHETS
for a given load distribution α, is a pair (t, r), where, t : T �→ R+

0 is the task allocation start
time function, and r : R �→ R+

0 is the result collection start time function. In a feasible schedule,
the start times in t and r must satisfy the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . , m}, i �a j (1)

ti ≥ ∑
j∈Bi

≺a \{i}
αjCj ∀ i ∈ {1, . . . , m} (2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . , m}, i �c j (3)

T − ri ≥ ∑
j∈Fi

≺c

δαjCj ∀ i ∈ {1, . . . , m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . , m} (5)

ti �= rj ∀ i, j ∈ {1, . . . , m} (6)

rj − ti ≥ αiCi ∀ j ∈ {1, . . . , m}, ∀ ti < rj (7)

ti − rj ≥ δαjCj ∀ i ∈ {1, . . . , m}, ∀ rj < ti (8)

ti, rj ≥ 0 ∀ i, j ∈ {1, . . . , m} (9)

The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.

Parallel	and	Distributed	Computing182

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

pk

Ek

lk
Ck

pm

Em

lm
Cm

Fig. 2. The heterogeneous master-slave system H. The processors have different computation
speeds and network bandwidths.

2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
for returned results in literature to date (Adler et al., 2003; Barlas, 1998; Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharadwaj
et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001; Yu & Robertazzi, 2003).

2.3 Communication and Computation Time
The time taken for communication and computation is assumed to be a linearly increasing
function of the size of load fraction. For a load fraction αk, αkCk is the transmission time from
p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
for computation and communication times for the sake of simplicity, all results can be easily
extended to other models.
In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
sors p1, . . . , pm in the minimum possible time. Let T = {1, . . . , m} be the set of tasks corre-
sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
Though the load fractions (tasks) can be processed independently of each other on the respec-
tive processors, the single-port communication model implicitly induces a precedence order on
the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the sequence (order) in which processors
are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
the master. Then, i ≺a j implies that task i precedes task j (or equivalently task j succeeds task i)
in the allocation sequence ≺a, and i ≺c j signifies that result i precedes result j in the collection
sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate predecessor of task j in
≺a, and is denoted as i �a j. Similarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immedi-
ate successor of result i in ≺c, and is denoted as i �c j. Define Bi

≺a
:= {j ∈ T : j ≺a i} ∪ {i} and

Fi
≺a

:= {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi
≺a

is the set of task i and the tasks before i (predecessors of i)
in ≺a, while Fi

≺a
is the set of task i and the followers (successors) of task i in ≺a. Bi

≺c
and Fi

≺c
are

defined accordingly for ≺c. The minimal element of ≺a is defined as ≺+
a := ∃! i ∈ T : Bi

≺a
= {i}

and the maximal element of ≺a is defined as, ≺−
a := ∃! i ∈ T : Fi

≺a
= {i}, i.e., ≺+

a and ≺−
a are

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

Allocation Computation Collection

Fig. 3. A possible schedule with m = 3. The three phases of each processor are atomic and
satisfy the constraints (1) to (9).

the first and last tasks allocated in ≺a. ≺+
c and ≺−

c are similarly defined as the first and last
results returned in ≺c.
For a given load J , the objective is to minimize the total processing time T, which is defined
as the time taken from the point when the master first initiates the allocation of tasks, to the
point when the master completes reception of all the results. The schedule S of DLSRCHETS
for a given load distribution α, is a pair (t, r), where, t : T �→ R+

0 is the task allocation start
time function, and r : R �→ R+

0 is the result collection start time function. In a feasible schedule,
the start times in t and r must satisfy the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . , m}, i �a j (1)

ti ≥ ∑
j∈Bi

≺a \{i}
αjCj ∀ i ∈ {1, . . . , m} (2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . , m}, i �c j (3)

T − ri ≥ ∑
j∈Fi

≺c

δαjCj ∀ i ∈ {1, . . . , m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . , m} (5)

ti �= rj ∀ i, j ∈ {1, . . . , m} (6)

rj − ti ≥ αiCi ∀ j ∈ {1, . . . , m}, ∀ ti < rj (7)

ti − rj ≥ δαjCj ∀ i ∈ {1, . . . , m}, ∀ rj < ti (8)

ti, rj ≥ 0 ∀ i, j ∈ {1, . . . , m} (9)

The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 183

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

pk

Ek

lk
Ck

pm

Em

lm
Cm

Fig. 2. The heterogeneous master-slave system H. The processors have different computation
speeds and network bandwidths.

2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
for returned results in literature to date (Adler et al., 2003; Barlas, 1998; Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharadwaj
et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001; Yu & Robertazzi, 2003).

2.3 Communication and Computation Time
The time taken for communication and computation is assumed to be a linearly increasing
function of the size of load fraction. For a load fraction αk, αkCk is the transmission time from
p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
for computation and communication times for the sake of simplicity, all results can be easily
extended to other models.
In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
sors p1, . . . , pm in the minimum possible time. Let T = {1, . . . , m} be the set of tasks corre-
sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
Though the load fractions (tasks) can be processed independently of each other on the respec-
tive processors, the single-port communication model implicitly induces a precedence order on
the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the sequence (order) in which processors
are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
the master. Then, i ≺a j implies that task i precedes task j (or equivalently task j succeeds task i)
in the allocation sequence ≺a, and i ≺c j signifies that result i precedes result j in the collection
sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate predecessor of task j in
≺a, and is denoted as i �a j. Similarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immedi-
ate successor of result i in ≺c, and is denoted as i �c j. Define Bi

≺a
:= {j ∈ T : j ≺a i} ∪ {i} and

Fi
≺a

:= {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi
≺a

is the set of task i and the tasks before i (predecessors of i)
in ≺a, while Fi

≺a
is the set of task i and the followers (successors) of task i in ≺a. Bi

≺c
and Fi

≺c
are

defined accordingly for ≺c. The minimal element of ≺a is defined as ≺+
a := ∃! i ∈ T : Bi

≺a
= {i}

and the maximal element of ≺a is defined as, ≺−
a := ∃! i ∈ T : Fi

≺a
= {i}, i.e., ≺+

a and ≺−
a are

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

Allocation Computation Collection

Fig. 3. A possible schedule with m = 3. The three phases of each processor are atomic and
satisfy the constraints (1) to (9).

the first and last tasks allocated in ≺a. ≺+
c and ≺−

c are similarly defined as the first and last
results returned in ≺c.
For a given load J , the objective is to minimize the total processing time T, which is defined
as the time taken from the point when the master first initiates the allocation of tasks, to the
point when the master completes reception of all the results. The schedule S of DLSRCHETS
for a given load distribution α, is a pair (t, r), where, t : T �→ R+

0 is the task allocation start
time function, and r : R �→ R+

0 is the result collection start time function. In a feasible schedule,
the start times in t and r must satisfy the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . , m}, i �a j (1)

ti ≥ ∑
j∈Bi

≺a \{i}
αjCj ∀ i ∈ {1, . . . , m} (2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . , m}, i �c j (3)

T − ri ≥ ∑
j∈Fi

≺c

δαjCj ∀ i ∈ {1, . . . , m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . , m} (5)

ti �= rj ∀ i, j ∈ {1, . . . , m} (6)

rj − ti ≥ αiCi ∀ j ∈ {1, . . . , m}, ∀ ti < rj (7)

ti − rj ≥ δαjCj ∀ i ∈ {1, . . . , m}, ∀ rj < ti (8)

ti, rj ≥ 0 ∀ i, j ∈ {1, . . . , m} (9)

The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.

Parallel	and	Distributed	Computing184

Time

pi
δαiCi

pj
αjCj

Allocation Collection

ri

tj

Fig. 4. Interleaved result collection. There exists at least one pair of ri and tj that immediately
follow each other.

Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T, that satisfies (1) to (9) for a load
distribution α, and an arbitrary order of allocation and collection ≺a and ≺c, such that some
results are collected before the load is completely allocated first.
Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection starting at ri
is followed by a task allocation at tj, without any other intermediate communication phase as
shown in Fig. 4.
Suppose that all load fractions in α, and all other start times in t and r are maintained the
same, and only the order of collection of result i and allocation of task j is exchanged, such
that the new allocation start time of task j is t′j = ri, and the new collection start time of result
i is r′i = ri + αjCj.
Since the above exchange does not alter the order of allocation of different tasks, the prece-
dence constraints of ≺a defined by (1) and (2) still hold. Similarly, the precedence constraints
of ≺c, imposed by (3) and (4) also hold after the exchange. The constraints (6), (7), and (8) are
valid after the exchange because the single-port model is not violated by the exchange.
Only the conditions expressed by (5) require verification. Before the exchange, the conditions
ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the exchange, the con-
straints (5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti, and rj − t′j = rj − ri > rj − tj.
From the above observations, it is clear that after the reordering, all conditions for feasibility
are still satisfied. Moreover, the orders ≺a and ≺c are unchanged, and no additional process-
ing time is required for the reordering.
If a similar reordering is carried out for all such pairs (i, j), then the allocation precedence
condition is satisfied with no addition in total processing time T.
Now if there is an optimal schedule for DLSRCHETS that does not satisfy the allocation prece-
dence condition, then a reordering can be performed as mentioned above so that the schedule
satisfies the allocation precedence condition without an increase in the total processing time.
That is, there always exists an optimal schedule that satisfies the allocation precedence condi-
tion, and only such schedules need be considered in the search for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is defined.

Lemma 2. There exists an optimal schedule for DLSRCHETS that has no idle time between any two
consecutive allocation phases and any two consecutive result collection phases. (There may exist other
optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (1) to (9), and in addition also satisfies the
allocation precedence condition, has idle time between the consecutive communication phases
(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
of allocation and collection.
According to the assumptions in the system model, all processors are available continuously
and exclusively during the entire execution process, and the master can only communicate
with one processor at a time. For any i �a j, when processor pi completes the reception of
its allocated task at time ti + αiCi, processor pj is already available and can start receiving
data immediately at tj = ti + αiCi. Because the schedule satisfies the allocation precedence
condition, load is first distributed to all the processors sequentially before result collection
begins. Thus the start time of each task i ∈ T can be brought forward so that ti = t≺+

a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
communication phases, it follows that an optimal schedule to DLSRCHETS also has no idle
time between any two consecutive allocation and result collection phases.

Lemma 3. There exists an optimal schedule for DLSRCHETS that has no idle time between the allo-
cation and computation phases of each processor. (There may exist other optimal schedules that do not
satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 2, since all processors are
always available, they can begin computing immediately upon receiving their load fractions
in the allocation phase without affecting the schedule.
Any processor pi begins computing its allocated task at time t≺+

a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
of each processor.

Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.

Proof. If there exists an optimal schedule that does not satisfy any or all of the Lemmas 1 to 3,
it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 185

Time

pi
δαiCi

pj
αjCj

Allocation Collection

ri

tj

Fig. 4. Interleaved result collection. There exists at least one pair of ri and tj that immediately
follow each other.

Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T, that satisfies (1) to (9) for a load
distribution α, and an arbitrary order of allocation and collection ≺a and ≺c, such that some
results are collected before the load is completely allocated first.
Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection starting at ri
is followed by a task allocation at tj, without any other intermediate communication phase as
shown in Fig. 4.
Suppose that all load fractions in α, and all other start times in t and r are maintained the
same, and only the order of collection of result i and allocation of task j is exchanged, such
that the new allocation start time of task j is t′j = ri, and the new collection start time of result
i is r′i = ri + αjCj.
Since the above exchange does not alter the order of allocation of different tasks, the prece-
dence constraints of ≺a defined by (1) and (2) still hold. Similarly, the precedence constraints
of ≺c, imposed by (3) and (4) also hold after the exchange. The constraints (6), (7), and (8) are
valid after the exchange because the single-port model is not violated by the exchange.
Only the conditions expressed by (5) require verification. Before the exchange, the conditions
ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the exchange, the con-
straints (5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti, and rj − t′j = rj − ri > rj − tj.
From the above observations, it is clear that after the reordering, all conditions for feasibility
are still satisfied. Moreover, the orders ≺a and ≺c are unchanged, and no additional process-
ing time is required for the reordering.
If a similar reordering is carried out for all such pairs (i, j), then the allocation precedence
condition is satisfied with no addition in total processing time T.
Now if there is an optimal schedule for DLSRCHETS that does not satisfy the allocation prece-
dence condition, then a reordering can be performed as mentioned above so that the schedule
satisfies the allocation precedence condition without an increase in the total processing time.
That is, there always exists an optimal schedule that satisfies the allocation precedence condi-
tion, and only such schedules need be considered in the search for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is defined.

Lemma 2. There exists an optimal schedule for DLSRCHETS that has no idle time between any two
consecutive allocation phases and any two consecutive result collection phases. (There may exist other
optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (1) to (9), and in addition also satisfies the
allocation precedence condition, has idle time between the consecutive communication phases
(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
of allocation and collection.
According to the assumptions in the system model, all processors are available continuously
and exclusively during the entire execution process, and the master can only communicate
with one processor at a time. For any i �a j, when processor pi completes the reception of
its allocated task at time ti + αiCi, processor pj is already available and can start receiving
data immediately at tj = ti + αiCi. Because the schedule satisfies the allocation precedence
condition, load is first distributed to all the processors sequentially before result collection
begins. Thus the start time of each task i ∈ T can be brought forward so that ti = t≺+

a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
communication phases, it follows that an optimal schedule to DLSRCHETS also has no idle
time between any two consecutive allocation and result collection phases.

Lemma 3. There exists an optimal schedule for DLSRCHETS that has no idle time between the allo-
cation and computation phases of each processor. (There may exist other optimal schedules that do not
satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 2, since all processors are
always available, they can begin computing immediately upon receiving their load fractions
in the allocation phase without affecting the schedule.
Any processor pi begins computing its allocated task at time t≺+

a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
of each processor.

Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.

Proof. If there exists an optimal schedule that does not satisfy any or all of the Lemmas 1 to 3,
it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming

Parallel	and	Distributed	Computing184

Time

pi
δαiCi

pj
αjCj

Allocation Collection

ri

tj

Fig. 4. Interleaved result collection. There exists at least one pair of ri and tj that immediately
follow each other.

Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T, that satisfies (1) to (9) for a load
distribution α, and an arbitrary order of allocation and collection ≺a and ≺c, such that some
results are collected before the load is completely allocated first.
Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection starting at ri
is followed by a task allocation at tj, without any other intermediate communication phase as
shown in Fig. 4.
Suppose that all load fractions in α, and all other start times in t and r are maintained the
same, and only the order of collection of result i and allocation of task j is exchanged, such
that the new allocation start time of task j is t′j = ri, and the new collection start time of result
i is r′i = ri + αjCj.
Since the above exchange does not alter the order of allocation of different tasks, the prece-
dence constraints of ≺a defined by (1) and (2) still hold. Similarly, the precedence constraints
of ≺c, imposed by (3) and (4) also hold after the exchange. The constraints (6), (7), and (8) are
valid after the exchange because the single-port model is not violated by the exchange.
Only the conditions expressed by (5) require verification. Before the exchange, the conditions
ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the exchange, the con-
straints (5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti, and rj − t′j = rj − ri > rj − tj.
From the above observations, it is clear that after the reordering, all conditions for feasibility
are still satisfied. Moreover, the orders ≺a and ≺c are unchanged, and no additional process-
ing time is required for the reordering.
If a similar reordering is carried out for all such pairs (i, j), then the allocation precedence
condition is satisfied with no addition in total processing time T.
Now if there is an optimal schedule for DLSRCHETS that does not satisfy the allocation prece-
dence condition, then a reordering can be performed as mentioned above so that the schedule
satisfies the allocation precedence condition without an increase in the total processing time.
That is, there always exists an optimal schedule that satisfies the allocation precedence condi-
tion, and only such schedules need be considered in the search for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is defined.

Lemma 2. There exists an optimal schedule for DLSRCHETS that has no idle time between any two
consecutive allocation phases and any two consecutive result collection phases. (There may exist other
optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (1) to (9), and in addition also satisfies the
allocation precedence condition, has idle time between the consecutive communication phases
(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
of allocation and collection.
According to the assumptions in the system model, all processors are available continuously
and exclusively during the entire execution process, and the master can only communicate
with one processor at a time. For any i �a j, when processor pi completes the reception of
its allocated task at time ti + αiCi, processor pj is already available and can start receiving
data immediately at tj = ti + αiCi. Because the schedule satisfies the allocation precedence
condition, load is first distributed to all the processors sequentially before result collection
begins. Thus the start time of each task i ∈ T can be brought forward so that ti = t≺+

a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
communication phases, it follows that an optimal schedule to DLSRCHETS also has no idle
time between any two consecutive allocation and result collection phases.

Lemma 3. There exists an optimal schedule for DLSRCHETS that has no idle time between the allo-
cation and computation phases of each processor. (There may exist other optimal schedules that do not
satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 2, since all processors are
always available, they can begin computing immediately upon receiving their load fractions
in the allocation phase without affecting the schedule.
Any processor pi begins computing its allocated task at time t≺+

a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
of each processor.

Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.

Proof. If there exists an optimal schedule that does not satisfy any or all of the Lemmas 1 to 3,
it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 185

Time

pi
δαiCi

pj
αjCj

Allocation Collection

ri

tj

Fig. 4. Interleaved result collection. There exists at least one pair of ri and tj that immediately
follow each other.

Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T, that satisfies (1) to (9) for a load
distribution α, and an arbitrary order of allocation and collection ≺a and ≺c, such that some
results are collected before the load is completely allocated first.
Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection starting at ri
is followed by a task allocation at tj, without any other intermediate communication phase as
shown in Fig. 4.
Suppose that all load fractions in α, and all other start times in t and r are maintained the
same, and only the order of collection of result i and allocation of task j is exchanged, such
that the new allocation start time of task j is t′j = ri, and the new collection start time of result
i is r′i = ri + αjCj.
Since the above exchange does not alter the order of allocation of different tasks, the prece-
dence constraints of ≺a defined by (1) and (2) still hold. Similarly, the precedence constraints
of ≺c, imposed by (3) and (4) also hold after the exchange. The constraints (6), (7), and (8) are
valid after the exchange because the single-port model is not violated by the exchange.
Only the conditions expressed by (5) require verification. Before the exchange, the conditions
ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the exchange, the con-
straints (5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti, and rj − t′j = rj − ri > rj − tj.
From the above observations, it is clear that after the reordering, all conditions for feasibility
are still satisfied. Moreover, the orders ≺a and ≺c are unchanged, and no additional process-
ing time is required for the reordering.
If a similar reordering is carried out for all such pairs (i, j), then the allocation precedence
condition is satisfied with no addition in total processing time T.
Now if there is an optimal schedule for DLSRCHETS that does not satisfy the allocation prece-
dence condition, then a reordering can be performed as mentioned above so that the schedule
satisfies the allocation precedence condition without an increase in the total processing time.
That is, there always exists an optimal schedule that satisfies the allocation precedence condi-
tion, and only such schedules need be considered in the search for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is defined.

Lemma 2. There exists an optimal schedule for DLSRCHETS that has no idle time between any two
consecutive allocation phases and any two consecutive result collection phases. (There may exist other
optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (1) to (9), and in addition also satisfies the
allocation precedence condition, has idle time between the consecutive communication phases
(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
of allocation and collection.
According to the assumptions in the system model, all processors are available continuously
and exclusively during the entire execution process, and the master can only communicate
with one processor at a time. For any i �a j, when processor pi completes the reception of
its allocated task at time ti + αiCi, processor pj is already available and can start receiving
data immediately at tj = ti + αiCi. Because the schedule satisfies the allocation precedence
condition, load is first distributed to all the processors sequentially before result collection
begins. Thus the start time of each task i ∈ T can be brought forward so that ti = t≺+

a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
communication phases, it follows that an optimal schedule to DLSRCHETS also has no idle
time between any two consecutive allocation and result collection phases.

Lemma 3. There exists an optimal schedule for DLSRCHETS that has no idle time between the allo-
cation and computation phases of each processor. (There may exist other optimal schedules that do not
satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 2, since all processors are
always available, they can begin computing immediately upon receiving their load fractions
in the allocation phase without affecting the schedule.
Any processor pi begins computing its allocated task at time t≺+

a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
of each processor.

Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.

Proof. If there exists an optimal schedule that does not satisfy any or all of the Lemmas 1 to 3,
it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming

Parallel	and	Distributed	Computing186

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

x1

x2

x3

y

Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.

problem, to find ≺a, ≺c, and α that minimize T. Once the optimal values of these variables
are known, it is straightforward to find the optimal schedule.
The constraints (1) to (9) and the allocation precedence condition are combined into a unified
form, and for each processor pi, constraints on T are written in terms of Bi

≺a
and Fi

≺c
. The

DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 1 (Divisible Load Scheduling with Result Collection on HETerogeneous Systems).

Given a heterogeneous network H = (P ,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗

a ,≺∗
c), and load distribution α∗ =

{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk

≺a

αjCj + αkEk + ∑
j∈Fk

≺c

δαjCj ≤ T k = 1, . . . , m (10)

m

∑
j=1

αjCj +
m

∑
j=1

δαjCj ≤ T (11)

m

∑
j=1

αj = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . , m (13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the LHS
(Left Hand Side) of constraint (10) indicates the total time spent in transmission of tasks to
all the processors that must receive load before the processor pi can begin processing its al-
located task, the computation time on the processor pi itself, and the time for transmission
back to the master of results of processor pi, and all its subsequent result transfers. For the
no-overlap model to be satisfied, the processing time T should be greater than or equal to
this time for all the m processors. The single-port communication model is enforced by (11)

since its LHS represents the lower bound on the time for distribution and collection under this
model. The fact that the entire load is distributed amongst the processors is imposed by (12).
This is the normalization equation. The non-negativity of the decision variables is ensured by
constraint (13).

3. Analysis of Optimal Solution

Processors that are allocated load are called participating processors or participants.

Theorem 2 (Idle Time Theorem). There exists an optimal solution to the DLSRCHETS problem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (10) to (13) always has a
feasible solution. This is because, for any load distribution α that satisfies (12), T can be made
arbitrarily large to satisfy the inequalities (10) and (11). It implies that the polyhedron formed
by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 : Ax ≤ b, x ≥ 0} �= ∅.
According to the theory of linear programming, the optimal solution to DLSRCHETS is
obtained at some vertex of this polyhedron (Dantzig, 1963; Vanderbei, 2001). As the DL-
SRCHETS problem has m + 1 decision variables and 2m + 3 constraints, in a non-degenerate
optimal solution, at the optimal vertex, m + 1 constraints out of these must be tight, i.e., satis-
fied with equality. In a degenerate optimal solution, more than m + 1 constraints are tight.
It is clear that in an optimal solution, the normalization constraint (12) will always be tight,
and T will always be greater than zero. This means that m constraints out of the remaining
2m + 1 constraints will be tight in a non-degenerate optimal solution. There are two possible
ways to proceed with the analysis at this point depending on the allocated load fractions in
the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be always greater than zero, i.e. num-
ber of participants is m. Since all decision variables are positive, there can be no degen-
eracy (Vanderbei, 2001, Chapter 3).
It leaves only m + 1 constraints (10) and (11), out of which m will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) constraint is not, or
(b) the (11) constraint is tight and one of the (10) constraints is not.

If any constraint from (10) and (11) is not tight in the optimal solution, it implies a
shortfall in the LHS as compared to the optimal processing time. In constraints (10) this
shortfall represents idle time in a processor, while in (11) it represents the intervening
time interval between completion of load distribution from the master and the start of
result transfer to the master.
Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11) is tight, it means that idle time
in a processor exists only when result transfer to the master begins immediately after
completion of load allocation is completed. This is similar to the analysis in Beaumont,
Marchal, Rehn & Robert (2005); Beaumont et al. (2006).

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 187

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

x1

x2

x3

y

Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.

problem, to find ≺a, ≺c, and α that minimize T. Once the optimal values of these variables
are known, it is straightforward to find the optimal schedule.
The constraints (1) to (9) and the allocation precedence condition are combined into a unified
form, and for each processor pi, constraints on T are written in terms of Bi

≺a
and Fi

≺c
. The

DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 1 (Divisible Load Scheduling with Result Collection on HETerogeneous Systems).

Given a heterogeneous network H = (P ,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗

a ,≺∗
c), and load distribution α∗ =

{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk

≺a

αjCj + αkEk + ∑
j∈Fk

≺c

δαjCj ≤ T k = 1, . . . , m (10)

m

∑
j=1

αjCj +
m

∑
j=1

δαjCj ≤ T (11)

m

∑
j=1

αj = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . , m (13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the LHS
(Left Hand Side) of constraint (10) indicates the total time spent in transmission of tasks to
all the processors that must receive load before the processor pi can begin processing its al-
located task, the computation time on the processor pi itself, and the time for transmission
back to the master of results of processor pi, and all its subsequent result transfers. For the
no-overlap model to be satisfied, the processing time T should be greater than or equal to
this time for all the m processors. The single-port communication model is enforced by (11)

since its LHS represents the lower bound on the time for distribution and collection under this
model. The fact that the entire load is distributed amongst the processors is imposed by (12).
This is the normalization equation. The non-negativity of the decision variables is ensured by
constraint (13).

3. Analysis of Optimal Solution

Processors that are allocated load are called participating processors or participants.

Theorem 2 (Idle Time Theorem). There exists an optimal solution to the DLSRCHETS problem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (10) to (13) always has a
feasible solution. This is because, for any load distribution α that satisfies (12), T can be made
arbitrarily large to satisfy the inequalities (10) and (11). It implies that the polyhedron formed
by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 : Ax ≤ b, x ≥ 0} �= ∅.
According to the theory of linear programming, the optimal solution to DLSRCHETS is
obtained at some vertex of this polyhedron (Dantzig, 1963; Vanderbei, 2001). As the DL-
SRCHETS problem has m + 1 decision variables and 2m + 3 constraints, in a non-degenerate
optimal solution, at the optimal vertex, m + 1 constraints out of these must be tight, i.e., satis-
fied with equality. In a degenerate optimal solution, more than m + 1 constraints are tight.
It is clear that in an optimal solution, the normalization constraint (12) will always be tight,
and T will always be greater than zero. This means that m constraints out of the remaining
2m + 1 constraints will be tight in a non-degenerate optimal solution. There are two possible
ways to proceed with the analysis at this point depending on the allocated load fractions in
the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be always greater than zero, i.e. num-
ber of participants is m. Since all decision variables are positive, there can be no degen-
eracy (Vanderbei, 2001, Chapter 3).
It leaves only m + 1 constraints (10) and (11), out of which m will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) constraint is not, or
(b) the (11) constraint is tight and one of the (10) constraints is not.

If any constraint from (10) and (11) is not tight in the optimal solution, it implies a
shortfall in the LHS as compared to the optimal processing time. In constraints (10) this
shortfall represents idle time in a processor, while in (11) it represents the intervening
time interval between completion of load distribution from the master and the start of
result transfer to the master.
Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11) is tight, it means that idle time
in a processor exists only when result transfer to the master begins immediately after
completion of load allocation is completed. This is similar to the analysis in Beaumont,
Marchal, Rehn & Robert (2005); Beaumont et al. (2006).

Parallel	and	Distributed	Computing186

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

x1

x2

x3

y

Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.

problem, to find ≺a, ≺c, and α that minimize T. Once the optimal values of these variables
are known, it is straightforward to find the optimal schedule.
The constraints (1) to (9) and the allocation precedence condition are combined into a unified
form, and for each processor pi, constraints on T are written in terms of Bi

≺a
and Fi

≺c
. The

DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 1 (Divisible Load Scheduling with Result Collection on HETerogeneous Systems).

Given a heterogeneous network H = (P ,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗

a ,≺∗
c), and load distribution α∗ =

{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk

≺a

αjCj + αkEk + ∑
j∈Fk

≺c

δαjCj ≤ T k = 1, . . . , m (10)

m

∑
j=1

αjCj +
m

∑
j=1

δαjCj ≤ T (11)

m

∑
j=1

αj = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . , m (13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the LHS
(Left Hand Side) of constraint (10) indicates the total time spent in transmission of tasks to
all the processors that must receive load before the processor pi can begin processing its al-
located task, the computation time on the processor pi itself, and the time for transmission
back to the master of results of processor pi, and all its subsequent result transfers. For the
no-overlap model to be satisfied, the processing time T should be greater than or equal to
this time for all the m processors. The single-port communication model is enforced by (11)

since its LHS represents the lower bound on the time for distribution and collection under this
model. The fact that the entire load is distributed amongst the processors is imposed by (12).
This is the normalization equation. The non-negativity of the decision variables is ensured by
constraint (13).

3. Analysis of Optimal Solution

Processors that are allocated load are called participating processors or participants.

Theorem 2 (Idle Time Theorem). There exists an optimal solution to the DLSRCHETS problem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (10) to (13) always has a
feasible solution. This is because, for any load distribution α that satisfies (12), T can be made
arbitrarily large to satisfy the inequalities (10) and (11). It implies that the polyhedron formed
by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 : Ax ≤ b, x ≥ 0} �= ∅.
According to the theory of linear programming, the optimal solution to DLSRCHETS is
obtained at some vertex of this polyhedron (Dantzig, 1963; Vanderbei, 2001). As the DL-
SRCHETS problem has m + 1 decision variables and 2m + 3 constraints, in a non-degenerate
optimal solution, at the optimal vertex, m + 1 constraints out of these must be tight, i.e., satis-
fied with equality. In a degenerate optimal solution, more than m + 1 constraints are tight.
It is clear that in an optimal solution, the normalization constraint (12) will always be tight,
and T will always be greater than zero. This means that m constraints out of the remaining
2m + 1 constraints will be tight in a non-degenerate optimal solution. There are two possible
ways to proceed with the analysis at this point depending on the allocated load fractions in
the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be always greater than zero, i.e. num-
ber of participants is m. Since all decision variables are positive, there can be no degen-
eracy (Vanderbei, 2001, Chapter 3).
It leaves only m + 1 constraints (10) and (11), out of which m will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) constraint is not, or
(b) the (11) constraint is tight and one of the (10) constraints is not.

If any constraint from (10) and (11) is not tight in the optimal solution, it implies a
shortfall in the LHS as compared to the optimal processing time. In constraints (10) this
shortfall represents idle time in a processor, while in (11) it represents the intervening
time interval between completion of load distribution from the master and the start of
result transfer to the master.
Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11) is tight, it means that idle time
in a processor exists only when result transfer to the master begins immediately after
completion of load allocation is completed. This is similar to the analysis in Beaumont,
Marchal, Rehn & Robert (2005); Beaumont et al. (2006).

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 187

Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

x1

x2

x3

y

Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.

problem, to find ≺a, ≺c, and α that minimize T. Once the optimal values of these variables
are known, it is straightforward to find the optimal schedule.
The constraints (1) to (9) and the allocation precedence condition are combined into a unified
form, and for each processor pi, constraints on T are written in terms of Bi

≺a
and Fi

≺c
. The

DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 1 (Divisible Load Scheduling with Result Collection on HETerogeneous Systems).

Given a heterogeneous network H = (P ,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗

a ,≺∗
c), and load distribution α∗ =

{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk

≺a

αjCj + αkEk + ∑
j∈Fk

≺c

δαjCj ≤ T k = 1, . . . , m (10)

m

∑
j=1

αjCj +
m

∑
j=1

δαjCj ≤ T (11)

m

∑
j=1

αj = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . , m (13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the LHS
(Left Hand Side) of constraint (10) indicates the total time spent in transmission of tasks to
all the processors that must receive load before the processor pi can begin processing its al-
located task, the computation time on the processor pi itself, and the time for transmission
back to the master of results of processor pi, and all its subsequent result transfers. For the
no-overlap model to be satisfied, the processing time T should be greater than or equal to
this time for all the m processors. The single-port communication model is enforced by (11)

since its LHS represents the lower bound on the time for distribution and collection under this
model. The fact that the entire load is distributed amongst the processors is imposed by (12).
This is the normalization equation. The non-negativity of the decision variables is ensured by
constraint (13).

3. Analysis of Optimal Solution

Processors that are allocated load are called participating processors or participants.

Theorem 2 (Idle Time Theorem). There exists an optimal solution to the DLSRCHETS problem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (10) to (13) always has a
feasible solution. This is because, for any load distribution α that satisfies (12), T can be made
arbitrarily large to satisfy the inequalities (10) and (11). It implies that the polyhedron formed
by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 : Ax ≤ b, x ≥ 0} �= ∅.
According to the theory of linear programming, the optimal solution to DLSRCHETS is
obtained at some vertex of this polyhedron (Dantzig, 1963; Vanderbei, 2001). As the DL-
SRCHETS problem has m + 1 decision variables and 2m + 3 constraints, in a non-degenerate
optimal solution, at the optimal vertex, m + 1 constraints out of these must be tight, i.e., satis-
fied with equality. In a degenerate optimal solution, more than m + 1 constraints are tight.
It is clear that in an optimal solution, the normalization constraint (12) will always be tight,
and T will always be greater than zero. This means that m constraints out of the remaining
2m + 1 constraints will be tight in a non-degenerate optimal solution. There are two possible
ways to proceed with the analysis at this point depending on the allocated load fractions in
the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be always greater than zero, i.e. num-
ber of participants is m. Since all decision variables are positive, there can be no degen-
eracy (Vanderbei, 2001, Chapter 3).
It leaves only m + 1 constraints (10) and (11), out of which m will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) constraint is not, or
(b) the (11) constraint is tight and one of the (10) constraints is not.

If any constraint from (10) and (11) is not tight in the optimal solution, it implies a
shortfall in the LHS as compared to the optimal processing time. In constraints (10) this
shortfall represents idle time in a processor, while in (11) it represents the intervening
time interval between completion of load distribution from the master and the start of
result transfer to the master.
Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11) is tight, it means that idle time
in a processor exists only when result transfer to the master begins immediately after
completion of load allocation is completed. This is similar to the analysis in Beaumont,
Marchal, Rehn & Robert (2005); Beaumont et al. (2006).

Parallel	and	Distributed	Computing188

2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solution.
The analysis has two parts — one for non-degenerate and the other for degenerate op-
timal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution,then m − p constraints of (13)
are necessarily tight. This means that out of the m + 1 constraints (10) and (11), only p
constraints will be tight in the optimal solution. Hence, in an optimal solution, either,

(a) p of the (10) constraints are tight, m − p of the (10) constraints are not tight, and
the (11) constraint is not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) constraints are tight, and m − p + 1 of
the (10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle time,
while if the option (b) is true, then m − p + 1 processors have idle time.
Since m − p processors are not allocated load, it is obvious that they are idle throughout
in either of the above two options. The additional processor with idle time if the op-
tion (b) is true has to be one of the participating processors. This means that idle time
in a participating processor exists only when the result collection begins immediately
upon completion of load allocation.
Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the optimal
solution, then m − p constraints of (13) are necessarily tight. Since the optimal solution
is degenerate, more than p constraints out of the m + 1 constraints (10) and (11) will be
tight.
This means that in the optimal solution, irrespective of whether the (11) constraint is
tight, at least p of the (10) constraints are tight, and less than m − p of the (10) constraints
are not tight. Since m − p processors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . , m}, Bk

≺a
, Fk

≺c
⊆ {1, . . . , m}, it implies that,

∑
j∈Bk

≺a

αjCj ≤
m

∑
j=1

αjCj k ∈ {1, . . . , m}

and

∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

δαjCj k ∈ {1, . . . , m}

It follows that,

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

αjCj +
m

∑
j=1

δαjCj k ∈ {1, . . . , m} (14)

If (11) is not tight, then the RHS (Right Hand Side) of (14) is strictly less than T. That is,

∑
j∈Bk

≺a

αjCj+ ∑
j∈Fk

≺c

δαjCj < T k ∈ {1, . . . , m} (15)

If ∃ k ∈ {1, . . . , m} : αk = 0, then αkEk = 0, and from (15), it immediately follows that
the corresponding constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and the RHS of (14) is equal to T, i.e,
the (11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (11) constraint is
tight, and the condition (16) is satisfied. To find when the condition is satisfied, consider
the case where for some pair (≺a,≺c), one or more of the processors allocated zero
load follow each other at the end of the allocation sequence and the start of the result
collection sequence in the optimal solution.
For example, if αi, αj, αk = 0, and one or more of the following occur (the list is not
exhaustive):

• ≺−
a = i and ≺+

c = i
• i �a j, ≺−

a = j and ≺+
c = i

• i �a j, ≺−
a = j, ≺+

c = k and k �c i

Only if such tail-end zero-load processors exist, then (14) is satisfied with an equality.
Finally, if constraint (11) is tight in the optimal solution, then it follows that the con-
straints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints correspond-
ing to the tail-end zero-load processors has a non-degenerate optimal solution. This
is because, the feasible region defined by the constraints of the non-degenerate prob-
lem does not change after addition of the redundant constraints. Hence only a single
participant processor has idle time in the degenerate optimal solution.

From the preceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗

a ,≺∗
c , α∗), at

the most one participating processor can have idle time. The idle time occurs only when the
result collection from processor ≺+

c starts immediately after completion of load allocation to
processor ≺−

a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has to be eval-
uated (m!)2 times to determine the globally optimum solution (≺∗

a ,≺∗
c , α∗) for DLSRCHETS.

Since the solution to the linear program is completely determined by the values of δ, C and E ,
along with the pair (≺a,≺c), it is not possible to predict which of the processors or how many
processors will be allocated zero load.

4. Analysis of Two-Slave System

For a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave processor pi, may
have idle time xi because it may have to wait for another processor to release the commu-
nication medium for result transfer (ref. Fig. 5). In the optimal solution to DLSRCHETS,
∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 189

2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solution.
The analysis has two parts — one for non-degenerate and the other for degenerate op-
timal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution,then m − p constraints of (13)
are necessarily tight. This means that out of the m + 1 constraints (10) and (11), only p
constraints will be tight in the optimal solution. Hence, in an optimal solution, either,

(a) p of the (10) constraints are tight, m − p of the (10) constraints are not tight, and
the (11) constraint is not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) constraints are tight, and m − p + 1 of
the (10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle time,
while if the option (b) is true, then m − p + 1 processors have idle time.
Since m − p processors are not allocated load, it is obvious that they are idle throughout
in either of the above two options. The additional processor with idle time if the op-
tion (b) is true has to be one of the participating processors. This means that idle time
in a participating processor exists only when the result collection begins immediately
upon completion of load allocation.
Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the optimal
solution, then m − p constraints of (13) are necessarily tight. Since the optimal solution
is degenerate, more than p constraints out of the m + 1 constraints (10) and (11) will be
tight.
This means that in the optimal solution, irrespective of whether the (11) constraint is
tight, at least p of the (10) constraints are tight, and less than m − p of the (10) constraints
are not tight. Since m − p processors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . , m}, Bk

≺a
, Fk

≺c
⊆ {1, . . . , m}, it implies that,

∑
j∈Bk

≺a

αjCj ≤
m

∑
j=1

αjCj k ∈ {1, . . . , m}

and

∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

δαjCj k ∈ {1, . . . , m}

It follows that,

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

αjCj +
m

∑
j=1

δαjCj k ∈ {1, . . . , m} (14)

If (11) is not tight, then the RHS (Right Hand Side) of (14) is strictly less than T. That is,

∑
j∈Bk

≺a

αjCj+ ∑
j∈Fk

≺c

δαjCj < T k ∈ {1, . . . , m} (15)

If ∃ k ∈ {1, . . . , m} : αk = 0, then αkEk = 0, and from (15), it immediately follows that
the corresponding constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and the RHS of (14) is equal to T, i.e,
the (11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (11) constraint is
tight, and the condition (16) is satisfied. To find when the condition is satisfied, consider
the case where for some pair (≺a,≺c), one or more of the processors allocated zero
load follow each other at the end of the allocation sequence and the start of the result
collection sequence in the optimal solution.
For example, if αi, αj, αk = 0, and one or more of the following occur (the list is not
exhaustive):

• ≺−
a = i and ≺+

c = i
• i �a j, ≺−

a = j and ≺+
c = i

• i �a j, ≺−
a = j, ≺+

c = k and k �c i

Only if such tail-end zero-load processors exist, then (14) is satisfied with an equality.
Finally, if constraint (11) is tight in the optimal solution, then it follows that the con-
straints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints correspond-
ing to the tail-end zero-load processors has a non-degenerate optimal solution. This
is because, the feasible region defined by the constraints of the non-degenerate prob-
lem does not change after addition of the redundant constraints. Hence only a single
participant processor has idle time in the degenerate optimal solution.

From the preceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗

a ,≺∗
c , α∗), at

the most one participating processor can have idle time. The idle time occurs only when the
result collection from processor ≺+

c starts immediately after completion of load allocation to
processor ≺−

a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has to be eval-
uated (m!)2 times to determine the globally optimum solution (≺∗

a ,≺∗
c , α∗) for DLSRCHETS.

Since the solution to the linear program is completely determined by the values of δ, C and E ,
along with the pair (≺a,≺c), it is not possible to predict which of the processors or how many
processors will be allocated zero load.

4. Analysis of Two-Slave System

For a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave processor pi, may
have idle time xi because it may have to wait for another processor to release the commu-
nication medium for result transfer (ref. Fig. 5). In the optimal solution to DLSRCHETS,
∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in

Parallel	and	Distributed	Computing188

2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solution.
The analysis has two parts — one for non-degenerate and the other for degenerate op-
timal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution,then m − p constraints of (13)
are necessarily tight. This means that out of the m + 1 constraints (10) and (11), only p
constraints will be tight in the optimal solution. Hence, in an optimal solution, either,

(a) p of the (10) constraints are tight, m − p of the (10) constraints are not tight, and
the (11) constraint is not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) constraints are tight, and m − p + 1 of
the (10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle time,
while if the option (b) is true, then m − p + 1 processors have idle time.
Since m − p processors are not allocated load, it is obvious that they are idle throughout
in either of the above two options. The additional processor with idle time if the op-
tion (b) is true has to be one of the participating processors. This means that idle time
in a participating processor exists only when the result collection begins immediately
upon completion of load allocation.
Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the optimal
solution, then m − p constraints of (13) are necessarily tight. Since the optimal solution
is degenerate, more than p constraints out of the m + 1 constraints (10) and (11) will be
tight.
This means that in the optimal solution, irrespective of whether the (11) constraint is
tight, at least p of the (10) constraints are tight, and less than m − p of the (10) constraints
are not tight. Since m − p processors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . , m}, Bk

≺a
, Fk

≺c
⊆ {1, . . . , m}, it implies that,

∑
j∈Bk

≺a

αjCj ≤
m

∑
j=1

αjCj k ∈ {1, . . . , m}

and

∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

δαjCj k ∈ {1, . . . , m}

It follows that,

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

αjCj +
m

∑
j=1

δαjCj k ∈ {1, . . . , m} (14)

If (11) is not tight, then the RHS (Right Hand Side) of (14) is strictly less than T. That is,

∑
j∈Bk

≺a

αjCj+ ∑
j∈Fk

≺c

δαjCj < T k ∈ {1, . . . , m} (15)

If ∃ k ∈ {1, . . . , m} : αk = 0, then αkEk = 0, and from (15), it immediately follows that
the corresponding constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and the RHS of (14) is equal to T, i.e,
the (11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (11) constraint is
tight, and the condition (16) is satisfied. To find when the condition is satisfied, consider
the case where for some pair (≺a,≺c), one or more of the processors allocated zero
load follow each other at the end of the allocation sequence and the start of the result
collection sequence in the optimal solution.
For example, if αi, αj, αk = 0, and one or more of the following occur (the list is not
exhaustive):

• ≺−
a = i and ≺+

c = i
• i �a j, ≺−

a = j and ≺+
c = i

• i �a j, ≺−
a = j, ≺+

c = k and k �c i

Only if such tail-end zero-load processors exist, then (14) is satisfied with an equality.
Finally, if constraint (11) is tight in the optimal solution, then it follows that the con-
straints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints correspond-
ing to the tail-end zero-load processors has a non-degenerate optimal solution. This
is because, the feasible region defined by the constraints of the non-degenerate prob-
lem does not change after addition of the redundant constraints. Hence only a single
participant processor has idle time in the degenerate optimal solution.

From the preceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗

a ,≺∗
c , α∗), at

the most one participating processor can have idle time. The idle time occurs only when the
result collection from processor ≺+

c starts immediately after completion of load allocation to
processor ≺−

a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has to be eval-
uated (m!)2 times to determine the globally optimum solution (≺∗

a ,≺∗
c , α∗) for DLSRCHETS.

Since the solution to the linear program is completely determined by the values of δ, C and E ,
along with the pair (≺a,≺c), it is not possible to predict which of the processors or how many
processors will be allocated zero load.

4. Analysis of Two-Slave System

For a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave processor pi, may
have idle time xi because it may have to wait for another processor to release the commu-
nication medium for result transfer (ref. Fig. 5). In the optimal solution to DLSRCHETS,
∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 189

2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solution.
The analysis has two parts — one for non-degenerate and the other for degenerate op-
timal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution,then m − p constraints of (13)
are necessarily tight. This means that out of the m + 1 constraints (10) and (11), only p
constraints will be tight in the optimal solution. Hence, in an optimal solution, either,

(a) p of the (10) constraints are tight, m − p of the (10) constraints are not tight, and
the (11) constraint is not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) constraints are tight, and m − p + 1 of
the (10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle time,
while if the option (b) is true, then m − p + 1 processors have idle time.
Since m − p processors are not allocated load, it is obvious that they are idle throughout
in either of the above two options. The additional processor with idle time if the op-
tion (b) is true has to be one of the participating processors. This means that idle time
in a participating processor exists only when the result collection begins immediately
upon completion of load allocation.
Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the optimal
solution, then m − p constraints of (13) are necessarily tight. Since the optimal solution
is degenerate, more than p constraints out of the m + 1 constraints (10) and (11) will be
tight.
This means that in the optimal solution, irrespective of whether the (11) constraint is
tight, at least p of the (10) constraints are tight, and less than m − p of the (10) constraints
are not tight. Since m − p processors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . , m}, Bk

≺a
, Fk

≺c
⊆ {1, . . . , m}, it implies that,

∑
j∈Bk

≺a

αjCj ≤
m

∑
j=1

αjCj k ∈ {1, . . . , m}

and

∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

δαjCj k ∈ {1, . . . , m}

It follows that,

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

αjCj +
m

∑
j=1

δαjCj k ∈ {1, . . . , m} (14)

If (11) is not tight, then the RHS (Right Hand Side) of (14) is strictly less than T. That is,

∑
j∈Bk

≺a

αjCj+ ∑
j∈Fk

≺c

δαjCj < T k ∈ {1, . . . , m} (15)

If ∃ k ∈ {1, . . . , m} : αk = 0, then αkEk = 0, and from (15), it immediately follows that
the corresponding constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and the RHS of (14) is equal to T, i.e,
the (11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (11) constraint is
tight, and the condition (16) is satisfied. To find when the condition is satisfied, consider
the case where for some pair (≺a,≺c), one or more of the processors allocated zero
load follow each other at the end of the allocation sequence and the start of the result
collection sequence in the optimal solution.
For example, if αi, αj, αk = 0, and one or more of the following occur (the list is not
exhaustive):

• ≺−
a = i and ≺+

c = i
• i �a j, ≺−

a = j and ≺+
c = i

• i �a j, ≺−
a = j, ≺+

c = k and k �c i

Only if such tail-end zero-load processors exist, then (14) is satisfied with an equality.
Finally, if constraint (11) is tight in the optimal solution, then it follows that the con-
straints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints correspond-
ing to the tail-end zero-load processors has a non-degenerate optimal solution. This
is because, the feasible region defined by the constraints of the non-degenerate prob-
lem does not change after addition of the redundant constraints. Hence only a single
participant processor has idle time in the degenerate optimal solution.

From the preceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗

a ,≺∗
c , α∗), at

the most one participating processor can have idle time. The idle time occurs only when the
result collection from processor ≺+

c starts immediately after completion of load allocation to
processor ≺−

a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has to be eval-
uated (m!)2 times to determine the globally optimum solution (≺∗

a ,≺∗
c , α∗) for DLSRCHETS.

Since the solution to the linear program is completely determined by the values of δ, C and E ,
along with the pair (≺a,≺c), it is not possible to predict which of the processors or how many
processors will be allocated zero load.

4. Analysis of Two-Slave System

For a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave processor pi, may
have idle time xi because it may have to wait for another processor to release the commu-
nication medium for result transfer (ref. Fig. 5). In the optimal solution to DLSRCHETS,
∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in

Parallel	and	Distributed	Computing190

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

Eqv.

p0

E0

p1:2

E1:2

l1:2

C1:2

Fig. 6. The heterogeneous two-slave system. The two processors p1 and p2 are replaced by an
equivalent virtual processor p1:2 on the right. The two network links l1 and l2 are replaced by
an equivalent virtual link l1:2. As far as the master p0 is concerned, there is no difference in
the time it takes for the equivalent processor to execute a task.

particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.

2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule g is

optimal.

3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 191

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

Eqv.

p0

E0

p1:2

E1:2

l1:2

C1:2

Fig. 6. The heterogeneous two-slave system. The two processors p1 and p2 are replaced by an
equivalent virtual processor p1:2 on the right. The two network links l1 and l2 are replaced by
an equivalent virtual link l1:2. As far as the master p0 is concerned, there is no difference in
the time it takes for the equivalent processor to execute a task.

particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.

2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule g is

optimal.

3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.

Parallel	and	Distributed	Computing190

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

Eqv.

p0

E0

p1:2

E1:2

l1:2

C1:2

Fig. 6. The heterogeneous two-slave system. The two processors p1 and p2 are replaced by an
equivalent virtual processor p1:2 on the right. The two network links l1 and l2 are replaced by
an equivalent virtual link l1:2. As far as the master p0 is concerned, there is no difference in
the time it takes for the equivalent processor to execute a task.

particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.

2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule g is

optimal.

3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 191

p0

E0

p1

E1

l1
C1

p2

E2

l2
C2

Eqv.

p0

E0

p1:2

E1:2

l1:2

C1:2

Fig. 6. The heterogeneous two-slave system. The two processors p1 and p2 are replaced by an
equivalent virtual processor p1:2 on the right. The two network links l1 and l2 are replaced by
an equivalent virtual link l1:2. As far as the master p0 is concerned, there is no difference in
the time it takes for the equivalent processor to execute a task.

particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.

2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule g is

optimal.

3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 +

(1+ρ1)ρ2
δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.

Parallel	and	Distributed	Computing192

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

T f

Original Schedule f

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

T f
1:2

Equivalent Schedule f

Fig. 7. Equivalent processor in Schedule f . The total communication time remains the same as
the original two processors. The equivalent computation time is equal to the interval between
the end of allocation to p2 and the start of result collection from p1.

4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)

Time

p1
α1C1

α1E1

δα1C1

Tl

p2
α2C2

α1:2E1:2

δα2C2

Original Schedule l

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

Tl
1:2

Equivalent Schedule l

Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).

1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 193

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

T f

Original Schedule f

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

T f
1:2

Equivalent Schedule f

Fig. 7. Equivalent processor in Schedule f . The total communication time remains the same as
the original two processors. The equivalent computation time is equal to the interval between
the end of allocation to p2 and the start of result collection from p1.

4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)

Time

p1
α1C1

α1E1

δα1C1

Tl

p2
α2C2

α1:2E1:2

δα2C2

Original Schedule l

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

Tl
1:2

Equivalent Schedule l

Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).

1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek

Parallel	and	Distributed	Computing192

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

T f

Original Schedule f

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

T f
1:2

Equivalent Schedule f

Fig. 7. Equivalent processor in Schedule f . The total communication time remains the same as
the original two processors. The equivalent computation time is equal to the interval between
the end of allocation to p2 and the start of result collection from p1.

4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)

Time

p1
α1C1

α1E1

δα1C1

Tl

p2
α2C2

α1:2E1:2

δα2C2

Original Schedule l

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

Tl
1:2

Equivalent Schedule l

Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).

1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 193

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

T f

Original Schedule f

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

T f
1:2

Equivalent Schedule f

Fig. 7. Equivalent processor in Schedule f . The total communication time remains the same as
the original two processors. The equivalent computation time is equal to the interval between
the end of allocation to p2 and the start of result collection from p1.

4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)

Time

p1
α1C1

α1E1

δα1C1

Tl

p2
α2C2

α1:2E1:2

δα2C2

Original Schedule l

p1:2
α1:2C1:2

α1:2E1:2

δα1:2C1:2

Tl
1:2

Equivalent Schedule l

Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).

1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek

Parallel	and	Distributed	Computing194

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

Tg

Original Schedule g

p1:2
α1:2C1:2 δα1:2C1:2

Tg
1:2

Equivalent Schedule g

x2

Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to zero as the result
collection begins immediately after the allocation phase ends.

5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)

C1ρ1 + C2

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 195

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

Tg

Original Schedule g

p1:2
α1:2C1:2 δα1:2C1:2

Tg
1:2

Equivalent Schedule g

x2

Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to zero as the result
collection begins immediately after the allocation phase ends.

5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)

C1ρ1 + C2

Parallel	and	Distributed	Computing194

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

Tg

Original Schedule g

p1:2
α1:2C1:2 δα1:2C1:2

Tg
1:2

Equivalent Schedule g

x2

Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to zero as the result
collection begins immediately after the allocation phase ends.

5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)

C1ρ1 + C2

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 195

Time

p1
α1C1

α1E1

δα1C1

p2
α2C2

α2E2

δα2C2

Tg

Original Schedule g

p1:2
α1:2C1:2 δα1:2C1:2

Tg
1:2

Equivalent Schedule g

x2

Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to zero as the result
collection begins immediately after the allocation phase ends.

5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)

C1ρ1 + C2

Parallel	and	Distributed	Computing196

8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2

C1rl
1 + C2rl

2

4: αk ←
C1rl

1

C1rl
1 + C2rl

2
5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2)

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 197

8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2

C1rl
1 + C2rl

2

4: αk ←
C1rl

1

C1rl
1 + C2rl

2
5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2)

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.

Parallel	and	Distributed	Computing196

8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2

C1rl
1 + C2rl

2

4: αk ←
C1rl

1

C1rl
1 + C2rl

2
5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2)

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 197

8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2

C1rl
1 + C2rl

2

4: αk ←
C1rl

1

C1rl
1 + C2rl

2
5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2)

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.

Parallel	and	Distributed	Computing198

α1:n

α1:n−1

α1:3

α1:2

α1 α2

α3

α4

αn−1

αn

*

*

*

*

*

Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1

α′k · ∏n
j=k α1:j if k = 2, . . . , n

(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 199

α1:n

α1:n−1

α1:3

α1:2

α1 α2

α3

α4

αn−1

αn

*

*

*

*

*

Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1

α′k · ∏n
j=k α1:j if k = 2, . . . , n

(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum

Parallel	and	Distributed	Computing198

α1:n

α1:n−1

α1:3

α1:2

α1 α2

α3

α4

αn−1

αn

*

*

*

*

*

Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1

α′k · ∏n
j=k α1:j if k = 2, . . . , n

(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 199

α1:n

α1:n−1

α1:3

α1:2

α1 α2

α3

α4

αn−1

αn

*

*

*

*

*

Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1

α′k · ∏n
j=k α1:j if k = 2, . . . , n

(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum

Parallel	and	Distributed	Computing200

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
C

om
pu

ta
tio

n
T

im
e

in
 S

ec
on

ds

Number of Processors

SPORT
LIFOC
FIFOC

Fig. 12. Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two orders
of magnitude faster than LIFOC and almost four orders of magnitude faster than FIFOC. This
figure appears in (Ghatpande, Nakazato, Beaumont & Watanabe, 2008).

mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.

7. References

Adler, M., Gong, Y. & Rosenberg, A. L. (2003). Optimal sharing of bags of tasks in heteroge-
neous clusters, SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, ACM, New York, NY, USA, pp. 1–10.

Barlas, G. D. (1998). Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees, 9(5): 429–
441.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y. & Yang, Y. (2005). Scheduling divisible
loads on star and tree networks: Results and open problems, 16(3): 207–218.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2005). FIFO scheduling of divisible loads
with return messages under the one-port model, Research Report 2005-52, LIP, ENS
Lyon, France.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2006). FIFO scheduling of divisible loads
with return messages under the one port model, Proc. Heterogeneous Computing Work-
shop HCW’06.

Beaumont, O., Marchal, L. & Robert, Y. (2005). Scheduling divisible loads with return mes-
sages on heterogeneous master-worker platforms, Research Report 2005-21, LIP, ENS
Lyon, France.

Bharadwaj, V., Ghose, D., Mani, V. & Robertazzi, T. G. (1996). Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 201

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
C

om
pu

ta
tio

n
T

im
e

in
 S

ec
on

ds

Number of Processors

SPORT
LIFOC
FIFOC

Fig. 12. Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two orders
of magnitude faster than LIFOC and almost four orders of magnitude faster than FIFOC. This
figure appears in (Ghatpande, Nakazato, Beaumont & Watanabe, 2008).

mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.

7. References

Adler, M., Gong, Y. & Rosenberg, A. L. (2003). Optimal sharing of bags of tasks in heteroge-
neous clusters, SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, ACM, New York, NY, USA, pp. 1–10.

Barlas, G. D. (1998). Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees, 9(5): 429–
441.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y. & Yang, Y. (2005). Scheduling divisible
loads on star and tree networks: Results and open problems, 16(3): 207–218.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2005). FIFO scheduling of divisible loads
with return messages under the one-port model, Research Report 2005-52, LIP, ENS
Lyon, France.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2006). FIFO scheduling of divisible loads
with return messages under the one port model, Proc. Heterogeneous Computing Work-
shop HCW’06.

Beaumont, O., Marchal, L. & Robert, Y. (2005). Scheduling divisible loads with return mes-
sages on heterogeneous master-worker platforms, Research Report 2005-21, LIP, ENS
Lyon, France.

Bharadwaj, V., Ghose, D., Mani, V. & Robertazzi, T. G. (1996). Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA.

Parallel	and	Distributed	Computing200

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
C

om
pu

ta
tio

n
T

im
e

in
 S

ec
on

ds

Number of Processors

SPORT
LIFOC
FIFOC

Fig. 12. Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two orders
of magnitude faster than LIFOC and almost four orders of magnitude faster than FIFOC. This
figure appears in (Ghatpande, Nakazato, Beaumont & Watanabe, 2008).

mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.

7. References

Adler, M., Gong, Y. & Rosenberg, A. L. (2003). Optimal sharing of bags of tasks in heteroge-
neous clusters, SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, ACM, New York, NY, USA, pp. 1–10.

Barlas, G. D. (1998). Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees, 9(5): 429–
441.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y. & Yang, Y. (2005). Scheduling divisible
loads on star and tree networks: Results and open problems, 16(3): 207–218.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2005). FIFO scheduling of divisible loads
with return messages under the one-port model, Research Report 2005-52, LIP, ENS
Lyon, France.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2006). FIFO scheduling of divisible loads
with return messages under the one port model, Proc. Heterogeneous Computing Work-
shop HCW’06.

Beaumont, O., Marchal, L. & Robert, Y. (2005). Scheduling divisible loads with return mes-
sages on heterogeneous master-worker platforms, Research Report 2005-21, LIP, ENS
Lyon, France.

Bharadwaj, V., Ghose, D., Mani, V. & Robertazzi, T. G. (1996). Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA.

Scheduling	of	Divisible	Loads	on	Heterogeneous	Distributed	Systems 201

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
eq

ui
re

d
C

om
pu

ta
tio

n
T

im
e

in
 S

ec
on

ds

Number of Processors

SPORT
LIFOC
FIFOC

Fig. 12. Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two orders
of magnitude faster than LIFOC and almost four orders of magnitude faster than FIFOC. This
figure appears in (Ghatpande, Nakazato, Beaumont & Watanabe, 2008).

mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.

7. References

Adler, M., Gong, Y. & Rosenberg, A. L. (2003). Optimal sharing of bags of tasks in heteroge-
neous clusters, SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, ACM, New York, NY, USA, pp. 1–10.

Barlas, G. D. (1998). Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees, 9(5): 429–
441.

Beaumont, O., Casanova, H., Legrand, A., Robert, Y. & Yang, Y. (2005). Scheduling divisible
loads on star and tree networks: Results and open problems, 16(3): 207–218.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2005). FIFO scheduling of divisible loads
with return messages under the one-port model, Research Report 2005-52, LIP, ENS
Lyon, France.

Beaumont, O., Marchal, L., Rehn, V. & Robert, Y. (2006). FIFO scheduling of divisible loads
with return messages under the one port model, Proc. Heterogeneous Computing Work-
shop HCW’06.

Beaumont, O., Marchal, L. & Robert, Y. (2005). Scheduling divisible loads with return mes-
sages on heterogeneous master-worker platforms, Research Report 2005-21, LIP, ENS
Lyon, France.

Bharadwaj, V., Ghose, D., Mani, V. & Robertazzi, T. G. (1996). Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Computer Society Press, Los Alamitos, CA.

Parallel	and	Distributed	Computing202

Cheng, Y.-C. & Robertazzi, T. G. (1990). Distributed computation for a tree network with
communication delays, 26(3): 511–516.

Comino, N. & Narasimhan, V. L. (2002). A novel data distribution technique for host-client
type parallel applications, 13(2): 97–110.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton Univ. Press, Princeton, NJ.
Ghatpande, A., Beaumont, O., Nakazato, H. & Watanabe, H. (2008). Divisible load scheduling

with result collection on heterogeneous systems, Proc. Heterogeneous Computing Work-
shop (HCW 2008) held in the IEEE Intl. Parallel and Distributed Processing Sysmposium
(IPDPS 2008), Miami, FL.

Ghatpande, A., Nakazato, H., Beaumont, O. & Watanabe, H. (2008). SPORT: An algorithm
for divisible load scheduling with result collection on heterogeneous systems, IEICE
Transactions on Communications E91-B(8).

Robertazzi, T. (2008). Divisible (partitionable) load scheduling research.
URL: http://www.ece.sunysb.edu/ tom/dlt.html#THEORY

Rosenberg, A. (2001). Sharing partitionable workload in heterogeneous NOWs: Greedier is
not better, IEEE International Conference on Cluster Computing, Newport Beach, CA,
pp. 124–131.

Vanderbei, R. J. (2001). Linear Programming: Foundations and Extensions, Vol. 37 of International
Series in Operations Research & Management, 2nd edn, Kluwer Academic Publishers.
URL: http://www.princeton.edu/ rvdb/LPbook/online.html

Yu, D. & Robertazzi, T. G. (2003). Divisible load scheduling for grid computing, Proc. Inter-
national Conference on Parallel and Distributed Computing Systems (PDCS 2003), Vol. 1,
Los Angeles, CA, USA.

On	the	Role	of	Helper	Peers	in	P2P	Networks 203

On	the	Role	of	Helper	Peers	in	P2P	Networks

Shay	Horovitz	and	Danny	Dolev

x

On the Role of Helper Peers in P2P Networks

Shay Horovitz and Danny Dolev
Hebrew University of Jerusalem

Israel

1. Introduction

Recent studies in peer-to-peer (P2P) networks present surprising new designs that rely on
helper peers. Helper peers, sometimes named as Feeders or Support peers are nodes that do
not function as direct consumers or providers of content but are used to collaborate with
other peers in the network for a growing variety of benefits.
In File Sharing networks for instance, due to frequent joins, leaves and the characteristic
fluctuating throughput of source peers, clients usually download at an unstable rate. In
addition, existing P2P protocols tend to ignore source peers that have relatively low
bandwidth to offer and practically miss a potentially huge resource. By employing helper
peers that are optimal for availability and throughput stability with the downloading client,
it is possible to provide a maximal stable throughput even with extremely weak and
unstable sources.
Other interesting examples of helper peers in file sharing demonstrated how to integrate
helper peers in order to increase the number of sources under flash crowds situations, how
to solve the last chunk problem and how to bypass fairness rules for better download rates.
In P2P streaming networks such as live IPTV and VOD, helper peers can contribute in
preventing glitches and expanding the dissemination of packets, as well as synchronizing
and ordering frames for the clients.
In this chapter we present novel architectures that embed helper peers in order to solve key
problems in P2P networks. We discuss the implications and key techniques in each proposal
and point the weaknesses and limitations of mentioned architectures.
We present different selection criteria for choosing the optimal helper peers based on
theoretic simulations, practical measurements and experiments with popular protocols such
as eMule and BitTorrent.
We propose an advanced Machine Learning based design that actively learns the
behavioural patterns of peers and leverages the performance of clients by collaborating with
the ”right” helper peers at the right time.
Though helper peers gained popularity in P2P research, different works in this field term
the same ideas differently and in some cases do not mention each other; this chapter
presents the current state of the art in helper-supported P2P networks. Finally, we present
future research directions in this field.

11

Parallel	and	Distributed	Computing202

Cheng, Y.-C. & Robertazzi, T. G. (1990). Distributed computation for a tree network with
communication delays, 26(3): 511–516.

Comino, N. & Narasimhan, V. L. (2002). A novel data distribution technique for host-client
type parallel applications, 13(2): 97–110.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton Univ. Press, Princeton, NJ.
Ghatpande, A., Beaumont, O., Nakazato, H. & Watanabe, H. (2008). Divisible load scheduling

with result collection on heterogeneous systems, Proc. Heterogeneous Computing Work-
shop (HCW 2008) held in the IEEE Intl. Parallel and Distributed Processing Sysmposium
(IPDPS 2008), Miami, FL.

Ghatpande, A., Nakazato, H., Beaumont, O. & Watanabe, H. (2008). SPORT: An algorithm
for divisible load scheduling with result collection on heterogeneous systems, IEICE
Transactions on Communications E91-B(8).

Robertazzi, T. (2008). Divisible (partitionable) load scheduling research.
URL: http://www.ece.sunysb.edu/ tom/dlt.html#THEORY

Rosenberg, A. (2001). Sharing partitionable workload in heterogeneous NOWs: Greedier is
not better, IEEE International Conference on Cluster Computing, Newport Beach, CA,
pp. 124–131.

Vanderbei, R. J. (2001). Linear Programming: Foundations and Extensions, Vol. 37 of International
Series in Operations Research & Management, 2nd edn, Kluwer Academic Publishers.
URL: http://www.princeton.edu/ rvdb/LPbook/online.html

Yu, D. & Robertazzi, T. G. (2003). Divisible load scheduling for grid computing, Proc. Inter-
national Conference on Parallel and Distributed Computing Systems (PDCS 2003), Vol. 1,
Los Angeles, CA, USA.

On	the	Role	of	Helper	Peers	in	P2P	Networks 203

On	the	Role	of	Helper	Peers	in	P2P	Networks

Shay	Horovitz	and	Danny	Dolev

x

On the Role of Helper Peers in P2P Networks

Shay Horovitz and Danny Dolev
Hebrew University of Jerusalem

Israel

1. Introduction

Recent studies in peer-to-peer (P2P) networks present surprising new designs that rely on
helper peers. Helper peers, sometimes named as Feeders or Support peers are nodes that do
not function as direct consumers or providers of content but are used to collaborate with
other peers in the network for a growing variety of benefits.
In File Sharing networks for instance, due to frequent joins, leaves and the characteristic
fluctuating throughput of source peers, clients usually download at an unstable rate. In
addition, existing P2P protocols tend to ignore source peers that have relatively low
bandwidth to offer and practically miss a potentially huge resource. By employing helper
peers that are optimal for availability and throughput stability with the downloading client,
it is possible to provide a maximal stable throughput even with extremely weak and
unstable sources.
Other interesting examples of helper peers in file sharing demonstrated how to integrate
helper peers in order to increase the number of sources under flash crowds situations, how
to solve the last chunk problem and how to bypass fairness rules for better download rates.
In P2P streaming networks such as live IPTV and VOD, helper peers can contribute in
preventing glitches and expanding the dissemination of packets, as well as synchronizing
and ordering frames for the clients.
In this chapter we present novel architectures that embed helper peers in order to solve key
problems in P2P networks. We discuss the implications and key techniques in each proposal
and point the weaknesses and limitations of mentioned architectures.
We present different selection criteria for choosing the optimal helper peers based on
theoretic simulations, practical measurements and experiments with popular protocols such
as eMule and BitTorrent.
We propose an advanced Machine Learning based design that actively learns the
behavioural patterns of peers and leverages the performance of clients by collaborating with
the ”right” helper peers at the right time.
Though helper peers gained popularity in P2P research, different works in this field term
the same ideas differently and in some cases do not mention each other; this chapter
presents the current state of the art in helper-supported P2P networks. Finally, we present
future research directions in this field.

11

Parallel	and	Distributed	Computing204

2. Background

P2P technology earned its fame throughout the last decade as a result of the wide
deployment of P2P file sharing applications over the Internet in the late 1990s. Among the
early releases, the popular ones were Napster, Scour Exchange, iMesh and Gnutella which
were followed by improved designs such as KaZaA, eDonkey and BitTorrent. Following the
increased popularity of online video content, new designs of P2P streaming networks were
proposed by Joost, PPLive and others. In parallel, the research community introduced some
promising designs in order to overcome the major challenges that relates to P2P networks –
mainly dealing with the Lookup problem but also with security, scalability and
performance. The potential of P2P for the end user in a P2P network is obvious – the ability
to receive content (in some cases free of charge) easily, backed by an efficient search and an
active community that continuously update the shared content.
While the above seems promising, recent measurements of broadband usage patterns in
ISPs reveal a surprising rising trend that should concern the P2P research community: new
server based services are growing in traffic at the expense of P2P traffic. While P2P is still
responsible for more than 60% of all upstream data in ISPs, it is claimed that subscribers are
increasingly turning to alternatives such as File Hosting web sites like RapidShare and
MegaUpload, since they enable much faster download speed compared to P2P networks
(see e.g. Sandvide 2008 Global Broadband Phenomena (2008)). RapidShare is already ranked
as the 17th web site in global traffic rankings according to Alexa.Com web traffic rating.
Another study (see e.g. IPoque Internet Study (2007)) supports the above and claims that
web sites like RapidShare are already responsible for nearly 9% of the Internet traffic in the
Middle East and over 4% in Germany. BitTorrent (see, e.g. Cohen (2003)) for example – the
most popular P2P protocol, suffers from unstable download rates and hardly exploits the
available download capacity (see e.g. Bindal and Cao (2006), Andrade et al. (2007)).
One of the most promising P2P streaming networks was Joost, which suffered from severe
QOS problems such as connection loss, hiccups (see, e.g. VentureBeat report (2008)) and
degraded throughput (see, e.g. DailyIPTV report (2007)). Joost also failed in broadcasting
live events (see, e.g. NewTeeVee report (2008)) and recently Joost finally abandoned P2P
completely for a server based solution (see, e.g. TechCrunch report (2008)). PPLive - Another
highly popular P2P streaming network is also reported to suffer from occasional glitches, re-
buffering and broken streams (see, e.g. All-Streaming-Media report (2008)). While in server
based streaming services it is possible to solve QOS problems with buffering, the instability
of peers' upload in P2P streaming networks requires a much larger buffer, which puts QOS
in question again for the latency - as even though PPLive offers only modest low-quality
narrow-band P2P video streaming (see, e.g. Horvath et al. (2008)), its subscribers experience
a latency between tens of seconds (see, e.g. Vu et al. (2006)) to two minutes (see, e.g. Hei et
al. (2006)).
The above problems put P2P technologies in question for commercial system designers. As
most P2P systems already run a best effort approach by prioritizing peers with minimized
infrastructure problems like delay and packet loss, they still miss a key factor in degrading
P2P performance – the user behaviour. In addition, this approach is blind to a large number
of weak sources that remain unused, while the small group of strong sources are exploited
and overused (see, e.g. Horvath et al. (2008)).
In Collabory (see, e.g. Horovitz and Dolev (2008)) we analyzed the factors for the instability
of source peers in P2P networks and found that the aspect that has the greatest impact is the

behaviour of users at source peers. The most obvious occurrence is the case where the user
at the source peer invokes applications that heavily use bandwidth such as Email clients,
online games or other P2P applications. By doing so, the bandwidth available for the client
connected to that machine may be drastically reduced and becomes significantly unstable.
Studies confirm that the major factor that has direct impact on QOS in P2P networks is the
behaviour of users at the source peers (see, e.g. Do et al. (2004), Rejaie et al. (2003)). This
behaviour leads to fluctuating rate of packets for the client peer that might be reflected by a
reduced download rate in file sharing networks or high latencies, delays, hiccups and
freezes in streaming P2P networks.
As the existing model of P2P networks failed to provide a stable download speed both in file
sharing and streaming, some research papers proposed the idea of employing Helper peers,
sometimes named as Feeders or Support peers – peers that do not function as direct
consumers or providers of content but are used to collaborate with other peers in the
network. In the following sections we will survey different implementations of Helper peers
for different applications in P2P networks. We focus on designs that aim to solve the
stability problem– as we believe that Helpers will play a crucial role in creating future P2P
networks that are competitive with old school’s centralized file hosting and streaming
systems.

3. Helpers for Service Availability

3.1 Increasing Sources in File Sharing & Multicast
The concept of employing helper peers in a P2P networks was first proposed by Wong (see,
e.g. Wong (2004)). In his work, which was limited to file sharing based on a swarming
mechanism, Wong offered to utilize the free upload capacity of a helper peer for the benefit
of client peers, simply by joining helper peers to an existing swarm (See Fig. 1). The helper
aims to upload each file piece (portion) it downloads at least u times, where u is a
heuristically predetermined number called upload factor. Thus, helpers can guarantee to
upload more than they download and contribute to the system. To make sure each piece it
downloads is uploaded at least u times, a helper keeps track of the number of times each
piece has been uploaded and considers a piece unfulfilled if the piece has not been uploaded
u times. The helper downloads a new piece when the number of unfulfilled pieces is below a
certain predetermined limit. Its objective was to increase the total amount of available
bandwidth in the P2P network, by voluntarily contributing the helper peer’s bandwidth
resources. It was shown that this strategy is wasteful because the longer a peer/helper stays
in the system, the more pieces it will download, which is unnecessary for helpers to keep
their upload bandwidth fully utilized (see, e.g. Wang et al. (2007)). It was also shown that
the inherent assumption of sufficient altruism in the network without any incentives makes
the approach impractical in real world environments (see, e.g. Pouwelse et al. (2006)). While
Wong presented a new mechanism for increasing the available bandwidth at the network
level, the performance at the client’s side was still in question as the proposed mechanisms
did not address the problem of bandwidth stability of a helper peer – which is a major factor
for the performance of the download process. In addition, the whole design is not generic
but is based solely on swarming that is managed by a tracker; this limits the potential of the
solution to BitTorrent based systems only.

On	the	Role	of	Helper	Peers	in	P2P	Networks 205

2. Background

P2P technology earned its fame throughout the last decade as a result of the wide
deployment of P2P file sharing applications over the Internet in the late 1990s. Among the
early releases, the popular ones were Napster, Scour Exchange, iMesh and Gnutella which
were followed by improved designs such as KaZaA, eDonkey and BitTorrent. Following the
increased popularity of online video content, new designs of P2P streaming networks were
proposed by Joost, PPLive and others. In parallel, the research community introduced some
promising designs in order to overcome the major challenges that relates to P2P networks –
mainly dealing with the Lookup problem but also with security, scalability and
performance. The potential of P2P for the end user in a P2P network is obvious – the ability
to receive content (in some cases free of charge) easily, backed by an efficient search and an
active community that continuously update the shared content.
While the above seems promising, recent measurements of broadband usage patterns in
ISPs reveal a surprising rising trend that should concern the P2P research community: new
server based services are growing in traffic at the expense of P2P traffic. While P2P is still
responsible for more than 60% of all upstream data in ISPs, it is claimed that subscribers are
increasingly turning to alternatives such as File Hosting web sites like RapidShare and
MegaUpload, since they enable much faster download speed compared to P2P networks
(see e.g. Sandvide 2008 Global Broadband Phenomena (2008)). RapidShare is already ranked
as the 17th web site in global traffic rankings according to Alexa.Com web traffic rating.
Another study (see e.g. IPoque Internet Study (2007)) supports the above and claims that
web sites like RapidShare are already responsible for nearly 9% of the Internet traffic in the
Middle East and over 4% in Germany. BitTorrent (see, e.g. Cohen (2003)) for example – the
most popular P2P protocol, suffers from unstable download rates and hardly exploits the
available download capacity (see e.g. Bindal and Cao (2006), Andrade et al. (2007)).
One of the most promising P2P streaming networks was Joost, which suffered from severe
QOS problems such as connection loss, hiccups (see, e.g. VentureBeat report (2008)) and
degraded throughput (see, e.g. DailyIPTV report (2007)). Joost also failed in broadcasting
live events (see, e.g. NewTeeVee report (2008)) and recently Joost finally abandoned P2P
completely for a server based solution (see, e.g. TechCrunch report (2008)). PPLive - Another
highly popular P2P streaming network is also reported to suffer from occasional glitches, re-
buffering and broken streams (see, e.g. All-Streaming-Media report (2008)). While in server
based streaming services it is possible to solve QOS problems with buffering, the instability
of peers' upload in P2P streaming networks requires a much larger buffer, which puts QOS
in question again for the latency - as even though PPLive offers only modest low-quality
narrow-band P2P video streaming (see, e.g. Horvath et al. (2008)), its subscribers experience
a latency between tens of seconds (see, e.g. Vu et al. (2006)) to two minutes (see, e.g. Hei et
al. (2006)).
The above problems put P2P technologies in question for commercial system designers. As
most P2P systems already run a best effort approach by prioritizing peers with minimized
infrastructure problems like delay and packet loss, they still miss a key factor in degrading
P2P performance – the user behaviour. In addition, this approach is blind to a large number
of weak sources that remain unused, while the small group of strong sources are exploited
and overused (see, e.g. Horvath et al. (2008)).
In Collabory (see, e.g. Horovitz and Dolev (2008)) we analyzed the factors for the instability
of source peers in P2P networks and found that the aspect that has the greatest impact is the

behaviour of users at source peers. The most obvious occurrence is the case where the user
at the source peer invokes applications that heavily use bandwidth such as Email clients,
online games or other P2P applications. By doing so, the bandwidth available for the client
connected to that machine may be drastically reduced and becomes significantly unstable.
Studies confirm that the major factor that has direct impact on QOS in P2P networks is the
behaviour of users at the source peers (see, e.g. Do et al. (2004), Rejaie et al. (2003)). This
behaviour leads to fluctuating rate of packets for the client peer that might be reflected by a
reduced download rate in file sharing networks or high latencies, delays, hiccups and
freezes in streaming P2P networks.
As the existing model of P2P networks failed to provide a stable download speed both in file
sharing and streaming, some research papers proposed the idea of employing Helper peers,
sometimes named as Feeders or Support peers – peers that do not function as direct
consumers or providers of content but are used to collaborate with other peers in the
network. In the following sections we will survey different implementations of Helper peers
for different applications in P2P networks. We focus on designs that aim to solve the
stability problem– as we believe that Helpers will play a crucial role in creating future P2P
networks that are competitive with old school’s centralized file hosting and streaming
systems.

3. Helpers for Service Availability

3.1 Increasing Sources in File Sharing & Multicast
The concept of employing helper peers in a P2P networks was first proposed by Wong (see,
e.g. Wong (2004)). In his work, which was limited to file sharing based on a swarming
mechanism, Wong offered to utilize the free upload capacity of a helper peer for the benefit
of client peers, simply by joining helper peers to an existing swarm (See Fig. 1). The helper
aims to upload each file piece (portion) it downloads at least u times, where u is a
heuristically predetermined number called upload factor. Thus, helpers can guarantee to
upload more than they download and contribute to the system. To make sure each piece it
downloads is uploaded at least u times, a helper keeps track of the number of times each
piece has been uploaded and considers a piece unfulfilled if the piece has not been uploaded
u times. The helper downloads a new piece when the number of unfulfilled pieces is below a
certain predetermined limit. Its objective was to increase the total amount of available
bandwidth in the P2P network, by voluntarily contributing the helper peer’s bandwidth
resources. It was shown that this strategy is wasteful because the longer a peer/helper stays
in the system, the more pieces it will download, which is unnecessary for helpers to keep
their upload bandwidth fully utilized (see, e.g. Wang et al. (2007)). It was also shown that
the inherent assumption of sufficient altruism in the network without any incentives makes
the approach impractical in real world environments (see, e.g. Pouwelse et al. (2006)). While
Wong presented a new mechanism for increasing the available bandwidth at the network
level, the performance at the client’s side was still in question as the proposed mechanisms
did not address the problem of bandwidth stability of a helper peer – which is a major factor
for the performance of the download process. In addition, the whole design is not generic
but is based solely on swarming that is managed by a tracker; this limits the potential of the
solution to BitTorrent based systems only.

Parallel	and	Distributed	Computing204

2. Background

P2P technology earned its fame throughout the last decade as a result of the wide
deployment of P2P file sharing applications over the Internet in the late 1990s. Among the
early releases, the popular ones were Napster, Scour Exchange, iMesh and Gnutella which
were followed by improved designs such as KaZaA, eDonkey and BitTorrent. Following the
increased popularity of online video content, new designs of P2P streaming networks were
proposed by Joost, PPLive and others. In parallel, the research community introduced some
promising designs in order to overcome the major challenges that relates to P2P networks –
mainly dealing with the Lookup problem but also with security, scalability and
performance. The potential of P2P for the end user in a P2P network is obvious – the ability
to receive content (in some cases free of charge) easily, backed by an efficient search and an
active community that continuously update the shared content.
While the above seems promising, recent measurements of broadband usage patterns in
ISPs reveal a surprising rising trend that should concern the P2P research community: new
server based services are growing in traffic at the expense of P2P traffic. While P2P is still
responsible for more than 60% of all upstream data in ISPs, it is claimed that subscribers are
increasingly turning to alternatives such as File Hosting web sites like RapidShare and
MegaUpload, since they enable much faster download speed compared to P2P networks
(see e.g. Sandvide 2008 Global Broadband Phenomena (2008)). RapidShare is already ranked
as the 17th web site in global traffic rankings according to Alexa.Com web traffic rating.
Another study (see e.g. IPoque Internet Study (2007)) supports the above and claims that
web sites like RapidShare are already responsible for nearly 9% of the Internet traffic in the
Middle East and over 4% in Germany. BitTorrent (see, e.g. Cohen (2003)) for example – the
most popular P2P protocol, suffers from unstable download rates and hardly exploits the
available download capacity (see e.g. Bindal and Cao (2006), Andrade et al. (2007)).
One of the most promising P2P streaming networks was Joost, which suffered from severe
QOS problems such as connection loss, hiccups (see, e.g. VentureBeat report (2008)) and
degraded throughput (see, e.g. DailyIPTV report (2007)). Joost also failed in broadcasting
live events (see, e.g. NewTeeVee report (2008)) and recently Joost finally abandoned P2P
completely for a server based solution (see, e.g. TechCrunch report (2008)). PPLive - Another
highly popular P2P streaming network is also reported to suffer from occasional glitches, re-
buffering and broken streams (see, e.g. All-Streaming-Media report (2008)). While in server
based streaming services it is possible to solve QOS problems with buffering, the instability
of peers' upload in P2P streaming networks requires a much larger buffer, which puts QOS
in question again for the latency - as even though PPLive offers only modest low-quality
narrow-band P2P video streaming (see, e.g. Horvath et al. (2008)), its subscribers experience
a latency between tens of seconds (see, e.g. Vu et al. (2006)) to two minutes (see, e.g. Hei et
al. (2006)).
The above problems put P2P technologies in question for commercial system designers. As
most P2P systems already run a best effort approach by prioritizing peers with minimized
infrastructure problems like delay and packet loss, they still miss a key factor in degrading
P2P performance – the user behaviour. In addition, this approach is blind to a large number
of weak sources that remain unused, while the small group of strong sources are exploited
and overused (see, e.g. Horvath et al. (2008)).
In Collabory (see, e.g. Horovitz and Dolev (2008)) we analyzed the factors for the instability
of source peers in P2P networks and found that the aspect that has the greatest impact is the

behaviour of users at source peers. The most obvious occurrence is the case where the user
at the source peer invokes applications that heavily use bandwidth such as Email clients,
online games or other P2P applications. By doing so, the bandwidth available for the client
connected to that machine may be drastically reduced and becomes significantly unstable.
Studies confirm that the major factor that has direct impact on QOS in P2P networks is the
behaviour of users at the source peers (see, e.g. Do et al. (2004), Rejaie et al. (2003)). This
behaviour leads to fluctuating rate of packets for the client peer that might be reflected by a
reduced download rate in file sharing networks or high latencies, delays, hiccups and
freezes in streaming P2P networks.
As the existing model of P2P networks failed to provide a stable download speed both in file
sharing and streaming, some research papers proposed the idea of employing Helper peers,
sometimes named as Feeders or Support peers – peers that do not function as direct
consumers or providers of content but are used to collaborate with other peers in the
network. In the following sections we will survey different implementations of Helper peers
for different applications in P2P networks. We focus on designs that aim to solve the
stability problem– as we believe that Helpers will play a crucial role in creating future P2P
networks that are competitive with old school’s centralized file hosting and streaming
systems.

3. Helpers for Service Availability

3.1 Increasing Sources in File Sharing & Multicast
The concept of employing helper peers in a P2P networks was first proposed by Wong (see,
e.g. Wong (2004)). In his work, which was limited to file sharing based on a swarming
mechanism, Wong offered to utilize the free upload capacity of a helper peer for the benefit
of client peers, simply by joining helper peers to an existing swarm (See Fig. 1). The helper
aims to upload each file piece (portion) it downloads at least u times, where u is a
heuristically predetermined number called upload factor. Thus, helpers can guarantee to
upload more than they download and contribute to the system. To make sure each piece it
downloads is uploaded at least u times, a helper keeps track of the number of times each
piece has been uploaded and considers a piece unfulfilled if the piece has not been uploaded
u times. The helper downloads a new piece when the number of unfulfilled pieces is below a
certain predetermined limit. Its objective was to increase the total amount of available
bandwidth in the P2P network, by voluntarily contributing the helper peer’s bandwidth
resources. It was shown that this strategy is wasteful because the longer a peer/helper stays
in the system, the more pieces it will download, which is unnecessary for helpers to keep
their upload bandwidth fully utilized (see, e.g. Wang et al. (2007)). It was also shown that
the inherent assumption of sufficient altruism in the network without any incentives makes
the approach impractical in real world environments (see, e.g. Pouwelse et al. (2006)). While
Wong presented a new mechanism for increasing the available bandwidth at the network
level, the performance at the client’s side was still in question as the proposed mechanisms
did not address the problem of bandwidth stability of a helper peer – which is a major factor
for the performance of the download process. In addition, the whole design is not generic
but is based solely on swarming that is managed by a tracker; this limits the potential of the
solution to BitTorrent based systems only.

On	the	Role	of	Helper	Peers	in	P2P	Networks 205

2. Background

P2P technology earned its fame throughout the last decade as a result of the wide
deployment of P2P file sharing applications over the Internet in the late 1990s. Among the
early releases, the popular ones were Napster, Scour Exchange, iMesh and Gnutella which
were followed by improved designs such as KaZaA, eDonkey and BitTorrent. Following the
increased popularity of online video content, new designs of P2P streaming networks were
proposed by Joost, PPLive and others. In parallel, the research community introduced some
promising designs in order to overcome the major challenges that relates to P2P networks –
mainly dealing with the Lookup problem but also with security, scalability and
performance. The potential of P2P for the end user in a P2P network is obvious – the ability
to receive content (in some cases free of charge) easily, backed by an efficient search and an
active community that continuously update the shared content.
While the above seems promising, recent measurements of broadband usage patterns in
ISPs reveal a surprising rising trend that should concern the P2P research community: new
server based services are growing in traffic at the expense of P2P traffic. While P2P is still
responsible for more than 60% of all upstream data in ISPs, it is claimed that subscribers are
increasingly turning to alternatives such as File Hosting web sites like RapidShare and
MegaUpload, since they enable much faster download speed compared to P2P networks
(see e.g. Sandvide 2008 Global Broadband Phenomena (2008)). RapidShare is already ranked
as the 17th web site in global traffic rankings according to Alexa.Com web traffic rating.
Another study (see e.g. IPoque Internet Study (2007)) supports the above and claims that
web sites like RapidShare are already responsible for nearly 9% of the Internet traffic in the
Middle East and over 4% in Germany. BitTorrent (see, e.g. Cohen (2003)) for example – the
most popular P2P protocol, suffers from unstable download rates and hardly exploits the
available download capacity (see e.g. Bindal and Cao (2006), Andrade et al. (2007)).
One of the most promising P2P streaming networks was Joost, which suffered from severe
QOS problems such as connection loss, hiccups (see, e.g. VentureBeat report (2008)) and
degraded throughput (see, e.g. DailyIPTV report (2007)). Joost also failed in broadcasting
live events (see, e.g. NewTeeVee report (2008)) and recently Joost finally abandoned P2P
completely for a server based solution (see, e.g. TechCrunch report (2008)). PPLive - Another
highly popular P2P streaming network is also reported to suffer from occasional glitches, re-
buffering and broken streams (see, e.g. All-Streaming-Media report (2008)). While in server
based streaming services it is possible to solve QOS problems with buffering, the instability
of peers' upload in P2P streaming networks requires a much larger buffer, which puts QOS
in question again for the latency - as even though PPLive offers only modest low-quality
narrow-band P2P video streaming (see, e.g. Horvath et al. (2008)), its subscribers experience
a latency between tens of seconds (see, e.g. Vu et al. (2006)) to two minutes (see, e.g. Hei et
al. (2006)).
The above problems put P2P technologies in question for commercial system designers. As
most P2P systems already run a best effort approach by prioritizing peers with minimized
infrastructure problems like delay and packet loss, they still miss a key factor in degrading
P2P performance – the user behaviour. In addition, this approach is blind to a large number
of weak sources that remain unused, while the small group of strong sources are exploited
and overused (see, e.g. Horvath et al. (2008)).
In Collabory (see, e.g. Horovitz and Dolev (2008)) we analyzed the factors for the instability
of source peers in P2P networks and found that the aspect that has the greatest impact is the

behaviour of users at source peers. The most obvious occurrence is the case where the user
at the source peer invokes applications that heavily use bandwidth such as Email clients,
online games or other P2P applications. By doing so, the bandwidth available for the client
connected to that machine may be drastically reduced and becomes significantly unstable.
Studies confirm that the major factor that has direct impact on QOS in P2P networks is the
behaviour of users at the source peers (see, e.g. Do et al. (2004), Rejaie et al. (2003)). This
behaviour leads to fluctuating rate of packets for the client peer that might be reflected by a
reduced download rate in file sharing networks or high latencies, delays, hiccups and
freezes in streaming P2P networks.
As the existing model of P2P networks failed to provide a stable download speed both in file
sharing and streaming, some research papers proposed the idea of employing Helper peers,
sometimes named as Feeders or Support peers – peers that do not function as direct
consumers or providers of content but are used to collaborate with other peers in the
network. In the following sections we will survey different implementations of Helper peers
for different applications in P2P networks. We focus on designs that aim to solve the
stability problem– as we believe that Helpers will play a crucial role in creating future P2P
networks that are competitive with old school’s centralized file hosting and streaming
systems.

3. Helpers for Service Availability

3.1 Increasing Sources in File Sharing & Multicast
The concept of employing helper peers in a P2P networks was first proposed by Wong (see,
e.g. Wong (2004)). In his work, which was limited to file sharing based on a swarming
mechanism, Wong offered to utilize the free upload capacity of a helper peer for the benefit
of client peers, simply by joining helper peers to an existing swarm (See Fig. 1). The helper
aims to upload each file piece (portion) it downloads at least u times, where u is a
heuristically predetermined number called upload factor. Thus, helpers can guarantee to
upload more than they download and contribute to the system. To make sure each piece it
downloads is uploaded at least u times, a helper keeps track of the number of times each
piece has been uploaded and considers a piece unfulfilled if the piece has not been uploaded
u times. The helper downloads a new piece when the number of unfulfilled pieces is below a
certain predetermined limit. Its objective was to increase the total amount of available
bandwidth in the P2P network, by voluntarily contributing the helper peer’s bandwidth
resources. It was shown that this strategy is wasteful because the longer a peer/helper stays
in the system, the more pieces it will download, which is unnecessary for helpers to keep
their upload bandwidth fully utilized (see, e.g. Wang et al. (2007)). It was also shown that
the inherent assumption of sufficient altruism in the network without any incentives makes
the approach impractical in real world environments (see, e.g. Pouwelse et al. (2006)). While
Wong presented a new mechanism for increasing the available bandwidth at the network
level, the performance at the client’s side was still in question as the proposed mechanisms
did not address the problem of bandwidth stability of a helper peer – which is a major factor
for the performance of the download process. In addition, the whole design is not generic
but is based solely on swarming that is managed by a tracker; this limits the potential of the
solution to BitTorrent based systems only.

Parallel	and	Distributed	Computing206

Following Wong’s work, Wang et. al. (see, e.g. Wang et. al. (2007)) proposed a mechanism
where the helpers need to download only small portions of a file to be “busy” enough for
serving other peers in the long term. This work is also limited to BitTorrent protocol. Yet, it
is claimed that the increased upload contribution only marginally improves download rates
in BitTorrent (see, e.g. Piatek (2008)). In addition, it is considered that the network
environment is homogeneous - where users have the same link capacities. This is clearly an
unrealistic assumption given Internet’s heterogeneity.
In a recent work (see, e.g. Wang et al. (2008)) it is proposed to employ helper peers in a
hybrid network for streaming video content at a speed that is higher than the average
upload bandwidth of peers. The authors discuss the term helpers as peers that are not
participating in the multicast. Unlike the case of file sharing where users tend to leave their
machine running for predefined downloads, in streaming the user has no motivation for
leaving the application up and running when not used for streaming. Other works that
proposed similar ideas of using helpers for multicast are De Asis Lopez-Fuentes and
Steinbach’s (see, e.g. De Asis Lopez-Fuentes and Steinbach (2008)) and DynaPeer (see, e.g.
Souza et. al (2007)), where helpers take part in a collaboration process for a specific video
stream that is managed by a virtual server.

Fig. 1. Wong and Tribler’s additions to a BitTorrent swarm-based network

3.2 Social Helpers
In Tribler (see, e.g. Pouwelse et al. (2006)) it was proposed to associate the helpers’
contribution with social phenomena such as friendship and trust. In their 2Fast file sharing
protocol (see, e.g. Garbacki et al. (2006)), a peer trying to download a file actively recruits its
“friends”, such as other peers in the same social network, to help exclusively with its
download. 2Fast was originally offered to overcome the problem of free-riding in P2P
networks. Peers from a social group that decide to participate in a cooperative download
take one of two roles: they are either collectors or helpers. A collector is the peer that is

interested in obtaining a complete copy of a particular file – like a typical client in a P2P
network, and a helper is a peer that is recruited by a collector to assist in downloading that
file. Both collector and helpers start downloading the file using the classical BitTorrent tit-
for-tat and cooperative download extensions (See Fig. 1). Before downloading, a helper asks
the collector what chunk it should download. After downloading a file chunk, the helper
sends the chunk to the collector without requesting anything in return.
In addition to receiving file chunks from its helpers, the collector also optimizes its
download performance by dynamically selecting the best available data source from the set
of helpers and other peers in the Bittorrent network. Helpers give priority to collector
requests and are therefore preferred as data sources. Specifically, a peer will assign a list of
pieces to obtain for each of its helpers; these are the pieces that it has not started
downloading. The helpers will try to obtain these pieces just like regular leechers and
upload these pieces only to the peer they are helping. In such a scheme, peers with more
friends can indeed benefit greatly and enjoy a much reduced file download time. However,
it was shown that the constraint that helpers only aim to help a single peer requires the
helpers to download much more than necessary to remain helpful to this peer (see, e.g.
Wang et al. (2007)). The fact that the help is served only by social linked helpers is a limit for
the success of the solution as some peers might not have any social links and others might
have but the “friends” are not online or running the Tribler client when required. As Wong’s
work, Tribler did not address the problem of bandwidth stability of a helper peer either.
Again, this work’s contribution is also limited to BitTorrent-like swarming architectures.
In between Wong’s work and Tribler, Guo et al. (see, e.g. Guo et al. (2005)) proposed a
different mechanism of inter-torrent collaboration, where peers may download pieces of a
file in which they are not interested in exchange for pieces of a file they want to download.
Yet, it was shown that this approach will not necessarily provide any performance gain (see,
e.g. Wang (2008)).
The main contribution of the above mentioned works is in enabling a multicast download
system which circumvents bandwidth asymmetry restrictions by recognising peers for their
contribution of idle bandwidth, thus – increasing service availability.

3.3 Fairness and Free-Riding
In addition to the anti free-riding solution that was proposed in 2Fast and Tribler, it was
shown (see, e.g. Izhak-Ratzin (2009)) that pairs of peers can collaborate as helpers for the
benefit of fairness and anti free-riding. Yet, this work assumes that the collaboration is
possible only between peers that have similar upload bandwidth. This requirement is
problematic as the available upload bandwidth in a typical peer is subject to change over
time.

3.4 Key Lookup
In P-Grid (see, e.g. Crainiceanu (2004)) – an index structure for P2P systems that is based on
the concept of Chord, entries are owned by peers within strict bounds. The peers that do not
take part in the structure are termed in the paper as helper peers; those peers are obliged to
“help” a peer that is already in the ring by managing some part of the range indexed by it -
this is done for load balancing of requests in a P2P ring structure. This resembles the

On	the	Role	of	Helper	Peers	in	P2P	Networks 207

Following Wong’s work, Wang et. al. (see, e.g. Wang et. al. (2007)) proposed a mechanism
where the helpers need to download only small portions of a file to be “busy” enough for
serving other peers in the long term. This work is also limited to BitTorrent protocol. Yet, it
is claimed that the increased upload contribution only marginally improves download rates
in BitTorrent (see, e.g. Piatek (2008)). In addition, it is considered that the network
environment is homogeneous - where users have the same link capacities. This is clearly an
unrealistic assumption given Internet’s heterogeneity.
In a recent work (see, e.g. Wang et al. (2008)) it is proposed to employ helper peers in a
hybrid network for streaming video content at a speed that is higher than the average
upload bandwidth of peers. The authors discuss the term helpers as peers that are not
participating in the multicast. Unlike the case of file sharing where users tend to leave their
machine running for predefined downloads, in streaming the user has no motivation for
leaving the application up and running when not used for streaming. Other works that
proposed similar ideas of using helpers for multicast are De Asis Lopez-Fuentes and
Steinbach’s (see, e.g. De Asis Lopez-Fuentes and Steinbach (2008)) and DynaPeer (see, e.g.
Souza et. al (2007)), where helpers take part in a collaboration process for a specific video
stream that is managed by a virtual server.

Fig. 1. Wong and Tribler’s additions to a BitTorrent swarm-based network

3.2 Social Helpers
In Tribler (see, e.g. Pouwelse et al. (2006)) it was proposed to associate the helpers’
contribution with social phenomena such as friendship and trust. In their 2Fast file sharing
protocol (see, e.g. Garbacki et al. (2006)), a peer trying to download a file actively recruits its
“friends”, such as other peers in the same social network, to help exclusively with its
download. 2Fast was originally offered to overcome the problem of free-riding in P2P
networks. Peers from a social group that decide to participate in a cooperative download
take one of two roles: they are either collectors or helpers. A collector is the peer that is

interested in obtaining a complete copy of a particular file – like a typical client in a P2P
network, and a helper is a peer that is recruited by a collector to assist in downloading that
file. Both collector and helpers start downloading the file using the classical BitTorrent tit-
for-tat and cooperative download extensions (See Fig. 1). Before downloading, a helper asks
the collector what chunk it should download. After downloading a file chunk, the helper
sends the chunk to the collector without requesting anything in return.
In addition to receiving file chunks from its helpers, the collector also optimizes its
download performance by dynamically selecting the best available data source from the set
of helpers and other peers in the Bittorrent network. Helpers give priority to collector
requests and are therefore preferred as data sources. Specifically, a peer will assign a list of
pieces to obtain for each of its helpers; these are the pieces that it has not started
downloading. The helpers will try to obtain these pieces just like regular leechers and
upload these pieces only to the peer they are helping. In such a scheme, peers with more
friends can indeed benefit greatly and enjoy a much reduced file download time. However,
it was shown that the constraint that helpers only aim to help a single peer requires the
helpers to download much more than necessary to remain helpful to this peer (see, e.g.
Wang et al. (2007)). The fact that the help is served only by social linked helpers is a limit for
the success of the solution as some peers might not have any social links and others might
have but the “friends” are not online or running the Tribler client when required. As Wong’s
work, Tribler did not address the problem of bandwidth stability of a helper peer either.
Again, this work’s contribution is also limited to BitTorrent-like swarming architectures.
In between Wong’s work and Tribler, Guo et al. (see, e.g. Guo et al. (2005)) proposed a
different mechanism of inter-torrent collaboration, where peers may download pieces of a
file in which they are not interested in exchange for pieces of a file they want to download.
Yet, it was shown that this approach will not necessarily provide any performance gain (see,
e.g. Wang (2008)).
The main contribution of the above mentioned works is in enabling a multicast download
system which circumvents bandwidth asymmetry restrictions by recognising peers for their
contribution of idle bandwidth, thus – increasing service availability.

3.3 Fairness and Free-Riding
In addition to the anti free-riding solution that was proposed in 2Fast and Tribler, it was
shown (see, e.g. Izhak-Ratzin (2009)) that pairs of peers can collaborate as helpers for the
benefit of fairness and anti free-riding. Yet, this work assumes that the collaboration is
possible only between peers that have similar upload bandwidth. This requirement is
problematic as the available upload bandwidth in a typical peer is subject to change over
time.

3.4 Key Lookup
In P-Grid (see, e.g. Crainiceanu (2004)) – an index structure for P2P systems that is based on
the concept of Chord, entries are owned by peers within strict bounds. The peers that do not
take part in the structure are termed in the paper as helper peers; those peers are obliged to
“help” a peer that is already in the ring by managing some part of the range indexed by it -
this is done for load balancing of requests in a P2P ring structure. This resembles the

Parallel	and	Distributed	Computing206

Following Wong’s work, Wang et. al. (see, e.g. Wang et. al. (2007)) proposed a mechanism
where the helpers need to download only small portions of a file to be “busy” enough for
serving other peers in the long term. This work is also limited to BitTorrent protocol. Yet, it
is claimed that the increased upload contribution only marginally improves download rates
in BitTorrent (see, e.g. Piatek (2008)). In addition, it is considered that the network
environment is homogeneous - where users have the same link capacities. This is clearly an
unrealistic assumption given Internet’s heterogeneity.
In a recent work (see, e.g. Wang et al. (2008)) it is proposed to employ helper peers in a
hybrid network for streaming video content at a speed that is higher than the average
upload bandwidth of peers. The authors discuss the term helpers as peers that are not
participating in the multicast. Unlike the case of file sharing where users tend to leave their
machine running for predefined downloads, in streaming the user has no motivation for
leaving the application up and running when not used for streaming. Other works that
proposed similar ideas of using helpers for multicast are De Asis Lopez-Fuentes and
Steinbach’s (see, e.g. De Asis Lopez-Fuentes and Steinbach (2008)) and DynaPeer (see, e.g.
Souza et. al (2007)), where helpers take part in a collaboration process for a specific video
stream that is managed by a virtual server.

Fig. 1. Wong and Tribler’s additions to a BitTorrent swarm-based network

3.2 Social Helpers
In Tribler (see, e.g. Pouwelse et al. (2006)) it was proposed to associate the helpers’
contribution with social phenomena such as friendship and trust. In their 2Fast file sharing
protocol (see, e.g. Garbacki et al. (2006)), a peer trying to download a file actively recruits its
“friends”, such as other peers in the same social network, to help exclusively with its
download. 2Fast was originally offered to overcome the problem of free-riding in P2P
networks. Peers from a social group that decide to participate in a cooperative download
take one of two roles: they are either collectors or helpers. A collector is the peer that is

interested in obtaining a complete copy of a particular file – like a typical client in a P2P
network, and a helper is a peer that is recruited by a collector to assist in downloading that
file. Both collector and helpers start downloading the file using the classical BitTorrent tit-
for-tat and cooperative download extensions (See Fig. 1). Before downloading, a helper asks
the collector what chunk it should download. After downloading a file chunk, the helper
sends the chunk to the collector without requesting anything in return.
In addition to receiving file chunks from its helpers, the collector also optimizes its
download performance by dynamically selecting the best available data source from the set
of helpers and other peers in the Bittorrent network. Helpers give priority to collector
requests and are therefore preferred as data sources. Specifically, a peer will assign a list of
pieces to obtain for each of its helpers; these are the pieces that it has not started
downloading. The helpers will try to obtain these pieces just like regular leechers and
upload these pieces only to the peer they are helping. In such a scheme, peers with more
friends can indeed benefit greatly and enjoy a much reduced file download time. However,
it was shown that the constraint that helpers only aim to help a single peer requires the
helpers to download much more than necessary to remain helpful to this peer (see, e.g.
Wang et al. (2007)). The fact that the help is served only by social linked helpers is a limit for
the success of the solution as some peers might not have any social links and others might
have but the “friends” are not online or running the Tribler client when required. As Wong’s
work, Tribler did not address the problem of bandwidth stability of a helper peer either.
Again, this work’s contribution is also limited to BitTorrent-like swarming architectures.
In between Wong’s work and Tribler, Guo et al. (see, e.g. Guo et al. (2005)) proposed a
different mechanism of inter-torrent collaboration, where peers may download pieces of a
file in which they are not interested in exchange for pieces of a file they want to download.
Yet, it was shown that this approach will not necessarily provide any performance gain (see,
e.g. Wang (2008)).
The main contribution of the above mentioned works is in enabling a multicast download
system which circumvents bandwidth asymmetry restrictions by recognising peers for their
contribution of idle bandwidth, thus – increasing service availability.

3.3 Fairness and Free-Riding
In addition to the anti free-riding solution that was proposed in 2Fast and Tribler, it was
shown (see, e.g. Izhak-Ratzin (2009)) that pairs of peers can collaborate as helpers for the
benefit of fairness and anti free-riding. Yet, this work assumes that the collaboration is
possible only between peers that have similar upload bandwidth. This requirement is
problematic as the available upload bandwidth in a typical peer is subject to change over
time.

3.4 Key Lookup
In P-Grid (see, e.g. Crainiceanu (2004)) – an index structure for P2P systems that is based on
the concept of Chord, entries are owned by peers within strict bounds. The peers that do not
take part in the structure are termed in the paper as helper peers; those peers are obliged to
“help” a peer that is already in the ring by managing some part of the range indexed by it -
this is done for load balancing of requests in a P2P ring structure. This resembles the

On	the	Role	of	Helper	Peers	in	P2P	Networks 207

Following Wong’s work, Wang et. al. (see, e.g. Wang et. al. (2007)) proposed a mechanism
where the helpers need to download only small portions of a file to be “busy” enough for
serving other peers in the long term. This work is also limited to BitTorrent protocol. Yet, it
is claimed that the increased upload contribution only marginally improves download rates
in BitTorrent (see, e.g. Piatek (2008)). In addition, it is considered that the network
environment is homogeneous - where users have the same link capacities. This is clearly an
unrealistic assumption given Internet’s heterogeneity.
In a recent work (see, e.g. Wang et al. (2008)) it is proposed to employ helper peers in a
hybrid network for streaming video content at a speed that is higher than the average
upload bandwidth of peers. The authors discuss the term helpers as peers that are not
participating in the multicast. Unlike the case of file sharing where users tend to leave their
machine running for predefined downloads, in streaming the user has no motivation for
leaving the application up and running when not used for streaming. Other works that
proposed similar ideas of using helpers for multicast are De Asis Lopez-Fuentes and
Steinbach’s (see, e.g. De Asis Lopez-Fuentes and Steinbach (2008)) and DynaPeer (see, e.g.
Souza et. al (2007)), where helpers take part in a collaboration process for a specific video
stream that is managed by a virtual server.

Fig. 1. Wong and Tribler’s additions to a BitTorrent swarm-based network

3.2 Social Helpers
In Tribler (see, e.g. Pouwelse et al. (2006)) it was proposed to associate the helpers’
contribution with social phenomena such as friendship and trust. In their 2Fast file sharing
protocol (see, e.g. Garbacki et al. (2006)), a peer trying to download a file actively recruits its
“friends”, such as other peers in the same social network, to help exclusively with its
download. 2Fast was originally offered to overcome the problem of free-riding in P2P
networks. Peers from a social group that decide to participate in a cooperative download
take one of two roles: they are either collectors or helpers. A collector is the peer that is

interested in obtaining a complete copy of a particular file – like a typical client in a P2P
network, and a helper is a peer that is recruited by a collector to assist in downloading that
file. Both collector and helpers start downloading the file using the classical BitTorrent tit-
for-tat and cooperative download extensions (See Fig. 1). Before downloading, a helper asks
the collector what chunk it should download. After downloading a file chunk, the helper
sends the chunk to the collector without requesting anything in return.
In addition to receiving file chunks from its helpers, the collector also optimizes its
download performance by dynamically selecting the best available data source from the set
of helpers and other peers in the Bittorrent network. Helpers give priority to collector
requests and are therefore preferred as data sources. Specifically, a peer will assign a list of
pieces to obtain for each of its helpers; these are the pieces that it has not started
downloading. The helpers will try to obtain these pieces just like regular leechers and
upload these pieces only to the peer they are helping. In such a scheme, peers with more
friends can indeed benefit greatly and enjoy a much reduced file download time. However,
it was shown that the constraint that helpers only aim to help a single peer requires the
helpers to download much more than necessary to remain helpful to this peer (see, e.g.
Wang et al. (2007)). The fact that the help is served only by social linked helpers is a limit for
the success of the solution as some peers might not have any social links and others might
have but the “friends” are not online or running the Tribler client when required. As Wong’s
work, Tribler did not address the problem of bandwidth stability of a helper peer either.
Again, this work’s contribution is also limited to BitTorrent-like swarming architectures.
In between Wong’s work and Tribler, Guo et al. (see, e.g. Guo et al. (2005)) proposed a
different mechanism of inter-torrent collaboration, where peers may download pieces of a
file in which they are not interested in exchange for pieces of a file they want to download.
Yet, it was shown that this approach will not necessarily provide any performance gain (see,
e.g. Wang (2008)).
The main contribution of the above mentioned works is in enabling a multicast download
system which circumvents bandwidth asymmetry restrictions by recognising peers for their
contribution of idle bandwidth, thus – increasing service availability.

3.3 Fairness and Free-Riding
In addition to the anti free-riding solution that was proposed in 2Fast and Tribler, it was
shown (see, e.g. Izhak-Ratzin (2009)) that pairs of peers can collaborate as helpers for the
benefit of fairness and anti free-riding. Yet, this work assumes that the collaboration is
possible only between peers that have similar upload bandwidth. This requirement is
problematic as the available upload bandwidth in a typical peer is subject to change over
time.

3.4 Key Lookup
In P-Grid (see, e.g. Crainiceanu (2004)) – an index structure for P2P systems that is based on
the concept of Chord, entries are owned by peers within strict bounds. The peers that do not
take part in the structure are termed in the paper as helper peers; those peers are obliged to
“help” a peer that is already in the ring by managing some part of the range indexed by it -
this is done for load balancing of requests in a P2P ring structure. This resembles the

Parallel	and	Distributed	Computing208

previous mentioned works in the idea that a peer assists other peers even though it does not
ask for a service for its user.

4. Helpers for Service Performance

While the availability of content in a P2P network can be increased by employing the
techniques mentioned in the previous section, the performance of a peer’s service is still
directly influenced by the user that operates this peer.
While working on Collabory (see, e.g. Horovitz and Dolev (2008)), we found that the
greatest impact on download rate stability is the behaviour of users at source peers. More
specifically, actions that the user of the uploading peer machine occasionally takes might
directly affect the upload rate of the machine. The most obvious occurrence is the case
where the user at the source peer invokes applications that heavily use bandwidth such as
Email clients, online games or other P2P applications; by doing so, the bandwidth available
for the client connected to that machine may be drastically reduced and becomes
significantly unstable.

4.1 Feeders
For addressing this problem, we proposed Collabory (see, e.g. Horovitz and Dolev (2008)),
where we defined a new type of helper peers that serve as a proxy cache for the benefit of a
client peers that wish to download a file; we named these helpers as Feeders. The Feeder
stores the file's pieces from several unstable sources and offers the pieces to the client in a
stable fashion. In order to guarantee the stability, we matched a given client with potential
feeders that have good connectivity with the client like minimal packet loss, small delay,
low jitter and are likely to stay online while the client is downloading. In order to guarantee
the long service of a suitable feeder, we relied on historical statistics of overlapping online
time periods between the client and the feeder. Unlike previous works, Collabory
intentionally selects the helpers to be optimal for availability and throughput stability with
the client by constantly measuring stability factors. The Feeders negotiate with potential
source peers and aggregate the downloads from multiple unstable sources into a single,
stable stream served to the downloading peer. Unlike normal helper peers that only assist
content delivery, Feeders are employed exclusively as a means of delivering data to the
client.
We'd like the potential feeder peers to be online and have limited network and CPU
consumption when the consumer is about to start a new download process. Therefore, we
look for feeders that have a matching pattern of availability, meaning that they are likely to
stay online and have low network and CPU consumption while the consumer is
downloading. We'll use the term fit to address the above demands. In order to find fitting
feeders, we log feeders' online periods (sessions) and the relevant network use and CPU
utilization measurements within these sessions. We term Feedability as the ability of a feeder
to feed a consumer peer at a specific point in time i.e., the feeder is online and has low
network use and CPU consumption.
Denote a Feedability function FA of feeder f, in session s at time t (time units after session
initiation time) as:

 (1)

where and are the measurements of cpu utilization and consumed upload
bandwidth after t time units from the beginning of session s (when the feeder went online).

 and are the thresholds of cpu utilization and consumed bandwidth enabling the
feeder to serve a consumer peer.
A potential feeder p is the most fitting feeder to a consumer peer (among all online feeders
that have small RTT and low jitter with the consumer peer) if the average of its Feedability
function over all of its sessions and a given time period (when the consumer
requested to start a new download) is maximized over all other feeders:

(2)

where is the number of sessions that were logged by feeder f. We choose k as the length of
a minimal time period for feeding before looking for alternative feeders.
In Fig. 2, represents the case of normal file transfer - downloading from m sources,
each supplyin g where MaxD is the maximum download rate of the client peer. In

 however, the client downloads a file from m feeders, each of them downloads
from two sources: the 1st source supplies and the second source up to ε bps. We use
the sources that supply ε as for short-term caching to ensure that the feeder peer can always
supply for its client.

Fig. 2. Schematic view of regular P2P and Feeder based P2P file transfer

On	the	Role	of	Helper	Peers	in	P2P	Networks 209

previous mentioned works in the idea that a peer assists other peers even though it does not
ask for a service for its user.

4. Helpers for Service Performance

While the availability of content in a P2P network can be increased by employing the
techniques mentioned in the previous section, the performance of a peer’s service is still
directly influenced by the user that operates this peer.
While working on Collabory (see, e.g. Horovitz and Dolev (2008)), we found that the
greatest impact on download rate stability is the behaviour of users at source peers. More
specifically, actions that the user of the uploading peer machine occasionally takes might
directly affect the upload rate of the machine. The most obvious occurrence is the case
where the user at the source peer invokes applications that heavily use bandwidth such as
Email clients, online games or other P2P applications; by doing so, the bandwidth available
for the client connected to that machine may be drastically reduced and becomes
significantly unstable.

4.1 Feeders
For addressing this problem, we proposed Collabory (see, e.g. Horovitz and Dolev (2008)),
where we defined a new type of helper peers that serve as a proxy cache for the benefit of a
client peers that wish to download a file; we named these helpers as Feeders. The Feeder
stores the file's pieces from several unstable sources and offers the pieces to the client in a
stable fashion. In order to guarantee the stability, we matched a given client with potential
feeders that have good connectivity with the client like minimal packet loss, small delay,
low jitter and are likely to stay online while the client is downloading. In order to guarantee
the long service of a suitable feeder, we relied on historical statistics of overlapping online
time periods between the client and the feeder. Unlike previous works, Collabory
intentionally selects the helpers to be optimal for availability and throughput stability with
the client by constantly measuring stability factors. The Feeders negotiate with potential
source peers and aggregate the downloads from multiple unstable sources into a single,
stable stream served to the downloading peer. Unlike normal helper peers that only assist
content delivery, Feeders are employed exclusively as a means of delivering data to the
client.
We'd like the potential feeder peers to be online and have limited network and CPU
consumption when the consumer is about to start a new download process. Therefore, we
look for feeders that have a matching pattern of availability, meaning that they are likely to
stay online and have low network and CPU consumption while the consumer is
downloading. We'll use the term fit to address the above demands. In order to find fitting
feeders, we log feeders' online periods (sessions) and the relevant network use and CPU
utilization measurements within these sessions. We term Feedability as the ability of a feeder
to feed a consumer peer at a specific point in time i.e., the feeder is online and has low
network use and CPU consumption.
Denote a Feedability function FA of feeder f, in session s at time t (time units after session
initiation time) as:

 (1)

where and are the measurements of cpu utilization and consumed upload
bandwidth after t time units from the beginning of session s (when the feeder went online).

 and are the thresholds of cpu utilization and consumed bandwidth enabling the
feeder to serve a consumer peer.
A potential feeder p is the most fitting feeder to a consumer peer (among all online feeders
that have small RTT and low jitter with the consumer peer) if the average of its Feedability
function over all of its sessions and a given time period (when the consumer
requested to start a new download) is maximized over all other feeders:

(2)

where is the number of sessions that were logged by feeder f. We choose k as the length of
a minimal time period for feeding before looking for alternative feeders.
In Fig. 2, represents the case of normal file transfer - downloading from m sources,
each supplyin g where MaxD is the maximum download rate of the client peer. In

 however, the client downloads a file from m feeders, each of them downloads
from two sources: the 1st source supplies and the second source up to ε bps. We use
the sources that supply ε as for short-term caching to ensure that the feeder peer can always
supply for its client.

Fig. 2. Schematic view of regular P2P and Feeder based P2P file transfer

Parallel	and	Distributed	Computing208

previous mentioned works in the idea that a peer assists other peers even though it does not
ask for a service for its user.

4. Helpers for Service Performance

While the availability of content in a P2P network can be increased by employing the
techniques mentioned in the previous section, the performance of a peer’s service is still
directly influenced by the user that operates this peer.
While working on Collabory (see, e.g. Horovitz and Dolev (2008)), we found that the
greatest impact on download rate stability is the behaviour of users at source peers. More
specifically, actions that the user of the uploading peer machine occasionally takes might
directly affect the upload rate of the machine. The most obvious occurrence is the case
where the user at the source peer invokes applications that heavily use bandwidth such as
Email clients, online games or other P2P applications; by doing so, the bandwidth available
for the client connected to that machine may be drastically reduced and becomes
significantly unstable.

4.1 Feeders
For addressing this problem, we proposed Collabory (see, e.g. Horovitz and Dolev (2008)),
where we defined a new type of helper peers that serve as a proxy cache for the benefit of a
client peers that wish to download a file; we named these helpers as Feeders. The Feeder
stores the file's pieces from several unstable sources and offers the pieces to the client in a
stable fashion. In order to guarantee the stability, we matched a given client with potential
feeders that have good connectivity with the client like minimal packet loss, small delay,
low jitter and are likely to stay online while the client is downloading. In order to guarantee
the long service of a suitable feeder, we relied on historical statistics of overlapping online
time periods between the client and the feeder. Unlike previous works, Collabory
intentionally selects the helpers to be optimal for availability and throughput stability with
the client by constantly measuring stability factors. The Feeders negotiate with potential
source peers and aggregate the downloads from multiple unstable sources into a single,
stable stream served to the downloading peer. Unlike normal helper peers that only assist
content delivery, Feeders are employed exclusively as a means of delivering data to the
client.
We'd like the potential feeder peers to be online and have limited network and CPU
consumption when the consumer is about to start a new download process. Therefore, we
look for feeders that have a matching pattern of availability, meaning that they are likely to
stay online and have low network and CPU consumption while the consumer is
downloading. We'll use the term fit to address the above demands. In order to find fitting
feeders, we log feeders' online periods (sessions) and the relevant network use and CPU
utilization measurements within these sessions. We term Feedability as the ability of a feeder
to feed a consumer peer at a specific point in time i.e., the feeder is online and has low
network use and CPU consumption.
Denote a Feedability function FA of feeder f, in session s at time t (time units after session
initiation time) as:

 (1)

where and are the measurements of cpu utilization and consumed upload
bandwidth after t time units from the beginning of session s (when the feeder went online).

 and are the thresholds of cpu utilization and consumed bandwidth enabling the
feeder to serve a consumer peer.
A potential feeder p is the most fitting feeder to a consumer peer (among all online feeders
that have small RTT and low jitter with the consumer peer) if the average of its Feedability
function over all of its sessions and a given time period (when the consumer
requested to start a new download) is maximized over all other feeders:

(2)

where is the number of sessions that were logged by feeder f. We choose k as the length of
a minimal time period for feeding before looking for alternative feeders.
In Fig. 2, represents the case of normal file transfer - downloading from m sources,
each supplyin g where MaxD is the maximum download rate of the client peer. In

 however, the client downloads a file from m feeders, each of them downloads
from two sources: the 1st source supplies and the second source up to ε bps. We use
the sources that supply ε as for short-term caching to ensure that the feeder peer can always
supply for its client.

Fig. 2. Schematic view of regular P2P and Feeder based P2P file transfer

On	the	Role	of	Helper	Peers	in	P2P	Networks 209

previous mentioned works in the idea that a peer assists other peers even though it does not
ask for a service for its user.

4. Helpers for Service Performance

While the availability of content in a P2P network can be increased by employing the
techniques mentioned in the previous section, the performance of a peer’s service is still
directly influenced by the user that operates this peer.
While working on Collabory (see, e.g. Horovitz and Dolev (2008)), we found that the
greatest impact on download rate stability is the behaviour of users at source peers. More
specifically, actions that the user of the uploading peer machine occasionally takes might
directly affect the upload rate of the machine. The most obvious occurrence is the case
where the user at the source peer invokes applications that heavily use bandwidth such as
Email clients, online games or other P2P applications; by doing so, the bandwidth available
for the client connected to that machine may be drastically reduced and becomes
significantly unstable.

4.1 Feeders
For addressing this problem, we proposed Collabory (see, e.g. Horovitz and Dolev (2008)),
where we defined a new type of helper peers that serve as a proxy cache for the benefit of a
client peers that wish to download a file; we named these helpers as Feeders. The Feeder
stores the file's pieces from several unstable sources and offers the pieces to the client in a
stable fashion. In order to guarantee the stability, we matched a given client with potential
feeders that have good connectivity with the client like minimal packet loss, small delay,
low jitter and are likely to stay online while the client is downloading. In order to guarantee
the long service of a suitable feeder, we relied on historical statistics of overlapping online
time periods between the client and the feeder. Unlike previous works, Collabory
intentionally selects the helpers to be optimal for availability and throughput stability with
the client by constantly measuring stability factors. The Feeders negotiate with potential
source peers and aggregate the downloads from multiple unstable sources into a single,
stable stream served to the downloading peer. Unlike normal helper peers that only assist
content delivery, Feeders are employed exclusively as a means of delivering data to the
client.
We'd like the potential feeder peers to be online and have limited network and CPU
consumption when the consumer is about to start a new download process. Therefore, we
look for feeders that have a matching pattern of availability, meaning that they are likely to
stay online and have low network and CPU consumption while the consumer is
downloading. We'll use the term fit to address the above demands. In order to find fitting
feeders, we log feeders' online periods (sessions) and the relevant network use and CPU
utilization measurements within these sessions. We term Feedability as the ability of a feeder
to feed a consumer peer at a specific point in time i.e., the feeder is online and has low
network use and CPU consumption.
Denote a Feedability function FA of feeder f, in session s at time t (time units after session
initiation time) as:

 (1)

where and are the measurements of cpu utilization and consumed upload
bandwidth after t time units from the beginning of session s (when the feeder went online).

 and are the thresholds of cpu utilization and consumed bandwidth enabling the
feeder to serve a consumer peer.
A potential feeder p is the most fitting feeder to a consumer peer (among all online feeders
that have small RTT and low jitter with the consumer peer) if the average of its Feedability
function over all of its sessions and a given time period (when the consumer
requested to start a new download) is maximized over all other feeders:

(2)

where is the number of sessions that were logged by feeder f. We choose k as the length of
a minimal time period for feeding before looking for alternative feeders.
In Fig. 2, represents the case of normal file transfer - downloading from m sources,
each supplyin g where MaxD is the maximum download rate of the client peer. In

 however, the client downloads a file from m feeders, each of them downloads
from two sources: the 1st source supplies and the second source up to ε bps. We use
the sources that supply ε as for short-term caching to ensure that the feeder peer can always
supply for its client.

Fig. 2. Schematic view of regular P2P and Feeder based P2P file transfer

Parallel	and	Distributed	Computing210

In a working system, ε will dynamically change during the download process depending
on the bandwidth supplied by the source peer. Following is the analysis of the simple model
described above, comparing the Effective Download Rate (EDR) of each case, where is
the probability that a peer x (source or feeder) will deliver packets at full speed (Internet link
capacity):

(3)

where EUB is the effective upload bandwidth.

(4)

where UB is the upload bandwidth and EUB is the effective upload bandwidth. Thus:

(5)

meaning that will download at higher speed than if ,

which means that . Notice that as m grows, a smaller will satisfy the benefit

of the feeder-based solution. Likewise, if we allow a bigger we can use less feeders to gain
the same results.
This shows a great benefit of the feeder-based model over the regular model as it is possible
to move the “risk” of a non-stable download bandwidth from the client to the feeder - that
has potentially much more available download bandwidth than the client.
Upon selecting stable feeders it is possible to reach better download stability while using
even less stable sources, since the feeder has available download bandwidth that can be
used for short-term caching - meaning that we use a bigger to make sure that the feeder
will be able to supply the requested bandwidth to the supplier. The asymmetric upload and
download bandwidth does not affect our solution, since a feeder can theoretically download
at full download speed to ensure the small upload bandwidth that it should supply the
source.
Since we can adjust dynamically during the download phase, we can afford using
extremely weak and unstable sources from the P2P network and still not influence the
stability of the download rate at the client, as long as the feeder manages to gather enough
cache to be able to provide the requested rate by the consumer. Since it's possible to employ
weak sources we estimate that Collabory enhances existing networks' scalability as it
increases the total number of potential sources because nowadays existing P2P applications
tend to neglect weak sources.

In Fig. 3, we set the maximum download throughput of all peers to 20Kb/Sec and the
upload is bounded by 10Kb/Sec. This was chosen to show the benefit of Collabory on
extremely weak peers that are hardly being used in existing networks because of their
unstable nature and low bandwidth.
We examine different values of to see how it affects the performance of feeders. We set all
source peers to behave in a repeating pattern of sending at 80% of their maximal upload
bandwidth for 10 seconds followed by additional 10 seconds of sending at full speed.
Sources that transmit repeatedly transmit 0.8 Kb/Sec for 10 seconds and then Kb/Sec
for the following 10 seconds accordingly. Given larger values of allows the feeders to hold
a cache for a longer period of time and this way be able to transmit the cache content to the
client accordingly.
Notice that when we set to 2.2 the cache content was increasing consistently thus allows
the feeder to transmit the client as if it was a stable source.
In this scenario the client received stable download rate of 18.9Kb/Sec.

Fig. 3. Feeder-based P2P versus regular P2P with different values

We also tested the case of using weak source peers for the feeder (See Fig. 4). For the regular
method we set 2 sources of 10Kb/Sec with the behaviour of 80% mentioned above. For the
feeder method we set the following different test settings- A: 4 sources of 6.0Kb/Sec under
80% behaviour as mentioned above. B: 8 sources of 3.0Kb/Sec under 80% behaviour. C: 8
sources of 4.0Kb/Sec under 50% behaviour. In all of our tests we gained stable increased
rate in the feeder case compared to unstable rate in the regular case.

Fig. 4. Feeder-based P2P versus regular P2P with different settings of weak sources

On	the	Role	of	Helper	Peers	in	P2P	Networks 211

In a working system, ε will dynamically change during the download process depending
on the bandwidth supplied by the source peer. Following is the analysis of the simple model
described above, comparing the Effective Download Rate (EDR) of each case, where is
the probability that a peer x (source or feeder) will deliver packets at full speed (Internet link
capacity):

(3)

where EUB is the effective upload bandwidth.

(4)

where UB is the upload bandwidth and EUB is the effective upload bandwidth. Thus:

(5)

meaning that will download at higher speed than if ,

which means that . Notice that as m grows, a smaller will satisfy the benefit

of the feeder-based solution. Likewise, if we allow a bigger we can use less feeders to gain
the same results.
This shows a great benefit of the feeder-based model over the regular model as it is possible
to move the “risk” of a non-stable download bandwidth from the client to the feeder - that
has potentially much more available download bandwidth than the client.
Upon selecting stable feeders it is possible to reach better download stability while using
even less stable sources, since the feeder has available download bandwidth that can be
used for short-term caching - meaning that we use a bigger to make sure that the feeder
will be able to supply the requested bandwidth to the supplier. The asymmetric upload and
download bandwidth does not affect our solution, since a feeder can theoretically download
at full download speed to ensure the small upload bandwidth that it should supply the
source.
Since we can adjust dynamically during the download phase, we can afford using
extremely weak and unstable sources from the P2P network and still not influence the
stability of the download rate at the client, as long as the feeder manages to gather enough
cache to be able to provide the requested rate by the consumer. Since it's possible to employ
weak sources we estimate that Collabory enhances existing networks' scalability as it
increases the total number of potential sources because nowadays existing P2P applications
tend to neglect weak sources.

In Fig. 3, we set the maximum download throughput of all peers to 20Kb/Sec and the
upload is bounded by 10Kb/Sec. This was chosen to show the benefit of Collabory on
extremely weak peers that are hardly being used in existing networks because of their
unstable nature and low bandwidth.
We examine different values of to see how it affects the performance of feeders. We set all
source peers to behave in a repeating pattern of sending at 80% of their maximal upload
bandwidth for 10 seconds followed by additional 10 seconds of sending at full speed.
Sources that transmit repeatedly transmit 0.8 Kb/Sec for 10 seconds and then Kb/Sec
for the following 10 seconds accordingly. Given larger values of allows the feeders to hold
a cache for a longer period of time and this way be able to transmit the cache content to the
client accordingly.
Notice that when we set to 2.2 the cache content was increasing consistently thus allows
the feeder to transmit the client as if it was a stable source.
In this scenario the client received stable download rate of 18.9Kb/Sec.

Fig. 3. Feeder-based P2P versus regular P2P with different values

We also tested the case of using weak source peers for the feeder (See Fig. 4). For the regular
method we set 2 sources of 10Kb/Sec with the behaviour of 80% mentioned above. For the
feeder method we set the following different test settings- A: 4 sources of 6.0Kb/Sec under
80% behaviour as mentioned above. B: 8 sources of 3.0Kb/Sec under 80% behaviour. C: 8
sources of 4.0Kb/Sec under 50% behaviour. In all of our tests we gained stable increased
rate in the feeder case compared to unstable rate in the regular case. in the feeder case compared to unstable rate in the regular case.

Fig. 4. Feeder-based P2P versus regular P2P with different settings of weak sources

Parallel	and	Distributed	Computing210

In a working system, ε will dynamically change during the download process depending
on the bandwidth supplied by the source peer. Following is the analysis of the simple model
described above, comparing the Effective Download Rate (EDR) of each case, where is
the probability that a peer x (source or feeder) will deliver packets at full speed (Internet link
capacity):

(3)

where EUB is the effective upload bandwidth.

(4)

where UB is the upload bandwidth and EUB is the effective upload bandwidth. Thus:

(5)

meaning that will download at higher speed than if ,

which means that . Notice that as m grows, a smaller will satisfy the benefit

of the feeder-based solution. Likewise, if we allow a bigger we can use less feeders to gain
the same results.
This shows a great benefit of the feeder-based model over the regular model as it is possible
to move the “risk” of a non-stable download bandwidth from the client to the feeder - that
has potentially much more available download bandwidth than the client.
Upon selecting stable feeders it is possible to reach better download stability while using
even less stable sources, since the feeder has available download bandwidth that can be
used for short-term caching - meaning that we use a bigger to make sure that the feeder
will be able to supply the requested bandwidth to the supplier. The asymmetric upload and
download bandwidth does not affect our solution, since a feeder can theoretically download
at full download speed to ensure the small upload bandwidth that it should supply the
source.
Since we can adjust dynamically during the download phase, we can afford using
extremely weak and unstable sources from the P2P network and still not influence the
stability of the download rate at the client, as long as the feeder manages to gather enough
cache to be able to provide the requested rate by the consumer. Since it's possible to employ
weak sources we estimate that Collabory enhances existing networks' scalability as it
increases the total number of potential sources because nowadays existing P2P applications
tend to neglect weak sources.

In Fig. 3, we set the maximum download throughput of all peers to 20Kb/Sec and the
upload is bounded by 10Kb/Sec. This was chosen to show the benefit of Collabory on
extremely weak peers that are hardly being used in existing networks because of their
unstable nature and low bandwidth.
We examine different values of to see how it affects the performance of feeders. We set all
source peers to behave in a repeating pattern of sending at 80% of their maximal upload
bandwidth for 10 seconds followed by additional 10 seconds of sending at full speed.
Sources that transmit repeatedly transmit 0.8 Kb/Sec for 10 seconds and then Kb/Sec
for the following 10 seconds accordingly. Given larger values of allows the feeders to hold
a cache for a longer period of time and this way be able to transmit the cache content to the
client accordingly.
Notice that when we set to 2.2 the cache content was increasing consistently thus allows
the feeder to transmit the client as if it was a stable source.
In this scenario the client received stable download rate of 18.9Kb/Sec.

Fig. 3. Feeder-based P2P versus regular P2P with different values

We also tested the case of using weak source peers for the feeder (See Fig. 4). For the regular
method we set 2 sources of 10Kb/Sec with the behaviour of 80% mentioned above. For the
feeder method we set the following different test settings- A: 4 sources of 6.0Kb/Sec under
80% behaviour as mentioned above. B: 8 sources of 3.0Kb/Sec under 80% behaviour. C: 8
sources of 4.0Kb/Sec under 50% behaviour. In all of our tests we gained stable increased
rate in the feeder case compared to unstable rate in the regular case.

Fig. 4. Feeder-based P2P versus regular P2P with different settings of weak sources

On	the	Role	of	Helper	Peers	in	P2P	Networks 211

In a working system, ε will dynamically change during the download process depending
on the bandwidth supplied by the source peer. Following is the analysis of the simple model
described above, comparing the Effective Download Rate (EDR) of each case, where is
the probability that a peer x (source or feeder) will deliver packets at full speed (Internet link
capacity):

(3)

where EUB is the effective upload bandwidth.

(4)

where UB is the upload bandwidth and EUB is the effective upload bandwidth. Thus:

(5)

meaning that will download at higher speed than if ,

which means that . Notice that as m grows, a smaller will satisfy the benefit

of the feeder-based solution. Likewise, if we allow a bigger we can use less feeders to gain
the same results.
This shows a great benefit of the feeder-based model over the regular model as it is possible
to move the “risk” of a non-stable download bandwidth from the client to the feeder - that
has potentially much more available download bandwidth than the client.
Upon selecting stable feeders it is possible to reach better download stability while using
even less stable sources, since the feeder has available download bandwidth that can be
used for short-term caching - meaning that we use a bigger to make sure that the feeder
will be able to supply the requested bandwidth to the supplier. The asymmetric upload and
download bandwidth does not affect our solution, since a feeder can theoretically download
at full download speed to ensure the small upload bandwidth that it should supply the
source.
Since we can adjust dynamically during the download phase, we can afford using
extremely weak and unstable sources from the P2P network and still not influence the
stability of the download rate at the client, as long as the feeder manages to gather enough
cache to be able to provide the requested rate by the consumer. Since it's possible to employ
weak sources we estimate that Collabory enhances existing networks' scalability as it
increases the total number of potential sources because nowadays existing P2P applications
tend to neglect weak sources.

In Fig. 3, we set the maximum download throughput of all peers to 20Kb/Sec and the
upload is bounded by 10Kb/Sec. This was chosen to show the benefit of Collabory on
extremely weak peers that are hardly being used in existing networks because of their
unstable nature and low bandwidth.
We examine different values of to see how it affects the performance of feeders. We set all
source peers to behave in a repeating pattern of sending at 80% of their maximal upload
bandwidth for 10 seconds followed by additional 10 seconds of sending at full speed.
Sources that transmit repeatedly transmit 0.8 Kb/Sec for 10 seconds and then Kb/Sec
for the following 10 seconds accordingly. Given larger values of allows the feeders to hold
a cache for a longer period of time and this way be able to transmit the cache content to the
client accordingly.
Notice that when we set to 2.2 the cache content was increasing consistently thus allows
the feeder to transmit the client as if it was a stable source.
In this scenario the client received stable download rate of 18.9Kb/Sec.

Fig. 3. Feeder-based P2P versus regular P2P with different values

We also tested the case of using weak source peers for the feeder (See Fig. 4). For the regular
method we set 2 sources of 10Kb/Sec with the behaviour of 80% mentioned above. For the
feeder method we set the following different test settings- A: 4 sources of 6.0Kb/Sec under
80% behaviour as mentioned above. B: 8 sources of 3.0Kb/Sec under 80% behaviour. C: 8
sources of 4.0Kb/Sec under 50% behaviour. In all of our tests we gained stable increased
rate in the feeder case compared to unstable rate in the regular case. in the feeder case compared to unstable rate in the regular case.

Fig. 4. Feeder-based P2P versus regular P2P with different settings of weak sources

Parallel	and	Distributed	Computing212

5. Helpers and Machine Learning

In order to guarantee the long service of a suitable feeder, Collabory relied on historical
statistics of overlapping online time periods between the client and the feeder. Yet, this
strategy misses many potential feeders and sources that have good quality connection with
the client but weren't selected since the overlapping online time periods were not long
enough to provide confidence that the feeder won't disconnect while the client is
downloading from it. If we were able to predict that a potential feeder's uplink is about to be
dropped, we could alert the client to select an alternative feeder prior to that drop. This will
significantly increase the amount of potential feeders as we will no longer be restricted to
bounds dictated by historical statistics of overlapping time periods.
Collabory’s problems were discussed and addressed in Collabrium (see, e.g. Horovitz and
Dolev (2009a)) and Maxtream (see, e.g. Horovitz and Dolev (2009b)). Collabrium is a
collaborative solution based on a machine learning approach, that employs SVM - Support
Vector Machines (See, Vapnik (1995)) to actively predict load in the upload link of
source/feeder peers and accordingly alert the client to select alternative source/feeder
peers. Collabrium discerns patterns of communications with no prior knowledge about any
protocol which allows it to predict new protocols as well. We reinforce our solution with an
optional agent that monitors process executions and file system events that improve the
prediction even more.

Fig. 5. Learning Feeders in Collabrium

Fig. 5 illustrates the concept of user behaviour aware feeders. C represents the client that
downloads a file or a streamed media content. represents the sources in a regular P2P
network and represent the feeders. Notice that the throughput between and is
low and unstable, we assume the same for all of the connections between sources and
feeders. Yet, the throughput between and C is high and stable, as we mentioned above
that feeders are selected as peers with good connectivity with the client. Now let's assume
that C begins using and . has enough available upload bandwidth to supply C a
stable throughput. As for , notice that at the beginning it provided stable throughput to C
as well, but at time the user at opened another P2P software or any other process
that consume upload bandwidth. A few seconds later, at time , the throughput between
and C dropped and became unstable due to the new software/process. Collabrium's agent
that runs on predicts at time that it will soon have to share its upload bandwidth with

another process, therefore it immediately notifies C to replace a feeder. C connects to and
by , C no longer communicates with , thus C didn't experience any drop in its download
rate. Collabrium can be implemented over any P2P existing protocol as the sources in Fig. 5
can be sources of any P2P network and we don't manage them, but only request for file
portions.
Following, we discuss the structure of Collabrium that is composed of 3 modules:
Monitoring, Learning and Prediction.

5.1 Monitoring Module
The monitoring module is responsible for collecting data for the learning module. It acts as a
packet sniffer for both inbound and outbound links and logs packet arrival time, header and
payload. Though we found the network collected data alone to provide sufficient prediction
accuracy, we log additional data for file system activity and active process list as in some
cases it can further improve the prediction. The file system information is logged by a Win32
IFS (Installable File System) hook - a DLL that monitors file system events such as read,
seek, write etc.
While the monitoring is done as a background process, we only log information in a
database for a limited time - while we actually try to learn. This time should be sufficient to
gain enough information so that the user behaviour can be predicted in the future, given a
set of measurements. For the average user, our experience showed that logging along one
full day is enough. We recommend re-running the learning process from time to time, in
order to adapt to the user's new habits and trends.

5.2 Learning Module Design
The learning process extracts the data that was collected by the monitoring module into sets
of features and values for the learning algorithm. The core of this module is based on a
Support Vector Machines classification algorithm, yet the assembly of feature:value pairs is
not straightforward as we elaborate here.

Fig. 6. Load Vicinity Pattern Prediction Concept

On	the	Role	of	Helper	Peers	in	P2P	Networks 213

5. Helpers and Machine Learning

In order to guarantee the long service of a suitable feeder, Collabory relied on historical
statistics of overlapping online time periods between the client and the feeder. Yet, this
strategy misses many potential feeders and sources that have good quality connection with
the client but weren't selected since the overlapping online time periods were not long
enough to provide confidence that the feeder won't disconnect while the client is
downloading from it. If we were able to predict that a potential feeder's uplink is about to be
dropped, we could alert the client to select an alternative feeder prior to that drop. This will
significantly increase the amount of potential feeders as we will no longer be restricted to
bounds dictated by historical statistics of overlapping time periods.
Collabory’s problems were discussed and addressed in Collabrium (see, e.g. Horovitz and
Dolev (2009a)) and Maxtream (see, e.g. Horovitz and Dolev (2009b)). Collabrium is a
collaborative solution based on a machine learning approach, that employs SVM - Support
Vector Machines (See, Vapnik (1995)) to actively predict load in the upload link of
source/feeder peers and accordingly alert the client to select alternative source/feeder
peers. Collabrium discerns patterns of communications with no prior knowledge about any
protocol which allows it to predict new protocols as well. We reinforce our solution with an
optional agent that monitors process executions and file system events that improve the
prediction even more.

Fig. 5. Learning Feeders in Collabrium

Fig. 5 illustrates the concept of user behaviour aware feeders. C represents the client that
downloads a file or a streamed media content. represents the sources in a regular P2P
network and represent the feeders. Notice that the throughput between and is
low and unstable, we assume the same for all of the connections between sources and
feeders. Yet, the throughput between and C is high and stable, as we mentioned above
that feeders are selected as peers with good connectivity with the client. Now let's assume
that C begins using and . has enough available upload bandwidth to supply C a
stable throughput. As for , notice that at the beginning it provided stable throughput to C
as well, but at time the user at opened another P2P software or any other process
that consume upload bandwidth. A few seconds later, at time , the throughput between
and C dropped and became unstable due to the new software/process. Collabrium's agent
that runs on predicts at time that it will soon have to share its upload bandwidth with

another process, therefore it immediately notifies C to replace a feeder. C connects to and
by , C no longer communicates with , thus C didn't experience any drop in its download
rate. Collabrium can be implemented over any P2P existing protocol as the sources in Fig. 5
can be sources of any P2P network and we don't manage them, but only request for file
portions.
Following, we discuss the structure of Collabrium that is composed of 3 modules:
Monitoring, Learning and Prediction.

5.1 Monitoring Module
The monitoring module is responsible for collecting data for the learning module. It acts as a
packet sniffer for both inbound and outbound links and logs packet arrival time, header and
payload. Though we found the network collected data alone to provide sufficient prediction
accuracy, we log additional data for file system activity and active process list as in some
cases it can further improve the prediction. The file system information is logged by a Win32
IFS (Installable File System) hook - a DLL that monitors file system events such as read,
seek, write etc.
While the monitoring is done as a background process, we only log information in a
database for a limited time - while we actually try to learn. This time should be sufficient to
gain enough information so that the user behaviour can be predicted in the future, given a
set of measurements. For the average user, our experience showed that logging along one
full day is enough. We recommend re-running the learning process from time to time, in
order to adapt to the user's new habits and trends.

5.2 Learning Module Design
The learning process extracts the data that was collected by the monitoring module into sets
of features and values for the learning algorithm. The core of this module is based on a
Support Vector Machines classification algorithm, yet the assembly of feature:value pairs is
not straightforward as we elaborate here.

Fig. 6. Load Vicinity Pattern Prediction Concept

Parallel	and	Distributed	Computing212

5. Helpers and Machine Learning

In order to guarantee the long service of a suitable feeder, Collabory relied on historical
statistics of overlapping online time periods between the client and the feeder. Yet, this
strategy misses many potential feeders and sources that have good quality connection with
the client but weren't selected since the overlapping online time periods were not long
enough to provide confidence that the feeder won't disconnect while the client is
downloading from it. If we were able to predict that a potential feeder's uplink is about to be
dropped, we could alert the client to select an alternative feeder prior to that drop. This will
significantly increase the amount of potential feeders as we will no longer be restricted to
bounds dictated by historical statistics of overlapping time periods.
Collabory’s problems were discussed and addressed in Collabrium (see, e.g. Horovitz and
Dolev (2009a)) and Maxtream (see, e.g. Horovitz and Dolev (2009b)). Collabrium is a
collaborative solution based on a machine learning approach, that employs SVM - Support
Vector Machines (See, Vapnik (1995)) to actively predict load in the upload link of
source/feeder peers and accordingly alert the client to select alternative source/feeder
peers. Collabrium discerns patterns of communications with no prior knowledge about any
protocol which allows it to predict new protocols as well. We reinforce our solution with an
optional agent that monitors process executions and file system events that improve the
prediction even more.

Fig. 5. Learning Feeders in Collabrium

Fig. 5 illustrates the concept of user behaviour aware feeders. C represents the client that
downloads a file or a streamed media content. represents the sources in a regular P2P
network and represent the feeders. Notice that the throughput between and is
low and unstable, we assume the same for all of the connections between sources and
feeders. Yet, the throughput between and C is high and stable, as we mentioned above
that feeders are selected as peers with good connectivity with the client. Now let's assume
that C begins using and . has enough available upload bandwidth to supply C a
stable throughput. As for , notice that at the beginning it provided stable throughput to C
as well, but at time the user at opened another P2P software or any other process
that consume upload bandwidth. A few seconds later, at time , the throughput between
and C dropped and became unstable due to the new software/process. Collabrium's agent
that runs on predicts at time that it will soon have to share its upload bandwidth with

another process, therefore it immediately notifies C to replace a feeder. C connects to and
by , C no longer communicates with , thus C didn't experience any drop in its download
rate. Collabrium can be implemented over any P2P existing protocol as the sources in Fig. 5
can be sources of any P2P network and we don't manage them, but only request for file
portions.
Following, we discuss the structure of Collabrium that is composed of 3 modules:
Monitoring, Learning and Prediction.

5.1 Monitoring Module
The monitoring module is responsible for collecting data for the learning module. It acts as a
packet sniffer for both inbound and outbound links and logs packet arrival time, header and
payload. Though we found the network collected data alone to provide sufficient prediction
accuracy, we log additional data for file system activity and active process list as in some
cases it can further improve the prediction. The file system information is logged by a Win32
IFS (Installable File System) hook - a DLL that monitors file system events such as read,
seek, write etc.
While the monitoring is done as a background process, we only log information in a
database for a limited time - while we actually try to learn. This time should be sufficient to
gain enough information so that the user behaviour can be predicted in the future, given a
set of measurements. For the average user, our experience showed that logging along one
full day is enough. We recommend re-running the learning process from time to time, in
order to adapt to the user's new habits and trends.

5.2 Learning Module Design
The learning process extracts the data that was collected by the monitoring module into sets
of features and values for the learning algorithm. The core of this module is based on a
Support Vector Machines classification algorithm, yet the assembly of feature:value pairs is
not straightforward as we elaborate here.

Fig. 6. Load Vicinity Pattern Prediction Concept

On	the	Role	of	Helper	Peers	in	P2P	Networks 213

5. Helpers and Machine Learning

In order to guarantee the long service of a suitable feeder, Collabory relied on historical
statistics of overlapping online time periods between the client and the feeder. Yet, this
strategy misses many potential feeders and sources that have good quality connection with
the client but weren't selected since the overlapping online time periods were not long
enough to provide confidence that the feeder won't disconnect while the client is
downloading from it. If we were able to predict that a potential feeder's uplink is about to be
dropped, we could alert the client to select an alternative feeder prior to that drop. This will
significantly increase the amount of potential feeders as we will no longer be restricted to
bounds dictated by historical statistics of overlapping time periods.
Collabory’s problems were discussed and addressed in Collabrium (see, e.g. Horovitz and
Dolev (2009a)) and Maxtream (see, e.g. Horovitz and Dolev (2009b)). Collabrium is a
collaborative solution based on a machine learning approach, that employs SVM - Support
Vector Machines (See, Vapnik (1995)) to actively predict load in the upload link of
source/feeder peers and accordingly alert the client to select alternative source/feeder
peers. Collabrium discerns patterns of communications with no prior knowledge about any
protocol which allows it to predict new protocols as well. We reinforce our solution with an
optional agent that monitors process executions and file system events that improve the
prediction even more.

Fig. 5. Learning Feeders in Collabrium

Fig. 5 illustrates the concept of user behaviour aware feeders. C represents the client that
downloads a file or a streamed media content. represents the sources in a regular P2P
network and represent the feeders. Notice that the throughput between and is
low and unstable, we assume the same for all of the connections between sources and
feeders. Yet, the throughput between and C is high and stable, as we mentioned above
that feeders are selected as peers with good connectivity with the client. Now let's assume
that C begins using and . has enough available upload bandwidth to supply C a
stable throughput. As for , notice that at the beginning it provided stable throughput to C
as well, but at time the user at opened another P2P software or any other process
that consume upload bandwidth. A few seconds later, at time , the throughput between
and C dropped and became unstable due to the new software/process. Collabrium's agent
that runs on predicts at time that it will soon have to share its upload bandwidth with

another process, therefore it immediately notifies C to replace a feeder. C connects to and
by , C no longer communicates with , thus C didn't experience any drop in its download
rate. Collabrium can be implemented over any P2P existing protocol as the sources in Fig. 5
can be sources of any P2P network and we don't manage them, but only request for file
portions.
Following, we discuss the structure of Collabrium that is composed of 3 modules:
Monitoring, Learning and Prediction.

5.1 Monitoring Module
The monitoring module is responsible for collecting data for the learning module. It acts as a
packet sniffer for both inbound and outbound links and logs packet arrival time, header and
payload. Though we found the network collected data alone to provide sufficient prediction
accuracy, we log additional data for file system activity and active process list as in some
cases it can further improve the prediction. The file system information is logged by a Win32
IFS (Installable File System) hook - a DLL that monitors file system events such as read,
seek, write etc.
While the monitoring is done as a background process, we only log information in a
database for a limited time - while we actually try to learn. This time should be sufficient to
gain enough information so that the user behaviour can be predicted in the future, given a
set of measurements. For the average user, our experience showed that logging along one
full day is enough. We recommend re-running the learning process from time to time, in
order to adapt to the user's new habits and trends.

5.2 Learning Module Design
The learning process extracts the data that was collected by the monitoring module into sets
of features and values for the learning algorithm. The core of this module is based on a
Support Vector Machines classification algorithm, yet the assembly of feature:value pairs is
not straightforward as we elaborate here.

Fig. 6. Load Vicinity Pattern Prediction Concept

Parallel	and	Distributed	Computing214

We wish our learning algorithm to link the collected data to the occurrences of traffic load in
the uplink. As illustrated in Figure 6, S1, S2 and S3 are sessions. A session is identified by
source IP and port, and destination IP and port, thus it begins with the first packet that was
sent between our peer i on port x and a peer j on port y and ends with the last message that
was sent between the same peers on the same ports. If the time between 2 sequential
messages is larger than a specific predefined threshold, we see it as 2 sessions. Notice that
sessions might overlap as in sessions S1 and S2 but still we can identify the session of a
packet using the key of IPs and ports. V1, V2 and V3 are the vicinities of S1, S2 and S3

respectively.
A vicinity is a collection of packets that were collected around a predefined time period at
the beginning of each session. Notice that the vicinity begins a few milliseconds before the
beginning of a session. In session S4 and its vicinity V4 we show the change in uplink
utilization due to that session. Notice that typically, the load in the uplink begins a few
seconds after the beginning of a session and not immediately, as in most P2P algorithms the
very first messages are used for preliminary negotiation, thus we can use the packet P3 and
its neighbors to predict the upcoming load and still have enough time to notify the client
about it. In some protocols, packets that are in the vicinity but precede the session like P2 can
tell us about the upcoming load due to some negotiation between the peers or between a
peer to its supernode.
Collabrium's key strategy is that we can predict a traffic load by examining the properties of
packets that precede the load - meaning the packets in the vicinity of sessions that loaded
the uplink. Following we present different properties that proved to be significant for
prediction and their extraction techniques.

5.2.1 Load Vicinity Pattern Prediction
In this method we look at the first bytes (15 bytes were found to be effective) of the payload
of each packet that is in the vicinity and extract feature:value pairs for SVM so it can learn
specific patterns. For example, in eMule's client-client protocol, the 1st byte is always 0xE3
and in the handshake message the 6th is always 0x01; we mark them as byte:value pairs that
form a pattern: 1:0xE3, 6:0x01. We'd like SVM to realize these patterns out of the messages in
the vicinity. Since close values such as 1:0xE3 and 1:0xE4 might belong to completely
different protocols or different messages of the same protocol, we can't present SVM these
values directly as it will not relate them as discrete values. Therefore, we collect the most
popular byte:value instances of packets in the vicinities of all sessions while giving priority to
byte:value pairs that appear in different sessions, as shown in Figure 7.
Finally, we supply the training set for SVM; Each item in the training set contains the
following features: Source IP, Source port, Destination IP and Destination port. Then we
create a feature per each of the top popular items in ByteValueList, i.e. if the most popular
byte:value pair is 5:0xE3 and the value of the 5th byte of the packet we examine is 0xE3 then
we insert 1:1 as a feature:value pair for the training item; if the second most popular
byte:value pair is 3:0xB6 and the value of the 3rd byte of the packet we examine is 0xC2 then
we insert 2:0 in the training set since the values are different and so forth for the next
popular byte:value items, up to a certain amount of features (we found that the top 100
popular yield satisfactory results). We label as +1 training items that represent packets in the
vicinity that contain at least one instance of the top popular byte:value pairs. We supply the
training set also packets that are not in the vicinity and label them as -1. When we run the

prediction module to look for upcoming loads in the uplink, we simply propose recent
captured packets' properties to SVM with the appropriate features and SVM classifies the
packet as leading to uplink load or not.

Fig. 7. Algorithm for extracting popular byte_value pairs

5.2.2 Packet Size Sequence Prediction
While looking at the data we captured in the beginning of sessions, we noticed an
interesting phenomenon in P2P protocols - the byte count of the first packets form a
sequence that repeats itself with minor differences for nearly all sessions of the same
protocol. For example, a typical packet size sequence for eMule is
{0,0,0,125,108,11,11,41,83,77,55,55,22}. Since we noticed some slight differences in the
sequence, we can't use it as a serial set of features for SVM as in some cases the value of 108
in eMule might appear as the byte count of the 5th packet while in other cases it will be the
byte count of the 6th packet due to an extra packet. Therefore, we relate these values as a
histogram, and simply define a predefined number of features (we found 30 to yield good
results) for the most popular byte count values in a similar manner to the previous
algorithm. For example, if the most popular byte count is 125, we supply the training set a
feature with a value of 1 if the vicinity of the examined packet contains at least one packet
with this byte count or 0 if not.

5.3 Prediction Module
In the prediction module, while packets are being captured, the properties mentioned above
are extracted and served to the SVM algorithm. In case that SVM classified the packet as
leading for load and the uplink used bandwidth is larger than a predefined threshold, we
notify the client to select an alternative feeder.

On	the	Role	of	Helper	Peers	in	P2P	Networks 215

We wish our learning algorithm to link the collected data to the occurrences of traffic load in
the uplink. As illustrated in Figure 6, S1, S2 and S3 are sessions. A session is identified by
source IP and port, and destination IP and port, thus it begins with the first packet that was
sent between our peer i on port x and a peer j on port y and ends with the last message that
was sent between the same peers on the same ports. If the time between 2 sequential
messages is larger than a specific predefined threshold, we see it as 2 sessions. Notice that
sessions might overlap as in sessions S1 and S2 but still we can identify the session of a
packet using the key of IPs and ports. V1, V2 and V3 are the vicinities of S1, S2 and S3

respectively.
A vicinity is a collection of packets that were collected around a predefined time period at
the beginning of each session. Notice that the vicinity begins a few milliseconds before the
beginning of a session. In session S4 and its vicinity V4 we show the change in uplink
utilization due to that session. Notice that typically, the load in the uplink begins a few
seconds after the beginning of a session and not immediately, as in most P2P algorithms the
very first messages are used for preliminary negotiation, thus we can use the packet P3 and
its neighbors to predict the upcoming load and still have enough time to notify the client
about it. In some protocols, packets that are in the vicinity but precede the session like P2 can
tell us about the upcoming load due to some negotiation between the peers or between a
peer to its supernode.
Collabrium's key strategy is that we can predict a traffic load by examining the properties of
packets that precede the load - meaning the packets in the vicinity of sessions that loaded
the uplink. Following we present different properties that proved to be significant for
prediction and their extraction techniques.

5.2.1 Load Vicinity Pattern Prediction
In this method we look at the first bytes (15 bytes were found to be effective) of the payload
of each packet that is in the vicinity and extract feature:value pairs for SVM so it can learn
specific patterns. For example, in eMule's client-client protocol, the 1st byte is always 0xE3
and in the handshake message the 6th is always 0x01; we mark them as byte:value pairs that
form a pattern: 1:0xE3, 6:0x01. We'd like SVM to realize these patterns out of the messages in
the vicinity. Since close values such as 1:0xE3 and 1:0xE4 might belong to completely
different protocols or different messages of the same protocol, we can't present SVM these
values directly as it will not relate them as discrete values. Therefore, we collect the most
popular byte:value instances of packets in the vicinities of all sessions while giving priority to
byte:value pairs that appear in different sessions, as shown in Figure 7.
Finally, we supply the training set for SVM; Each item in the training set contains the
following features: Source IP, Source port, Destination IP and Destination port. Then we
create a feature per each of the top popular items in ByteValueList, i.e. if the most popular
byte:value pair is 5:0xE3 and the value of the 5th byte of the packet we examine is 0xE3 then
we insert 1:1 as a feature:value pair for the training item; if the second most popular
byte:value pair is 3:0xB6 and the value of the 3rd byte of the packet we examine is 0xC2 then
we insert 2:0 in the training set since the values are different and so forth for the next
popular byte:value items, up to a certain amount of features (we found that the top 100
popular yield satisfactory results). We label as +1 training items that represent packets in the
vicinity that contain at least one instance of the top popular byte:value pairs. We supply the
training set also packets that are not in the vicinity and label them as -1. When we run the

prediction module to look for upcoming loads in the uplink, we simply propose recent
captured packets' properties to SVM with the appropriate features and SVM classifies the
packet as leading to uplink load or not.

Fig. 7. Algorithm for extracting popular byte_value pairs

5.2.2 Packet Size Sequence Prediction
While looking at the data we captured in the beginning of sessions, we noticed an
interesting phenomenon in P2P protocols - the byte count of the first packets form a
sequence that repeats itself with minor differences for nearly all sessions of the same
protocol. For example, a typical packet size sequence for eMule is
{0,0,0,125,108,11,11,41,83,77,55,55,22}. Since we noticed some slight differences in the
sequence, we can't use it as a serial set of features for SVM as in some cases the value of 108
in eMule might appear as the byte count of the 5th packet while in other cases it will be the
byte count of the 6th packet due to an extra packet. Therefore, we relate these values as a
histogram, and simply define a predefined number of features (we found 30 to yield good
results) for the most popular byte count values in a similar manner to the previous
algorithm. For example, if the most popular byte count is 125, we supply the training set a
feature with a value of 1 if the vicinity of the examined packet contains at least one packet
with this byte count or 0 if not.

5.3 Prediction Module
In the prediction module, while packets are being captured, the properties mentioned above
are extracted and served to the SVM algorithm. In case that SVM classified the packet as
leading for load and the uplink used bandwidth is larger than a predefined threshold, we
notify the client to select an alternative feeder.

Parallel	and	Distributed	Computing214

We wish our learning algorithm to link the collected data to the occurrences of traffic load in
the uplink. As illustrated in Figure 6, S1, S2 and S3 are sessions. A session is identified by
source IP and port, and destination IP and port, thus it begins with the first packet that was
sent between our peer i on port x and a peer j on port y and ends with the last message that
was sent between the same peers on the same ports. If the time between 2 sequential
messages is larger than a specific predefined threshold, we see it as 2 sessions. Notice that
sessions might overlap as in sessions S1 and S2 but still we can identify the session of a
packet using the key of IPs and ports. V1, V2 and V3 are the vicinities of S1, S2 and S3

respectively.
A vicinity is a collection of packets that were collected around a predefined time period at
the beginning of each session. Notice that the vicinity begins a few milliseconds before the
beginning of a session. In session S4 and its vicinity V4 we show the change in uplink
utilization due to that session. Notice that typically, the load in the uplink begins a few
seconds after the beginning of a session and not immediately, as in most P2P algorithms the
very first messages are used for preliminary negotiation, thus we can use the packet P3 and
its neighbors to predict the upcoming load and still have enough time to notify the client
about it. In some protocols, packets that are in the vicinity but precede the session like P2 can
tell us about the upcoming load due to some negotiation between the peers or between a
peer to its supernode.
Collabrium's key strategy is that we can predict a traffic load by examining the properties of
packets that precede the load - meaning the packets in the vicinity of sessions that loaded
the uplink. Following we present different properties that proved to be significant for
prediction and their extraction techniques.

5.2.1 Load Vicinity Pattern Prediction
In this method we look at the first bytes (15 bytes were found to be effective) of the payload
of each packet that is in the vicinity and extract feature:value pairs for SVM so it can learn
specific patterns. For example, in eMule's client-client protocol, the 1st byte is always 0xE3
and in the handshake message the 6th is always 0x01; we mark them as byte:value pairs that
form a pattern: 1:0xE3, 6:0x01. We'd like SVM to realize these patterns out of the messages in
the vicinity. Since close values such as 1:0xE3 and 1:0xE4 might belong to completely
different protocols or different messages of the same protocol, we can't present SVM these
values directly as it will not relate them as discrete values. Therefore, we collect the most
popular byte:value instances of packets in the vicinities of all sessions while giving priority to
byte:value pairs that appear in different sessions, as shown in Figure 7.
Finally, we supply the training set for SVM; Each item in the training set contains the
following features: Source IP, Source port, Destination IP and Destination port. Then we
create a feature per each of the top popular items in ByteValueList, i.e. if the most popular
byte:value pair is 5:0xE3 and the value of the 5th byte of the packet we examine is 0xE3 then
we insert 1:1 as a feature:value pair for the training item; if the second most popular
byte:value pair is 3:0xB6 and the value of the 3rd byte of the packet we examine is 0xC2 then
we insert 2:0 in the training set since the values are different and so forth for the next
popular byte:value items, up to a certain amount of features (we found that the top 100
popular yield satisfactory results). We label as +1 training items that represent packets in the
vicinity that contain at least one instance of the top popular byte:value pairs. We supply the
training set also packets that are not in the vicinity and label them as -1. When we run the

prediction module to look for upcoming loads in the uplink, we simply propose recent
captured packets' properties to SVM with the appropriate features and SVM classifies the
packet as leading to uplink load or not.

Fig. 7. Algorithm for extracting popular byte_value pairs

5.2.2 Packet Size Sequence Prediction
While looking at the data we captured in the beginning of sessions, we noticed an
interesting phenomenon in P2P protocols - the byte count of the first packets form a
sequence that repeats itself with minor differences for nearly all sessions of the same
protocol. For example, a typical packet size sequence for eMule is
{0,0,0,125,108,11,11,41,83,77,55,55,22}. Since we noticed some slight differences in the
sequence, we can't use it as a serial set of features for SVM as in some cases the value of 108
in eMule might appear as the byte count of the 5th packet while in other cases it will be the
byte count of the 6th packet due to an extra packet. Therefore, we relate these values as a
histogram, and simply define a predefined number of features (we found 30 to yield good
results) for the most popular byte count values in a similar manner to the previous
algorithm. For example, if the most popular byte count is 125, we supply the training set a
feature with a value of 1 if the vicinity of the examined packet contains at least one packet
with this byte count or 0 if not.

5.3 Prediction Module
In the prediction module, while packets are being captured, the properties mentioned above
are extracted and served to the SVM algorithm. In case that SVM classified the packet as
leading for load and the uplink used bandwidth is larger than a predefined threshold, we
notify the client to select an alternative feeder.

On	the	Role	of	Helper	Peers	in	P2P	Networks 215

We wish our learning algorithm to link the collected data to the occurrences of traffic load in
the uplink. As illustrated in Figure 6, S1, S2 and S3 are sessions. A session is identified by
source IP and port, and destination IP and port, thus it begins with the first packet that was
sent between our peer i on port x and a peer j on port y and ends with the last message that
was sent between the same peers on the same ports. If the time between 2 sequential
messages is larger than a specific predefined threshold, we see it as 2 sessions. Notice that
sessions might overlap as in sessions S1 and S2 but still we can identify the session of a
packet using the key of IPs and ports. V1, V2 and V3 are the vicinities of S1, S2 and S3

respectively.
A vicinity is a collection of packets that were collected around a predefined time period at
the beginning of each session. Notice that the vicinity begins a few milliseconds before the
beginning of a session. In session S4 and its vicinity V4 we show the change in uplink
utilization due to that session. Notice that typically, the load in the uplink begins a few
seconds after the beginning of a session and not immediately, as in most P2P algorithms the
very first messages are used for preliminary negotiation, thus we can use the packet P3 and
its neighbors to predict the upcoming load and still have enough time to notify the client
about it. In some protocols, packets that are in the vicinity but precede the session like P2 can
tell us about the upcoming load due to some negotiation between the peers or between a
peer to its supernode.
Collabrium's key strategy is that we can predict a traffic load by examining the properties of
packets that precede the load - meaning the packets in the vicinity of sessions that loaded
the uplink. Following we present different properties that proved to be significant for
prediction and their extraction techniques.

5.2.1 Load Vicinity Pattern Prediction
In this method we look at the first bytes (15 bytes were found to be effective) of the payload
of each packet that is in the vicinity and extract feature:value pairs for SVM so it can learn
specific patterns. For example, in eMule's client-client protocol, the 1st byte is always 0xE3
and in the handshake message the 6th is always 0x01; we mark them as byte:value pairs that
form a pattern: 1:0xE3, 6:0x01. We'd like SVM to realize these patterns out of the messages in
the vicinity. Since close values such as 1:0xE3 and 1:0xE4 might belong to completely
different protocols or different messages of the same protocol, we can't present SVM these
values directly as it will not relate them as discrete values. Therefore, we collect the most
popular byte:value instances of packets in the vicinities of all sessions while giving priority to
byte:value pairs that appear in different sessions, as shown in Figure 7.
Finally, we supply the training set for SVM; Each item in the training set contains the
following features: Source IP, Source port, Destination IP and Destination port. Then we
create a feature per each of the top popular items in ByteValueList, i.e. if the most popular
byte:value pair is 5:0xE3 and the value of the 5th byte of the packet we examine is 0xE3 then
we insert 1:1 as a feature:value pair for the training item; if the second most popular
byte:value pair is 3:0xB6 and the value of the 3rd byte of the packet we examine is 0xC2 then
we insert 2:0 in the training set since the values are different and so forth for the next
popular byte:value items, up to a certain amount of features (we found that the top 100
popular yield satisfactory results). We label as +1 training items that represent packets in the
vicinity that contain at least one instance of the top popular byte:value pairs. We supply the
training set also packets that are not in the vicinity and label them as -1. When we run the

prediction module to look for upcoming loads in the uplink, we simply propose recent
captured packets' properties to SVM with the appropriate features and SVM classifies the
packet as leading to uplink load or not.

Fig. 7. Algorithm for extracting popular byte_value pairs

5.2.2 Packet Size Sequence Prediction
While looking at the data we captured in the beginning of sessions, we noticed an
interesting phenomenon in P2P protocols - the byte count of the first packets form a
sequence that repeats itself with minor differences for nearly all sessions of the same
protocol. For example, a typical packet size sequence for eMule is
{0,0,0,125,108,11,11,41,83,77,55,55,22}. Since we noticed some slight differences in the
sequence, we can't use it as a serial set of features for SVM as in some cases the value of 108
in eMule might appear as the byte count of the 5th packet while in other cases it will be the
byte count of the 6th packet due to an extra packet. Therefore, we relate these values as a
histogram, and simply define a predefined number of features (we found 30 to yield good
results) for the most popular byte count values in a similar manner to the previous
algorithm. For example, if the most popular byte count is 125, we supply the training set a
feature with a value of 1 if the vicinity of the examined packet contains at least one packet
with this byte count or 0 if not.

5.3 Prediction Module
In the prediction module, while packets are being captured, the properties mentioned above
are extracted and served to the SVM algorithm. In case that SVM classified the packet as
leading for load and the uplink used bandwidth is larger than a predefined threshold, we
notify the client to select an alternative feeder.

Parallel	and	Distributed	Computing216

Fig. 8. Prediction success rate of popular protocols

In Figure 8, we examined various protocols that use the upstream and the ability to predict
an upcoming load per each protocol. We captured 5 hours of activity on each of these
protocols separately. Then we mapped all large sessions (more than 1MB) and counted the
cases where we predicted a large session successfully. Notice that in the fourth case, we ran
all protocols on the same machine for 5 hours, to examine the case where the vicinity
contains messages of multiple protocols.
In Figure 9, we measured the time between the prediction and the beginning of the load in
upstream per each of the leading protocols.

Fig. 9. Time difference between prediction and load (seconds)

Notice that we have between 3 and 6 seconds to alert a client for replacing a source - which
enables it to completely evade the upcoming load before it begins.

Fig. 10. Prediction success rate per vicinity size

In Figure 10, we experimented different vicinity sizes and measured the appropriate
prediction success rate. The leading part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets that might lead to a session (like
an interaction between a peer and a supernode prior to the file transfer between peers).
Notice that small vicinities of between 1 and 2 seconds do not cover enough information to
predict an upcoming load with high success rate. In addition, vicinities larger than 4 seconds
begin to create more noise than useful information for prediction and accordingly the
prediction success rate degrades.

6. Summary and Future Work

In this chapter, we presented the evolution of helper peers in P2P file sharing and streaming
networks.
We presented advanced designs of helpers that integrate machine learning for reaching
stability in throughput.
We believe that helpers will play a crucial role in the design of future P2P networks, as it
enables P2P to compete with both service availability and stability of traditional client-
server systems but with much larger scalability. The next required step is to embed and
adapt the mentioned ideas onto large scale P2P networks and measure their benefits under
different scenarios.
In addition, it will be interesting to analyze different topologies of networks of helper peers.
For example, a two-tier helper network might manage 2 different classes of helpers, a hash
ring of helpers, a tree of helpers and other topologies.

7. References

All-Streaming-Media report (2008) – PPLive glitches. http://all-streaming-media.com/peerto-
peer-tv/p2p-streaming-internet-tv-pplive.htm

Andrade, N.; Santana, J.; Brasileiro, F. & Cirne, W. On the efficiency and cost of introducing
qos in BitTorrent. In CCGRID ’07: Proceedings of the Seventh IEEE International

On	the	Role	of	Helper	Peers	in	P2P	Networks 217

Fig. 8. Prediction success rate of popular protocols

In Figure 8, we examined various protocols that use the upstream and the ability to predict
an upcoming load per each protocol. We captured 5 hours of activity on each of these
protocols separately. Then we mapped all large sessions (more than 1MB) and counted the
cases where we predicted a large session successfully. Notice that in the fourth case, we ran
all protocols on the same machine for 5 hours, to examine the case where the vicinity
contains messages of multiple protocols.
In Figure 9, we measured the time between the prediction and the beginning of the load in
upstream per each of the leading protocols.

Fig. 9. Time difference between prediction and load (seconds)

Notice that we have between 3 and 6 seconds to alert a client for replacing a source - which
enables it to completely evade the upcoming load before it begins.

Fig. 10. Prediction success rate per vicinity size

In Figure 10, we experimented different vicinity sizes and measured the appropriate
prediction success rate. The leading part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets that might lead to a session (like
an interaction between a peer and a supernode prior to the file transfer between peers).
Notice that small vicinities of between 1 and 2 seconds do not cover enough information to
predict an upcoming load with high success rate. In addition, vicinities larger than 4 seconds
begin to create more noise than useful information for prediction and accordingly the
prediction success rate degrades.

6. Summary and Future Work

In this chapter, we presented the evolution of helper peers in P2P file sharing and streaming
networks.
We presented advanced designs of helpers that integrate machine learning for reaching
stability in throughput.
We believe that helpers will play a crucial role in the design of future P2P networks, as it
enables P2P to compete with both service availability and stability of traditional client-
server systems but with much larger scalability. The next required step is to embed and
adapt the mentioned ideas onto large scale P2P networks and measure their benefits under
different scenarios.
In addition, it will be interesting to analyze different topologies of networks of helper peers.
For example, a two-tier helper network might manage 2 different classes of helpers, a hash
ring of helpers, a tree of helpers and other topologies.

7. References

All-Streaming-Media report (2008) – PPLive glitches. http://all-streaming-media.com/peerto-
peer-tv/p2p-streaming-internet-tv-pplive.htm

Andrade, N.; Santana, J.; Brasileiro, F. & Cirne, W. On the efficiency and cost of introducing
qos in BitTorrent. In CCGRID ’07: Proceedings of the Seventh IEEE International

Parallel	and	Distributed	Computing216

Fig. 8. Prediction success rate of popular protocols

In Figure 8, we examined various protocols that use the upstream and the ability to predict
an upcoming load per each protocol. We captured 5 hours of activity on each of these
protocols separately. Then we mapped all large sessions (more than 1MB) and counted the
cases where we predicted a large session successfully. Notice that in the fourth case, we ran
all protocols on the same machine for 5 hours, to examine the case where the vicinity
contains messages of multiple protocols.
In Figure 9, we measured the time between the prediction and the beginning of the load in
upstream per each of the leading protocols.

Fig. 9. Time difference between prediction and load (seconds)

Notice that we have between 3 and 6 seconds to alert a client for replacing a source - which
enables it to completely evade the upcoming load before it begins.

Fig. 10. Prediction success rate per vicinity size

In Figure 10, we experimented different vicinity sizes and measured the appropriate
prediction success rate. The leading part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets that might lead to a session (like
an interaction between a peer and a supernode prior to the file transfer between peers).
Notice that small vicinities of between 1 and 2 seconds do not cover enough information to
predict an upcoming load with high success rate. In addition, vicinities larger than 4 seconds
begin to create more noise than useful information for prediction and accordingly the
prediction success rate degrades.

6. Summary and Future Work

In this chapter, we presented the evolution of helper peers in P2P file sharing and streaming
networks.
We presented advanced designs of helpers that integrate machine learning for reaching
stability in throughput.
We believe that helpers will play a crucial role in the design of future P2P networks, as it
enables P2P to compete with both service availability and stability of traditional client-
server systems but with much larger scalability. The next required step is to embed and
adapt the mentioned ideas onto large scale P2P networks and measure their benefits under
different scenarios.
In addition, it will be interesting to analyze different topologies of networks of helper peers.
For example, a two-tier helper network might manage 2 different classes of helpers, a hash
ring of helpers, a tree of helpers and other topologies.

7. References

All-Streaming-Media report (2008) – PPLive glitches. http://all-streaming-media.com/peerto-
peer-tv/p2p-streaming-internet-tv-pplive.htm

Andrade, N.; Santana, J.; Brasileiro, F. & Cirne, W. On the efficiency and cost of introducing
qos in BitTorrent. In CCGRID ’07: Proceedings of the Seventh IEEE International

On	the	Role	of	Helper	Peers	in	P2P	Networks 217

Fig. 8. Prediction success rate of popular protocols

In Figure 8, we examined various protocols that use the upstream and the ability to predict
an upcoming load per each protocol. We captured 5 hours of activity on each of these
protocols separately. Then we mapped all large sessions (more than 1MB) and counted the
cases where we predicted a large session successfully. Notice that in the fourth case, we ran
all protocols on the same machine for 5 hours, to examine the case where the vicinity
contains messages of multiple protocols.
In Figure 9, we measured the time between the prediction and the beginning of the load in
upstream per each of the leading protocols.

Fig. 9. Time difference between prediction and load (seconds)

Notice that we have between 3 and 6 seconds to alert a client for replacing a source - which
enables it to completely evade the upcoming load before it begins.

Fig. 10. Prediction success rate per vicinity size

In Figure 10, we experimented different vicinity sizes and measured the appropriate
prediction success rate. The leading part of the vicinity (3rd of its size) is placed before the
beginning of a session - to allow prediction using packets that might lead to a session (like
an interaction between a peer and a supernode prior to the file transfer between peers).
Notice that small vicinities of between 1 and 2 seconds do not cover enough information to
predict an upcoming load with high success rate. In addition, vicinities larger than 4 seconds
begin to create more noise than useful information for prediction and accordingly the
prediction success rate degrades.

6. Summary and Future Work

In this chapter, we presented the evolution of helper peers in P2P file sharing and streaming
networks.
We presented advanced designs of helpers that integrate machine learning for reaching
stability in throughput.
We believe that helpers will play a crucial role in the design of future P2P networks, as it
enables P2P to compete with both service availability and stability of traditional client-
server systems but with much larger scalability. The next required step is to embed and
adapt the mentioned ideas onto large scale P2P networks and measure their benefits under
different scenarios.
In addition, it will be interesting to analyze different topologies of networks of helper peers.
For example, a two-tier helper network might manage 2 different classes of helpers, a hash
ring of helpers, a tree of helpers and other topologies.

7. References

All-Streaming-Media report (2008) – PPLive glitches. http://all-streaming-media.com/peerto-
peer-tv/p2p-streaming-internet-tv-pplive.htm

Andrade, N.; Santana, J.; Brasileiro, F. & Cirne, W. On the efficiency and cost of introducing
qos in BitTorrent. In CCGRID ’07: Proceedings of the Seventh IEEE International

Parallel	and	Distributed	Computing218

Symposium on Cluster Computing and the Grid, pages 767–772, Washington, DC, USA,
2007. IEEE Computer Society

Bindal, R. & Cao, P. (2006). Can self-organizing p2p file distribution provide qos guarantees?
SIGOPS Oper. Syst. Rev.,40(3):22–30

Cohen, B. (2003). Incentives Build Robustness in BitTorrent. Workshop on Economics of Peer-to-
Peer Systems, 6, 2003

Crainiceanu, A.; Linga, P. ; Machanavajjhala, A. ; Gehrke, J. ; Shanmugasundaram, J. (2004),
P-Ring: An Index Structure for Peer-to-Peer Systems, Technical Report, Cornell
University, 2004

DailyIPTV report - Joost bandwidth problems (2007), http://www.dailyiptv.com/features/joostb
andwid thproblem-082007/

De Asis Lopez-Fuentes, F.; Steinbach, E. (2008), Multi-source video multicast in peer-to-peer
networks, IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008

Do, T. ; Hua, K. A. & Tantaoui, M. (2004). P2VoD: Providing fault tolerant video-on-demand
streaming in peer-to-peer environment. In Proc. of the IEEE Int. Conf. on
Communications (ICC 2004), june 2004

Garbacki, P.; Iosup, A.; Epema, D. & van Steen, M. (2006). 2fast: Collaborative downloads in
p2p networks. p2p, 2006

Guo, L.; Chen, S.; Xiao, Z.; Tan, E.; Ding, X. & Zhang, X. (2005). Measurements, Analysis,
and Modeling of BitTorrent-like Systems. Internet Measurement Conference, 2005

Hei, X.; Liang, C.; Liang, J.; Liu, Y. & Ross, K.W. (2006). Insights into pplive: A measurement
study of a large-scale p2p iptv system, Proceedings of IPTV Workshop, International
World Wide Web Conference

Horovitz, S. & Dolev, D. (2008). Collabory: A Collaborative Throughput Stabilizer &
Accelerator for P2P Protocols, Proceedings of the 2008 IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp.115-120, 2008, IEEE
Computer Society

Horovitz, S. & Dolev, D. (2009a). Collabrium: Active Traffic Pattern Prediction for Boosting
P2P Collaboration, Proceedings of the 2009 IEEE 18th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2009, IEEE Computer Society

Horovitz, S. & Dolev, D. (2009b). Maxtream: Stabilizing P2P Streaming by Active Prediction
of Behavior Patterns, Proceedings of the 2009 Third International Conference on
Multimedia and Ubiquitous Engineering, pp.546-553, 2009, IEEE Computer Society

Horvath, A.; Telek, M. ; Rossi, D. ; Veglia, P. ; Ciullo, D.; Garcia, M. A. ; Leonardi, E. &
Mellia, M. (2008). Dissecting PPLive, Sopcast, TVants, Technical report, Politecnico di
Torino

IPoque Internet Study – The Impact of P2P File Sharing (2007), http://www.ipoque.com/userfil
 es/file/internet_study_2007.pdf
Izhak-Ratzin, R. (2009), Collaboration in BitTorrent Systems, Networking 2009: 8th

International IFIP-TC 6 Networking Conference
NewTeeVee report - Joost bandwidth problems (2008), http://newteevee.com/2008/03/20/wher

e-to-watch-marchmadness/
Piatek, M.; Isdal, T.; Krishnamurthy, A. & Anderson, T. (2008), One hop reputations for peer

to peer file sharing workloads, NSDI'08: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation

Pouwelse, J.; Garbacki, P.; Wang, J.; Bakker, A.; Yang, J.; Iosup, A.; Epema, D.; Reinders, M.;
van Steen, M. & Sips, H. (2006). Tribler: A social-based peer-to-peer system.
IPTPS06

Rejaie, R. & Ortega, A. (2003). Pals: Peer-to-peer adaptive layered streaming. NOSSDAV'03
Monterey, CA

Sandvide 2008 Global Broadband Phenomena (2008), http://www.sandvine.com/general/docume
 nts/2008-global-broadband -phenomena - executive summary.pdf

Schlosser, D.; Hossfeld, T. & Tutschku, K. (2006). Comparison of Robust Cooperation
Strategies for P2P Content Distribution Networks with Multiple Source Download,
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, pages
31–38, 2006

Souza, L.; Cores, F.; Yang, X. & Ripoll, A. (2007), DynaPeer: A Dynamic Peer-to-Peer Based
Delivery Scheme for VoD Systems. Euro-Par 2007 Parallel Processing, ISBN 978-3-
540-74465-8, 2007

TechCrunch report - Joost abandons p2p (2008), http://www.techcrunch.com/2008/12/17/joost-
just-gives-upon-p2p/

Vapnik, V. N. (1995), The nature of statistical learning theory. Springer-Verlag New York, Inc.,
1995.

VentureBeat report - Joost playback problems (2008), http://venturebeat.com/2008/11/2 8/joost-
is-loosed-onthe-iphone-if-only-it-worked/

Vu, L. ; Gupta, I. ; Liang, J. & Nahrstedt, K. (2006), Mapping the PPLive network: Studying
the impacts of media streaming on p2p overlays, Technical report, August 2006

Wang, J. (2008). Robust video transmission over lossy channels and efficient video
distribution over peer-to-peer networks, Technical Report, University of California at
Berkeley, 2008

Wang, J.; Yeo, C.; Prabhakaran, V.& Ramchandran, K. (2007). On the role of helpers in peer-
to-peer file download systems: Design, analysis and simulation. IPTPS07

Wang, J. & Ramchandran, K. (2008), Enhancing peer-to-peer live multicast quality using
helpers, Image Processing, 2008, ICIP 2008

Wong, J. (2004), Enhancing collaborative content delivery with helpers. Master’s thesis, Univ
of British Columbia, 2004

On	the	Role	of	Helper	Peers	in	P2P	Networks 219

Symposium on Cluster Computing and the Grid, pages 767–772, Washington, DC, USA,
2007. IEEE Computer Society

Bindal, R. & Cao, P. (2006). Can self-organizing p2p file distribution provide qos guarantees?
SIGOPS Oper. Syst. Rev.,40(3):22–30

Cohen, B. (2003). Incentives Build Robustness in BitTorrent. Workshop on Economics of Peer-to-
Peer Systems, 6, 2003

Crainiceanu, A.; Linga, P. ; Machanavajjhala, A. ; Gehrke, J. ; Shanmugasundaram, J. (2004),
P-Ring: An Index Structure for Peer-to-Peer Systems, Technical Report, Cornell
University, 2004

DailyIPTV report - Joost bandwidth problems (2007), http://www.dailyiptv.com/features/joostb
andwid thproblem-082007/

De Asis Lopez-Fuentes, F.; Steinbach, E. (2008), Multi-source video multicast in peer-to-peer
networks, IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008

Do, T. ; Hua, K. A. & Tantaoui, M. (2004). P2VoD: Providing fault tolerant video-on-demand
streaming in peer-to-peer environment. In Proc. of the IEEE Int. Conf. on
Communications (ICC 2004), june 2004

Garbacki, P.; Iosup, A.; Epema, D. & van Steen, M. (2006). 2fast: Collaborative downloads in
p2p networks. p2p, 2006

Guo, L.; Chen, S.; Xiao, Z.; Tan, E.; Ding, X. & Zhang, X. (2005). Measurements, Analysis,
and Modeling of BitTorrent-like Systems. Internet Measurement Conference, 2005

Hei, X.; Liang, C.; Liang, J.; Liu, Y. & Ross, K.W. (2006). Insights into pplive: A measurement
study of a large-scale p2p iptv system, Proceedings of IPTV Workshop, International
World Wide Web Conference

Horovitz, S. & Dolev, D. (2008). Collabory: A Collaborative Throughput Stabilizer &
Accelerator for P2P Protocols, Proceedings of the 2008 IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp.115-120, 2008, IEEE
Computer Society

Horovitz, S. & Dolev, D. (2009a). Collabrium: Active Traffic Pattern Prediction for Boosting
P2P Collaboration, Proceedings of the 2009 IEEE 18th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2009, IEEE Computer Society

Horovitz, S. & Dolev, D. (2009b). Maxtream: Stabilizing P2P Streaming by Active Prediction
of Behavior Patterns, Proceedings of the 2009 Third International Conference on
Multimedia and Ubiquitous Engineering, pp.546-553, 2009, IEEE Computer Society

Horvath, A.; Telek, M. ; Rossi, D. ; Veglia, P. ; Ciullo, D.; Garcia, M. A. ; Leonardi, E. &
Mellia, M. (2008). Dissecting PPLive, Sopcast, TVants, Technical report, Politecnico di
Torino

IPoque Internet Study – The Impact of P2P File Sharing (2007), http://www.ipoque.com/userfil
 es/file/internet_study_2007.pdf
Izhak-Ratzin, R. (2009), Collaboration in BitTorrent Systems, Networking 2009: 8th

International IFIP-TC 6 Networking Conference
NewTeeVee report - Joost bandwidth problems (2008), http://newteevee.com/2008/03/20/wher

e-to-watch-marchmadness/
Piatek, M.; Isdal, T.; Krishnamurthy, A. & Anderson, T. (2008), One hop reputations for peer

to peer file sharing workloads, NSDI'08: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation

Pouwelse, J.; Garbacki, P.; Wang, J.; Bakker, A.; Yang, J.; Iosup, A.; Epema, D.; Reinders, M.;
van Steen, M. & Sips, H. (2006). Tribler: A social-based peer-to-peer system.
IPTPS06

Rejaie, R. & Ortega, A. (2003). Pals: Peer-to-peer adaptive layered streaming. NOSSDAV'03
Monterey, CA

Sandvide 2008 Global Broadband Phenomena (2008), http://www.sandvine.com/general/docume
 nts/2008-global-broadband -phenomena - executive summary.pdf

Schlosser, D.; Hossfeld, T. & Tutschku, K. (2006). Comparison of Robust Cooperation
Strategies for P2P Content Distribution Networks with Multiple Source Download,
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, pages
31–38, 2006

Souza, L.; Cores, F.; Yang, X. & Ripoll, A. (2007), DynaPeer: A Dynamic Peer-to-Peer Based
Delivery Scheme for VoD Systems. Euro-Par 2007 Parallel Processing, ISBN 978-3-
540-74465-8, 2007

TechCrunch report - Joost abandons p2p (2008), http://www.techcrunch.com/2008/12/17/joost-
just-gives-upon-p2p/

Vapnik, V. N. (1995), The nature of statistical learning theory. Springer-Verlag New York, Inc.,
1995.

VentureBeat report - Joost playback problems (2008), http://venturebeat.com/2008/11/2 8/joost-
is-loosed-onthe-iphone-if-only-it-worked/

Vu, L. ; Gupta, I. ; Liang, J. & Nahrstedt, K. (2006), Mapping the PPLive network: Studying
the impacts of media streaming on p2p overlays, Technical report, August 2006

Wang, J. (2008). Robust video transmission over lossy channels and efficient video
distribution over peer-to-peer networks, Technical Report, University of California at
Berkeley, 2008

Wang, J.; Yeo, C.; Prabhakaran, V.& Ramchandran, K. (2007). On the role of helpers in peer-
to-peer file download systems: Design, analysis and simulation. IPTPS07

Wang, J. & Ramchandran, K. (2008), Enhancing peer-to-peer live multicast quality using
helpers, Image Processing, 2008, ICIP 2008

Wong, J. (2004), Enhancing collaborative content delivery with helpers. Master’s thesis, Univ
of British Columbia, 2004

Parallel	and	Distributed	Computing218

Symposium on Cluster Computing and the Grid, pages 767–772, Washington, DC, USA,
2007. IEEE Computer Society

Bindal, R. & Cao, P. (2006). Can self-organizing p2p file distribution provide qos guarantees?
SIGOPS Oper. Syst. Rev.,40(3):22–30

Cohen, B. (2003). Incentives Build Robustness in BitTorrent. Workshop on Economics of Peer-to-
Peer Systems, 6, 2003

Crainiceanu, A.; Linga, P. ; Machanavajjhala, A. ; Gehrke, J. ; Shanmugasundaram, J. (2004),
P-Ring: An Index Structure for Peer-to-Peer Systems, Technical Report, Cornell
University, 2004

DailyIPTV report - Joost bandwidth problems (2007), http://www.dailyiptv.com/features/joostb
andwid thproblem-082007/

De Asis Lopez-Fuentes, F.; Steinbach, E. (2008), Multi-source video multicast in peer-to-peer
networks, IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008

Do, T. ; Hua, K. A. & Tantaoui, M. (2004). P2VoD: Providing fault tolerant video-on-demand
streaming in peer-to-peer environment. In Proc. of the IEEE Int. Conf. on
Communications (ICC 2004), june 2004

Garbacki, P.; Iosup, A.; Epema, D. & van Steen, M. (2006). 2fast: Collaborative downloads in
p2p networks. p2p, 2006

Guo, L.; Chen, S.; Xiao, Z.; Tan, E.; Ding, X. & Zhang, X. (2005). Measurements, Analysis,
and Modeling of BitTorrent-like Systems. Internet Measurement Conference, 2005

Hei, X.; Liang, C.; Liang, J.; Liu, Y. & Ross, K.W. (2006). Insights into pplive: A measurement
study of a large-scale p2p iptv system, Proceedings of IPTV Workshop, International
World Wide Web Conference

Horovitz, S. & Dolev, D. (2008). Collabory: A Collaborative Throughput Stabilizer &
Accelerator for P2P Protocols, Proceedings of the 2008 IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp.115-120, 2008, IEEE
Computer Society

Horovitz, S. & Dolev, D. (2009a). Collabrium: Active Traffic Pattern Prediction for Boosting
P2P Collaboration, Proceedings of the 2009 IEEE 18th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2009, IEEE Computer Society

Horovitz, S. & Dolev, D. (2009b). Maxtream: Stabilizing P2P Streaming by Active Prediction
of Behavior Patterns, Proceedings of the 2009 Third International Conference on
Multimedia and Ubiquitous Engineering, pp.546-553, 2009, IEEE Computer Society

Horvath, A.; Telek, M. ; Rossi, D. ; Veglia, P. ; Ciullo, D.; Garcia, M. A. ; Leonardi, E. &
Mellia, M. (2008). Dissecting PPLive, Sopcast, TVants, Technical report, Politecnico di
Torino

IPoque Internet Study – The Impact of P2P File Sharing (2007), http://www.ipoque.com/userfil
 es/file/internet_study_2007.pdf
Izhak-Ratzin, R. (2009), Collaboration in BitTorrent Systems, Networking 2009: 8th

International IFIP-TC 6 Networking Conference
NewTeeVee report - Joost bandwidth problems (2008), http://newteevee.com/2008/03/20/wher

e-to-watch-marchmadness/
Piatek, M.; Isdal, T.; Krishnamurthy, A. & Anderson, T. (2008), One hop reputations for peer

to peer file sharing workloads, NSDI'08: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation

Pouwelse, J.; Garbacki, P.; Wang, J.; Bakker, A.; Yang, J.; Iosup, A.; Epema, D.; Reinders, M.;
van Steen, M. & Sips, H. (2006). Tribler: A social-based peer-to-peer system.
IPTPS06

Rejaie, R. & Ortega, A. (2003). Pals: Peer-to-peer adaptive layered streaming. NOSSDAV'03
Monterey, CA

Sandvide 2008 Global Broadband Phenomena (2008), http://www.sandvine.com/general/docume
 nts/2008-global-broadband -phenomena - executive summary.pdf

Schlosser, D.; Hossfeld, T. & Tutschku, K. (2006). Comparison of Robust Cooperation
Strategies for P2P Content Distribution Networks with Multiple Source Download,
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, pages
31–38, 2006

Souza, L.; Cores, F.; Yang, X. & Ripoll, A. (2007), DynaPeer: A Dynamic Peer-to-Peer Based
Delivery Scheme for VoD Systems. Euro-Par 2007 Parallel Processing, ISBN 978-3-
540-74465-8, 2007

TechCrunch report - Joost abandons p2p (2008), http://www.techcrunch.com/2008/12/17/joost-
just-gives-upon-p2p/

Vapnik, V. N. (1995), The nature of statistical learning theory. Springer-Verlag New York, Inc.,
1995.

VentureBeat report - Joost playback problems (2008), http://venturebeat.com/2008/11/2 8/joost-
is-loosed-onthe-iphone-if-only-it-worked/

Vu, L. ; Gupta, I. ; Liang, J. & Nahrstedt, K. (2006), Mapping the PPLive network: Studying
the impacts of media streaming on p2p overlays, Technical report, August 2006

Wang, J. (2008). Robust video transmission over lossy channels and efficient video
distribution over peer-to-peer networks, Technical Report, University of California at
Berkeley, 2008

Wang, J.; Yeo, C.; Prabhakaran, V.& Ramchandran, K. (2007). On the role of helpers in peer-
to-peer file download systems: Design, analysis and simulation. IPTPS07

Wang, J. & Ramchandran, K. (2008), Enhancing peer-to-peer live multicast quality using
helpers, Image Processing, 2008, ICIP 2008

Wong, J. (2004), Enhancing collaborative content delivery with helpers. Master’s thesis, Univ
of British Columbia, 2004

On	the	Role	of	Helper	Peers	in	P2P	Networks 219

Symposium on Cluster Computing and the Grid, pages 767–772, Washington, DC, USA,
2007. IEEE Computer Society

Bindal, R. & Cao, P. (2006). Can self-organizing p2p file distribution provide qos guarantees?
SIGOPS Oper. Syst. Rev.,40(3):22–30

Cohen, B. (2003). Incentives Build Robustness in BitTorrent. Workshop on Economics of Peer-to-
Peer Systems, 6, 2003

Crainiceanu, A.; Linga, P. ; Machanavajjhala, A. ; Gehrke, J. ; Shanmugasundaram, J. (2004),
P-Ring: An Index Structure for Peer-to-Peer Systems, Technical Report, Cornell
University, 2004

DailyIPTV report - Joost bandwidth problems (2007), http://www.dailyiptv.com/features/joostb
andwid thproblem-082007/

De Asis Lopez-Fuentes, F.; Steinbach, E. (2008), Multi-source video multicast in peer-to-peer
networks, IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008

Do, T. ; Hua, K. A. & Tantaoui, M. (2004). P2VoD: Providing fault tolerant video-on-demand
streaming in peer-to-peer environment. In Proc. of the IEEE Int. Conf. on
Communications (ICC 2004), june 2004

Garbacki, P.; Iosup, A.; Epema, D. & van Steen, M. (2006). 2fast: Collaborative downloads in
p2p networks. p2p, 2006

Guo, L.; Chen, S.; Xiao, Z.; Tan, E.; Ding, X. & Zhang, X. (2005). Measurements, Analysis,
and Modeling of BitTorrent-like Systems. Internet Measurement Conference, 2005

Hei, X.; Liang, C.; Liang, J.; Liu, Y. & Ross, K.W. (2006). Insights into pplive: A measurement
study of a large-scale p2p iptv system, Proceedings of IPTV Workshop, International
World Wide Web Conference

Horovitz, S. & Dolev, D. (2008). Collabory: A Collaborative Throughput Stabilizer &
Accelerator for P2P Protocols, Proceedings of the 2008 IEEE 17th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pp.115-120, 2008, IEEE
Computer Society

Horovitz, S. & Dolev, D. (2009a). Collabrium: Active Traffic Pattern Prediction for Boosting
P2P Collaboration, Proceedings of the 2009 IEEE 18th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2009, IEEE Computer Society

Horovitz, S. & Dolev, D. (2009b). Maxtream: Stabilizing P2P Streaming by Active Prediction
of Behavior Patterns, Proceedings of the 2009 Third International Conference on
Multimedia and Ubiquitous Engineering, pp.546-553, 2009, IEEE Computer Society

Horvath, A.; Telek, M. ; Rossi, D. ; Veglia, P. ; Ciullo, D.; Garcia, M. A. ; Leonardi, E. &
Mellia, M. (2008). Dissecting PPLive, Sopcast, TVants, Technical report, Politecnico di
Torino

IPoque Internet Study – The Impact of P2P File Sharing (2007), http://www.ipoque.com/userfil
 es/file/internet_study_2007.pdf
Izhak-Ratzin, R. (2009), Collaboration in BitTorrent Systems, Networking 2009: 8th

International IFIP-TC 6 Networking Conference
NewTeeVee report - Joost bandwidth problems (2008), http://newteevee.com/2008/03/20/wher

e-to-watch-marchmadness/
Piatek, M.; Isdal, T.; Krishnamurthy, A. & Anderson, T. (2008), One hop reputations for peer

to peer file sharing workloads, NSDI'08: Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation

Pouwelse, J.; Garbacki, P.; Wang, J.; Bakker, A.; Yang, J.; Iosup, A.; Epema, D.; Reinders, M.;
van Steen, M. & Sips, H. (2006). Tribler: A social-based peer-to-peer system.
IPTPS06

Rejaie, R. & Ortega, A. (2003). Pals: Peer-to-peer adaptive layered streaming. NOSSDAV'03
Monterey, CA

Sandvide 2008 Global Broadband Phenomena (2008), http://www.sandvine.com/general/docume
 nts/2008-global-broadband -phenomena - executive summary.pdf

Schlosser, D.; Hossfeld, T. & Tutschku, K. (2006). Comparison of Robust Cooperation
Strategies for P2P Content Distribution Networks with Multiple Source Download,
Proceedings of the Sixth IEEE International Conference on Peer-to-Peer Computing, pages
31–38, 2006

Souza, L.; Cores, F.; Yang, X. & Ripoll, A. (2007), DynaPeer: A Dynamic Peer-to-Peer Based
Delivery Scheme for VoD Systems. Euro-Par 2007 Parallel Processing, ISBN 978-3-
540-74465-8, 2007

TechCrunch report - Joost abandons p2p (2008), http://www.techcrunch.com/2008/12/17/joost-
just-gives-upon-p2p/

Vapnik, V. N. (1995), The nature of statistical learning theory. Springer-Verlag New York, Inc.,
1995.

VentureBeat report - Joost playback problems (2008), http://venturebeat.com/2008/11/2 8/joost-
is-loosed-onthe-iphone-if-only-it-worked/

Vu, L. ; Gupta, I. ; Liang, J. & Nahrstedt, K. (2006), Mapping the PPLive network: Studying
the impacts of media streaming on p2p overlays, Technical report, August 2006

Wang, J. (2008). Robust video transmission over lossy channels and efficient video
distribution over peer-to-peer networks, Technical Report, University of California at
Berkeley, 2008

Wang, J.; Yeo, C.; Prabhakaran, V.& Ramchandran, K. (2007). On the role of helpers in peer-
to-peer file download systems: Design, analysis and simulation. IPTPS07

Wang, J. & Ramchandran, K. (2008), Enhancing peer-to-peer live multicast quality using
helpers, Image Processing, 2008, ICIP 2008

Wong, J. (2004), Enhancing collaborative content delivery with helpers. Master’s thesis, Univ
of British Columbia, 2004

Parallel	and	Distributed	Computing220 Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 221

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	
Networks

Jason	Liu

X

Parallel and Distributed Immersive
Real-Time Simulation of

Large-Scale Networks

Jason Liu
Florida International University

United States

1. Introduction

Network researchers need to embrace the challenge of designing the next-generation high-
performance networking and software infrastructures that address the growing demand of
distributed applications. These applications, particularly those potential "game changers" or
"killer apps", such as voice-over-IP (VoIP) and peer-to-peer (P2P) applications surfaced in
recent years, will significantly influence the way people conduct business and go about their
daily lives. These distributed applications also include platforms that facilitate large-scale
scientific experimentation through remote control and visualization. Many large-scale science
applications—such as those in the field of astronomy, astrophysics, climate and environmental
science, material science, particle physics, and social science—depend on the availability of
high-performance facilities and advanced experimental instruments. Extreme networking
capabilities together with effective high-end middleware infrastructures are of great
importance to interconnecting these applications, computing resources and experimental
facilities. "When all you have is a hammer, everything looks like a nail." The success of
advancing critical technologies, to a large extent, depends on the available tools that can help
effectively prototype, test, and analyze new designs and new ideas. Traditionally, network
research has relied on a variety of tools. Physical network testbeds, such as WAIL (Barford and
Landweber, 2003) and PlanetLab (Peterson et al., 2002), provide physical network connectivity;
these testbeds are designed specifically for studying network protocols and services under real
network conditions. However, the network condition of these testbeds is by and large
constrained by the physical setup of the system and therefore inflexible for network
researchers to explore a wide spectrum of the design space.
To allow more flexibility, some of these testbeds, such as EmuLab (White et al., 2002) and
VINI (Bavier et al., 2006), also offer emulation capabilities by modulating network traffic ac-
cording to configuration and traffic condition of the target network. Physical and emulation
testbeds currently are the mainstream for experimental networking research, primarily due
to their capability of achieving desirable realism and accuracy. These testbeds, however, are
costly to build. Due to limited resources available, conducting prolonged large-scale experi-
ments on these platforms is difficult. Another solution is to use analytical models. Although
analytical models are capable of bringing us important insight to the system design, dealing
with a system as complex as the global network requires significantly simplified
assumptions to be made to keep the models tractable. These simplified assumptions often

12

Parallel	and	Distributed	Computing220 Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 221

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	
Networks

Jason	Liu

X

Parallel and Distributed Immersive
Real-Time Simulation of

Large-Scale Networks

Jason Liu
Florida International University

United States

1. Introduction

Network researchers need to embrace the challenge of designing the next-generation high-
performance networking and software infrastructures that address the growing demand of
distributed applications. These applications, particularly those potential "game changers" or
"killer apps", such as voice-over-IP (VoIP) and peer-to-peer (P2P) applications surfaced in
recent years, will significantly influence the way people conduct business and go about their
daily lives. These distributed applications also include platforms that facilitate large-scale
scientific experimentation through remote control and visualization. Many large-scale science
applications—such as those in the field of astronomy, astrophysics, climate and environmental
science, material science, particle physics, and social science—depend on the availability of
high-performance facilities and advanced experimental instruments. Extreme networking
capabilities together with effective high-end middleware infrastructures are of great
importance to interconnecting these applications, computing resources and experimental
facilities. "When all you have is a hammer, everything looks like a nail." The success of
advancing critical technologies, to a large extent, depends on the available tools that can help
effectively prototype, test, and analyze new designs and new ideas. Traditionally, network
research has relied on a variety of tools. Physical network testbeds, such as WAIL (Barford and
Landweber, 2003) and PlanetLab (Peterson et al., 2002), provide physical network connectivity;
these testbeds are designed specifically for studying network protocols and services under real
network conditions. However, the network condition of these testbeds is by and large
constrained by the physical setup of the system and therefore inflexible for network
researchers to explore a wide spectrum of the design space.
To allow more flexibility, some of these testbeds, such as EmuLab (White et al., 2002) and
VINI (Bavier et al., 2006), also offer emulation capabilities by modulating network traffic ac-
cording to configuration and traffic condition of the target network. Physical and emulation
testbeds currently are the mainstream for experimental networking research, primarily due
to their capability of achieving desirable realism and accuracy. These testbeds, however, are
costly to build. Due to limited resources available, conducting prolonged large-scale experi-
ments on these platforms is difficult. Another solution is to use analytical models. Although
analytical models are capable of bringing us important insight to the system design, dealing
with a system as complex as the global network requires significantly simplified
assumptions to be made to keep the models tractable. These simplified assumptions often

12

Parallel	and	Distributed	Computing222

exclude implementation details, which are often crucial to the validity of the system design.
Simulation and emulation play an important role in network design and evaluation. While
both refer to the technique of mimicking network operations in software, one major
distinction is that simulation is purely virtual, whereas emulation focuses on interactions
with real applications. A network simulation consists of software implementation of
network protocols and various network entities, such as routers and links. Network
operations (e.g., packet forwarding) are merely logical operations. As a result, the
simulation time advancement bears no direct relationship to the wall-clock time. Emulation,
on the other hand, focuses on interactions with real applications, such as distributed
network services and distributed database systems. These real applications generate traffic;
an emulator provides traffic shaping functions by adding appropriate packet delays and
sometimes dropping packets. Emulation delivers more realism as it interacts with the
physical entities. Comparatively, simulation is effective at capturing high-level design
issues, answering what-if questions, and therefore can help us understand complex system
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic,
and diverse operational conditions in simulation is known to be a substantial undertaking
(Floyd and Paxson, 2001).
Real-time simulation combines the advantages of both simulation and emulation: it can run
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of
simulating computer networks and communication systems in real time so that the
simulated network can interact with real implementations of network protocols, network
services, and distributed applications. The word "immersive" suggests that the virtual
network behavior should not be distinguishable from a physical network for conducting
network traffic. That is, simulation should capture important characteristics of the target
network and support seamless interactions with the real applications. Real-time network
simulation is based on simulation, and therefore is fast in execution and flexible at
answering what-if questions. It allows high-level mathematical models (such as stochastic
network traffic models) to be incorporated into the system with relative ease. The system
interacts with real applications and real network traffic. Not only does it allow us to study
the impact of real application traffic on the virtual network, but also supports studying the
behavior of real applications under diverse simulated network conditions.
The challenge is to keep it in real time. Since real applications operate in real time, real-time
network simulation must meet real-time requirements. Especially, the performance of a
large-scale network simulation must be able to keep up with the wall-clock time and allow
real-time interactions with potentially a lot of real applications. A real-time simulator must
also be able to characterize the behavior of a network, potentially with millions of network
entities and with realistic traffic load at commensurate scale—all in real time. To speed up
simulation, on the one hand, we need to apply parallel and distributed discrete-event
simulation techniques to harness the computing resources of parallel computers so as to
physically increase the event-processing power; on the other hand, we need to resort to
multi-resolution modeling techniques using models at high-level of abstraction to reduce
the computational demand. We also need to create a scalable emulation infrastructure,

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications
under the real-time constraint. We discuss advanced modeling and simulation techniques
supporting real-time execution. We describe the emulation infrastructure and machine
virtualization techniques supporting the network immersion of a large number of real
applications. Through case studies, we show the potentials of real-time simulation in
various areas of network science.

2. Background

2.1 Existing Network Testbeds
We classify available network testbeds into physical, emulation, and simulation testbeds. We
can further divide physical testbeds into production testbeds and research testbeds (Anderson
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments
directly on the network itself and thus with live traffic; however, they are very restrictive
allowing only certain types of experiments that do not disrupt normal network operations.
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility.
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of
commercial networking components (including router, switches, and end hosts) connected to
form an experimental network capable of representing typical end-to-end configurations
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility
consisting of machines distributed across the Internet and shared by researchers conducting
experiments. Most research testbeds, however, can only provide an iconic view of the Internet
at large. Also, the underlying facility is typically overloaded due to heavy use, which
potentially affects their availability as well as accuracy (Spring et al., 2006).
Many research testbeds are based on emulation. Network emulation adds packet delays and
possibly drops packets when conducting traffic between real applications. Examples of
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation
function can be implemented at the sender or receiver side, or both. For example, in
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender
and pushed through a finite queue to simulate the time it takes to forward the packet.
Emulation testbeds can be built on a variety of computing infrastructures. For example,
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network
applications can run unmodified on a set of edge nodes and communicate via a virtual
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an
experimentation facility consisting of a compute cluster integrated and coordinated to
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab
to support research and development of cyber security applications. Some of the emulation
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006).
Other emulation testbeds may require special programmable devices. For example, the
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures
them to represent realistic network settings for experimentation and observation. ORBIT

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 223

exclude implementation details, which are often crucial to the validity of the system design.
Simulation and emulation play an important role in network design and evaluation. While
both refer to the technique of mimicking network operations in software, one major
distinction is that simulation is purely virtual, whereas emulation focuses on interactions
with real applications. A network simulation consists of software implementation of
network protocols and various network entities, such as routers and links. Network
operations (e.g., packet forwarding) are merely logical operations. As a result, the
simulation time advancement bears no direct relationship to the wall-clock time. Emulation,
on the other hand, focuses on interactions with real applications, such as distributed
network services and distributed database systems. These real applications generate traffic;
an emulator provides traffic shaping functions by adding appropriate packet delays and
sometimes dropping packets. Emulation delivers more realism as it interacts with the
physical entities. Comparatively, simulation is effective at capturing high-level design
issues, answering what-if questions, and therefore can help us understand complex system
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic,
and diverse operational conditions in simulation is known to be a substantial undertaking
(Floyd and Paxson, 2001).
Real-time simulation combines the advantages of both simulation and emulation: it can run
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of
simulating computer networks and communication systems in real time so that the
simulated network can interact with real implementations of network protocols, network
services, and distributed applications. The word "immersive" suggests that the virtual
network behavior should not be distinguishable from a physical network for conducting
network traffic. That is, simulation should capture important characteristics of the target
network and support seamless interactions with the real applications. Real-time network
simulation is based on simulation, and therefore is fast in execution and flexible at
answering what-if questions. It allows high-level mathematical models (such as stochastic
network traffic models) to be incorporated into the system with relative ease. The system
interacts with real applications and real network traffic. Not only does it allow us to study
the impact of real application traffic on the virtual network, but also supports studying the
behavior of real applications under diverse simulated network conditions.
The challenge is to keep it in real time. Since real applications operate in real time, real-time
network simulation must meet real-time requirements. Especially, the performance of a
large-scale network simulation must be able to keep up with the wall-clock time and allow
real-time interactions with potentially a lot of real applications. A real-time simulator must
also be able to characterize the behavior of a network, potentially with millions of network
entities and with realistic traffic load at commensurate scale—all in real time. To speed up
simulation, on the one hand, we need to apply parallel and distributed discrete-event
simulation techniques to harness the computing resources of parallel computers so as to
physically increase the event-processing power; on the other hand, we need to resort to
multi-resolution modeling techniques using models at high-level of abstraction to reduce
the computational demand. We also need to create a scalable emulation infrastructure,

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications
under the real-time constraint. We discuss advanced modeling and simulation techniques
supporting real-time execution. We describe the emulation infrastructure and machine
virtualization techniques supporting the network immersion of a large number of real
applications. Through case studies, we show the potentials of real-time simulation in
various areas of network science.

2. Background

2.1 Existing Network Testbeds
We classify available network testbeds into physical, emulation, and simulation testbeds. We
can further divide physical testbeds into production testbeds and research testbeds (Anderson
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments
directly on the network itself and thus with live traffic; however, they are very restrictive
allowing only certain types of experiments that do not disrupt normal network operations.
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility.
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of
commercial networking components (including router, switches, and end hosts) connected to
form an experimental network capable of representing typical end-to-end configurations
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility
consisting of machines distributed across the Internet and shared by researchers conducting
experiments. Most research testbeds, however, can only provide an iconic view of the Internet
at large. Also, the underlying facility is typically overloaded due to heavy use, which
potentially affects their availability as well as accuracy (Spring et al., 2006).
Many research testbeds are based on emulation. Network emulation adds packet delays and
possibly drops packets when conducting traffic between real applications. Examples of
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation
function can be implemented at the sender or receiver side, or both. For example, in
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender
and pushed through a finite queue to simulate the time it takes to forward the packet.
Emulation testbeds can be built on a variety of computing infrastructures. For example,
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network
applications can run unmodified on a set of edge nodes and communicate via a virtual
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an
experimentation facility consisting of a compute cluster integrated and coordinated to
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab
to support research and development of cyber security applications. Some of the emulation
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006).
Other emulation testbeds may require special programmable devices. For example, the
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures
them to represent realistic network settings for experimentation and observation. ORBIT

Parallel	and	Distributed	Computing222

exclude implementation details, which are often crucial to the validity of the system design.
Simulation and emulation play an important role in network design and evaluation. While
both refer to the technique of mimicking network operations in software, one major
distinction is that simulation is purely virtual, whereas emulation focuses on interactions
with real applications. A network simulation consists of software implementation of
network protocols and various network entities, such as routers and links. Network
operations (e.g., packet forwarding) are merely logical operations. As a result, the
simulation time advancement bears no direct relationship to the wall-clock time. Emulation,
on the other hand, focuses on interactions with real applications, such as distributed
network services and distributed database systems. These real applications generate traffic;
an emulator provides traffic shaping functions by adding appropriate packet delays and
sometimes dropping packets. Emulation delivers more realism as it interacts with the
physical entities. Comparatively, simulation is effective at capturing high-level design
issues, answering what-if questions, and therefore can help us understand complex system
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic,
and diverse operational conditions in simulation is known to be a substantial undertaking
(Floyd and Paxson, 2001).
Real-time simulation combines the advantages of both simulation and emulation: it can run
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of
simulating computer networks and communication systems in real time so that the
simulated network can interact with real implementations of network protocols, network
services, and distributed applications. The word "immersive" suggests that the virtual
network behavior should not be distinguishable from a physical network for conducting
network traffic. That is, simulation should capture important characteristics of the target
network and support seamless interactions with the real applications. Real-time network
simulation is based on simulation, and therefore is fast in execution and flexible at
answering what-if questions. It allows high-level mathematical models (such as stochastic
network traffic models) to be incorporated into the system with relative ease. The system
interacts with real applications and real network traffic. Not only does it allow us to study
the impact of real application traffic on the virtual network, but also supports studying the
behavior of real applications under diverse simulated network conditions.
The challenge is to keep it in real time. Since real applications operate in real time, real-time
network simulation must meet real-time requirements. Especially, the performance of a
large-scale network simulation must be able to keep up with the wall-clock time and allow
real-time interactions with potentially a lot of real applications. A real-time simulator must
also be able to characterize the behavior of a network, potentially with millions of network
entities and with realistic traffic load at commensurate scale—all in real time. To speed up
simulation, on the one hand, we need to apply parallel and distributed discrete-event
simulation techniques to harness the computing resources of parallel computers so as to
physically increase the event-processing power; on the other hand, we need to resort to
multi-resolution modeling techniques using models at high-level of abstraction to reduce
the computational demand. We also need to create a scalable emulation infrastructure,

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications
under the real-time constraint. We discuss advanced modeling and simulation techniques
supporting real-time execution. We describe the emulation infrastructure and machine
virtualization techniques supporting the network immersion of a large number of real
applications. Through case studies, we show the potentials of real-time simulation in
various areas of network science.

2. Background

2.1 Existing Network Testbeds
We classify available network testbeds into physical, emulation, and simulation testbeds. We
can further divide physical testbeds into production testbeds and research testbeds (Anderson
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments
directly on the network itself and thus with live traffic; however, they are very restrictive
allowing only certain types of experiments that do not disrupt normal network operations.
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility.
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of
commercial networking components (including router, switches, and end hosts) connected to
form an experimental network capable of representing typical end-to-end configurations
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility
consisting of machines distributed across the Internet and shared by researchers conducting
experiments. Most research testbeds, however, can only provide an iconic view of the Internet
at large. Also, the underlying facility is typically overloaded due to heavy use, which
potentially affects their availability as well as accuracy (Spring et al., 2006).
Many research testbeds are based on emulation. Network emulation adds packet delays and
possibly drops packets when conducting traffic between real applications. Examples of
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation
function can be implemented at the sender or receiver side, or both. For example, in
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender
and pushed through a finite queue to simulate the time it takes to forward the packet.
Emulation testbeds can be built on a variety of computing infrastructures. For example,
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network
applications can run unmodified on a set of edge nodes and communicate via a virtual
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an
experimentation facility consisting of a compute cluster integrated and coordinated to
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab
to support research and development of cyber security applications. Some of the emulation
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006).
Other emulation testbeds may require special programmable devices. For example, the
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures
them to represent realistic network settings for experimentation and observation. ORBIT

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 223

exclude implementation details, which are often crucial to the validity of the system design.
Simulation and emulation play an important role in network design and evaluation. While
both refer to the technique of mimicking network operations in software, one major
distinction is that simulation is purely virtual, whereas emulation focuses on interactions
with real applications. A network simulation consists of software implementation of
network protocols and various network entities, such as routers and links. Network
operations (e.g., packet forwarding) are merely logical operations. As a result, the
simulation time advancement bears no direct relationship to the wall-clock time. Emulation,
on the other hand, focuses on interactions with real applications, such as distributed
network services and distributed database systems. These real applications generate traffic;
an emulator provides traffic shaping functions by adding appropriate packet delays and
sometimes dropping packets. Emulation delivers more realism as it interacts with the
physical entities. Comparatively, simulation is effective at capturing high-level design
issues, answering what-if questions, and therefore can help us understand complex system
behaviors, such as multi-scale interactions, self-organizing characteristics, and emergent
phenomena. Unfortunately, simulation fairs poorly in many aspects, including notably the
absence of operational realism. Further, simulation model development is both labor-
intensive and error-prone; reproducing realistic network topology, representative traffic,
and diverse operational conditions in simulation is known to be a substantial undertaking
(Floyd and Paxson, 2001).
Real-time simulation combines the advantages of both simulation and emulation: it can run
simulation and simultaneously interact with the physical world. Real-time network simu-
lation, sometimes called immersive network simulation, can be defined as the technique of
simulating computer networks and communication systems in real time so that the
simulated network can interact with real implementations of network protocols, network
services, and distributed applications. The word "immersive" suggests that the virtual
network behavior should not be distinguishable from a physical network for conducting
network traffic. That is, simulation should capture important characteristics of the target
network and support seamless interactions with the real applications. Real-time network
simulation is based on simulation, and therefore is fast in execution and flexible at
answering what-if questions. It allows high-level mathematical models (such as stochastic
network traffic models) to be incorporated into the system with relative ease. The system
interacts with real applications and real network traffic. Not only does it allow us to study
the impact of real application traffic on the virtual network, but also supports studying the
behavior of real applications under diverse simulated network conditions.
The challenge is to keep it in real time. Since real applications operate in real time, real-time
network simulation must meet real-time requirements. Especially, the performance of a
large-scale network simulation must be able to keep up with the wall-clock time and allow
real-time interactions with potentially a lot of real applications. A real-time simulator must
also be able to characterize the behavior of a network, potentially with millions of network
entities and with realistic traffic load at commensurate scale—all in real time. To speed up
simulation, on the one hand, we need to apply parallel and distributed discrete-event
simulation techniques to harness the computing resources of parallel computers so as to
physically increase the event-processing power; on the other hand, we need to resort to
multi-resolution modeling techniques using models at high-level of abstraction to reduce
the computational demand. We also need to create a scalable emulation infrastructure,

through which real applications can interact with the simulated network and sustain high-
level emulation traffic intensity. In this chapter, we review the techniques that allow real-
time simulation to model large-scale networks and interact with many real applications
under the real-time constraint. We discuss advanced modeling and simulation techniques
supporting real-time execution. We describe the emulation infrastructure and machine
virtualization techniques supporting the network immersion of a large number of real
applications. Through case studies, we show the potentials of real-time simulation in
various areas of network science.

2. Background

2.1 Existing Network Testbeds
We classify available network testbeds into physical, emulation, and simulation testbeds. We
can further divide physical testbeds into production testbeds and research testbeds (Anderson
et al., 2005). Production testbeds, such as CAIRN and Internet2, support network experiments
directly on the network itself and thus with live traffic; however, they are very restrictive
allowing only certain types of experiments that do not disrupt normal network operations.
Comparatively, research testbeds, such as WAIL and PlanetLab, provide far better flexibility.
WAIL (Barford and Landweber, 2003) is a research testbed consisting of a large set of
commercial networking components (including router, switches, and end hosts) connected to
form an experimental network capable of representing typical end-to-end configurations
found on the Internet. PlanetLab (Peterson et al., 2002) is a well-known research facility
consisting of machines distributed across the Internet and shared by researchers conducting
experiments. Most research testbeds, however, can only provide an iconic view of the Internet
at large. Also, the underlying facility is typically overloaded due to heavy use, which
potentially affects their availability as well as accuracy (Spring et al., 2006).
Many research testbeds are based on emulation. Network emulation adds packet delays and
possibly drops packets when conducting traffic between real applications. Examples of
emulation testbeds include Ahn et al. (1995); Carson and Santay (2003); Herrscher and
Rothermel (2002); Zheng and Ni (2003) and Huang et al. (1999). The traffic modulation
function can be implemented at the sender or receiver side, or both. For example, in
dummynet (Rizzo, 1997), each virtual network link is represented as a queue with specific
bandwidth and delay constraints; packets are intercepted at the protocol stack of the sender
and pushed through a finite queue to simulate the time it takes to forward the packet.
Emulation testbeds can be built on a variety of computing infrastructures. For example,
ModelNet (Vahdat et al., 2002) extends dummynet, where a large number of network
applications can run unmodified on a set of edge nodes and communicate via a virtual
network emulated on parallel computers at the core. EmuLab (White et al., 2002) is an
experimentation facility consisting of a compute cluster integrated and coordinated to
present a diverse virtual network environment. DETER (Benzel et al., 2006) extends EmuLab
to support research and development of cyber security applications. Some of the emulation
testbeds are built for distributed environments, such as X-Bone (Touch, 2000), VIOLIN
(Jiang and Xu, 2004), VNET (Sundararaj and Dinda, 2004), and VINI (Bavier et al., 2006).
Other emulation testbeds may require special programmable devices. For example, the
Open Network Laboratory (DeHart et al., 2006) uses embedded processors and configures
them to represent realistic network settings for experimentation and observation. ORBIT

Parallel	and	Distributed	Computing224

(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that
supports experimental studies using an array of real wireless devices. The CMU Wireless
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless
devices according to signal propagation models. A major distinction between simulation
and emulation is that simulation contains only software modules representing network
protocols and network entities, such as routers and links, and mimicking network
transactions as pure logic operations to the state variables. Examples of network simulators
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network
algorithms and protocols for both wired and wireless networks. To scale up network
simulation, a number of parallel and distributed simulators have also been developed,
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al.,
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed
simulation as the enabling technique for real-time simulation.

2.2 Parallel and Distributed Simulation
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a
simulation model, parallel simulation can overcome the limitations of sequential simulation
in both execution time and memory space. The critical issue of allowing a discrete-event
simulation program to run in parallel is to maintain the causality constraint, which means
that simulation events in the system must be processed in a non-decreasing timestamp
order. This is because an event with a smaller timestamp has the potential to change the
state of the system and affect events that happen later (with larger timestamps). Most
parallel simulation adopts spatial decomposition: a model is divided into sub-models called
logical processes (LPs), each of which maintains its own local simulation clock and can run
on a different processor. For network simulation, a simulated network can be partitioned
into smaller sub-networks, each handled by a different processor.
The way how the causality constraint is enforced divides parallel simulation into
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its
event queue until it is safe to do so. That is, it must ensure that no event will arrive from
another processor with a timestamp earlier than the local simulation clock. In contrast, the
optimistic approach allows events to be processed out of order. Once a causality error is
detected—an event arrives at a logical process with a timestamp in the simulated past—the
simulation will be rolled back to a state before the error occurs. In order for the simulation to
retract and recover from an erroneous execution path, state saving and recovery
mechanisms are typically provided. The seminal work for the conservative approach is the
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra
(1979), and Bryant (1977). The CMB algorithm provides several important observations that
epitomize the fundamentals of conservative synchronization. One important concept is
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of
messages it will send to another LP. In essence, Lookahead is the amount of simulation time
that an LP can predict into the simulated future. Extensive performance studies emphasize

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al.,
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge
that can be extracted from the model. The use of different dimensions of lookahead
underscores conservative synchronization protocols. Several models have been shown to
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995).
In addition, several synchronization protocols have been developed to exploit lookahead for
general applications, such as the conditional event approach by Chandy
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE
algorithm by Groselj and Tropper (1988).
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985).
Since the optimistic approach allows events to be processed out of timestamp order, Time
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save
and later restore the state of the LP and "unsend" any messages it sends to other LPs during
an erroneous execution. Since Time Warp requires state saving during event processing, the
algorithm must be able to reclaim the memory resource; otherwise, the simulation would
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is
introduced as a timestamp lower-bound of all unprocessed or partially processed events at
any given time. It serves as a "moving commitment horizon": any message and state with a
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that
happen before GVT can be committed. Time Warp needs to overcome several problems in
order to maintain good efficiency. These problems have prompted a flood of research in
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993;
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and
alternative optimistic execution (e.g., Dickens
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993).
The jury is out on which of the two approaches is a better choice. This is because parallel
simulation performance largely depends on the characteristics of the simulation model. For
network simulation, conservative synchronization is generally preferred as it requires a
smaller memory footprint as opposed to the optimistic counterpart that generally needs
additional memory for state saving and rollback. An interesting exception is the reverse
computation technique (Carothers et al., 1999). Instead of applying state saving, one
performs reverse computation to re-create the original state when rollback happens. Recent
study shows that, with careful implementation, reverse computation achieves great memory
efficiency in simulating large networks (Yaun et al., 2003).

3. Real-Time Network Simulation

Real-time simulation combines the advantages of simulation and emulation by conducting
network simulation in real time and interacting with real applications and real network
traffic. It allows us to study the impact of real application traffic on the virtual network and
study real application behavior under a diverse set of simulated network conditions.
Specifically, real-time network simulation provides the following capabilities:

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 225

(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that
supports experimental studies using an array of real wireless devices. The CMU Wireless
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless
devices according to signal propagation models. A major distinction between simulation
and emulation is that simulation contains only software modules representing network
protocols and network entities, such as routers and links, and mimicking network
transactions as pure logic operations to the state variables. Examples of network simulators
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network
algorithms and protocols for both wired and wireless networks. To scale up network
simulation, a number of parallel and distributed simulators have also been developed,
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al.,
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed
simulation as the enabling technique for real-time simulation.

2.2 Parallel and Distributed Simulation
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a
simulation model, parallel simulation can overcome the limitations of sequential simulation
in both execution time and memory space. The critical issue of allowing a discrete-event
simulation program to run in parallel is to maintain the causality constraint, which means
that simulation events in the system must be processed in a non-decreasing timestamp
order. This is because an event with a smaller timestamp has the potential to change the
state of the system and affect events that happen later (with larger timestamps). Most
parallel simulation adopts spatial decomposition: a model is divided into sub-models called
logical processes (LPs), each of which maintains its own local simulation clock and can run
on a different processor. For network simulation, a simulated network can be partitioned
into smaller sub-networks, each handled by a different processor.
The way how the causality constraint is enforced divides parallel simulation into
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its
event queue until it is safe to do so. That is, it must ensure that no event will arrive from
another processor with a timestamp earlier than the local simulation clock. In contrast, the
optimistic approach allows events to be processed out of order. Once a causality error is
detected—an event arrives at a logical process with a timestamp in the simulated past—the
simulation will be rolled back to a state before the error occurs. In order for the simulation to
retract and recover from an erroneous execution path, state saving and recovery
mechanisms are typically provided. The seminal work for the conservative approach is the
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra
(1979), and Bryant (1977). The CMB algorithm provides several important observations that
epitomize the fundamentals of conservative synchronization. One important concept is
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of
messages it will send to another LP. In essence, Lookahead is the amount of simulation time
that an LP can predict into the simulated future. Extensive performance studies emphasize

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al.,
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge
that can be extracted from the model. The use of different dimensions of lookahead
underscores conservative synchronization protocols. Several models have been shown to
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995).
In addition, several synchronization protocols have been developed to exploit lookahead for
general applications, such as the conditional event approach by Chandy
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE
algorithm by Groselj and Tropper (1988).
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985).
Since the optimistic approach allows events to be processed out of timestamp order, Time
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save
and later restore the state of the LP and "unsend" any messages it sends to other LPs during
an erroneous execution. Since Time Warp requires state saving during event processing, the
algorithm must be able to reclaim the memory resource; otherwise, the simulation would
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is
introduced as a timestamp lower-bound of all unprocessed or partially processed events at
any given time. It serves as a "moving commitment horizon": any message and state with a
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that
happen before GVT can be committed. Time Warp needs to overcome several problems in
order to maintain good efficiency. These problems have prompted a flood of research in
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993;
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and
alternative optimistic execution (e.g., Dickens
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993).
The jury is out on which of the two approaches is a better choice. This is because parallel
simulation performance largely depends on the characteristics of the simulation model. For
network simulation, conservative synchronization is generally preferred as it requires a
smaller memory footprint as opposed to the optimistic counterpart that generally needs
additional memory for state saving and rollback. An interesting exception is the reverse
computation technique (Carothers et al., 1999). Instead of applying state saving, one
performs reverse computation to re-create the original state when rollback happens. Recent
study shows that, with careful implementation, reverse computation achieves great memory
efficiency in simulating large networks (Yaun et al., 2003).

3. Real-Time Network Simulation

Real-time simulation combines the advantages of simulation and emulation by conducting
network simulation in real time and interacting with real applications and real network
traffic. It allows us to study the impact of real application traffic on the virtual network and
study real application behavior under a diverse set of simulated network conditions.
Specifically, real-time network simulation provides the following capabilities:

Parallel	and	Distributed	Computing224

(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that
supports experimental studies using an array of real wireless devices. The CMU Wireless
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless
devices according to signal propagation models. A major distinction between simulation
and emulation is that simulation contains only software modules representing network
protocols and network entities, such as routers and links, and mimicking network
transactions as pure logic operations to the state variables. Examples of network simulators
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network
algorithms and protocols for both wired and wireless networks. To scale up network
simulation, a number of parallel and distributed simulators have also been developed,
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al.,
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed
simulation as the enabling technique for real-time simulation.

2.2 Parallel and Distributed Simulation
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a
simulation model, parallel simulation can overcome the limitations of sequential simulation
in both execution time and memory space. The critical issue of allowing a discrete-event
simulation program to run in parallel is to maintain the causality constraint, which means
that simulation events in the system must be processed in a non-decreasing timestamp
order. This is because an event with a smaller timestamp has the potential to change the
state of the system and affect events that happen later (with larger timestamps). Most
parallel simulation adopts spatial decomposition: a model is divided into sub-models called
logical processes (LPs), each of which maintains its own local simulation clock and can run
on a different processor. For network simulation, a simulated network can be partitioned
into smaller sub-networks, each handled by a different processor.
The way how the causality constraint is enforced divides parallel simulation into
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its
event queue until it is safe to do so. That is, it must ensure that no event will arrive from
another processor with a timestamp earlier than the local simulation clock. In contrast, the
optimistic approach allows events to be processed out of order. Once a causality error is
detected—an event arrives at a logical process with a timestamp in the simulated past—the
simulation will be rolled back to a state before the error occurs. In order for the simulation to
retract and recover from an erroneous execution path, state saving and recovery
mechanisms are typically provided. The seminal work for the conservative approach is the
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra
(1979), and Bryant (1977). The CMB algorithm provides several important observations that
epitomize the fundamentals of conservative synchronization. One important concept is
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of
messages it will send to another LP. In essence, Lookahead is the amount of simulation time
that an LP can predict into the simulated future. Extensive performance studies emphasize

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al.,
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge
that can be extracted from the model. The use of different dimensions of lookahead
underscores conservative synchronization protocols. Several models have been shown to
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995).
In addition, several synchronization protocols have been developed to exploit lookahead for
general applications, such as the conditional event approach by Chandy
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE
algorithm by Groselj and Tropper (1988).
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985).
Since the optimistic approach allows events to be processed out of timestamp order, Time
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save
and later restore the state of the LP and "unsend" any messages it sends to other LPs during
an erroneous execution. Since Time Warp requires state saving during event processing, the
algorithm must be able to reclaim the memory resource; otherwise, the simulation would
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is
introduced as a timestamp lower-bound of all unprocessed or partially processed events at
any given time. It serves as a "moving commitment horizon": any message and state with a
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that
happen before GVT can be committed. Time Warp needs to overcome several problems in
order to maintain good efficiency. These problems have prompted a flood of research in
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993;
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and
alternative optimistic execution (e.g., Dickens
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993).
The jury is out on which of the two approaches is a better choice. This is because parallel
simulation performance largely depends on the characteristics of the simulation model. For
network simulation, conservative synchronization is generally preferred as it requires a
smaller memory footprint as opposed to the optimistic counterpart that generally needs
additional memory for state saving and rollback. An interesting exception is the reverse
computation technique (Carothers et al., 1999). Instead of applying state saving, one
performs reverse computation to re-create the original state when rollback happens. Recent
study shows that, with careful implementation, reverse computation achieves great memory
efficiency in simulating large networks (Yaun et al., 2003).

3. Real-Time Network Simulation

Real-time simulation combines the advantages of simulation and emulation by conducting
network simulation in real time and interacting with real applications and real network
traffic. It allows us to study the impact of real application traffic on the virtual network and
study real application behavior under a diverse set of simulated network conditions.
Specifically, real-time network simulation provides the following capabilities:

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 225

(Raychaudhuri et al., 2005) is an open large-scale wireless network emulation testbed that
supports experimental studies using an array of real wireless devices. The CMU Wireless
Emulator (Judd and Steenkiste, 2004) is a wireless network testbed based on a large Field-
Programmable Gate Array (FPGA) that can modify wireless signals sent by real wireless
devices according to signal propagation models. A major distinction between simulation
and emulation is that simulation contains only software modules representing network
protocols and network entities, such as routers and links, and mimicking network
transactions as pure logic operations to the state variables. Examples of network simulators
include Barr et al. (2005); Tyan and Hou (2001) and Varga (2001). The ns-2 simulator
(Breslau et al., 2000) is one of the most popular simulators with a rich collection of network
algorithms and protocols for both wired and wireless networks. To scale up network
simulation, a number of parallel and distributed simulators have also been developed,
which include SSFNet (Cowie et al., 1999), GTNets (Riley, 2003), ROSSNet (Yaun et al.,
2003), and GloMoSim (Bajaj et al., 1999). Next, we describe parallel and distributed
simulation as the enabling technique for real-time simulation.

2.2 Parallel and Distributed Simulation
Parallel and distributed simulation, also known as parallel simulation or parallel discrete-
event simulation (PDES), is concerned with executing a single discrete-event simulation
program on parallel computers (Fujimoto, 1990). By exploiting the concurrency of a
simulation model, parallel simulation can overcome the limitations of sequential simulation
in both execution time and memory space. The critical issue of allowing a discrete-event
simulation program to run in parallel is to maintain the causality constraint, which means
that simulation events in the system must be processed in a non-decreasing timestamp
order. This is because an event with a smaller timestamp has the potential to change the
state of the system and affect events that happen later (with larger timestamps). Most
parallel simulation adopts spatial decomposition: a model is divided into sub-models called
logical processes (LPs), each of which maintains its own local simulation clock and can run
on a different processor. For network simulation, a simulated network can be partitioned
into smaller sub-networks, each handled by a different processor.
The way how the causality constraint is enforced divides parallel simulation into
conservative and optimistic approaches. The conservative approach strictly prohibits out-of-
order event execution: a processor must be blocked from processing the next event in its
event queue until it is safe to do so. That is, it must ensure that no event will arrive from
another processor with a timestamp earlier than the local simulation clock. In contrast, the
optimistic approach allows events to be processed out of order. Once a causality error is
detected—an event arrives at a logical process with a timestamp in the simulated past—the
simulation will be rolled back to a state before the error occurs. In order for the simulation to
retract and recover from an erroneous execution path, state saving and recovery
mechanisms are typically provided. The seminal work for the conservative approach is the
CMB algorithm, an asynchronous algorithm proposed independently by Chandy and Misra
(1979), and Bryant (1977). The CMB algorithm provides several important observations that
epitomize the fundamentals of conservative synchronization. One important concept is
lookahead. To avoid deadlock, an LP must determine a lower bound on the timestamp of
messages it will send to another LP. In essence, Lookahead is the amount of simulation time
that an LP can predict into the simulated future. Extensive performance studies emphasize

the importance of extrapolating lookahead from the model (Fujimoto, 1988,1989; Reed et al.,
1988). Nicol (1996) gave a classification of lookahead based on different levels of knowledge
that can be extracted from the model. The use of different dimensions of lookahead
underscores conservative synchronization protocols. Several models have been shown to
exhibit good lookahead properties, such as first-come-first-serve stochastic queuing
networks (Nicol, 1988) and continuous-time Markov chains (Nicol and Heidelberger, 1995).
In addition, several synchronization protocols have been developed to exploit lookahead for
general applications, such as the conditional event approach by Chandy
and Sherman (1989), the YAWNS protocol by Nicol (1991), the bounded lag algorithm by
Lubachevsky (1988), the distance-between-objects algorithm by Ayani (1989), and the TNE
algorithm by Groselj and Tropper (1988).
The first optimistic synchronization protocol is the Time Warp algorithm (Jefferson, 1985).
Since the optimistic approach allows events to be processed out of timestamp order, Time
Warp provides mechanisms to "roll back" erroneous event processing. An LP is able to save
and later restore the state of the LP and "unsend" any messages it sends to other LPs during
an erroneous execution. Since Time Warp requires state saving during event processing, the
algorithm must be able to reclaim the memory resource; otherwise, the simulation would
soon run out of memory. To accomplish this, the concept of global virtual time (GVT) is
introduced as a timestamp lower-bound of all unprocessed or partially processed events at
any given time. It serves as a "moving commitment horizon": any message and state with a
timestamp less than GVT can be reclaimed and any irrevocable operations (such as I/O) that
happen before GVT can be committed. Time Warp needs to overcome several problems in
order to maintain good efficiency. These problems have prompted a flood of research in
areas of state saving (e.g., Gomes et al., 1996; Lin and Lazowska, 1990; Lin et al., 1993;
Ronngren et al., 1996), rollback (e.g., Gafni, 1988; Reiher et al., 1990; West, 1988), GVT
computation (e.g., Fujimoto and Hybinette, 1997; Mattern, 1993; Samadi, 1985), memory
management (e.g., Jefferson, 1990; Lin and Preiss, 1991; Preiss and Loucks, 1995), and
alternative optimistic execution (e.g., Dickens
and Reynolds, 1990; Sokol et al., 1988; Steinman, 1991, 1993).
The jury is out on which of the two approaches is a better choice. This is because parallel
simulation performance largely depends on the characteristics of the simulation model. For
network simulation, conservative synchronization is generally preferred as it requires a
smaller memory footprint as opposed to the optimistic counterpart that generally needs
additional memory for state saving and rollback. An interesting exception is the reverse
computation technique (Carothers et al., 1999). Instead of applying state saving, one
performs reverse computation to re-create the original state when rollback happens. Recent
study shows that, with careful implementation, reverse computation achieves great memory
efficiency in simulating large networks (Yaun et al., 2003).

3. Real-Time Network Simulation

Real-time simulation combines the advantages of simulation and emulation by conducting
network simulation in real time and interacting with real applications and real network
traffic. It allows us to study the impact of real application traffic on the virtual network and
study real application behavior under a diverse set of simulated network conditions.
Specifically, real-time network simulation provides the following capabilities:

Parallel	and	Distributed	Computing226

• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the
delay for a packet being forwarded from one router to the next). Real-time network
simulation can also increase the fidelity of simulation since it can create real traffic
conditions generated by real applications. Furthermore, existing implementations,
such as routing protocols, can be incorporated directly in simulation rather than using
a separate implementation just for simulation purposes. The design and
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would
have to include costly procedures for verification and validation.

• Repeatability. Repeatability is important to both protocol development and
evaluation. In real-time network simulation, an experiment may or may not be
repeatable, depending on whether interaction with the applications is repeatable or
not. The virtual network in real-time network simulation is controlled by simulation
events, and thus can be used to produce repeatable network conditions to test real
network applications.

• Scalability. Emulation typically implements packet transmission by really directing a
packet across a physical link, although in some cases this process can be accelerated
by using special programmable devices (e.g., DeHart et al., 2006). In comparison,
network operations in real-time network simulation are handled in software; each
packet transmission involves only a few changes to the state variables in simulation
that are computationally insignificant compared to the I/O overhead. Furthermore,
since packet forwarding operations are relatively easy to parallelize, the simulated
network can be scaled up far beyond what could be supported by emulation.

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems
and a tool for evaluating new design alternatives potentially under various operating
settings. Once a simulation model is in place, it takes little effort to conduct simulation
experiments, for example, to explore a wide spectrum of design space. We can also
incorporate different analytical models in real-time network simulation. For example,
we can use low-resolution models to describe aggregate Internet traffic behavior,
which can significantly increase the scale of the network being simulated.

Most real-time network simulators are based on existing network simulators added with
emulation capabilities in order to interact with real applications. Examples include NSE
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al.,
2004). NSE is an emulation extension of the popular ns-2 simulator with support for
connecting with real applications and scheduling real-time events. ns-2 is built on a
sequential discrete-event simulation engine, which severely limits the size of the network it
is capable of simulating; for real-time simulation, this means that the size of the network has
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an
existing parallel network simulator. It is the first simulator we know that applies parallel
simulation to large-scale network emulations. MaSSF is built on our parallel simulator
DaSSF with support for the grid computing environment. Maya is an emulation extension of
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME,
which stands for Parallel Real-time Immersive network Modeling Environment. The

implementation of PRIME inherits most of our previous efforts in the development of
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine
designed for multi-protocol communication networks. DaSSF can run on most platforms,
including shared-memory multiprocessors and clusters of distributed-memory machines.
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling
large network models, including simulation of infrastructure networks, cellular systems,
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve
good performance on distributed-memory machines, PRIME adopts a hierarchical
synchronization scheme to address the discrepancy in the communication cost between
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines
the traditional synchronous and asynchronous conservative parallel simulation algorithms.
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity).
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of
real applications can interact with the network simulator that operates in real time. Traffic
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they
are "carried" on the virtual network and experience appropriate delays and losses according
to the run-time state of the simulated network.

4. Supporting Real-Time Performance

Real-time network simulation needs to resolve two important and related issues:
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be
able to interact with real applications in time. That is, the system interface must be able to
receive and respond to real-time events promptly according to proper real-time deadlines.
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the
simulation must be able to characterize the behavior of the networks, potentially with
millions of network entities and with a large amount of network traffic flows, in real time.
Failing to do so will introduce timing faults, where the simulation fails to process events
before the designated deadlines. An elevated occurrence of timing faults will cause the
simulator to become less responsive when interacting with real applications. In this section
we briefly describe the techniques we developed so far to factor out these issues.

4.1 Hybrid Traffic Modeling
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and
distributed simulation techniques to harness the computing resources of parallel computers
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low
resolution) to reduce the computational demand.
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 227

• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the
delay for a packet being forwarded from one router to the next). Real-time network
simulation can also increase the fidelity of simulation since it can create real traffic
conditions generated by real applications. Furthermore, existing implementations,
such as routing protocols, can be incorporated directly in simulation rather than using
a separate implementation just for simulation purposes. The design and
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would
have to include costly procedures for verification and validation.

• Repeatability. Repeatability is important to both protocol development and
evaluation. In real-time network simulation, an experiment may or may not be
repeatable, depending on whether interaction with the applications is repeatable or
not. The virtual network in real-time network simulation is controlled by simulation
events, and thus can be used to produce repeatable network conditions to test real
network applications.

• Scalability. Emulation typically implements packet transmission by really directing a
packet across a physical link, although in some cases this process can be accelerated
by using special programmable devices (e.g., DeHart et al., 2006). In comparison,
network operations in real-time network simulation are handled in software; each
packet transmission involves only a few changes to the state variables in simulation
that are computationally insignificant compared to the I/O overhead. Furthermore,
since packet forwarding operations are relatively easy to parallelize, the simulated
network can be scaled up far beyond what could be supported by emulation.

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems
and a tool for evaluating new design alternatives potentially under various operating
settings. Once a simulation model is in place, it takes little effort to conduct simulation
experiments, for example, to explore a wide spectrum of design space. We can also
incorporate different analytical models in real-time network simulation. For example,
we can use low-resolution models to describe aggregate Internet traffic behavior,
which can significantly increase the scale of the network being simulated.

Most real-time network simulators are based on existing network simulators added with
emulation capabilities in order to interact with real applications. Examples include NSE
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al.,
2004). NSE is an emulation extension of the popular ns-2 simulator with support for
connecting with real applications and scheduling real-time events. ns-2 is built on a
sequential discrete-event simulation engine, which severely limits the size of the network it
is capable of simulating; for real-time simulation, this means that the size of the network has
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an
existing parallel network simulator. It is the first simulator we know that applies parallel
simulation to large-scale network emulations. MaSSF is built on our parallel simulator
DaSSF with support for the grid computing environment. Maya is an emulation extension of
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME,
which stands for Parallel Real-time Immersive network Modeling Environment. The

implementation of PRIME inherits most of our previous efforts in the development of
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine
designed for multi-protocol communication networks. DaSSF can run on most platforms,
including shared-memory multiprocessors and clusters of distributed-memory machines.
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling
large network models, including simulation of infrastructure networks, cellular systems,
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve
good performance on distributed-memory machines, PRIME adopts a hierarchical
synchronization scheme to address the discrepancy in the communication cost between
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines
the traditional synchronous and asynchronous conservative parallel simulation algorithms.
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity).
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of
real applications can interact with the network simulator that operates in real time. Traffic
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they
are "carried" on the virtual network and experience appropriate delays and losses according
to the run-time state of the simulated network.

4. Supporting Real-Time Performance

Real-time network simulation needs to resolve two important and related issues:
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be
able to interact with real applications in time. That is, the system interface must be able to
receive and respond to real-time events promptly according to proper real-time deadlines.
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the
simulation must be able to characterize the behavior of the networks, potentially with
millions of network entities and with a large amount of network traffic flows, in real time.
Failing to do so will introduce timing faults, where the simulation fails to process events
before the designated deadlines. An elevated occurrence of timing faults will cause the
simulator to become less responsive when interacting with real applications. In this section
we briefly describe the techniques we developed so far to factor out these issues.

4.1 Hybrid Traffic Modeling
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and
distributed simulation techniques to harness the computing resources of parallel computers
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low
resolution) to reduce the computational demand.
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-

Parallel	and	Distributed	Computing226

• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the
delay for a packet being forwarded from one router to the next). Real-time network
simulation can also increase the fidelity of simulation since it can create real traffic
conditions generated by real applications. Furthermore, existing implementations,
such as routing protocols, can be incorporated directly in simulation rather than using
a separate implementation just for simulation purposes. The design and
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would
have to include costly procedures for verification and validation.

• Repeatability. Repeatability is important to both protocol development and
evaluation. In real-time network simulation, an experiment may or may not be
repeatable, depending on whether interaction with the applications is repeatable or
not. The virtual network in real-time network simulation is controlled by simulation
events, and thus can be used to produce repeatable network conditions to test real
network applications.

• Scalability. Emulation typically implements packet transmission by really directing a
packet across a physical link, although in some cases this process can be accelerated
by using special programmable devices (e.g., DeHart et al., 2006). In comparison,
network operations in real-time network simulation are handled in software; each
packet transmission involves only a few changes to the state variables in simulation
that are computationally insignificant compared to the I/O overhead. Furthermore,
since packet forwarding operations are relatively easy to parallelize, the simulated
network can be scaled up far beyond what could be supported by emulation.

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems
and a tool for evaluating new design alternatives potentially under various operating
settings. Once a simulation model is in place, it takes little effort to conduct simulation
experiments, for example, to explore a wide spectrum of design space. We can also
incorporate different analytical models in real-time network simulation. For example,
we can use low-resolution models to describe aggregate Internet traffic behavior,
which can significantly increase the scale of the network being simulated.

Most real-time network simulators are based on existing network simulators added with
emulation capabilities in order to interact with real applications. Examples include NSE
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al.,
2004). NSE is an emulation extension of the popular ns-2 simulator with support for
connecting with real applications and scheduling real-time events. ns-2 is built on a
sequential discrete-event simulation engine, which severely limits the size of the network it
is capable of simulating; for real-time simulation, this means that the size of the network has
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an
existing parallel network simulator. It is the first simulator we know that applies parallel
simulation to large-scale network emulations. MaSSF is built on our parallel simulator
DaSSF with support for the grid computing environment. Maya is an emulation extension of
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME,
which stands for Parallel Real-time Immersive network Modeling Environment. The

implementation of PRIME inherits most of our previous efforts in the development of
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine
designed for multi-protocol communication networks. DaSSF can run on most platforms,
including shared-memory multiprocessors and clusters of distributed-memory machines.
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling
large network models, including simulation of infrastructure networks, cellular systems,
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve
good performance on distributed-memory machines, PRIME adopts a hierarchical
synchronization scheme to address the discrepancy in the communication cost between
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines
the traditional synchronous and asynchronous conservative parallel simulation algorithms.
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity).
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of
real applications can interact with the network simulator that operates in real time. Traffic
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they
are "carried" on the virtual network and experience appropriate delays and losses according
to the run-time state of the simulated network.

4. Supporting Real-Time Performance

Real-time network simulation needs to resolve two important and related issues:
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be
able to interact with real applications in time. That is, the system interface must be able to
receive and respond to real-time events promptly according to proper real-time deadlines.
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the
simulation must be able to characterize the behavior of the networks, potentially with
millions of network entities and with a large amount of network traffic flows, in real time.
Failing to do so will introduce timing faults, where the simulation fails to process events
before the designated deadlines. An elevated occurrence of timing faults will cause the
simulator to become less responsive when interacting with real applications. In this section
we briefly describe the techniques we developed so far to factor out these issues.

4.1 Hybrid Traffic Modeling
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and
distributed simulation techniques to harness the computing resources of parallel computers
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low
resolution) to reduce the computational demand.
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 227

• Accuracy. Real-time network simulation is based on simulation; thus, it is able to ef-
ficiently capture detailed packet-level transactions in the network. This is particularly
true for simulating packet forwarding on wired infrastructure networks as it is rela-
tively straightforward to calculate the link state with sufficient accuracy (such as the
delay for a packet being forwarded from one router to the next). Real-time network
simulation can also increase the fidelity of simulation since it can create real traffic
conditions generated by real applications. Furthermore, existing implementations,
such as routing protocols, can be incorporated directly in simulation rather than using
a separate implementation just for simulation purposes. The design and
implementation of network protocols, services, and applications is complex and labor-
intensive. Maintaining code separately for simulation and for real deployment would
have to include costly procedures for verification and validation.

• Repeatability. Repeatability is important to both protocol development and
evaluation. In real-time network simulation, an experiment may or may not be
repeatable, depending on whether interaction with the applications is repeatable or
not. The virtual network in real-time network simulation is controlled by simulation
events, and thus can be used to produce repeatable network conditions to test real
network applications.

• Scalability. Emulation typically implements packet transmission by really directing a
packet across a physical link, although in some cases this process can be accelerated
by using special programmable devices (e.g., DeHart et al., 2006). In comparison,
network operations in real-time network simulation are handled in software; each
packet transmission involves only a few changes to the state variables in simulation
that are computationally insignificant compared to the I/O overhead. Furthermore,
since packet forwarding operations are relatively easy to parallelize, the simulated
network can be scaled up far beyond what could be supported by emulation.

• Flexibility. Simulation is both a tool for analyzing the performance of existing systems
and a tool for evaluating new design alternatives potentially under various operating
settings. Once a simulation model is in place, it takes little effort to conduct simulation
experiments, for example, to explore a wide spectrum of design space. We can also
incorporate different analytical models in real-time network simulation. For example,
we can use low-resolution models to describe aggregate Internet traffic behavior,
which can significantly increase the scale of the network being simulated.

Most real-time network simulators are based on existing network simulators added with
emulation capabilities in order to interact with real applications. Examples include NSE
(Fall, 1999), IP-TNE (Bradford et al., 2000), MaSSF (Liu et al., 2003), and Maya (Zhou et al.,
2004). NSE is an emulation extension of the popular ns-2 simulator with support for
connecting with real applications and scheduling real-time events. ns-2 is built on a
sequential discrete-event simulation engine, which severely limits the size of the network it
is capable of simulating; for real-time simulation, this means that the size of the network has
to be kept small to allow realtime processing. IP-TNE is an emulation extension of an
existing parallel network simulator. It is the first simulator we know that applies parallel
simulation to large-scale network emulations. MaSSF is built on our parallel simulator
DaSSF with support for the grid computing environment. Maya is an emulation extension of
a simulator for wireless mobile networks. Our real-time network simulator is called PRIME,
which stands for Parallel Real-time Immersive network Modeling Environment. The

implementation of PRIME inherits most of our previous efforts in the development of
DaSSF, a process-oriented and conservatively synchronized parallel simulation engine
designed for multi-protocol communication networks. DaSSF can run on most platforms,
including shared-memory multiprocessors and clusters of distributed-memory machines.
The DaSSF simulation engine is ultra fast and has been demonstrated capable of handling
large network models, including simulation of infrastructure networks, cellular systems,
wireless ad hoc networks, and wireless sensor networks. In order to support large-scale
simulation, PRIME applies advanced parallel simulation techniques. For example, to achieve
good performance on distributed-memory machines, PRIME adopts a hierarchical
synchronization scheme to address the discrepancy in the communication cost between
distributed-memory and shared-memory platforms (Liu and Nicol, 2001). Further, PRIME
implements the composite synchronization algorithm (Nicol and Liu, 2002), which combines
the traditional synchronous and asynchronous conservative parallel simulation algorithms.
Consequently, PRIME is able to efficiently simulate diverse network scenarios, including
those that exhibit large variability in link types (particularly with the existence of low-
latency connections), and node types (especially for those with a large degree of con-
nectivity).
PRIME extends DaSSF with emulation capabilities, where unmodified implementations of
real applications can interact with the network simulator that operates in real time. Traffic
originated from the real applications is captured by PRIME's emulation facilities and for-
warded to the simulator. The real network packets are treated as simulation events as they
are "carried" on the virtual network and experience appropriate delays and losses according
to the run-time state of the simulated network.

4. Supporting Real-Time Performance

Real-time network simulation needs to resolve two important and related issues:
responsiveness and timeliness. Responsiveness dictates that the real-time simulator must be
able to interact with real applications in time. That is, the system interface must be able to
receive and respond to real-time events promptly according to proper real-time deadlines.
Timeliness refers to the system's ability to keep up with the wall-clock time. That is, the
simulation must be able to characterize the behavior of the networks, potentially with
millions of network entities and with a large amount of network traffic flows, in real time.
Failing to do so will introduce timing faults, where the simulation fails to process events
before the designated deadlines. An elevated occurrence of timing faults will cause the
simulator to become less responsive when interacting with real applications. In this section
we briefly describe the techniques we developed so far to factor out these issues.

4.1 Hybrid Traffic Modeling
Large-scale real-time network simulation requires simulation be able to characterize the net-
work behavior in real time. To speed up simulation, on the one hand, we apply parallel and
distributed simulation techniques to harness the computing resources of parallel computers
to physically increase the event-processing power; on the other hand, we resort to multi-
resolution modeling techniques mixing models with high level of abstraction (and low
resolution) to reduce the computational demand.
Our solution to this problem is to use a hybrid network traffic model that combines a fluid-

Parallel	and	Distributed	Computing228

based analytical model using ordinary differential equations (ODEs) with the traditional
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP
congestion windows, the network queue lengths, and packet loss probabilities, as traffic
flows through a set of network queues. These network queues are augmented with
functions to handle both fluid flows and individual packets, as well as the interaction
between them. We briefly describe the functions of these equations below. A detailed
discussion of the hybrid model can be found in Liu (2006). We first define the variables in
Table 1.

() ()1 ()

() 2
i i

i
i

dW t W t t
dt R t

   (1)

() ()(1 ())l

l l l
dq t t p t C
dt

   (2)

() ln(1) ln(1)() ()l

l l
dx t x t q t
dt

 
 
 

  (3)

Table 1. Variables defined in the hybrid model.

ni number of (homogeneous) flows in fluid class i
W (t) congestion window size of fluid class i at time t
R i (t) round trip time of fluid class i at time t
Xi (t) loss rate of fluid class i at time t
q i (t) instantaneous queue length at link I at time t
p i (t) packet loss rate at link I at time t
x i (t) average queue length at link I at time t
11 (t) aggregate arrival rate at link I at time t

A (t) 4 (t)
D (t)

arrival rate of fluid class i at link I at time t
average packet arrival rate at link I at time t
departure rate of fluid class i at link I at time t

d\ (t) cumulative delay of fluid class i at link I at time t
Yl (t) cumulative loss rate of fluid class i at link I at time t

h first network queue (traversed by flow class i)
fn last network queue (traversed by flow class i)

g i (l) next queue of I for fluid class i
b i (l) predecessor queue of I for fluid class i

al propagation delay of link I
Ci bandwidth of link I
Ni set of fluid classes passing through link I

qa, qb, Px RED queue parameters
a weight used for RED EWMA calculation

 one-way path propagation delay for fluid class i

0 0
()

1

a
a

a b
b a

x q
x qp x px q x q
q q


     


otherwise

 (4)

 1
()()

()
f i i
i

i

nW tA t
R t

 (5)

 () () ()ig l l
i l iA t a D t  (6)

 () () ()
l

l l
l i P

i N
t A t A t



  (7)

 () /f l lt t q t C  (8)

()(1 ()) if ()(1 ())
() ()

()

l
i l l l l

l l
i f i

l
l

A t p t t p t C
D t A t C

t





   
 



otherwise
 (9)

1

() () ()

() if
()

()()
i i i

l

li
l f

i l
b l b l b l

l

q t l f
C

d t
q td t a a
C

  
   


otherwise
 (10)

1

() ()

() () if
()

() () ()
i i

l
i li

l f l
b l b l i l

A t p t l f
t

t a A t p t



     otherwise

 (11)

 () ()
n

i
i f i iR t d t     (12)

 () () /
n

i
i f i it t n    (13)

Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a
TCP congestion window during the congestion avoidance stage. The window size and the
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows,
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the
departure rate at the predecessor router only postponed by the link's propagation delay, as
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows.
The total arrival rate, together with the loss probability and the link's bandwidth, are used to
determine the instantaneous queue length in Equation (2). An average queue length is then
calculated in Equation (3), which is derived from the Exponential Weighted Moving
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue
management. The calculated average queue length contributes to the loss probability as

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 229

based analytical model using ordinary differential equations (ODEs) with the traditional
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP
congestion windows, the network queue lengths, and packet loss probabilities, as traffic
flows through a set of network queues. These network queues are augmented with
functions to handle both fluid flows and individual packets, as well as the interaction
between them. We briefly describe the functions of these equations below. A detailed
discussion of the hybrid model can be found in Liu (2006). We first define the variables in
Table 1.

() ()1 ()

() 2
i i

i
i

dW t W t t
dt R t

   (1)

() ()(1 ())l

l l l
dq t t p t C
dt

   (2)

() ln(1) ln(1)() ()l

l l
dx t x t q t
dt

 
 
 

  (3)

Table 1. Variables defined in the hybrid model.

ni number of (homogeneous) flows in fluid class i
W (t) congestion window size of fluid class i at time t
R i (t) round trip time of fluid class i at time t
Xi (t) loss rate of fluid class i at time t
q i (t) instantaneous queue length at link I at time t
p i (t) packet loss rate at link I at time t
x i (t) average queue length at link I at time t
11 (t) aggregate arrival rate at link I at time t

A (t) 4 (t)
D (t)

arrival rate of fluid class i at link I at time t
average packet arrival rate at link I at time t
departure rate of fluid class i at link I at time t

d\ (t) cumulative delay of fluid class i at link I at time t
Yl (t) cumulative loss rate of fluid class i at link I at time t

h first network queue (traversed by flow class i)
fn last network queue (traversed by flow class i)

g i (l) next queue of I for fluid class i
b i (l) predecessor queue of I for fluid class i

al propagation delay of link I
Ci bandwidth of link I
Ni set of fluid classes passing through link I

qa, qb, Px RED queue parameters
a weight used for RED EWMA calculation

 one-way path propagation delay for fluid class i

0 0
()

1

a
a

a b
b a

x q
x qp x px q x q
q q


     


otherwise

 (4)

 1
()()

()
f i i
i

i

nW tA t
R t

 (5)

 () () ()ig l l
i l iA t a D t  (6)

 () () ()
l

l l
l i P

i N
t A t A t



  (7)

 () /f l lt t q t C  (8)

()(1 ()) if ()(1 ())
() ()

()

l
i l l l l

l l
i f i

l
l

A t p t t p t C
D t A t C

t





   
 



otherwise
 (9)

1

() () ()

() if
()

()()
i i i

l

li
l f

i l
b l b l b l

l

q t l f
C

d t
q td t a a
C

  
   


otherwise
 (10)

1

() ()

() () if
()

() () ()
i i

l
i li

l f l
b l b l i l

A t p t l f
t

t a A t p t



     otherwise

 (11)

 () ()
n

i
i f i iR t d t     (12)

 () () /
n

i
i f i it t n    (13)

Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a
TCP congestion window during the congestion avoidance stage. The window size and the
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows,
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the
departure rate at the predecessor router only postponed by the link's propagation delay, as
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows.
The total arrival rate, together with the loss probability and the link's bandwidth, are used to
determine the instantaneous queue length in Equation (2). An average queue length is then
calculated in Equation (3), which is derived from the Exponential Weighted Moving
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue
management. The calculated average queue length contributes to the loss probability as

Parallel	and	Distributed	Computing228

based analytical model using ordinary differential equations (ODEs) with the traditional
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP
congestion windows, the network queue lengths, and packet loss probabilities, as traffic
flows through a set of network queues. These network queues are augmented with
functions to handle both fluid flows and individual packets, as well as the interaction
between them. We briefly describe the functions of these equations below. A detailed
discussion of the hybrid model can be found in Liu (2006). We first define the variables in
Table 1.

() ()1 ()

() 2
i i

i
i

dW t W t t
dt R t

   (1)

() ()(1 ())l

l l l
dq t t p t C
dt

   (2)

() ln(1) ln(1)() ()l

l l
dx t x t q t
dt

 
 
 

  (3)

Table 1. Variables defined in the hybrid model.

ni number of (homogeneous) flows in fluid class i
W (t) congestion window size of fluid class i at time t
R i (t) round trip time of fluid class i at time t
Xi (t) loss rate of fluid class i at time t
q i (t) instantaneous queue length at link I at time t
p i (t) packet loss rate at link I at time t
x i (t) average queue length at link I at time t
11 (t) aggregate arrival rate at link I at time t

A (t) 4 (t)
D (t)

arrival rate of fluid class i at link I at time t
average packet arrival rate at link I at time t
departure rate of fluid class i at link I at time t

d\ (t) cumulative delay of fluid class i at link I at time t
Yl (t) cumulative loss rate of fluid class i at link I at time t

h first network queue (traversed by flow class i)
fn last network queue (traversed by flow class i)

g i (l) next queue of I for fluid class i
b i (l) predecessor queue of I for fluid class i

al propagation delay of link I
Ci bandwidth of link I
Ni set of fluid classes passing through link I

qa, qb, Px RED queue parameters
a weight used for RED EWMA calculation

 one-way path propagation delay for fluid class i

0 0
()

1

a
a

a b
b a

x q
x qp x px q x q
q q


     


otherwise

 (4)

 1
()()

()
f i i
i

i

nW tA t
R t

 (5)

 () () ()ig l l
i l iA t a D t  (6)

 () () ()
l

l l
l i P

i N
t A t A t



  (7)

 () /f l lt t q t C  (8)

()(1 ()) if ()(1 ())
() ()

()

l
i l l l l

l l
i f i

l
l

A t p t t p t C
D t A t C

t





   
 



otherwise
 (9)

1

() () ()

() if
()

()()
i i i

l

li
l f

i l
b l b l b l

l

q t l f
C

d t
q td t a a
C

  
   


otherwise
 (10)

1

() ()

() () if
()

() () ()
i i

l
i li

l f l
b l b l i l

A t p t l f
t

t a A t p t



     otherwise

 (11)

 () ()
n

i
i f i iR t d t     (12)

 () () /
n

i
i f i it t n    (13)

Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a
TCP congestion window during the congestion avoidance stage. The window size and the
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows,
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the
departure rate at the predecessor router only postponed by the link's propagation delay, as
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows.
The total arrival rate, together with the loss probability and the link's bandwidth, are used to
determine the instantaneous queue length in Equation (2). An average queue length is then
calculated in Equation (3), which is derived from the Exponential Weighted Moving
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue
management. The calculated average queue length contributes to the loss probability as

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 229

based analytical model using ordinary differential equations (ODEs) with the traditional
packet-oriented discrete-event simulation (Liu, 2006). The model extends the fluid model by
Liu et al. (2004) where ODEs are used to predict the mean behavior of the dynamic TCP
congestion windows, the network queue lengths, and packet loss probabilities, as traffic
flows through a set of network queues. These network queues are augmented with
functions to handle both fluid flows and individual packets, as well as the interaction
between them. We briefly describe the functions of these equations below. A detailed
discussion of the hybrid model can be found in Liu (2006). We first define the variables in
Table 1.

() ()1 ()

() 2
i i

i
i

dW t W t t
dt R t

   (1)

() ()(1 ())l

l l l
dq t t p t C
dt

   (2)

() ln(1) ln(1)() ()l

l l
dx t x t q t
dt

 
 
 

  (3)

Table 1. Variables defined in the hybrid model.

ni number of (homogeneous) flows in fluid class i
W (t) congestion window size of fluid class i at time t
R i (t) round trip time of fluid class i at time t
Xi (t) loss rate of fluid class i at time t
q i (t) instantaneous queue length at link I at time t
p i (t) packet loss rate at link I at time t
x i (t) average queue length at link I at time t
11 (t) aggregate arrival rate at link I at time t

A (t) 4 (t)
D (t)

arrival rate of fluid class i at link I at time t
average packet arrival rate at link I at time t
departure rate of fluid class i at link I at time t

d\ (t) cumulative delay of fluid class i at link I at time t
Yl (t) cumulative loss rate of fluid class i at link I at time t

h first network queue (traversed by flow class i)
fn last network queue (traversed by flow class i)

g i (l) next queue of I for fluid class i
b i (l) predecessor queue of I for fluid class i

al propagation delay of link I
Ci bandwidth of link I
Ni set of fluid classes passing through link I

qa, qb, Px RED queue parameters
a weight used for RED EWMA calculation

 one-way path propagation delay for fluid class i

0 0
()

1

a
a

a b
b a

x q
x qp x px q x q
q q


     


otherwise

 (4)

 1
()()

()
f i i
i

i

nW tA t
R t

 (5)

 () () ()ig l l
i l iA t a D t  (6)

 () () ()
l

l l
l i P

i N
t A t A t



  (7)

 () /f l lt t q t C  (8)

()(1 ()) if ()(1 ())
() ()

()

l
i l l l l

l l
i f i

l
l

A t p t t p t C
D t A t C

t





   
 



otherwise
 (9)

1

() () ()

() if
()

()()
i i i

l

li
l f

i l
b l b l b l

l

q t l f
C

d t
q td t a a
C

  
   


otherwise
 (10)

1

() ()

() () if
()

() () ()
i i

l
i li

l f l
b l b l i l

A t p t l f
t

t a A t p t



     otherwise

 (11)

 () ()
n

i
i f i iR t d t     (12)

 () () /
n

i
i f i it t n    (13)

Equation (1) models the additive-increase-multiplicative-decrease (AIMD) behavior of a
TCP congestion window during the congestion avoidance stage. The window size and the
round-trip time determine the arrival rate at the first router in Equation (5). For UDP flows,
we use a constant send rate instead. The arrival rate at subsequent routers is the same as the
departure rate at the predecessor router only postponed by the link's propagation delay, as
prescribed in Equation (6). Equation (7) sums up the arrivals of both fluid and packet flows.
The total arrival rate, together with the loss probability and the link's bandwidth, are used to
determine the instantaneous queue length in Equation (2). An average queue length is then
calculated in Equation (3), which is derived from the Exponential Weighted Moving
Average (EWMA) calculation in network queues with RED (Random Early Detection) queue
management. The calculated average queue length contributes to the loss probability as

Parallel	and	Distributed	Computing230

dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be
calculated directly from projected buffer overflows. Equation (9) describes the departure
rate as a function of the arrival rate postponed by the queuing delay calculated using
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the
beginning when the segment of flow is originated from the traffic source. The cumulative
delay and loss are used to calculate the round-trip time and the total loss rate in Equations
(12) and (13), which in turn are used to calculate the congestion window size.
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can
achieve significant performance improvement, in certain cases, over three orders of
magnitude. The hybrid model can also be parallelized to achieve even greater performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
um

be
r o
f P

ac
ke
ts

Time

100% fluid flows
100% packet flows
50% fluid flows and 50% packet flows

Fig. 1. Instantaneous queue length.

Fig. 2. Speedup over packet simulation.

To illustrate the potential of this approach, here we examine the accuracy and performance
of the hybrid model using a simple dumbbell network model. In the experiment, the

dumbbell network contains two routers in the middle connecting N server nodes on one
side and N client nodes on the other side. Each server node directs M simultaneous TCP
flows to the corresponding client node. All links are set with a propagation delay of 5 ms.
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the
connections are established at time 10 and the rest at time 50. We set the bandwidth of the
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over
a 10 Mb/s link.
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from
the fluid-based simulation matches well with that of the packet-oriented simulation in terms
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results.
To show the overall performance benefit of our hybrid approach, we use the same dumbbell
topology but change the parameters, such as the bandwidth at the bottleneck link, so that
the cost of the simulation may increase proportionally as we increase the number of TCP
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each
pair of client-server nodes. We set the bandwidth of the link between each client or server
node and its adjacent router to be (10 x M) Mb/s. The network queues at both ends of the
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M
× N) Mb/s. The corresponding network queues in the two routers have a buffer size of
(M × N) MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2
shows the speedup of the fluid model over the pure packet simulation with different
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more
details about these performance improvement techniques). Here we set N — 100 and M —
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective
packet-event rate actually reaches over 566 million packet-event per second.
We further extend the hybrid model to represent network background traffic (Li and Liu,
2009a). In real-time network simulation, we can make a distinction between foreground
traffic, which is generated by the real applications we intend to study with high fidelity, and
background traffic, which represents the bulk of the network traffic that is of secondary
interest and does not necessarily require significant accuracy. Nevertheless, background
traffic interferes with foreground traffic as they both compete for network resources, and
thus determines (and also is determined by) the behavior of network applications under
investigation (Vishwanath and Vahdat, 2008).
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to
describe the flow durations. To enable bi-directional flows, we assume that the forwarding
path of the TCP flows in the fluid class i (from the source to the destination) consists of n
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .

For subsequent queues except
1r , i.e.,  2 2,..., , ,...,n ml f f r r , we use Equation (6) to

calculate the arrival rate from the departure rate at the predecessor queue. For queue
1r (the

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 231

dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be
calculated directly from projected buffer overflows. Equation (9) describes the departure
rate as a function of the arrival rate postponed by the queuing delay calculated using
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the
beginning when the segment of flow is originated from the traffic source. The cumulative
delay and loss are used to calculate the round-trip time and the total loss rate in Equations
(12) and (13), which in turn are used to calculate the congestion window size.
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can
achieve significant performance improvement, in certain cases, over three orders of
magnitude. The hybrid model can also be parallelized to achieve even greater performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
um

be
r o
f P

ac
ke
ts

Time

100% fluid flows
100% packet flows
50% fluid flows and 50% packet flows

Fig. 1. Instantaneous queue length.

Fig. 2. Speedup over packet simulation.

To illustrate the potential of this approach, here we examine the accuracy and performance
of the hybrid model using a simple dumbbell network model. In the experiment, the

dumbbell network contains two routers in the middle connecting N server nodes on one
side and N client nodes on the other side. Each server node directs M simultaneous TCP
flows to the corresponding client node. All links are set with a propagation delay of 5 ms.
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the
connections are established at time 10 and the rest at time 50. We set the bandwidth of the
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over
a 10 Mb/s link.
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from
the fluid-based simulation matches well with that of the packet-oriented simulation in terms
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results.
To show the overall performance benefit of our hybrid approach, we use the same dumbbell
topology but change the parameters, such as the bandwidth at the bottleneck link, so that
the cost of the simulation may increase proportionally as we increase the number of TCP
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each
pair of client-server nodes. We set the bandwidth of the link between each client or server
node and its adjacent router to be (10 x M) Mb/s. The network queues at both ends of the
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M
× N) Mb/s. The corresponding network queues in the two routers have a buffer size of
(M × N) MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2
shows the speedup of the fluid model over the pure packet simulation with different
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more
details about these performance improvement techniques). Here we set N — 100 and M —
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective
packet-event rate actually reaches over 566 million packet-event per second.
We further extend the hybrid model to represent network background traffic (Li and Liu,
2009a). In real-time network simulation, we can make a distinction between foreground
traffic, which is generated by the real applications we intend to study with high fidelity, and
background traffic, which represents the bulk of the network traffic that is of secondary
interest and does not necessarily require significant accuracy. Nevertheless, background
traffic interferes with foreground traffic as they both compete for network resources, and
thus determines (and also is determined by) the behavior of network applications under
investigation (Vishwanath and Vahdat, 2008).
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to
describe the flow durations. To enable bi-directional flows, we assume that the forwarding
path of the TCP flows in the fluid class i (from the source to the destination) consists of n
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .

For subsequent queues except
1r , i.e.,  2 2,..., , ,...,n ml f f r r , we use Equation (6) to

calculate the arrival rate from the departure rate at the predecessor queue. For queue
1r (the

Parallel	and	Distributed	Computing230

dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be
calculated directly from projected buffer overflows. Equation (9) describes the departure
rate as a function of the arrival rate postponed by the queuing delay calculated using
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the
beginning when the segment of flow is originated from the traffic source. The cumulative
delay and loss are used to calculate the round-trip time and the total loss rate in Equations
(12) and (13), which in turn are used to calculate the congestion window size.
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can
achieve significant performance improvement, in certain cases, over three orders of
magnitude. The hybrid model can also be parallelized to achieve even greater performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
um

be
r o
f P

ac
ke
ts

Time

100% fluid flows
100% packet flows
50% fluid flows and 50% packet flows

Fig. 1. Instantaneous queue length.

Fig. 2. Speedup over packet simulation.

To illustrate the potential of this approach, here we examine the accuracy and performance
of the hybrid model using a simple dumbbell network model. In the experiment, the

dumbbell network contains two routers in the middle connecting N server nodes on one
side and N client nodes on the other side. Each server node directs M simultaneous TCP
flows to the corresponding client node. All links are set with a propagation delay of 5 ms.
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the
connections are established at time 10 and the rest at time 50. We set the bandwidth of the
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over
a 10 Mb/s link.
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from
the fluid-based simulation matches well with that of the packet-oriented simulation in terms
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results.
To show the overall performance benefit of our hybrid approach, we use the same dumbbell
topology but change the parameters, such as the bandwidth at the bottleneck link, so that
the cost of the simulation may increase proportionally as we increase the number of TCP
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each
pair of client-server nodes. We set the bandwidth of the link between each client or server
node and its adjacent router to be (10 x M) Mb/s. The network queues at both ends of the
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M
× N) Mb/s. The corresponding network queues in the two routers have a buffer size of
(M × N) MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2
shows the speedup of the fluid model over the pure packet simulation with different
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more
details about these performance improvement techniques). Here we set N — 100 and M —
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective
packet-event rate actually reaches over 566 million packet-event per second.
We further extend the hybrid model to represent network background traffic (Li and Liu,
2009a). In real-time network simulation, we can make a distinction between foreground
traffic, which is generated by the real applications we intend to study with high fidelity, and
background traffic, which represents the bulk of the network traffic that is of secondary
interest and does not necessarily require significant accuracy. Nevertheless, background
traffic interferes with foreground traffic as they both compete for network resources, and
thus determines (and also is determined by) the behavior of network applications under
investigation (Vishwanath and Vahdat, 2008).
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to
describe the flow durations. To enable bi-directional flows, we assume that the forwarding
path of the TCP flows in the fluid class i (from the source to the destination) consists of n
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .

For subsequent queues except
1r , i.e.,  2 2,..., , ,...,n ml f f r r , we use Equation (6) to

calculate the arrival rate from the departure rate at the predecessor queue. For queue
1r (the

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 231

dictated by the RED policy in Equation (4). The loss probability for drop-tail queues can be
calculated directly from projected buffer overflows. Equation (9) describes the departure
rate as a function of the arrival rate postponed by the queuing delay calculated using
Equation (8). Equations (10) and (11) calculate the cumulative delay and loss since the
beginning when the segment of flow is originated from the traffic source. The cumulative
delay and loss are used to calculate the round-trip time and the total loss rate in Equations
(12) and (13), which in turn are used to calculate the congestion window size.
With proper performance optimization (Liu and Li, 2008), this hybrid traffic model can
achieve significant performance improvement, in certain cases, over three orders of
magnitude. The hybrid model can also be parallelized to achieve even greater performance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

N
um

be
r o
f P

ac
ke
ts

Time

100% fluid flows
100% packet flows
50% fluid flows and 50% packet flows

Fig. 1. Instantaneous queue length.

Fig. 2. Speedup over packet simulation.

To illustrate the potential of this approach, here we examine the accuracy and performance
of the hybrid model using a simple dumbbell network model. In the experiment, the

dumbbell network contains two routers in the middle connecting N server nodes on one
side and N client nodes on the other side. Each server node directs M simultaneous TCP
flows to the corresponding client node. All links are set with a propagation delay of 5 ms.
The experiments were run sequentially on an Apple Mac Pro with two 3 GHz dual-core
Intel Xeon processors and 9 GB of memory. We first set N — 10 and M — 30. Half of the
connections are established at time 10 and the rest at time 50. We set the bandwidth of the
bottleneck link to be 20 Mb/s. Each server or client node connects to its adjacent router over
a 10 Mb/s link.
Figure 1 compares the instantaneous queues lengths at the bottleneck router as predicted by
fluid-based and packet-oriented simulations, as well as a hybrid of the two. The result from
the fluid-based simulation matches well with that of the packet-oriented simulation in terms
of averaged behavior. The hybrid model (with 50% fluid flows and 50% packet flows) pro-
duces similar results.
To show the overall performance benefit of our hybrid approach, we use the same dumbbell
topology but change the parameters, such as the bandwidth at the bottleneck link, so that
the cost of the simulation may increase proportionally as we increase the number of TCP
sessions. Specifically, we vary M, the number of simultaneous TCP sessions between each
pair of client-server nodes. We set the bandwidth of the link between each client or server
node and its adjacent router to be (10 x M) Mb/s. The network queues at both ends of the
link has a buffer size of M MB. The link between the two routers has a bandwidth of (10 ×M
× N) Mb/s. The corresponding network queues in the two routers have a buffer size of
(M × N) MB. All TCP sessions start at time 0 and the experiments are run for 100 simulated
seconds. The rest of the parameters are the same as in the previous experiment. Figure 2
shows the speedup of the fluid model over the pure packet simulation with different
performance improvement techniques enabled one at a time (see Liu and Li, 2008 for more
details about these performance improvement techniques). Here we set N — 100 and M —
{5,10,20,40}. We see that, as we turn on all improving techniques in the case of M — 40, we
can obtain a speedup as much as 3,057 over packet-oriented simulation. The effective
packet-event rate actually reaches over 566 million packet-event per second.
We further extend the hybrid model to represent network background traffic (Li and Liu,
2009a). In real-time network simulation, we can make a distinction between foreground
traffic, which is generated by the real applications we intend to study with high fidelity, and
background traffic, which represents the bulk of the network traffic that is of secondary
interest and does not necessarily require significant accuracy. Nevertheless, background
traffic interferes with foreground traffic as they both compete for network resources, and
thus determines (and also is determined by) the behavior of network applications under
investigation (Vishwanath and Vahdat, 2008).
Our enhanced model enables bi-directional flows and uses heavy-tail distributions to
describe the flow durations. To enable bi-directional flows, we assume that the forwarding
path of the TCP flows in the fluid class i (from the source to the destination) consists of n
queues: 1 2, ,..., nf f f , and the reverse path (from the destination to the source) consists of m

queues: 1 2, ,..., mr r r . We use Equation (5) to calculate the arrival rate at the first queue f1 .

For subsequent queues except
1r , i.e.,  2 2,..., , ,...,n ml f f r r , we use Equation (6) to

calculate the arrival rate from the departure rate at the predecessor queue. For queue
1r (the

Parallel	and	Distributed	Computing232

first queue on the reverse path), we have:

 1 () () / ,nfr
i i i iA t D t  (14)

where α1 is the average ACK packet size, and βi is the average data packet size in fluid class
i. This equation represents the conversion from the data flows on the forwarding path to the
corresponding ACK flows on the reverse path.
To capture traffic burstness, we use the Poisson Pareto Burst process (PPBP) model to
predict the aggregate Internet traffic. PPBP is a process based on multiple overlapping
bursts, with Poisson arrival and burst lengths following a heavy-tail distribution (Zukerman
et al., 2003). We schedule TCP session arrivals using the exponential distribution with a
mean arrival rate μ. The durations of the TCP sessions d are independent and identically
distributed Pareto random variables with parameters δ> 0 and 1 < γ < 2:

(/) if

()
1r

x x
P d x

  
  

 otherwise
 (15)

With the Pareto distributed flow duration, we can regenerate the long range dependence
(LRD) characteristic of realistic background traffic in our model, which can be evaluated by
a parameter called the Hurst parameter:

3 .

2
H 
 (16)

When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar. In our fluid
model, we replace the constant number of homogeneous fluid flows ni with the PPBP
process, N i(t) . Specifically, we redefine the equations for calculating the arrival rate at the
first queue f1 (Equation 5), and the end-to-end packet loss rate (Equation 13) as follows:

 1
() ()()

()
f i i
i

i

N t W tA t
R t

 (17)

 () () / ()
m

i
i r it t N t  (18)

Figure 3 shows the result of an experiment using the same dumbbell model measuring the
number of packets per second sent over time for both packet simulation (left plots) and the
fluid background traffic model (right plots). From top down we progressively decreasing
the sampling time scale, while maintaining the number of samples to be 300. The starting
time scale is 1 second; each subsequent plot is obtained from the previous one by
concentrating on a randomly chosen sub-interval with a length being one tenth of the
previous one.
That is, the time resolution is increased by a factor of 10. To a large extent, the results from

the packet-oriented simulation and from the fluid-based simulation are similar, except for
the 10 ms timescale (bottom plots). The fluid model does not capture packet details at sub-
RTT level; the RTT for the dumbbell model is at least 10 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Fig. 3. Traffic burstness.

4.2 Scalable Emulation Infrastructure
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications,
must be able to embed real applications easily in the real-time simulation. There are several
ways to incorporate real applications into a simulation environment, the decision of which
to use largely depends on where the interactions take place. Several techniques exist that
allow running unmodified software, which include using packet capturing techniques (such
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary
executables. In certain cases, moderate software modifications are necessary to allow
efficient direct execution.
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a
gateway that bridges traffic between the physical entities and the simulated network (see
Figure 4). Client machines run real applications. They establish connection to the simulation
gateway as VPN clients (by running an automatically generated VPN configuration scripts).
Traffic generated by the applications running on the client machines and destined for the
virtual network is directed by the emulation infrastructure to the real-time network
simulator. We use an example to show how it works. Suppose two client machines are
connected to the simulation gateway (not necessarily the same one) and want to
communicate with each other. One client is assigned with the IP address 10.0.0.14 and
the other with 10.0.1.2. Packets

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 233

first queue on the reverse path), we have:

 1 () () / ,nfr
i i i iA t D t  (14)

where α1 is the average ACK packet size, and βi is the average data packet size in fluid class
i. This equation represents the conversion from the data flows on the forwarding path to the
corresponding ACK flows on the reverse path.
To capture traffic burstness, we use the Poisson Pareto Burst process (PPBP) model to
predict the aggregate Internet traffic. PPBP is a process based on multiple overlapping
bursts, with Poisson arrival and burst lengths following a heavy-tail distribution (Zukerman
et al., 2003). We schedule TCP session arrivals using the exponential distribution with a
mean arrival rate μ. The durations of the TCP sessions d are independent and identically
distributed Pareto random variables with parameters δ> 0 and 1 < γ < 2:

(/) if

()
1r

x x
P d x

  
  

 otherwise
 (15)

With the Pareto distributed flow duration, we can regenerate the long range dependence
(LRD) characteristic of realistic background traffic in our model, which can be evaluated by
a parameter called the Hurst parameter:

3 .

2
H 
 (16)

When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar. In our fluid
model, we replace the constant number of homogeneous fluid flows ni with the PPBP
process, N i(t) . Specifically, we redefine the equations for calculating the arrival rate at the
first queue f1 (Equation 5), and the end-to-end packet loss rate (Equation 13) as follows:

 1
() ()()

()
f i i
i

i

N t W tA t
R t

 (17)

 () () / ()
m

i
i r it t N t  (18)

Figure 3 shows the result of an experiment using the same dumbbell model measuring the
number of packets per second sent over time for both packet simulation (left plots) and the
fluid background traffic model (right plots). From top down we progressively decreasing
the sampling time scale, while maintaining the number of samples to be 300. The starting
time scale is 1 second; each subsequent plot is obtained from the previous one by
concentrating on a randomly chosen sub-interval with a length being one tenth of the
previous one.
That is, the time resolution is increased by a factor of 10. To a large extent, the results from

the packet-oriented simulation and from the fluid-based simulation are similar, except for
the 10 ms timescale (bottom plots). The fluid model does not capture packet details at sub-
RTT level; the RTT for the dumbbell model is at least 10 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Fig. 3. Traffic burstness.

4.2 Scalable Emulation Infrastructure
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications,
must be able to embed real applications easily in the real-time simulation. There are several
ways to incorporate real applications into a simulation environment, the decision of which
to use largely depends on where the interactions take place. Several techniques exist that
allow running unmodified software, which include using packet capturing techniques (such
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary
executables. In certain cases, moderate software modifications are necessary to allow
efficient direct execution.
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a
gateway that bridges traffic between the physical entities and the simulated network (see
Figure 4). Client machines run real applications. They establish connection to the simulation
gateway as VPN clients (by running an automatically generated VPN configuration scripts).
Traffic generated by the applications running on the client machines and destined for the
virtual network is directed by the emulation infrastructure to the real-time network
simulator. We use an example to show how it works. Suppose two client machines are
connected to the simulation gateway (not necessarily the same one) and want to
communicate with each other. One client is assigned with the IP address 10.0.0.14 and
the other with 10.0.1.2. Packets

Parallel	and	Distributed	Computing232

first queue on the reverse path), we have:

 1 () () / ,nfr
i i i iA t D t  (14)

where α1 is the average ACK packet size, and βi is the average data packet size in fluid class
i. This equation represents the conversion from the data flows on the forwarding path to the
corresponding ACK flows on the reverse path.
To capture traffic burstness, we use the Poisson Pareto Burst process (PPBP) model to
predict the aggregate Internet traffic. PPBP is a process based on multiple overlapping
bursts, with Poisson arrival and burst lengths following a heavy-tail distribution (Zukerman
et al., 2003). We schedule TCP session arrivals using the exponential distribution with a
mean arrival rate μ. The durations of the TCP sessions d are independent and identically
distributed Pareto random variables with parameters δ> 0 and 1 < γ < 2:

(/) if

()
1r

x x
P d x

  
  

 otherwise
 (15)

With the Pareto distributed flow duration, we can regenerate the long range dependence
(LRD) characteristic of realistic background traffic in our model, which can be evaluated by
a parameter called the Hurst parameter:

3 .

2
H 
 (16)

When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar. In our fluid
model, we replace the constant number of homogeneous fluid flows ni with the PPBP
process, N i(t) . Specifically, we redefine the equations for calculating the arrival rate at the
first queue f1 (Equation 5), and the end-to-end packet loss rate (Equation 13) as follows:

 1
() ()()

()
f i i
i

i

N t W tA t
R t

 (17)

 () () / ()
m

i
i r it t N t  (18)

Figure 3 shows the result of an experiment using the same dumbbell model measuring the
number of packets per second sent over time for both packet simulation (left plots) and the
fluid background traffic model (right plots). From top down we progressively decreasing
the sampling time scale, while maintaining the number of samples to be 300. The starting
time scale is 1 second; each subsequent plot is obtained from the previous one by
concentrating on a randomly chosen sub-interval with a length being one tenth of the
previous one.
That is, the time resolution is increased by a factor of 10. To a large extent, the results from

the packet-oriented simulation and from the fluid-based simulation are similar, except for
the 10 ms timescale (bottom plots). The fluid model does not capture packet details at sub-
RTT level; the RTT for the dumbbell model is at least 10 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Fig. 3. Traffic burstness.

4.2 Scalable Emulation Infrastructure
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications,
must be able to embed real applications easily in the real-time simulation. There are several
ways to incorporate real applications into a simulation environment, the decision of which
to use largely depends on where the interactions take place. Several techniques exist that
allow running unmodified software, which include using packet capturing techniques (such
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary
executables. In certain cases, moderate software modifications are necessary to allow
efficient direct execution.
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a
gateway that bridges traffic between the physical entities and the simulated network (see
Figure 4). Client machines run real applications. They establish connection to the simulation
gateway as VPN clients (by running an automatically generated VPN configuration scripts).
Traffic generated by the applications running on the client machines and destined for the
virtual network is directed by the emulation infrastructure to the real-time network
simulator. We use an example to show how it works. Suppose two client machines are
connected to the simulation gateway (not necessarily the same one) and want to
communicate with each other. One client is assigned with the IP address 10.0.0.14 and
the other with 10.0.1.2. Packets

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 233

first queue on the reverse path), we have:

 1 () () / ,nfr
i i i iA t D t  (14)

where α1 is the average ACK packet size, and βi is the average data packet size in fluid class
i. This equation represents the conversion from the data flows on the forwarding path to the
corresponding ACK flows on the reverse path.
To capture traffic burstness, we use the Poisson Pareto Burst process (PPBP) model to
predict the aggregate Internet traffic. PPBP is a process based on multiple overlapping
bursts, with Poisson arrival and burst lengths following a heavy-tail distribution (Zukerman
et al., 2003). We schedule TCP session arrivals using the exponential distribution with a
mean arrival rate μ. The durations of the TCP sessions d are independent and identically
distributed Pareto random variables with parameters δ> 0 and 1 < γ < 2:

(/) if

()
1r

x x
P d x

  
  

 otherwise
 (15)

With the Pareto distributed flow duration, we can regenerate the long range dependence
(LRD) characteristic of realistic background traffic in our model, which can be evaluated by
a parameter called the Hurst parameter:

3 .

2
H 
 (16)

When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar. In our fluid
model, we replace the constant number of homogeneous fluid flows ni with the PPBP
process, N i(t) . Specifically, we redefine the equations for calculating the arrival rate at the
first queue f1 (Equation 5), and the end-to-end packet loss rate (Equation 13) as follows:

 1
() ()()

()
f i i
i

i

N t W tA t
R t

 (17)

 () () / ()
m

i
i r it t N t  (18)

Figure 3 shows the result of an experiment using the same dumbbell model measuring the
number of packets per second sent over time for both packet simulation (left plots) and the
fluid background traffic model (right plots). From top down we progressively decreasing
the sampling time scale, while maintaining the number of samples to be 300. The starting
time scale is 1 second; each subsequent plot is obtained from the previous one by
concentrating on a randomly chosen sub-interval with a length being one tenth of the
previous one.
That is, the time resolution is increased by a factor of 10. To a large extent, the results from

the packet-oriented simulation and from the fluid-based simulation are similar, except for
the 10 ms timescale (bottom plots). The fluid model does not capture packet details at sub-
RTT level; the RTT for the dumbbell model is at least 10 ms.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Fig. 3. Traffic burstness.

4.2 Scalable Emulation Infrastructure
A large-scale network simulation must be able to interact with a large number of real appli-
cations. The emulation infrastructure, which connects the simulator to the applications,
must be able to embed real applications easily in the real-time simulation. There are several
ways to incorporate real applications into a simulation environment, the decision of which
to use largely depends on where the interactions take place. Several techniques exist that
allow running unmodified software, which include using packet capturing techniques (such
as libpcap, IP table, and IP tunnel), preloading dynamic libraries, and modifying the binary
executables. In certain cases, moderate software modifications are necessary to allow
efficient direct execution.
Our first attempt follows an open system approach (Liu et al., 2007). The emulation infras-
tructure is built on the Virtual Private Network (VPN), which is customized to function as a
gateway that bridges traffic between the physical entities and the simulated network (see
Figure 4). Client machines run real applications. They establish connection to the simulation
gateway as VPN clients (by running an automatically generated VPN configuration scripts).
Traffic generated by the applications running on the client machines and destined for the
virtual network is directed by the emulation infrastructure to the real-time network
simulator. We use an example to show how it works. Suppose two client machines are
connected to the simulation gateway (not necessarily the same one) and want to
communicate with each other. One client is assigned with the IP address 10.0.0.14 and
the other with 10.0.1.2. Packets

Parallel	and	Distributed	Computing234

VPN Client

VPN Client

VPN Client

VPN Client

VPN Client

I/O threads

parallel
machines

virtual network
10.0.0.0/16

10.0.0.14

10.0.0.14

10.0.1.2

10.0.1.2

TCP connections

simulation gateway

simulation gateway

Fig. 4. VPN emulation infrastructure.

VE

VE

SIM

SIM

VE

VE

Guest OS

SIM

VE

Guest OS

VE

Guest OS

VE VE

Hypervisor
Physical Hardware

Compute Node

Compute Nodes

SIM

Network Model

Data Forwarding Layer

Emulation Layer

Fig. 5. VM emulation infrastructure.

sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd),
which then sends the packets to the real-time simulator via a dedicated TCP connection. At
the simulator, the packets are injected into the simulation event list; the simulator simulates
the packets being forwarded on the virtual network as if they were created by the virtual

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the
packets are exported from simulation and travel in the reverse direction via the simulation
gateway back to the client machine assigned with the IP address 10.0.1.2.
One distinct advantage of this approach is that the emulation infrastructure does not require
special hardware to set up. It is also secure and scalable, which are merits inherited directly
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a
tight coupling between the emulated entities (i.e., the client machines) and the real-time
simulator. In particular, the segment between the client machines and the real-time network
simulator should consist of only low-latency links. To maintain high throughput, the
segment must also provide sufficient bandwidth to carry the emulation traffic. With these
constraints, the physical latency between the clients and the simulator can actually be made
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation
packet in simulation to preempt other simulated packets in the network queues so that the
packet can be delivered ahead of its schedule in order to compensate for the physical delays.
We also inspect machine virtualization solutions for an accurate environment of running
real applications. Machine virtualization has found a number of interesting applications,
including resource management in data centers, security, virtual desktop environments, and
software distribution. Recently, researchers have also proposed using virtualization
techniques for building network emulation testbeds. We follow the method proposed by
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation.
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike,
2000), provide full machine virtualization and can therefore run unmodified guest operating
systems. These solutions offer complete transparency (with a complete abstraction of a
computer system) to the guest operating system, but in doing so incur a large performance
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater
efficiency, but require slight modification of guest OSes.
In addition to virtualizing an entire operating system instance, researchers have proposed
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007;
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual
network stacks, applications running on the same OS instance are presented with multiple
independent network stacks, which can be managed individually and control distinct
physical devices. With virtual routers, a single OS instance can maintain multiple routing
table instances, thereby allowing the co-execution of multiple router software. Since these
two techniques only virtualize the network resource, they provide greater efficiency than
light-weight VMs. They do not, however, provide a complete isolation of resources (such as
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS.
Our work so far has explored the use of light-weight virtual machines and virtual network
stacks as candidate emulated elements in a real-time simulation infrastructure. We have
built a real-time simulation infrastructure that can seamlessly use light-weight virtual
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual
machine: network sockets, network interfaces, forwarding table, and loopback device.
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish
connectivity and exchanging information. Network interfaces and the forwarding table are

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 235

VPN Client

VPN Client

VPN Client

VPN Client

VPN Client

I/O threads

parallel
machines

virtual network
10.0.0.0/16

10.0.0.14

10.0.0.14

10.0.1.2

10.0.1.2

TCP connections

simulation gateway

simulation gateway

Fig. 4. VPN emulation infrastructure.

VE

VE

SIM

SIM

VE

VE

Guest OS

SIM

VE

Guest OS

VE

Guest OS

VE VE

Hypervisor
Physical Hardware

Compute Node

Compute Nodes

SIM

Network Model

Data Forwarding Layer

Emulation Layer

Fig. 5. VM emulation infrastructure.

sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd),
which then sends the packets to the real-time simulator via a dedicated TCP connection. At
the simulator, the packets are injected into the simulation event list; the simulator simulates
the packets being forwarded on the virtual network as if they were created by the virtual

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the
packets are exported from simulation and travel in the reverse direction via the simulation
gateway back to the client machine assigned with the IP address 10.0.1.2.
One distinct advantage of this approach is that the emulation infrastructure does not require
special hardware to set up. It is also secure and scalable, which are merits inherited directly
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a
tight coupling between the emulated entities (i.e., the client machines) and the real-time
simulator. In particular, the segment between the client machines and the real-time network
simulator should consist of only low-latency links. To maintain high throughput, the
segment must also provide sufficient bandwidth to carry the emulation traffic. With these
constraints, the physical latency between the clients and the simulator can actually be made
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation
packet in simulation to preempt other simulated packets in the network queues so that the
packet can be delivered ahead of its schedule in order to compensate for the physical delays.
We also inspect machine virtualization solutions for an accurate environment of running
real applications. Machine virtualization has found a number of interesting applications,
including resource management in data centers, security, virtual desktop environments, and
software distribution. Recently, researchers have also proposed using virtualization
techniques for building network emulation testbeds. We follow the method proposed by
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation.
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike,
2000), provide full machine virtualization and can therefore run unmodified guest operating
systems. These solutions offer complete transparency (with a complete abstraction of a
computer system) to the guest operating system, but in doing so incur a large performance
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater
efficiency, but require slight modification of guest OSes.
In addition to virtualizing an entire operating system instance, researchers have proposed
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007;
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual
network stacks, applications running on the same OS instance are presented with multiple
independent network stacks, which can be managed individually and control distinct
physical devices. With virtual routers, a single OS instance can maintain multiple routing
table instances, thereby allowing the co-execution of multiple router software. Since these
two techniques only virtualize the network resource, they provide greater efficiency than
light-weight VMs. They do not, however, provide a complete isolation of resources (such as
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS.
Our work so far has explored the use of light-weight virtual machines and virtual network
stacks as candidate emulated elements in a real-time simulation infrastructure. We have
built a real-time simulation infrastructure that can seamlessly use light-weight virtual
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual
machine: network sockets, network interfaces, forwarding table, and loopback device.
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish
connectivity and exchanging information. Network interfaces and the forwarding table are

Parallel	and	Distributed	Computing234

VPN Client

VPN Client

VPN Client

VPN Client

VPN Client

I/O threads

parallel
machines

virtual network
10.0.0.0/16

10.0.0.14

10.0.0.14

10.0.1.2

10.0.1.2

TCP connections

simulation gateway

simulation gateway

Fig. 4. VPN emulation infrastructure.

VE

VE

SIM

SIM

VE

VE

Guest OS

SIM

VE

Guest OS

VE

Guest OS

VE VE

Hypervisor
Physical Hardware

Compute Node

Compute Nodes

SIM

Network Model

Data Forwarding Layer

Emulation Layer

Fig. 5. VM emulation infrastructure.

sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd),
which then sends the packets to the real-time simulator via a dedicated TCP connection. At
the simulator, the packets are injected into the simulation event list; the simulator simulates
the packets being forwarded on the virtual network as if they were created by the virtual

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the
packets are exported from simulation and travel in the reverse direction via the simulation
gateway back to the client machine assigned with the IP address 10.0.1.2.
One distinct advantage of this approach is that the emulation infrastructure does not require
special hardware to set up. It is also secure and scalable, which are merits inherited directly
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a
tight coupling between the emulated entities (i.e., the client machines) and the real-time
simulator. In particular, the segment between the client machines and the real-time network
simulator should consist of only low-latency links. To maintain high throughput, the
segment must also provide sufficient bandwidth to carry the emulation traffic. With these
constraints, the physical latency between the clients and the simulator can actually be made
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation
packet in simulation to preempt other simulated packets in the network queues so that the
packet can be delivered ahead of its schedule in order to compensate for the physical delays.
We also inspect machine virtualization solutions for an accurate environment of running
real applications. Machine virtualization has found a number of interesting applications,
including resource management in data centers, security, virtual desktop environments, and
software distribution. Recently, researchers have also proposed using virtualization
techniques for building network emulation testbeds. We follow the method proposed by
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation.
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike,
2000), provide full machine virtualization and can therefore run unmodified guest operating
systems. These solutions offer complete transparency (with a complete abstraction of a
computer system) to the guest operating system, but in doing so incur a large performance
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater
efficiency, but require slight modification of guest OSes.
In addition to virtualizing an entire operating system instance, researchers have proposed
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007;
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual
network stacks, applications running on the same OS instance are presented with multiple
independent network stacks, which can be managed individually and control distinct
physical devices. With virtual routers, a single OS instance can maintain multiple routing
table instances, thereby allowing the co-execution of multiple router software. Since these
two techniques only virtualize the network resource, they provide greater efficiency than
light-weight VMs. They do not, however, provide a complete isolation of resources (such as
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS.
Our work so far has explored the use of light-weight virtual machines and virtual network
stacks as candidate emulated elements in a real-time simulation infrastructure. We have
built a real-time simulation infrastructure that can seamlessly use light-weight virtual
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual
machine: network sockets, network interfaces, forwarding table, and loopback device.
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish
connectivity and exchanging information. Network interfaces and the forwarding table are

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 235

VPN Client

VPN Client

VPN Client

VPN Client

VPN Client

I/O threads

parallel
machines

virtual network
10.0.0.0/16

10.0.0.14

10.0.0.14

10.0.1.2

10.0.1.2

TCP connections

simulation gateway

simulation gateway

Fig. 4. VPN emulation infrastructure.

VE

VE

SIM

SIM

VE

VE

Guest OS

SIM

VE

Guest OS

VE

Guest OS

VE VE

Hypervisor
Physical Hardware

Compute Node

Compute Nodes

SIM

Network Model

Data Forwarding Layer

Emulation Layer

Fig. 5. VM emulation infrastructure.

sent from 10.0.0.14 to 10.0.1.2 are forwarded to the VPN server at the simulation gate-
way. The VPN server has been altered to forward the packets to a daemon process (ssfgwd),
which then sends the packets to the real-time simulator via a dedicated TCP connection. At
the simulator, the packets are injected into the simulation event list; the simulator simulates
the packets being forwarded on the virtual network as if they were created by the virtual

node with the same IP address 10.0.0.14. Upon reaching the virtual node 10.0.1.2, the
packets are exported from simulation and travel in the reverse direction via the simulation
gateway back to the client machine assigned with the IP address 10.0.1.2.
One distinct advantage of this approach is that the emulation infrastructure does not require
special hardware to set up. It is also secure and scalable, which are merits inherited directly
from the underlying VPN implementation. Multiple simulation gateways can run simulta-
neously. In order to produce accurate results, however, the emulation infrastructure needs a
tight coupling between the emulated entities (i.e., the client machines) and the real-time
simulator. In particular, the segment between the client machines and the real-time network
simulator should consist of only low-latency links. To maintain high throughput, the
segment must also provide sufficient bandwidth to carry the emulation traffic. With these
constraints, the physical latency between the clients and the simulator can actually be made
transparent in the network model (Liljenstam et al., 2005). The idea is to allow an emulation
packet in simulation to preempt other simulated packets in the network queues so that the
packet can be delivered ahead of its schedule in order to compensate for the physical delays.
We also inspect machine virtualization solutions for an accurate environment of running
real applications. Machine virtualization has found a number of interesting applications,
including resource management in data centers, security, virtual desktop environments, and
software distribution. Recently, researchers have also proposed using virtualization
techniques for building network emulation testbeds. We follow the method proposed by
Maier et al. (2007) to classify virtual machine (VM) solutions for network emulation.
Classical virtual machines, such as VMWare Workstation and User-Mode Linux (Dike,
2000), provide full machine virtualization and can therefore run unmodified guest operating
systems. These solutions offer complete transparency (with a complete abstraction of a
computer system) to the guest operating system, but in doing so incur a large performance
overhead. Light-weight virtual machines, such as Xen (Barham et al., 2003), VMWare ESX
Server, and Denali (Whitaker et al., 2002), implement partial virtualization for greater
efficiency, but require slight modification of guest OSes.
In addition to virtualizing an entire operating system instance, researchers have proposed
virtual network stacks (Bavier et al., 2006; Huang et al., 1999; OpenVZ; Soltesz et al., 2007;
Zec, 2003) and virtual routers (Maier et al., 2007; VRF) as alternative solutions. With virtual
network stacks, applications running on the same OS instance are presented with multiple
independent network stacks, which can be managed individually and control distinct
physical devices. With virtual routers, a single OS instance can maintain multiple routing
table instances, thereby allowing the co-execution of multiple router software. Since these
two techniques only virtualize the network resource, they provide greater efficiency than
light-weight VMs. They do not, however, provide a complete isolation of resources (such as
CPU); they are also invasive, sometimes requiring substantial modification to the guest OS.
Our work so far has explored the use of light-weight virtual machines and virtual network
stacks as candidate emulated elements in a real-time simulation infrastructure. We have
built a real-time simulation infrastructure that can seamlessly use light-weight virtual
machines to emulate arbitrary network elements including routers and application end-
points. We looked into four types of network resources that may be provided by a virtual
machine: network sockets, network interfaces, forwarding table, and loopback device.
Network sockets (TCP, UDP, and raw sockets) are used by applications to establish
connectivity and exchanging information. Network interfaces and the forwarding table are

Parallel	and	Distributed	Computing236

used by routing protocols to conduct network forwarding. A network loopback device is
sometimes used by separate processes to communicate on the same machine. We
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and
VRF and found that, while all four types of network resources are provided in Xen and
OpenVZ, Linux-VServer and VRF have only partial network virtualization support.
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each
physical machine as a basic scaling unit, where emulated hosts are mapped to independent
virtual machines (or virtual environments) so that they can run unmodified applications.
Each instance of the real-time simulator runs on a separate virtual machine of the same
physical machine, and processes events associated with a designated sub-network. The
simulator instances on different physical machines are synchronized using conservative
parallel simulation techniques. Real network traffic generated by the applications is
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the
corresponding realtime simulator instance is located. The simulator then processes these
packets applying packet delays and losses according to the simulated network conditions.

5. Applications and Case Studies

We have been able to successfully apply real-time simulation to study many applications,
including routing algorithms, transport protocols, content distribution services, web
services, multimedia streaming, and peer-to-peer networks. In this section, we select several
case studies to demonstrate the potentials of real-time simulation.

5.1 Large-Scale Routing Experiments
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has
simplified the task of researchers, who can now prototype and evaluate routing protocols
with relative ease. To support experiments on a large-scale network consisting of many
routers with multiple traffic sources and sinks, we need to integrate the open-source router
platforms with the real-time network simulator.
Since the routers are emulated outside the real-time simulator on client machines where
they can run the real routing software directly, every packet traveling along its path from
the source to the destination needs to be exported to each intermediate router for
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the
forwarding operation for each packet at each hop would incur substantial I/O overhead.
Consequently, the overall overhead would significantly impact the performance of the
emulation infrastructure, especially in large-scale routing experiments. To avoid this
problem, we propose a forwarding plane offloading approach, which moves the packet
forwarding functions from the emulated router software to the simulation engine so that we
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth
between the router software and the real-time
simulator (Li et al., 2008).
In our current implementation, we combine XORP with PRIME to provide a scalable
platform for conducting routing experiments. We create a forwarding plane plug-in in
XORP, which maintains a command channel with the PRIME simulator for transferring
forwarding information updates and network interface configuration requests between the
XORP instance and the corresponding simulated router.

We carried out several experiments using the scalable routing platform. These experiments
include an intra-domain routing experiment consisting of a realistic Abilene network model
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on
data traffic. We injected a link failure followed by a recovery between two routers on the
network. We were able to measure their effect on the round-trip time and data throughput
of end applications. We also conducted realistic large-scale inter-domain routing
experiments consisting of major autonomous systems connecting Swedish Internet users
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b).
We ran a series of real-time security exercises on this routing system to study the
consequence of intentionally propagating false routing information on interdomain routing
and the effectiveness of corresponding defensive measures.

5.2 Large-Scale TCP Evaluation
The TCP congestion control mechanism, which limits the rate of data entering the network,
is essential to the overall stability of the network under traffic congestion and important to
the protocol's performance. It has been widely documented that the traditional TCP
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems
preventing TCP from reaching high data throughput over high-speed long-latency links.
Consequently, quite a number of TCP variants have been proposed to directly tackle these
problems. Compared with the traditional methods, these TCP variants typically adopt more
aggressive congestion control methods in order to address the under-utilization problem of
TCP over networks with a large bandwidth-delay product.
The ability to establish an objective comparison between these high-performance TCP
variants under diverse networking conditions and to obtain a quantitative assessment of
their impact on the global network traffic is essential to a community-wide understanding of
various design approaches. Small-scale experiments are insufficient for a comprehensive
study of these TCP variants. We developed a TCP performance evaluation testbed, called
SVEET, based on real-time simulation technique using real implementations of the TCP
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009).
In order for SVEET to accommodate data communications with multi-gigabit throughput
performance, we apply time dilation, proportionally slowing down the virtual machines
and the network simulator. Using time dilation allows us to provide much higher
bandwidths than what can be provided by the physical system and the network simulator at
the cost of increased experiment time. We adopt the time dilation technique developed by
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived
I/O rate and processing power on the virtual machines by the same factor. For instance, if a
virtual machine has a TDF of 10, it means that the time, as perceived by the applications
running on the virtual machine, will be advanced at a pace 10 times slower than the true
wall-time clock. Similarly, the applications would experience a tenfold increase in both
network capacity and CPU cycles.
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 237

used by routing protocols to conduct network forwarding. A network loopback device is
sometimes used by separate processes to communicate on the same machine. We
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and
VRF and found that, while all four types of network resources are provided in Xen and
OpenVZ, Linux-VServer and VRF have only partial network virtualization support.
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each
physical machine as a basic scaling unit, where emulated hosts are mapped to independent
virtual machines (or virtual environments) so that they can run unmodified applications.
Each instance of the real-time simulator runs on a separate virtual machine of the same
physical machine, and processes events associated with a designated sub-network. The
simulator instances on different physical machines are synchronized using conservative
parallel simulation techniques. Real network traffic generated by the applications is
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the
corresponding realtime simulator instance is located. The simulator then processes these
packets applying packet delays and losses according to the simulated network conditions.

5. Applications and Case Studies

We have been able to successfully apply real-time simulation to study many applications,
including routing algorithms, transport protocols, content distribution services, web
services, multimedia streaming, and peer-to-peer networks. In this section, we select several
case studies to demonstrate the potentials of real-time simulation.

5.1 Large-Scale Routing Experiments
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has
simplified the task of researchers, who can now prototype and evaluate routing protocols
with relative ease. To support experiments on a large-scale network consisting of many
routers with multiple traffic sources and sinks, we need to integrate the open-source router
platforms with the real-time network simulator.
Since the routers are emulated outside the real-time simulator on client machines where
they can run the real routing software directly, every packet traveling along its path from
the source to the destination needs to be exported to each intermediate router for
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the
forwarding operation for each packet at each hop would incur substantial I/O overhead.
Consequently, the overall overhead would significantly impact the performance of the
emulation infrastructure, especially in large-scale routing experiments. To avoid this
problem, we propose a forwarding plane offloading approach, which moves the packet
forwarding functions from the emulated router software to the simulation engine so that we
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth
between the router software and the real-time
simulator (Li et al., 2008).
In our current implementation, we combine XORP with PRIME to provide a scalable
platform for conducting routing experiments. We create a forwarding plane plug-in in
XORP, which maintains a command channel with the PRIME simulator for transferring
forwarding information updates and network interface configuration requests between the
XORP instance and the corresponding simulated router.

We carried out several experiments using the scalable routing platform. These experiments
include an intra-domain routing experiment consisting of a realistic Abilene network model
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on
data traffic. We injected a link failure followed by a recovery between two routers on the
network. We were able to measure their effect on the round-trip time and data throughput
of end applications. We also conducted realistic large-scale inter-domain routing
experiments consisting of major autonomous systems connecting Swedish Internet users
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b).
We ran a series of real-time security exercises on this routing system to study the
consequence of intentionally propagating false routing information on interdomain routing
and the effectiveness of corresponding defensive measures.

5.2 Large-Scale TCP Evaluation
The TCP congestion control mechanism, which limits the rate of data entering the network,
is essential to the overall stability of the network under traffic congestion and important to
the protocol's performance. It has been widely documented that the traditional TCP
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems
preventing TCP from reaching high data throughput over high-speed long-latency links.
Consequently, quite a number of TCP variants have been proposed to directly tackle these
problems. Compared with the traditional methods, these TCP variants typically adopt more
aggressive congestion control methods in order to address the under-utilization problem of
TCP over networks with a large bandwidth-delay product.
The ability to establish an objective comparison between these high-performance TCP
variants under diverse networking conditions and to obtain a quantitative assessment of
their impact on the global network traffic is essential to a community-wide understanding of
various design approaches. Small-scale experiments are insufficient for a comprehensive
study of these TCP variants. We developed a TCP performance evaluation testbed, called
SVEET, based on real-time simulation technique using real implementations of the TCP
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009).
In order for SVEET to accommodate data communications with multi-gigabit throughput
performance, we apply time dilation, proportionally slowing down the virtual machines
and the network simulator. Using time dilation allows us to provide much higher
bandwidths than what can be provided by the physical system and the network simulator at
the cost of increased experiment time. We adopt the time dilation technique developed by
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived
I/O rate and processing power on the virtual machines by the same factor. For instance, if a
virtual machine has a TDF of 10, it means that the time, as perceived by the applications
running on the virtual machine, will be advanced at a pace 10 times slower than the true
wall-time clock. Similarly, the applications would experience a tenfold increase in both
network capacity and CPU cycles.
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct

Parallel	and	Distributed	Computing236

used by routing protocols to conduct network forwarding. A network loopback device is
sometimes used by separate processes to communicate on the same machine. We
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and
VRF and found that, while all four types of network resources are provided in Xen and
OpenVZ, Linux-VServer and VRF have only partial network virtualization support.
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each
physical machine as a basic scaling unit, where emulated hosts are mapped to independent
virtual machines (or virtual environments) so that they can run unmodified applications.
Each instance of the real-time simulator runs on a separate virtual machine of the same
physical machine, and processes events associated with a designated sub-network. The
simulator instances on different physical machines are synchronized using conservative
parallel simulation techniques. Real network traffic generated by the applications is
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the
corresponding realtime simulator instance is located. The simulator then processes these
packets applying packet delays and losses according to the simulated network conditions.

5. Applications and Case Studies

We have been able to successfully apply real-time simulation to study many applications,
including routing algorithms, transport protocols, content distribution services, web
services, multimedia streaming, and peer-to-peer networks. In this section, we select several
case studies to demonstrate the potentials of real-time simulation.

5.1 Large-Scale Routing Experiments
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has
simplified the task of researchers, who can now prototype and evaluate routing protocols
with relative ease. To support experiments on a large-scale network consisting of many
routers with multiple traffic sources and sinks, we need to integrate the open-source router
platforms with the real-time network simulator.
Since the routers are emulated outside the real-time simulator on client machines where
they can run the real routing software directly, every packet traveling along its path from
the source to the destination needs to be exported to each intermediate router for
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the
forwarding operation for each packet at each hop would incur substantial I/O overhead.
Consequently, the overall overhead would significantly impact the performance of the
emulation infrastructure, especially in large-scale routing experiments. To avoid this
problem, we propose a forwarding plane offloading approach, which moves the packet
forwarding functions from the emulated router software to the simulation engine so that we
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth
between the router software and the real-time
simulator (Li et al., 2008).
In our current implementation, we combine XORP with PRIME to provide a scalable
platform for conducting routing experiments. We create a forwarding plane plug-in in
XORP, which maintains a command channel with the PRIME simulator for transferring
forwarding information updates and network interface configuration requests between the
XORP instance and the corresponding simulated router.

We carried out several experiments using the scalable routing platform. These experiments
include an intra-domain routing experiment consisting of a realistic Abilene network model
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on
data traffic. We injected a link failure followed by a recovery between two routers on the
network. We were able to measure their effect on the round-trip time and data throughput
of end applications. We also conducted realistic large-scale inter-domain routing
experiments consisting of major autonomous systems connecting Swedish Internet users
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b).
We ran a series of real-time security exercises on this routing system to study the
consequence of intentionally propagating false routing information on interdomain routing
and the effectiveness of corresponding defensive measures.

5.2 Large-Scale TCP Evaluation
The TCP congestion control mechanism, which limits the rate of data entering the network,
is essential to the overall stability of the network under traffic congestion and important to
the protocol's performance. It has been widely documented that the traditional TCP
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems
preventing TCP from reaching high data throughput over high-speed long-latency links.
Consequently, quite a number of TCP variants have been proposed to directly tackle these
problems. Compared with the traditional methods, these TCP variants typically adopt more
aggressive congestion control methods in order to address the under-utilization problem of
TCP over networks with a large bandwidth-delay product.
The ability to establish an objective comparison between these high-performance TCP
variants under diverse networking conditions and to obtain a quantitative assessment of
their impact on the global network traffic is essential to a community-wide understanding of
various design approaches. Small-scale experiments are insufficient for a comprehensive
study of these TCP variants. We developed a TCP performance evaluation testbed, called
SVEET, based on real-time simulation technique using real implementations of the TCP
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009).
In order for SVEET to accommodate data communications with multi-gigabit throughput
performance, we apply time dilation, proportionally slowing down the virtual machines
and the network simulator. Using time dilation allows us to provide much higher
bandwidths than what can be provided by the physical system and the network simulator at
the cost of increased experiment time. We adopt the time dilation technique developed by
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived
I/O rate and processing power on the virtual machines by the same factor. For instance, if a
virtual machine has a TDF of 10, it means that the time, as perceived by the applications
running on the virtual machine, will be advanced at a pace 10 times slower than the true
wall-time clock. Similarly, the applications would experience a tenfold increase in both
network capacity and CPU cycles.
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 237

used by routing protocols to conduct network forwarding. A network loopback device is
sometimes used by separate processes to communicate on the same machine. We
investigated four popular virtualization technologies: Xen, OpenVZ, Linux-VServer and
VRF and found that, while all four types of network resources are provided in Xen and
OpenVZ, Linux-VServer and VRF have only partial network virtualization support.
Figure 5 shows a high-level view of our VM-based emulation infrastructure. We view each
physical machine as a basic scaling unit, where emulated hosts are mapped to independent
virtual machines (or virtual environments) so that they can run unmodified applications.
Each instance of the real-time simulator runs on a separate virtual machine of the same
physical machine, and processes events associated with a designated sub-network. The
simulator instances on different physical machines are synchronized using conservative
parallel simulation techniques. Real network traffic generated by the applications is
intercepted by the hypervisor (or VM manager) and sent to the virtual machine where the
corresponding realtime simulator instance is located. The simulator then processes these
packets applying packet delays and losses according to the simulated network conditions.

5. Applications and Case Studies

We have been able to successfully apply real-time simulation to study many applications,
including routing algorithms, transport protocols, content distribution services, web
services, multimedia streaming, and peer-to-peer networks. In this section, we select several
case studies to demonstrate the potentials of real-time simulation.

5.1 Large-Scale Routing Experiments
The availability of open-source router platforms, such as XORP, Zebra, and Quagga, has
simplified the task of researchers, who can now prototype and evaluate routing protocols
with relative ease. To support experiments on a large-scale network consisting of many
routers with multiple traffic sources and sinks, we need to integrate the open-source router
platforms with the real-time network simulator.
Since the routers are emulated outside the real-time simulator on client machines where
they can run the real routing software directly, every packet traveling along its path from
the source to the destination needs to be exported to each intermediate router for
forwarding decisions, and subsequently imported back into the simulation engine. Thus, the
forwarding operation for each packet at each hop would incur substantial I/O overhead.
Consequently, the overall overhead would significantly impact the performance of the
emulation infrastructure, especially in large-scale routing experiments. To avoid this
problem, we propose a forwarding plane offloading approach, which moves the packet
forwarding functions from the emulated router software to the simulation engine so that we
can eliminate the I/O overhead associated with communicating bulk-traffic back and forth
between the router software and the real-time
simulator (Li et al., 2008).
In our current implementation, we combine XORP with PRIME to provide a scalable
platform for conducting routing experiments. We create a forwarding plane plug-in in
XORP, which maintains a command channel with the PRIME simulator for transferring
forwarding information updates and network interface configuration requests between the
XORP instance and the corresponding simulated router.

We carried out several experiments using the scalable routing platform. These experiments
include an intra-domain routing experiment consisting of a realistic Abilene network model
(Li et al., 2008) with the objective of observing the convergence of OSPF and its effect on
data traffic. We injected a link failure followed by a recovery between two routers on the
network. We were able to measure their effect on the round-trip time and data throughput
of end applications. We also conducted realistic large-scale inter-domain routing
experiments consisting of major autonomous systems connecting Swedish Internet users
with realistic routing configurations derived from the routing registry (Li and Liu, 2009b).
We ran a series of real-time security exercises on this routing system to study the
consequence of intentionally propagating false routing information on interdomain routing
and the effectiveness of corresponding defensive measures.

5.2 Large-Scale TCP Evaluation
The TCP congestion control mechanism, which limits the rate of data entering the network,
is essential to the overall stability of the network under traffic congestion and important to
the protocol's performance. It has been widely documented that the traditional TCP
congestion control algorithms (such as TCP Reno and TCP SACK) have serious problems
preventing TCP from reaching high data throughput over high-speed long-latency links.
Consequently, quite a number of TCP variants have been proposed to directly tackle these
problems. Compared with the traditional methods, these TCP variants typically adopt more
aggressive congestion control methods in order to address the under-utilization problem of
TCP over networks with a large bandwidth-delay product.
The ability to establish an objective comparison between these high-performance TCP
variants under diverse networking conditions and to obtain a quantitative assessment of
their impact on the global network traffic is essential to a community-wide understanding of
various design approaches. Small-scale experiments are insufficient for a comprehensive
study of these TCP variants. We developed a TCP performance evaluation testbed, called
SVEET, based on real-time simulation technique using real implementations of the TCP
variants, which are evaluated under diverse network configurations and workloads in large-
scale network settings (Erazo et al., 2009).
In order for SVEET to accommodate data communications with multi-gigabit throughput
performance, we apply time dilation, proportionally slowing down the virtual machines
and the network simulator. Using time dilation allows us to provide much higher
bandwidths than what can be provided by the physical system and the network simulator at
the cost of increased experiment time. We adopt the time dilation technique developed by
Gupta et al. (2006), which can uniformly slow the passage of time from the perspective of
the guest operating system (XenoLinux). This is achieved primarily by enlarging the interval
between timer interrupts delivered to the virtual machines from the Xen hypervisor by a
specified factor, called the Time Dilation Factor (TDF). Time dilation can scale the perceived
I/O rate and processing power on the virtual machines by the same factor. For instance, if a
virtual machine has a TDF of 10, it means that the time, as perceived by the applications
running on the virtual machine, will be advanced at a pace 10 times slower than the true
wall-time clock. Similarly, the applications would experience a tenfold increase in both
network capacity and CPU cycles.
We ported several TCP congestion control algorithms from the ns-2 simulator consisting of
thirteen TCP variants originally implemented for Linux. In doing so we are able to conduct

Parallel	and	Distributed	Computing238

large-scale experiments using simulated traffic generated by these TCP variants. We also
customized the Linux kernel on the virtual machines to include these TCP variants so that
we can test them using real applications running on the virtual machines to communicate
via the TCP/IP stack. We conducted extensive experiments to validate our testbed and
investigated the impact of TCP variants on web applications, multimedia streaming, and
peer-to-peer traffic.

5.3 Large-Scale Peer-to-Peer Content Distribution Network
We design one of the largest network experiments that involve a real implementation of a
peer-to-peer content distribution system under HTTP traffic from a public-domain empirical
workload trace and using a realistic large network model (Liu et al., 2009). The main idea
behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server
and the traffic load at the network core. We choose to use an open-source CDN system
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution
network that consists of three parts: 1) a network of cooperative web proxies for handling
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function
and only focus on web-content distribution for the experiment.
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from
traceroute paths, BGP routing tables, and DNS. Previously, we created a best-effort Internet
topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam
et al., 2003). Based on this study, we further process the Rocketfuel network topology to
improve accuracy and reduce data noise. We choose to use one of the tier-1 ISP networks for
our study, which contains 637 routers (out of which 235 are backbone routers) connected by
1,381 links. Attached to the backbone network are medium-sized stub networks, called the
campus network. Each campus network consists of 504 end hosts, organized into 12 local
area networks (LANs) connected by 18 routers. Four extra end hosts are designated to form
a server cluster. Each LAN consists of a gateway router and 42 end-hosts. The entire campus
network is divided into four OSPF areas. The campus network is connected to the outside
world through a BGP router. We attach 84 such campus networks to the tier-1 ISP network.
The entire network thus contains 42,672 end hosts and 3,157 routers.
We place one CoralCDN node within each of the 12 LANs of the 84 campus network (at one
of the 42 end hosts in each LAN), thus making a total of 1,008 CoralCDN nodes overall. Each
CoralCDN node is emulated in a separate OpenVZ container. The web clients are simulated;
they send HTTP requests to the CoralCDN node within the same LAN and subsequently
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server,
emulated on a separate compute node.
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491
clients. We pre-process the trace to filter out the sequence of requests sent from each client
and randomly map the 40,491 clients to the end hosts in our network model for a complete
daily pattern of the caching behavior. Through the experiment, we were able to successfully
collect three important metrics to analyze the performance the peer-to-peer content
distribution network: cache hit rate, web server load, and response time.

6. Conclusions and Future Work

In this chapter we describe real-time simulation of large-scale networks and compare it
against other major tools for networking research. We discuss the problems that may
prevent simulation from achieving real-time performance and subsequently present our
current solutions. We conduct large-scale network experiments incorporating real-time
simulation to demonstrate its capabilities.
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network
experiments.

Acknowledgments

This chapter significantly extends our previous work (Liu, 2008) with a high-level summary
of published results thereafter. Our research reported in this chapter is supported in part by
National Science Foundation grants CNS-0546712, CNS-0836408 and HRD-0833093.

7. References

Jong Suk Ahn, Peter B. Danzip, Zhen Liu, and Limin Yan. Evaluation of TCP Vegas:
emulation and experiment. In Proceedings of the 1995 ACM SIGCOMM
Conference, pages 185-195, August 1995.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the In-
ternet impasse through virtualization. Computer, 38(4):34—41, 2005.

Martin Arlitt and Tai Jin. 1998 World Cup web site access logs. Available at: http://www.
acm.org/sigcomm/ITA/, August 1998.

Rassul Ayani. A parallel simulation scheme based on the distance between objects.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):113-
118, March 1989.

Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario Gerla. Glo-
MoSim: a scalable network simulation environment. Technical Report 990027,
Department of Computer Science, UCLA, May 1999.

Paul Barford and Larry Landweber. Bench-style network research in an Internet instance
laboratory. ACM SIGCOMM Computer Communication Review, 33(3):21-26, 2003.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP'03), 2003.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 239

large-scale experiments using simulated traffic generated by these TCP variants. We also
customized the Linux kernel on the virtual machines to include these TCP variants so that
we can test them using real applications running on the virtual machines to communicate
via the TCP/IP stack. We conducted extensive experiments to validate our testbed and
investigated the impact of TCP variants on web applications, multimedia streaming, and
peer-to-peer traffic.

5.3 Large-Scale Peer-to-Peer Content Distribution Network
We design one of the largest network experiments that involve a real implementation of a
peer-to-peer content distribution system under HTTP traffic from a public-domain empirical
workload trace and using a realistic large network model (Liu et al., 2009). The main idea
behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server
and the traffic load at the network core. We choose to use an open-source CDN system
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution
network that consists of three parts: 1) a network of cooperative web proxies for handling
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function
and only focus on web-content distribution for the experiment.
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from
traceroute paths, BGP routing tables, and DNS. Previously, we created a best-effort Internet
topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam
et al., 2003). Based on this study, we further process the Rocketfuel network topology to
improve accuracy and reduce data noise. We choose to use one of the tier-1 ISP networks for
our study, which contains 637 routers (out of which 235 are backbone routers) connected by
1,381 links. Attached to the backbone network are medium-sized stub networks, called the
campus network. Each campus network consists of 504 end hosts, organized into 12 local
area networks (LANs) connected by 18 routers. Four extra end hosts are designated to form
a server cluster. Each LAN consists of a gateway router and 42 end-hosts. The entire campus
network is divided into four OSPF areas. The campus network is connected to the outside
world through a BGP router. We attach 84 such campus networks to the tier-1 ISP network.
The entire network thus contains 42,672 end hosts and 3,157 routers.
We place one CoralCDN node within each of the 12 LANs of the 84 campus network (at one
of the 42 end hosts in each LAN), thus making a total of 1,008 CoralCDN nodes overall. Each
CoralCDN node is emulated in a separate OpenVZ container. The web clients are simulated;
they send HTTP requests to the CoralCDN node within the same LAN and subsequently
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server,
emulated on a separate compute node.
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491
clients. We pre-process the trace to filter out the sequence of requests sent from each client
and randomly map the 40,491 clients to the end hosts in our network model for a complete
daily pattern of the caching behavior. Through the experiment, we were able to successfully
collect three important metrics to analyze the performance the peer-to-peer content
distribution network: cache hit rate, web server load, and response time.

6. Conclusions and Future Work

In this chapter we describe real-time simulation of large-scale networks and compare it
against other major tools for networking research. We discuss the problems that may
prevent simulation from achieving real-time performance and subsequently present our
current solutions. We conduct large-scale network experiments incorporating real-time
simulation to demonstrate its capabilities.
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network
experiments.

Acknowledgments

This chapter significantly extends our previous work (Liu, 2008) with a high-level summary
of published results thereafter. Our research reported in this chapter is supported in part by
National Science Foundation grants CNS-0546712, CNS-0836408 and HRD-0833093.

7. References

Jong Suk Ahn, Peter B. Danzip, Zhen Liu, and Limin Yan. Evaluation of TCP Vegas:
emulation and experiment. In Proceedings of the 1995 ACM SIGCOMM
Conference, pages 185-195, August 1995.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the In-
ternet impasse through virtualization. Computer, 38(4):34—41, 2005.

Martin Arlitt and Tai Jin. 1998 World Cup web site access logs. Available at: http://www.
acm.org/sigcomm/ITA/, August 1998.

Rassul Ayani. A parallel simulation scheme based on the distance between objects.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):113-
118, March 1989.

Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario Gerla. Glo-
MoSim: a scalable network simulation environment. Technical Report 990027,
Department of Computer Science, UCLA, May 1999.

Paul Barford and Larry Landweber. Bench-style network research in an Internet instance
laboratory. ACM SIGCOMM Computer Communication Review, 33(3):21-26, 2003.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP'03), 2003.

Parallel	and	Distributed	Computing238

large-scale experiments using simulated traffic generated by these TCP variants. We also
customized the Linux kernel on the virtual machines to include these TCP variants so that
we can test them using real applications running on the virtual machines to communicate
via the TCP/IP stack. We conducted extensive experiments to validate our testbed and
investigated the impact of TCP variants on web applications, multimedia streaming, and
peer-to-peer traffic.

5.3 Large-Scale Peer-to-Peer Content Distribution Network
We design one of the largest network experiments that involve a real implementation of a
peer-to-peer content distribution system under HTTP traffic from a public-domain empirical
workload trace and using a realistic large network model (Liu et al., 2009). The main idea
behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server
and the traffic load at the network core. We choose to use an open-source CDN system
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution
network that consists of three parts: 1) a network of cooperative web proxies for handling
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function
and only focus on web-content distribution for the experiment.
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from
traceroute paths, BGP routing tables, and DNS. Previously, we created a best-effort Internet
topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam
et al., 2003). Based on this study, we further process the Rocketfuel network topology to
improve accuracy and reduce data noise. We choose to use one of the tier-1 ISP networks for
our study, which contains 637 routers (out of which 235 are backbone routers) connected by
1,381 links. Attached to the backbone network are medium-sized stub networks, called the
campus network. Each campus network consists of 504 end hosts, organized into 12 local
area networks (LANs) connected by 18 routers. Four extra end hosts are designated to form
a server cluster. Each LAN consists of a gateway router and 42 end-hosts. The entire campus
network is divided into four OSPF areas. The campus network is connected to the outside
world through a BGP router. We attach 84 such campus networks to the tier-1 ISP network.
The entire network thus contains 42,672 end hosts and 3,157 routers.
We place one CoralCDN node within each of the 12 LANs of the 84 campus network (at one
of the 42 end hosts in each LAN), thus making a total of 1,008 CoralCDN nodes overall. Each
CoralCDN node is emulated in a separate OpenVZ container. The web clients are simulated;
they send HTTP requests to the CoralCDN node within the same LAN and subsequently
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server,
emulated on a separate compute node.
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491
clients. We pre-process the trace to filter out the sequence of requests sent from each client
and randomly map the 40,491 clients to the end hosts in our network model for a complete
daily pattern of the caching behavior. Through the experiment, we were able to successfully
collect three important metrics to analyze the performance the peer-to-peer content
distribution network: cache hit rate, web server load, and response time.

6. Conclusions and Future Work

In this chapter we describe real-time simulation of large-scale networks and compare it
against other major tools for networking research. We discuss the problems that may
prevent simulation from achieving real-time performance and subsequently present our
current solutions. We conduct large-scale network experiments incorporating real-time
simulation to demonstrate its capabilities.
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network
experiments.

Acknowledgments

This chapter significantly extends our previous work (Liu, 2008) with a high-level summary
of published results thereafter. Our research reported in this chapter is supported in part by
National Science Foundation grants CNS-0546712, CNS-0836408 and HRD-0833093.

7. References

Jong Suk Ahn, Peter B. Danzip, Zhen Liu, and Limin Yan. Evaluation of TCP Vegas:
emulation and experiment. In Proceedings of the 1995 ACM SIGCOMM
Conference, pages 185-195, August 1995.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the In-
ternet impasse through virtualization. Computer, 38(4):34—41, 2005.

Martin Arlitt and Tai Jin. 1998 World Cup web site access logs. Available at: http://www.
acm.org/sigcomm/ITA/, August 1998.

Rassul Ayani. A parallel simulation scheme based on the distance between objects.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):113-
118, March 1989.

Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario Gerla. Glo-
MoSim: a scalable network simulation environment. Technical Report 990027,
Department of Computer Science, UCLA, May 1999.

Paul Barford and Larry Landweber. Bench-style network research in an Internet instance
laboratory. ACM SIGCOMM Computer Communication Review, 33(3):21-26, 2003.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP'03), 2003.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 239

large-scale experiments using simulated traffic generated by these TCP variants. We also
customized the Linux kernel on the virtual machines to include these TCP variants so that
we can test them using real applications running on the virtual machines to communicate
via the TCP/IP stack. We conducted extensive experiments to validate our testbed and
investigated the impact of TCP variants on web applications, multimedia streaming, and
peer-to-peer traffic.

5.3 Large-Scale Peer-to-Peer Content Distribution Network
We design one of the largest network experiments that involve a real implementation of a
peer-to-peer content distribution system under HTTP traffic from a public-domain empirical
workload trace and using a realistic large network model (Liu et al., 2009). The main idea
behind the content distribution network (CDN) is to replicate content at the edge of the In-
ternet closer to the clients. In doing so, CDN can alleviate both the workload at the server
and the traffic load at the network core. We choose to use an open-source CDN system
called CoralCDN (Freedman et al., 2004), which is a peer-to-peer web-content distribution
network that consists of three parts: 1) a network of cooperative web proxies for handling
HTTP requests, 2) a network of domain name servers (DNS) to map clients to nearby web
proxies, and 3) an underlying clustering mechanism and an indexing infrastructure to
facilitate DNS mapping and content distribution. We statically mapped the clients to nearby
Coral nodes to send HTTP requests. Thus we ignore CoralCDN's DNS redirection function
and only focus on web-content distribution for the experiment.
We extend the Rocketfuel to build the network model for our study. Rocketfuel (Spring et
al., 2004) contains the topology of 13 tier-1 ISPs, derived from information obtained from
traceroute paths, BGP routing tables, and DNS. Previously, we created a best-effort Internet
topology for large-scale network simulation studies using the Rocketfuel dataset (Liljenstam
et al., 2003). Based on this study, we further process the Rocketfuel network topology to
improve accuracy and reduce data noise. We choose to use one of the tier-1 ISP networks for
our study, which contains 637 routers (out of which 235 are backbone routers) connected by
1,381 links. Attached to the backbone network are medium-sized stub networks, called the
campus network. Each campus network consists of 504 end hosts, organized into 12 local
area networks (LANs) connected by 18 routers. Four extra end hosts are designated to form
a server cluster. Each LAN consists of a gateway router and 42 end-hosts. The entire campus
network is divided into four OSPF areas. The campus network is connected to the outside
world through a BGP router. We attach 84 such campus networks to the tier-1 ISP network.
The entire network thus contains 42,672 end hosts and 3,157 routers.
We place one CoralCDN node within each of the 12 LANs of the 84 campus network (at one
of the 42 end hosts in each LAN), thus making a total of 1,008 CoralCDN nodes overall. Each
CoralCDN node is emulated in a separate OpenVZ container. The web clients are simulated;
they send HTTP requests to the CoralCDN node within the same LAN and subsequently
receive data objects from the Coral proxy. PRIME implements a full-fledged TCP model that
allows simulated nodes to interact with real TCP counterparts. We attach a stub network to
a backbone router in the tier-1 ISP network (located in Paris, France) to run a web server,
emulated on a separate compute node.
We select the HTTP trace at the 1998 World Cup web site, which is publicly available (Arlitt
and Jin, 1998). The trace is collected with all HTTP requests made to the 1998 World Cup
Web site. We select a 24-hour period of this trace (from June 5,1998, 22:00:01 GMT to June

6,1998, 22:00:00 GMT). The segment consists of 5,452,684 requests originated from 40,491
clients. We pre-process the trace to filter out the sequence of requests sent from each client
and randomly map the 40,491 clients to the end hosts in our network model for a complete
daily pattern of the caching behavior. Through the experiment, we were able to successfully
collect three important metrics to analyze the performance the peer-to-peer content
distribution network: cache hit rate, web server load, and response time.

6. Conclusions and Future Work

In this chapter we describe real-time simulation of large-scale networks and compare it
against other major tools for networking research. We discuss the problems that may
prevent simulation from achieving real-time performance and subsequently present our
current solutions. We conduct large-scale network experiments incorporating real-time
simulation to demonstrate its capabilities.
Future work includes efficient background traffic models for large-scale networks, high-
performance communication conduit for connecting virtual machines and the real-time sim-
ulator, and effective methods for configuring, running and visualizing network
experiments.

Acknowledgments

This chapter significantly extends our previous work (Liu, 2008) with a high-level summary
of published results thereafter. Our research reported in this chapter is supported in part by
National Science Foundation grants CNS-0546712, CNS-0836408 and HRD-0833093.

7. References

Jong Suk Ahn, Peter B. Danzip, Zhen Liu, and Limin Yan. Evaluation of TCP Vegas:
emulation and experiment. In Proceedings of the 1995 ACM SIGCOMM
Conference, pages 185-195, August 1995.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the In-
ternet impasse through virtualization. Computer, 38(4):34—41, 2005.

Martin Arlitt and Tai Jin. 1998 World Cup web site access logs. Available at: http://www.
acm.org/sigcomm/ITA/, August 1998.

Rassul Ayani. A parallel simulation scheme based on the distance between objects.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):113-
118, March 1989.

Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario Gerla. Glo-
MoSim: a scalable network simulation environment. Technical Report 990027,
Department of Computer Science, UCLA, May 1999.

Paul Barford and Larry Landweber. Bench-style network research in an Internet instance
laboratory. ACM SIGCOMM Computer Communication Review, 33(3):21-26, 2003.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles
(SOSP'03), 2003.

Parallel	and	Distributed	Computing240

Rimon Barr, Zygmunt Haas, and Robbert van Renesse. JiST: An efficient approach to sim-
ulation using virtual machines. Software Practice and Experience, 35(6):539-576,
May 2005.

Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. In VINI
veritas: realistic and controlled network experimentation.
ACMSIGCOMMComputer Communication Review, 36(4):3-14, 2006.

Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph, Keith
Sklower, Ron Ostrenga, and Stephen Schwab. Experience with DETER: A testbed
for security research. In Proceedings of 2nd International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM'06), March 2006.

Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete event IP network
emulator. In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS'00), pages 315-322, August 2000.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in
network simulation. IEEE Computer, 33(5):59-67, May 2000.

Randal E. Bryant. Simulation of packet communication architecture computer systems.
Technical Report MIT-LCS-TR-188, MIT, 1977.

Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient
optimistic parallel simulations using reverse computation. ACM Transactions on
Modeling and Computer Simulation, 9(3):224-253, July 1999.

Mark Carson and Darrin Santay. NIST Net: a Linux-based network emulation tool.
SIGCOMM Computer Communication Review, 33(3):111-126, 2003.

K. M. Chandy and R. Sherman. The conditional event approach to distributed simulation.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):93-
99, March 1989.

K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE-5 (5):440^52, May 1979.

James Cowie, David Nicol, and Andy Ogielski. Modeling the global Internet. Computing in
Science and Engineering, 1(1):42-50, January 1999. DaSSF. Dartmouth Scalable
Simulation Framework.
http://users.cis.fiu.edu/^liux/research/projects/dassf/index.html.

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wiseman, and Ken
Wong. The open network laboratory. ACM SIGCSE Bulletin, 38(1):107-111, 2006.

Phillip M. Dickens and Paul F. Reynolds. SRADS with local rollback. Proceedings of the
1990 SCS Multiconference on Distributed Simulation, 22(1):161-164, January 1990.

Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual Linux
Showcase & Conference, 2000.

Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized evaluation environment
for TCP. In Proceedings of the 5th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities
(TridentCom'09), April 2009.

Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings of the 4th IEEE
Symposium on Computers and Communications (ISCC'99), pages 244-250, July
1999.

Sally Floyd and Vern Paxson. Difficulties in simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392-403, August 2001.

Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing content publi-
cation with Coral. In Proceedings of the 1st USENIX Symposium on Networked
Systems

Design and Implementation (NSDI 04), pages 239-252, 2004.
Richard M. Fujimoto. Lookahead in parallel discrete event simulation. In Proceedings of the

1988 International Conference on Parallel Processing, pages 34-41, August 1988.
Richard M. Fujimoto. Performance measurements of distributed simulation strategies.

Transactions of the Society for Computer Simulation, 6(2):89-132, April 1989.
Richard M. Fujimoto. Parallel discrete event simulation. Communications ofthe ACM,

33(10): 30-53, October 1990.
Richard M. Fujimoto and Maria Hybinette. Computing global virtual time in shared

memory multiprocessors. ACM Transactions on Modeling and Computer
Simulation, 7(4):425-446, October 1997.

A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):61-67, July 1988.

Fabian Gomes, Brian Unger, and John Cleary. Language based state saving extensions for
optimistic parallel simulation. In Proceedings of the 1996 Winter Simulation
Conference (WSC'96), pages 794-800, December 1996.

Bojan Groselj and Carl Tropper. The time of next event algorithm. Proceedings ofthe 1988
SCS Multiconference on Distributed Simulation, 19(3):25-29, July 1988.

Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex Snoeren, Amin Vahdat, and Geof-
frey Voelker. To infinity and beyond: time-warped network emulation. In Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 06), 2006.

Daniel Herrscher and Kurt Rothermel. A dynamic network scenario emulation tool. In Pro-
ceedings of the 11th International Conference on Computer Communications and
Networks (ICCCN'02), pages 262-267, October 2002.

X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID protocol development
environment. In Proceedings of the 1999 IEEE INFOCOM, pages 1107-1115, March
1999.

David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7 (3):404^25, July 1985.

David R. Jefferson. Virtual time II: Storage management in distributed simulation. In Procee-
ings of the 9th Annual ACM Symposium on Principles ofDistributed Computing,
pages 75-89, August 1990.

Xuxian Jiang and Dongyan Xu. VIOLIN: Virtual internetworking on overlay infrastructure.
In Proceedings of the 2nd Internattonai Symposium on Paraiiei and Distributed Processing

and Appiications (ISPA'04), pages 937-946, 2004.
Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless experimentation through

physical emulation. ACM SIGCOMM Computer Communication Review, 34(1):63-
68, 2004.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 241

Rimon Barr, Zygmunt Haas, and Robbert van Renesse. JiST: An efficient approach to sim-
ulation using virtual machines. Software Practice and Experience, 35(6):539-576,
May 2005.

Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. In VINI
veritas: realistic and controlled network experimentation.
ACMSIGCOMMComputer Communication Review, 36(4):3-14, 2006.

Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph, Keith
Sklower, Ron Ostrenga, and Stephen Schwab. Experience with DETER: A testbed
for security research. In Proceedings of 2nd International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM'06), March 2006.

Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete event IP network
emulator. In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS'00), pages 315-322, August 2000.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in
network simulation. IEEE Computer, 33(5):59-67, May 2000.

Randal E. Bryant. Simulation of packet communication architecture computer systems.
Technical Report MIT-LCS-TR-188, MIT, 1977.

Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient
optimistic parallel simulations using reverse computation. ACM Transactions on
Modeling and Computer Simulation, 9(3):224-253, July 1999.

Mark Carson and Darrin Santay. NIST Net: a Linux-based network emulation tool.
SIGCOMM Computer Communication Review, 33(3):111-126, 2003.

K. M. Chandy and R. Sherman. The conditional event approach to distributed simulation.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):93-
99, March 1989.

K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE-5 (5):440^52, May 1979.

James Cowie, David Nicol, and Andy Ogielski. Modeling the global Internet. Computing in
Science and Engineering, 1(1):42-50, January 1999. DaSSF. Dartmouth Scalable
Simulation Framework.
http://users.cis.fiu.edu/^liux/research/projects/dassf/index.html.

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wiseman, and Ken
Wong. The open network laboratory. ACM SIGCSE Bulletin, 38(1):107-111, 2006.

Phillip M. Dickens and Paul F. Reynolds. SRADS with local rollback. Proceedings of the
1990 SCS Multiconference on Distributed Simulation, 22(1):161-164, January 1990.

Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual Linux
Showcase & Conference, 2000.

Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized evaluation environment
for TCP. In Proceedings of the 5th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities
(TridentCom'09), April 2009.

Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings of the 4th IEEE
Symposium on Computers and Communications (ISCC'99), pages 244-250, July
1999.

Sally Floyd and Vern Paxson. Difficulties in simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392-403, August 2001.

Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing content publi-
cation with Coral. In Proceedings of the 1st USENIX Symposium on Networked
Systems

Design and Implementation (NSDI 04), pages 239-252, 2004.
Richard M. Fujimoto. Lookahead in parallel discrete event simulation. In Proceedings of the

1988 International Conference on Parallel Processing, pages 34-41, August 1988.
Richard M. Fujimoto. Performance measurements of distributed simulation strategies.

Transactions of the Society for Computer Simulation, 6(2):89-132, April 1989.
Richard M. Fujimoto. Parallel discrete event simulation. Communications ofthe ACM,

33(10): 30-53, October 1990.
Richard M. Fujimoto and Maria Hybinette. Computing global virtual time in shared

memory multiprocessors. ACM Transactions on Modeling and Computer
Simulation, 7(4):425-446, October 1997.

A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):61-67, July 1988.

Fabian Gomes, Brian Unger, and John Cleary. Language based state saving extensions for
optimistic parallel simulation. In Proceedings of the 1996 Winter Simulation
Conference (WSC'96), pages 794-800, December 1996.

Bojan Groselj and Carl Tropper. The time of next event algorithm. Proceedings ofthe 1988
SCS Multiconference on Distributed Simulation, 19(3):25-29, July 1988.

Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex Snoeren, Amin Vahdat, and Geof-
frey Voelker. To infinity and beyond: time-warped network emulation. In Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 06), 2006.

Daniel Herrscher and Kurt Rothermel. A dynamic network scenario emulation tool. In Pro-
ceedings of the 11th International Conference on Computer Communications and
Networks (ICCCN'02), pages 262-267, October 2002.

X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID protocol development
environment. In Proceedings of the 1999 IEEE INFOCOM, pages 1107-1115, March
1999.

David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7 (3):404^25, July 1985.

David R. Jefferson. Virtual time II: Storage management in distributed simulation. In Procee-
ings of the 9th Annual ACM Symposium on Principles ofDistributed Computing,
pages 75-89, August 1990.

Xuxian Jiang and Dongyan Xu. VIOLIN: Virtual internetworking on overlay infrastructure.
In Proceedings of the 2nd Internattonai Symposium on Paraiiei and Distributed Processing

and Appiications (ISPA'04), pages 937-946, 2004.
Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless experimentation through

physical emulation. ACM SIGCOMM Computer Communication Review, 34(1):63-
68, 2004.

Parallel	and	Distributed	Computing240

Rimon Barr, Zygmunt Haas, and Robbert van Renesse. JiST: An efficient approach to sim-
ulation using virtual machines. Software Practice and Experience, 35(6):539-576,
May 2005.

Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. In VINI
veritas: realistic and controlled network experimentation.
ACMSIGCOMMComputer Communication Review, 36(4):3-14, 2006.

Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph, Keith
Sklower, Ron Ostrenga, and Stephen Schwab. Experience with DETER: A testbed
for security research. In Proceedings of 2nd International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM'06), March 2006.

Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete event IP network
emulator. In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS'00), pages 315-322, August 2000.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in
network simulation. IEEE Computer, 33(5):59-67, May 2000.

Randal E. Bryant. Simulation of packet communication architecture computer systems.
Technical Report MIT-LCS-TR-188, MIT, 1977.

Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient
optimistic parallel simulations using reverse computation. ACM Transactions on
Modeling and Computer Simulation, 9(3):224-253, July 1999.

Mark Carson and Darrin Santay. NIST Net: a Linux-based network emulation tool.
SIGCOMM Computer Communication Review, 33(3):111-126, 2003.

K. M. Chandy and R. Sherman. The conditional event approach to distributed simulation.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):93-
99, March 1989.

K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE-5 (5):440^52, May 1979.

James Cowie, David Nicol, and Andy Ogielski. Modeling the global Internet. Computing in
Science and Engineering, 1(1):42-50, January 1999. DaSSF. Dartmouth Scalable
Simulation Framework.
http://users.cis.fiu.edu/^liux/research/projects/dassf/index.html.

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wiseman, and Ken
Wong. The open network laboratory. ACM SIGCSE Bulletin, 38(1):107-111, 2006.

Phillip M. Dickens and Paul F. Reynolds. SRADS with local rollback. Proceedings of the
1990 SCS Multiconference on Distributed Simulation, 22(1):161-164, January 1990.

Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual Linux
Showcase & Conference, 2000.

Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized evaluation environment
for TCP. In Proceedings of the 5th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities
(TridentCom'09), April 2009.

Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings of the 4th IEEE
Symposium on Computers and Communications (ISCC'99), pages 244-250, July
1999.

Sally Floyd and Vern Paxson. Difficulties in simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392-403, August 2001.

Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing content publi-
cation with Coral. In Proceedings of the 1st USENIX Symposium on Networked
Systems

Design and Implementation (NSDI 04), pages 239-252, 2004.
Richard M. Fujimoto. Lookahead in parallel discrete event simulation. In Proceedings of the

1988 International Conference on Parallel Processing, pages 34-41, August 1988.
Richard M. Fujimoto. Performance measurements of distributed simulation strategies.

Transactions of the Society for Computer Simulation, 6(2):89-132, April 1989.
Richard M. Fujimoto. Parallel discrete event simulation. Communications ofthe ACM,

33(10): 30-53, October 1990.
Richard M. Fujimoto and Maria Hybinette. Computing global virtual time in shared

memory multiprocessors. ACM Transactions on Modeling and Computer
Simulation, 7(4):425-446, October 1997.

A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):61-67, July 1988.

Fabian Gomes, Brian Unger, and John Cleary. Language based state saving extensions for
optimistic parallel simulation. In Proceedings of the 1996 Winter Simulation
Conference (WSC'96), pages 794-800, December 1996.

Bojan Groselj and Carl Tropper. The time of next event algorithm. Proceedings ofthe 1988
SCS Multiconference on Distributed Simulation, 19(3):25-29, July 1988.

Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex Snoeren, Amin Vahdat, and Geof-
frey Voelker. To infinity and beyond: time-warped network emulation. In Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 06), 2006.

Daniel Herrscher and Kurt Rothermel. A dynamic network scenario emulation tool. In Pro-
ceedings of the 11th International Conference on Computer Communications and
Networks (ICCCN'02), pages 262-267, October 2002.

X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID protocol development
environment. In Proceedings of the 1999 IEEE INFOCOM, pages 1107-1115, March
1999.

David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7 (3):404^25, July 1985.

David R. Jefferson. Virtual time II: Storage management in distributed simulation. In Procee-
ings of the 9th Annual ACM Symposium on Principles ofDistributed Computing,
pages 75-89, August 1990.

Xuxian Jiang and Dongyan Xu. VIOLIN: Virtual internetworking on overlay infrastructure.
In Proceedings of the 2nd Internattonai Symposium on Paraiiei and Distributed Processing

and Appiications (ISPA'04), pages 937-946, 2004.
Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless experimentation through

physical emulation. ACM SIGCOMM Computer Communication Review, 34(1):63-
68, 2004.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 241

Rimon Barr, Zygmunt Haas, and Robbert van Renesse. JiST: An efficient approach to sim-
ulation using virtual machines. Software Practice and Experience, 35(6):539-576,
May 2005.

Andy Bavier, Nick Feamster, Mark Huang, Larry Peterson, and Jennifer Rexford. In VINI
veritas: realistic and controlled network experimentation.
ACMSIGCOMMComputer Communication Review, 36(4):3-14, 2006.

Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman, Anthony Joseph, Keith
Sklower, Ron Ostrenga, and Stephen Schwab. Experience with DETER: A testbed
for security research. In Proceedings of 2nd International Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM'06), March 2006.

Russell Bradford, Rob Simmonds, and Brian Unger. A parallel discrete event IP network
emulator. In Proceedings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS'00), pages 315-322, August 2000.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed Helmy, Polly
Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu. Advances in
network simulation. IEEE Computer, 33(5):59-67, May 2000.

Randal E. Bryant. Simulation of packet communication architecture computer systems.
Technical Report MIT-LCS-TR-188, MIT, 1977.

Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient
optimistic parallel simulations using reverse computation. ACM Transactions on
Modeling and Computer Simulation, 9(3):224-253, July 1999.

Mark Carson and Darrin Santay. NIST Net: a Linux-based network emulation tool.
SIGCOMM Computer Communication Review, 33(3):111-126, 2003.

K. M. Chandy and R. Sherman. The conditional event approach to distributed simulation.
Proceedings of the 1989 SCS Multiconference on Distributed Simulation, 21(2):93-
99, March 1989.

K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE-5 (5):440^52, May 1979.

James Cowie, David Nicol, and Andy Ogielski. Modeling the global Internet. Computing in
Science and Engineering, 1(1):42-50, January 1999. DaSSF. Dartmouth Scalable
Simulation Framework.
http://users.cis.fiu.edu/^liux/research/projects/dassf/index.html.

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, Charlie Wiseman, and Ken
Wong. The open network laboratory. ACM SIGCSE Bulletin, 38(1):107-111, 2006.

Phillip M. Dickens and Paul F. Reynolds. SRADS with local rollback. Proceedings of the
1990 SCS Multiconference on Distributed Simulation, 22(1):161-164, January 1990.

Jeff Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual Linux
Showcase & Conference, 2000.

Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized evaluation environment
for TCP. In Proceedings of the 5th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities
(TridentCom'09), April 2009.

Kevin Fall. Network emulation in the Vint/NS simulator. In Proceedings of the 4th IEEE
Symposium on Computers and Communications (ISCC'99), pages 244-250, July
1999.

Sally Floyd and Vern Paxson. Difficulties in simulating the Internet. IEEE/ACM
Transactions on Networking, 9(4):392-403, August 2001.

Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing content publi-
cation with Coral. In Proceedings of the 1st USENIX Symposium on Networked
Systems

Design and Implementation (NSDI 04), pages 239-252, 2004.
Richard M. Fujimoto. Lookahead in parallel discrete event simulation. In Proceedings of the

1988 International Conference on Parallel Processing, pages 34-41, August 1988.
Richard M. Fujimoto. Performance measurements of distributed simulation strategies.

Transactions of the Society for Computer Simulation, 6(2):89-132, April 1989.
Richard M. Fujimoto. Parallel discrete event simulation. Communications ofthe ACM,

33(10): 30-53, October 1990.
Richard M. Fujimoto and Maria Hybinette. Computing global virtual time in shared

memory multiprocessors. ACM Transactions on Modeling and Computer
Simulation, 7(4):425-446, October 1997.

A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):61-67, July 1988.

Fabian Gomes, Brian Unger, and John Cleary. Language based state saving extensions for
optimistic parallel simulation. In Proceedings of the 1996 Winter Simulation
Conference (WSC'96), pages 794-800, December 1996.

Bojan Groselj and Carl Tropper. The time of next event algorithm. Proceedings ofthe 1988
SCS Multiconference on Distributed Simulation, 19(3):25-29, July 1988.

Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex Snoeren, Amin Vahdat, and Geof-
frey Voelker. To infinity and beyond: time-warped network emulation. In Proceed-
ings of the 3rd USENIX Symposium on Networked Systems Design and
Implementation (NSDI 06), 2006.

Daniel Herrscher and Kurt Rothermel. A dynamic network scenario emulation tool. In Pro-
ceedings of the 11th International Conference on Computer Communications and
Networks (ICCCN'02), pages 262-267, October 2002.

X. W. Huang, R. Sharma, and S. Keshav. The ENTRAPID protocol development
environment. In Proceedings of the 1999 IEEE INFOCOM, pages 1107-1115, March
1999.

David R. Jefferson. Virtual time. ACM Transactions on Programming Languages and
Systems, 7 (3):404^25, July 1985.

David R. Jefferson. Virtual time II: Storage management in distributed simulation. In Procee-
ings of the 9th Annual ACM Symposium on Principles ofDistributed Computing,
pages 75-89, August 1990.

Xuxian Jiang and Dongyan Xu. VIOLIN: Virtual internetworking on overlay infrastructure.
In Proceedings of the 2nd Internattonai Symposium on Paraiiei and Distributed Processing

and Appiications (ISPA'04), pages 937-946, 2004.
Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless experimentation through

physical emulation. ACM SIGCOMM Computer Communication Review, 34(1):63-
68, 2004.

Parallel	and	Distributed	Computing242

Ting Li and Jason Liu. A fluid background traffic model. In Proceedings of the 2009 IEEE
Internationai Conference on Communications (ICC'09), June 2009a.

Yue Li and Jason Liu. Real-time security exercises on a realistic interdomain routing experi-
ment platform. In Proceedings of the 23rd Workshop on Principies of Advanced
and Distributed Simuiation (PADS 09), June 2009b.

Yue Li, Jason Liu, and Raju Rangaswami. Toward scalable routing experiments with real-
time network simulation. In Proceedings of the 22nd Workshop on Principies of
Advanced and Distributed Simuiation (PADS'08), pages 23-30, June 2008.

Michael Liljenstam, Jason Liu, and David M. Nicol. Development of an Internet backbone
topology for large-scale network simulations. In Proceedings of the 2003 Winter
Simu-iation Conference, pages 694-702, 2003.

Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris Grier.
RINSE: the real-time interactive network simulation environment for network secu-
rity exercises. In Proceedings of the 19th Workshop on Paraiiei and Distributed
Simuiation (PADS'05), pages 119-128, June 2005.

Yi-Bing Lin and Edward D. Lazowska. Reducing the state saving overhead for Time Warp
parallel simulation. Technical Report 90-02-03, Department of Computer Science,
University of Washington, February 1990.

Yi-Bing Lin and Bruno R. Preiss. Optimal memory management for Time Warp parallel
simulation. ACM Transactions on Modeiing and Computer Simuiation, 1(4):283-
307, October 1991.

Yi-Bing Lin, Bruno Richard Preiss, Wayne Mervin Loucks, and Edward D. Lazowska.
Selecting the checkpoint interval in Time Warp simulation. In Proceedings of the
7th Workshop on Paraiiei and Distributed Simuiation (PADS 93), pages 3-10, May
1993.

Jason Liu. Packet-level integration of fluid TCP models in real-time network simulation. In
Proceedings of the 2006 Winter Simuiation Conference (WSC'06), pages 2162-2169,
December 2006.

Jason Liu. A primer for real-time simulation of large-scale networks. In Proceedings ofthe
41st Annuai Simuiation Symposium (ANSS'08), April 2008.

Jason Liu and Yue Li. On the performance of a hybrid network traffic model. Simuiation
Modeiiing Practice and Theory, 16(6):656-669, 2008.

Jason Liu and David M. Nicol. Learning not to share. In Proceedings of the 15th Workshop
on Paraiiei and Distributed Simuiation (PADS'01), pages 46-55, May 2001.

Jason Liu, Scott Mann, Nathanael Van Vorst, and Keith Hellman. An open and scalable em-
ulation infrastructure for large-scale real-time network simulations. In Proceedings
of 2007 IEEE INFOCOM MiniSymposium, pages 2471-2475, May 2007.

Jason Liu, Yue Li, and Ying He. A large-scale real-time network simulation study using
PRIME. In Proceedings ofthe 2009 Winter Simuiation Conference (WSC 09),
December

2009. To appear.
Xin Liu, Huaxia Xia, and Andrew A. Chien. Network emulation tools for modeling grid be-

havior. In Proceedings of3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid'03), May 2003.

Yong Liu, Francesco Presti, Vishal Misra, Donald Towsley, and Yu Gu. Scalable fluid models
and simulations for large-scale IP networks. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(3):305-324, July 2004.

Boris D. Lubachevsky. Bounded lag distributed discrete event simulation. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):183-191, July
1988.

Steffen Maier, Daniel Herrscher, and Kurt Rothermel. Experiences with node virtualization
for scalable network emulation. Computer Communications, 30(5):943-956, 2007.

Friedemann Mattern. Efficient distributed snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing, 18(4):423-434, August 1993.

David M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.
ACM SIGPLAN Notices, 23(9):124-137, September 1988.

David M. Nicol. Performance bounds on parallel self-initiating discrete-event simulations.
ACM Transactions on Modeling and Computer Simulation, 1(1):24-50, January
1991.

David M. Nicol. Principles of conservative parallel simulation. In Proceedings ofthe1996
Winter Simulation Conference (WSC 96), pages 128-135, December 1996.

David M. Nicol and Philip Heidelberger. A comparative study of parallel algorithms for
simulating continuous time Markov chains. ACM Transactions on Modeling and
Computer Simulation, 5(4):326-354, October 1995.

David M. Nicol and Jason Liu. Composite synchronization in parallel discrete-event simula-
tion. IEEE Transactions on Parallel and Distributed Systems, 13(5):433-446, May
2002. OpenVZ. http://openvz.org/.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint for
introducing disruptive technology into the Internet. HotNets-I, October 2002.

Bruno Richard Preiss and Wayne Mervin Loucks. Memory management techniques for
Time Warp on a distributed memory machine. In Proceedings ofthe 9th Workshop
on Parallel and Distributed Simulation (PADS 95), pages 30-39, June 1995.

PRIME. http://www.primessf.net/.
Quagga. http://www.quagga.net/.
D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H.

Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols. In Proceedings ofthe IEEE Wireless
Communications and Networking Conference (WCNC 05), March 2005.

Daniel A. Reed, Allen D. Malony, and Bradley McCredie. Parallel discrete event simulation
using shared memory. IEEE Transactions on Software Engineering, 14(4):541-53,
April 1988.

P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation strategies in
optimistic execution systems. Proceedings ofthe 1990 SCS Multiconference on
Distributed Simulation, 22(1):112-121, January 1990.

George F. Riley. The Georgia Tech network simulator. In Proceedings ofthe ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network
Research (MoMe-Tools 03), pages 5-12, August 2003.

Luigi Rizzo. Dummynet: a simple approach to the evaulation of network protocols. ACM
SIGCOMM Computer Communication Review, 27(1):31-41, January 1997.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 243

Ting Li and Jason Liu. A fluid background traffic model. In Proceedings of the 2009 IEEE
Internationai Conference on Communications (ICC'09), June 2009a.

Yue Li and Jason Liu. Real-time security exercises on a realistic interdomain routing experi-
ment platform. In Proceedings of the 23rd Workshop on Principies of Advanced
and Distributed Simuiation (PADS 09), June 2009b.

Yue Li, Jason Liu, and Raju Rangaswami. Toward scalable routing experiments with real-
time network simulation. In Proceedings of the 22nd Workshop on Principies of
Advanced and Distributed Simuiation (PADS'08), pages 23-30, June 2008.

Michael Liljenstam, Jason Liu, and David M. Nicol. Development of an Internet backbone
topology for large-scale network simulations. In Proceedings of the 2003 Winter
Simu-iation Conference, pages 694-702, 2003.

Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris Grier.
RINSE: the real-time interactive network simulation environment for network secu-
rity exercises. In Proceedings of the 19th Workshop on Paraiiei and Distributed
Simuiation (PADS'05), pages 119-128, June 2005.

Yi-Bing Lin and Edward D. Lazowska. Reducing the state saving overhead for Time Warp
parallel simulation. Technical Report 90-02-03, Department of Computer Science,
University of Washington, February 1990.

Yi-Bing Lin and Bruno R. Preiss. Optimal memory management for Time Warp parallel
simulation. ACM Transactions on Modeiing and Computer Simuiation, 1(4):283-
307, October 1991.

Yi-Bing Lin, Bruno Richard Preiss, Wayne Mervin Loucks, and Edward D. Lazowska.
Selecting the checkpoint interval in Time Warp simulation. In Proceedings of the
7th Workshop on Paraiiei and Distributed Simuiation (PADS 93), pages 3-10, May
1993.

Jason Liu. Packet-level integration of fluid TCP models in real-time network simulation. In
Proceedings of the 2006 Winter Simuiation Conference (WSC'06), pages 2162-2169,
December 2006.

Jason Liu. A primer for real-time simulation of large-scale networks. In Proceedings ofthe
41st Annuai Simuiation Symposium (ANSS'08), April 2008.

Jason Liu and Yue Li. On the performance of a hybrid network traffic model. Simuiation
Modeiiing Practice and Theory, 16(6):656-669, 2008.

Jason Liu and David M. Nicol. Learning not to share. In Proceedings of the 15th Workshop
on Paraiiei and Distributed Simuiation (PADS'01), pages 46-55, May 2001.

Jason Liu, Scott Mann, Nathanael Van Vorst, and Keith Hellman. An open and scalable em-
ulation infrastructure for large-scale real-time network simulations. In Proceedings
of 2007 IEEE INFOCOM MiniSymposium, pages 2471-2475, May 2007.

Jason Liu, Yue Li, and Ying He. A large-scale real-time network simulation study using
PRIME. In Proceedings ofthe 2009 Winter Simuiation Conference (WSC 09),
December

2009. To appear.
Xin Liu, Huaxia Xia, and Andrew A. Chien. Network emulation tools for modeling grid be-

havior. In Proceedings of3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid'03), May 2003.

Yong Liu, Francesco Presti, Vishal Misra, Donald Towsley, and Yu Gu. Scalable fluid models
and simulations for large-scale IP networks. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(3):305-324, July 2004.

Boris D. Lubachevsky. Bounded lag distributed discrete event simulation. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):183-191, July
1988.

Steffen Maier, Daniel Herrscher, and Kurt Rothermel. Experiences with node virtualization
for scalable network emulation. Computer Communications, 30(5):943-956, 2007.

Friedemann Mattern. Efficient distributed snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing, 18(4):423-434, August 1993.

David M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.
ACM SIGPLAN Notices, 23(9):124-137, September 1988.

David M. Nicol. Performance bounds on parallel self-initiating discrete-event simulations.
ACM Transactions on Modeling and Computer Simulation, 1(1):24-50, January
1991.

David M. Nicol. Principles of conservative parallel simulation. In Proceedings ofthe1996
Winter Simulation Conference (WSC 96), pages 128-135, December 1996.

David M. Nicol and Philip Heidelberger. A comparative study of parallel algorithms for
simulating continuous time Markov chains. ACM Transactions on Modeling and
Computer Simulation, 5(4):326-354, October 1995.

David M. Nicol and Jason Liu. Composite synchronization in parallel discrete-event simula-
tion. IEEE Transactions on Parallel and Distributed Systems, 13(5):433-446, May
2002. OpenVZ. http://openvz.org/.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint for
introducing disruptive technology into the Internet. HotNets-I, October 2002.

Bruno Richard Preiss and Wayne Mervin Loucks. Memory management techniques for
Time Warp on a distributed memory machine. In Proceedings ofthe 9th Workshop
on Parallel and Distributed Simulation (PADS 95), pages 30-39, June 1995.

PRIME. http://www.primessf.net/.
Quagga. http://www.quagga.net/.
D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H.

Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols. In Proceedings ofthe IEEE Wireless
Communications and Networking Conference (WCNC 05), March 2005.

Daniel A. Reed, Allen D. Malony, and Bradley McCredie. Parallel discrete event simulation
using shared memory. IEEE Transactions on Software Engineering, 14(4):541-53,
April 1988.

P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation strategies in
optimistic execution systems. Proceedings ofthe 1990 SCS Multiconference on
Distributed Simulation, 22(1):112-121, January 1990.

George F. Riley. The Georgia Tech network simulator. In Proceedings ofthe ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network
Research (MoMe-Tools 03), pages 5-12, August 2003.

Luigi Rizzo. Dummynet: a simple approach to the evaulation of network protocols. ACM
SIGCOMM Computer Communication Review, 27(1):31-41, January 1997.

Parallel	and	Distributed	Computing242

Ting Li and Jason Liu. A fluid background traffic model. In Proceedings of the 2009 IEEE
Internationai Conference on Communications (ICC'09), June 2009a.

Yue Li and Jason Liu. Real-time security exercises on a realistic interdomain routing experi-
ment platform. In Proceedings of the 23rd Workshop on Principies of Advanced
and Distributed Simuiation (PADS 09), June 2009b.

Yue Li, Jason Liu, and Raju Rangaswami. Toward scalable routing experiments with real-
time network simulation. In Proceedings of the 22nd Workshop on Principies of
Advanced and Distributed Simuiation (PADS'08), pages 23-30, June 2008.

Michael Liljenstam, Jason Liu, and David M. Nicol. Development of an Internet backbone
topology for large-scale network simulations. In Proceedings of the 2003 Winter
Simu-iation Conference, pages 694-702, 2003.

Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris Grier.
RINSE: the real-time interactive network simulation environment for network secu-
rity exercises. In Proceedings of the 19th Workshop on Paraiiei and Distributed
Simuiation (PADS'05), pages 119-128, June 2005.

Yi-Bing Lin and Edward D. Lazowska. Reducing the state saving overhead for Time Warp
parallel simulation. Technical Report 90-02-03, Department of Computer Science,
University of Washington, February 1990.

Yi-Bing Lin and Bruno R. Preiss. Optimal memory management for Time Warp parallel
simulation. ACM Transactions on Modeiing and Computer Simuiation, 1(4):283-
307, October 1991.

Yi-Bing Lin, Bruno Richard Preiss, Wayne Mervin Loucks, and Edward D. Lazowska.
Selecting the checkpoint interval in Time Warp simulation. In Proceedings of the
7th Workshop on Paraiiei and Distributed Simuiation (PADS 93), pages 3-10, May
1993.

Jason Liu. Packet-level integration of fluid TCP models in real-time network simulation. In
Proceedings of the 2006 Winter Simuiation Conference (WSC'06), pages 2162-2169,
December 2006.

Jason Liu. A primer for real-time simulation of large-scale networks. In Proceedings ofthe
41st Annuai Simuiation Symposium (ANSS'08), April 2008.

Jason Liu and Yue Li. On the performance of a hybrid network traffic model. Simuiation
Modeiiing Practice and Theory, 16(6):656-669, 2008.

Jason Liu and David M. Nicol. Learning not to share. In Proceedings of the 15th Workshop
on Paraiiei and Distributed Simuiation (PADS'01), pages 46-55, May 2001.

Jason Liu, Scott Mann, Nathanael Van Vorst, and Keith Hellman. An open and scalable em-
ulation infrastructure for large-scale real-time network simulations. In Proceedings
of 2007 IEEE INFOCOM MiniSymposium, pages 2471-2475, May 2007.

Jason Liu, Yue Li, and Ying He. A large-scale real-time network simulation study using
PRIME. In Proceedings ofthe 2009 Winter Simuiation Conference (WSC 09),
December

2009. To appear.
Xin Liu, Huaxia Xia, and Andrew A. Chien. Network emulation tools for modeling grid be-

havior. In Proceedings of3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid'03), May 2003.

Yong Liu, Francesco Presti, Vishal Misra, Donald Towsley, and Yu Gu. Scalable fluid models
and simulations for large-scale IP networks. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(3):305-324, July 2004.

Boris D. Lubachevsky. Bounded lag distributed discrete event simulation. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):183-191, July
1988.

Steffen Maier, Daniel Herrscher, and Kurt Rothermel. Experiences with node virtualization
for scalable network emulation. Computer Communications, 30(5):943-956, 2007.

Friedemann Mattern. Efficient distributed snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing, 18(4):423-434, August 1993.

David M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.
ACM SIGPLAN Notices, 23(9):124-137, September 1988.

David M. Nicol. Performance bounds on parallel self-initiating discrete-event simulations.
ACM Transactions on Modeling and Computer Simulation, 1(1):24-50, January
1991.

David M. Nicol. Principles of conservative parallel simulation. In Proceedings ofthe1996
Winter Simulation Conference (WSC 96), pages 128-135, December 1996.

David M. Nicol and Philip Heidelberger. A comparative study of parallel algorithms for
simulating continuous time Markov chains. ACM Transactions on Modeling and
Computer Simulation, 5(4):326-354, October 1995.

David M. Nicol and Jason Liu. Composite synchronization in parallel discrete-event simula-
tion. IEEE Transactions on Parallel and Distributed Systems, 13(5):433-446, May
2002. OpenVZ. http://openvz.org/.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint for
introducing disruptive technology into the Internet. HotNets-I, October 2002.

Bruno Richard Preiss and Wayne Mervin Loucks. Memory management techniques for
Time Warp on a distributed memory machine. In Proceedings ofthe 9th Workshop
on Parallel and Distributed Simulation (PADS 95), pages 30-39, June 1995.

PRIME. http://www.primessf.net/.
Quagga. http://www.quagga.net/.
D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H.

Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols. In Proceedings ofthe IEEE Wireless
Communications and Networking Conference (WCNC 05), March 2005.

Daniel A. Reed, Allen D. Malony, and Bradley McCredie. Parallel discrete event simulation
using shared memory. IEEE Transactions on Software Engineering, 14(4):541-53,
April 1988.

P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation strategies in
optimistic execution systems. Proceedings ofthe 1990 SCS Multiconference on
Distributed Simulation, 22(1):112-121, January 1990.

George F. Riley. The Georgia Tech network simulator. In Proceedings ofthe ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network
Research (MoMe-Tools 03), pages 5-12, August 2003.

Luigi Rizzo. Dummynet: a simple approach to the evaulation of network protocols. ACM
SIGCOMM Computer Communication Review, 27(1):31-41, January 1997.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 243

Ting Li and Jason Liu. A fluid background traffic model. In Proceedings of the 2009 IEEE
Internationai Conference on Communications (ICC'09), June 2009a.

Yue Li and Jason Liu. Real-time security exercises on a realistic interdomain routing experi-
ment platform. In Proceedings of the 23rd Workshop on Principies of Advanced
and Distributed Simuiation (PADS 09), June 2009b.

Yue Li, Jason Liu, and Raju Rangaswami. Toward scalable routing experiments with real-
time network simulation. In Proceedings of the 22nd Workshop on Principies of
Advanced and Distributed Simuiation (PADS'08), pages 23-30, June 2008.

Michael Liljenstam, Jason Liu, and David M. Nicol. Development of an Internet backbone
topology for large-scale network simulations. In Proceedings of the 2003 Winter
Simu-iation Conference, pages 694-702, 2003.

Michael Liljenstam, Jason Liu, David M. Nicol, Yougu Yuan, Guanhua Yan, and Chris Grier.
RINSE: the real-time interactive network simulation environment for network secu-
rity exercises. In Proceedings of the 19th Workshop on Paraiiei and Distributed
Simuiation (PADS'05), pages 119-128, June 2005.

Yi-Bing Lin and Edward D. Lazowska. Reducing the state saving overhead for Time Warp
parallel simulation. Technical Report 90-02-03, Department of Computer Science,
University of Washington, February 1990.

Yi-Bing Lin and Bruno R. Preiss. Optimal memory management for Time Warp parallel
simulation. ACM Transactions on Modeiing and Computer Simuiation, 1(4):283-
307, October 1991.

Yi-Bing Lin, Bruno Richard Preiss, Wayne Mervin Loucks, and Edward D. Lazowska.
Selecting the checkpoint interval in Time Warp simulation. In Proceedings of the
7th Workshop on Paraiiei and Distributed Simuiation (PADS 93), pages 3-10, May
1993.

Jason Liu. Packet-level integration of fluid TCP models in real-time network simulation. In
Proceedings of the 2006 Winter Simuiation Conference (WSC'06), pages 2162-2169,
December 2006.

Jason Liu. A primer for real-time simulation of large-scale networks. In Proceedings ofthe
41st Annuai Simuiation Symposium (ANSS'08), April 2008.

Jason Liu and Yue Li. On the performance of a hybrid network traffic model. Simuiation
Modeiiing Practice and Theory, 16(6):656-669, 2008.

Jason Liu and David M. Nicol. Learning not to share. In Proceedings of the 15th Workshop
on Paraiiei and Distributed Simuiation (PADS'01), pages 46-55, May 2001.

Jason Liu, Scott Mann, Nathanael Van Vorst, and Keith Hellman. An open and scalable em-
ulation infrastructure for large-scale real-time network simulations. In Proceedings
of 2007 IEEE INFOCOM MiniSymposium, pages 2471-2475, May 2007.

Jason Liu, Yue Li, and Ying He. A large-scale real-time network simulation study using
PRIME. In Proceedings ofthe 2009 Winter Simuiation Conference (WSC 09),
December

2009. To appear.
Xin Liu, Huaxia Xia, and Andrew A. Chien. Network emulation tools for modeling grid be-

havior. In Proceedings of3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid'03), May 2003.

Yong Liu, Francesco Presti, Vishal Misra, Donald Towsley, and Yu Gu. Scalable fluid models
and simulations for large-scale IP networks. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(3):305-324, July 2004.

Boris D. Lubachevsky. Bounded lag distributed discrete event simulation. Proceedings
of the 1988 SCS Multiconference on Distributed Simulation, 19(3):183-191, July
1988.

Steffen Maier, Daniel Herrscher, and Kurt Rothermel. Experiences with node virtualization
for scalable network emulation. Computer Communications, 30(5):943-956, 2007.

Friedemann Mattern. Efficient distributed snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing, 18(4):423-434, August 1993.

David M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing networks.
ACM SIGPLAN Notices, 23(9):124-137, September 1988.

David M. Nicol. Performance bounds on parallel self-initiating discrete-event simulations.
ACM Transactions on Modeling and Computer Simulation, 1(1):24-50, January
1991.

David M. Nicol. Principles of conservative parallel simulation. In Proceedings ofthe1996
Winter Simulation Conference (WSC 96), pages 128-135, December 1996.

David M. Nicol and Philip Heidelberger. A comparative study of parallel algorithms for
simulating continuous time Markov chains. ACM Transactions on Modeling and
Computer Simulation, 5(4):326-354, October 1995.

David M. Nicol and Jason Liu. Composite synchronization in parallel discrete-event simula-
tion. IEEE Transactions on Parallel and Distributed Systems, 13(5):433-446, May
2002. OpenVZ. http://openvz.org/.

Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A blueprint for
introducing disruptive technology into the Internet. HotNets-I, October 2002.

Bruno Richard Preiss and Wayne Mervin Loucks. Memory management techniques for
Time Warp on a distributed memory machine. In Proceedings ofthe 9th Workshop
on Parallel and Distributed Simulation (PADS 95), pages 30-39, June 1995.

PRIME. http://www.primessf.net/.
Quagga. http://www.quagga.net/.
D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H.

Liu, and M. Singh. Overview of the ORBIT radio grid testbed for evaluation of
next-generation wireless network protocols. In Proceedings ofthe IEEE Wireless
Communications and Networking Conference (WCNC 05), March 2005.

Daniel A. Reed, Allen D. Malony, and Bradley McCredie. Parallel discrete event simulation
using shared memory. IEEE Transactions on Software Engineering, 14(4):541-53,
April 1988.

P. L. Reiher, R. M. Fujimoto, S. Bellenot, and D. Jefferson. Cancellation strategies in
optimistic execution systems. Proceedings ofthe 1990 SCS Multiconference on
Distributed Simulation, 22(1):112-121, January 1990.

George F. Riley. The Georgia Tech network simulator. In Proceedings ofthe ACM
SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network
Research (MoMe-Tools 03), pages 5-12, August 2003.

Luigi Rizzo. Dummynet: a simple approach to the evaulation of network protocols. ACM
SIGCOMM Computer Communication Review, 27(1):31-41, January 1997.

Parallel	and	Distributed	Computing244

Robert Ronngren, Michael Liljenstam, Rassul Ayani, and Johan Montagnat. Transparent
incremental state saving in Time Warp parallel discrete event simulation. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation
(PADS'96), pages 70-77, May 1996.

Behrokh Samadi. Distributed simulation, algorithms and performance analysis. PhD thesis,
Department of Computer Science, UCLA, 1985.

L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A strategy for scheduling discrete simu-
lation events for concurrent execution. Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, 19(3):34^2, July 1988.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative

to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systemsof (EuroSys'07), March 2007.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp topolo-
gies with rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2-16, 2004.

Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for network re-
search: myths, realities, and best practices. ACM SIGOPS Operating Systems
Review, 40(1):17-24, 2006.

Jeff S. Steinman. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. Proceedings of the SCS Multiconference on Advances in Parallel
and Distributed Simulation, SCS Simulation Series, 23(1):95-103, January 1991.

Jeff S. Steinman. Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel and
Distributed Simulation (PADS'93), pages 109-118, May 1993.

Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proceedings of the 3rd USENIX Conference on Virtual Machine
Technology (VM'04), pages 14-14, 2004.

Joe Touch. Dynamic Internet overlay deployment and management using the X-Bone. In
Proceedings of the 2000 International Conference on Network Protocols (ICNP'00),
pages 59-68, 2000.

Hung-ying Tyan and Jennifer Hou. JavaSim: A component based compositional network
simulation environment. In Proceedings of the Western Simulation
Multiconference, January 2001.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic, Jeff Chase, and
David Becker. Scalability and accuracy in a large scale network emulator. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI'02), pages 271-284, December 2002.

Andrs Varga. The OMNeT++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference (ESM 01), June 2001.

Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems: Does back-
ground traffic matter. In Proceedings of the 2008 USENIX Technical Conference,
pages 227-240, May 2008.

VMWare ESX Server. http://www.vmware.com/products/vi/esx/.
VMWare Workstation. http://www.vmware.com/products/desktop/workstation.html.
VRF. Linux Virtual Routing and Forwarding. http://sourceforge.net/projects/ linux-vrf/.
Darrin West. Optimizing Time Warp: Lazy rollback and lazy re-evaluation. Master's thesis,

Department of Computer Science, University of Calgary, January 1988.

A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines for distributed
and networked applications. In Proceedings of the USENIX Annual Technical
Conference,

June 2002. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI 02),
pages 255-270, December 2002.

XORP. http://www.xorp.org/.
Garrett Yaun, David Bauer, Harshad Bhutada, Christopher Carothers, Murat Yuksel, and

Shiv-kumar Kalyanaraman. Large-scale network simulation techniques: examples
of TCP and OSPF models. ACM SIGCOMM Computer Communication Review,
33(3):27-41, 2003.

Zebra. http://www.zebra.org/.
Marko Zec. Implementing a clonable network stack in the FreeBSD kernel. In Proceedings of

the 2003 USENIX Annual Technical Conference, June 2003.
Pei Zheng and Lionel M. Ni. EMPOWER: a network emulator for wireline and wireless

networks. In Proceedings of the 2003 IEEE INFOCOM, volume 3, pages 1933-1942,
March/April 2003.

Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: integrating hybrid
network modeling to the physical world. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(2):149-169, April 2004.

Moshe Zukerman, Timothy D. Neame, and Ronald G. Addie. Internet traffic modeling and
future technology implications. In Proceedings ofthe2003 IEEE INFOCOM, 2003.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 245

Robert Ronngren, Michael Liljenstam, Rassul Ayani, and Johan Montagnat. Transparent
incremental state saving in Time Warp parallel discrete event simulation. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation
(PADS'96), pages 70-77, May 1996.

Behrokh Samadi. Distributed simulation, algorithms and performance analysis. PhD thesis,
Department of Computer Science, UCLA, 1985.

L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A strategy for scheduling discrete simu-
lation events for concurrent execution. Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, 19(3):34^2, July 1988.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative

to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systemsof (EuroSys'07), March 2007.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp topolo-
gies with rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2-16, 2004.

Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for network re-
search: myths, realities, and best practices. ACM SIGOPS Operating Systems
Review, 40(1):17-24, 2006.

Jeff S. Steinman. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. Proceedings of the SCS Multiconference on Advances in Parallel
and Distributed Simulation, SCS Simulation Series, 23(1):95-103, January 1991.

Jeff S. Steinman. Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel and
Distributed Simulation (PADS'93), pages 109-118, May 1993.

Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proceedings of the 3rd USENIX Conference on Virtual Machine
Technology (VM'04), pages 14-14, 2004.

Joe Touch. Dynamic Internet overlay deployment and management using the X-Bone. In
Proceedings of the 2000 International Conference on Network Protocols (ICNP'00),
pages 59-68, 2000.

Hung-ying Tyan and Jennifer Hou. JavaSim: A component based compositional network
simulation environment. In Proceedings of the Western Simulation
Multiconference, January 2001.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic, Jeff Chase, and
David Becker. Scalability and accuracy in a large scale network emulator. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI'02), pages 271-284, December 2002.

Andrs Varga. The OMNeT++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference (ESM 01), June 2001.

Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems: Does back-
ground traffic matter. In Proceedings of the 2008 USENIX Technical Conference,
pages 227-240, May 2008.

VMWare ESX Server. http://www.vmware.com/products/vi/esx/.
VMWare Workstation. http://www.vmware.com/products/desktop/workstation.html.
VRF. Linux Virtual Routing and Forwarding. http://sourceforge.net/projects/ linux-vrf/.
Darrin West. Optimizing Time Warp: Lazy rollback and lazy re-evaluation. Master's thesis,

Department of Computer Science, University of Calgary, January 1988.

A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines for distributed
and networked applications. In Proceedings of the USENIX Annual Technical
Conference,

June 2002. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI 02),
pages 255-270, December 2002.

XORP. http://www.xorp.org/.
Garrett Yaun, David Bauer, Harshad Bhutada, Christopher Carothers, Murat Yuksel, and

Shiv-kumar Kalyanaraman. Large-scale network simulation techniques: examples
of TCP and OSPF models. ACM SIGCOMM Computer Communication Review,
33(3):27-41, 2003.

Zebra. http://www.zebra.org/.
Marko Zec. Implementing a clonable network stack in the FreeBSD kernel. In Proceedings of

the 2003 USENIX Annual Technical Conference, June 2003.
Pei Zheng and Lionel M. Ni. EMPOWER: a network emulator for wireline and wireless

networks. In Proceedings of the 2003 IEEE INFOCOM, volume 3, pages 1933-1942,
March/April 2003.

Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: integrating hybrid
network modeling to the physical world. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(2):149-169, April 2004.

Moshe Zukerman, Timothy D. Neame, and Ronald G. Addie. Internet traffic modeling and
future technology implications. In Proceedings ofthe2003 IEEE INFOCOM, 2003.

Parallel	and	Distributed	Computing244

Robert Ronngren, Michael Liljenstam, Rassul Ayani, and Johan Montagnat. Transparent
incremental state saving in Time Warp parallel discrete event simulation. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation
(PADS'96), pages 70-77, May 1996.

Behrokh Samadi. Distributed simulation, algorithms and performance analysis. PhD thesis,
Department of Computer Science, UCLA, 1985.

L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A strategy for scheduling discrete simu-
lation events for concurrent execution. Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, 19(3):34^2, July 1988.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative

to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systemsof (EuroSys'07), March 2007.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp topolo-
gies with rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2-16, 2004.

Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for network re-
search: myths, realities, and best practices. ACM SIGOPS Operating Systems
Review, 40(1):17-24, 2006.

Jeff S. Steinman. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. Proceedings of the SCS Multiconference on Advances in Parallel
and Distributed Simulation, SCS Simulation Series, 23(1):95-103, January 1991.

Jeff S. Steinman. Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel and
Distributed Simulation (PADS'93), pages 109-118, May 1993.

Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proceedings of the 3rd USENIX Conference on Virtual Machine
Technology (VM'04), pages 14-14, 2004.

Joe Touch. Dynamic Internet overlay deployment and management using the X-Bone. In
Proceedings of the 2000 International Conference on Network Protocols (ICNP'00),
pages 59-68, 2000.

Hung-ying Tyan and Jennifer Hou. JavaSim: A component based compositional network
simulation environment. In Proceedings of the Western Simulation
Multiconference, January 2001.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic, Jeff Chase, and
David Becker. Scalability and accuracy in a large scale network emulator. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI'02), pages 271-284, December 2002.

Andrs Varga. The OMNeT++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference (ESM 01), June 2001.

Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems: Does back-
ground traffic matter. In Proceedings of the 2008 USENIX Technical Conference,
pages 227-240, May 2008.

VMWare ESX Server. http://www.vmware.com/products/vi/esx/.
VMWare Workstation. http://www.vmware.com/products/desktop/workstation.html.
VRF. Linux Virtual Routing and Forwarding. http://sourceforge.net/projects/ linux-vrf/.
Darrin West. Optimizing Time Warp: Lazy rollback and lazy re-evaluation. Master's thesis,

Department of Computer Science, University of Calgary, January 1988.

A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines for distributed
and networked applications. In Proceedings of the USENIX Annual Technical
Conference,

June 2002. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI 02),
pages 255-270, December 2002.

XORP. http://www.xorp.org/.
Garrett Yaun, David Bauer, Harshad Bhutada, Christopher Carothers, Murat Yuksel, and

Shiv-kumar Kalyanaraman. Large-scale network simulation techniques: examples
of TCP and OSPF models. ACM SIGCOMM Computer Communication Review,
33(3):27-41, 2003.

Zebra. http://www.zebra.org/.
Marko Zec. Implementing a clonable network stack in the FreeBSD kernel. In Proceedings of

the 2003 USENIX Annual Technical Conference, June 2003.
Pei Zheng and Lionel M. Ni. EMPOWER: a network emulator for wireline and wireless

networks. In Proceedings of the 2003 IEEE INFOCOM, volume 3, pages 1933-1942,
March/April 2003.

Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: integrating hybrid
network modeling to the physical world. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(2):149-169, April 2004.

Moshe Zukerman, Timothy D. Neame, and Ronald G. Addie. Internet traffic modeling and
future technology implications. In Proceedings ofthe2003 IEEE INFOCOM, 2003.

Parallel	and	Distributed	Immersive	Real-Time	Simulation	of	Large-Scale	Networks 245

Robert Ronngren, Michael Liljenstam, Rassul Ayani, and Johan Montagnat. Transparent
incremental state saving in Time Warp parallel discrete event simulation. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation
(PADS'96), pages 70-77, May 1996.

Behrokh Samadi. Distributed simulation, algorithms and performance analysis. PhD thesis,
Department of Computer Science, UCLA, 1985.

L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW: A strategy for scheduling discrete simu-
lation events for concurrent execution. Proceedings of the 1988 SCS
Multiconference on Distributed Simulation, 19(3):34^2, July 1988.

Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative

to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systemsof (EuroSys'07), March 2007.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp topolo-
gies with rocketfuel. IEEE/ACM Transactions on Networking, 12(1):2-16, 2004.

Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for network re-
search: myths, realities, and best practices. ACM SIGOPS Operating Systems
Review, 40(1):17-24, 2006.

Jeff S. Steinman. SPEEDES: Synchronous parallel environment for emulation and discrete
event simulation. Proceedings of the SCS Multiconference on Advances in Parallel
and Distributed Simulation, SCS Simulation Series, 23(1):95-103, January 1991.

Jeff S. Steinman. Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel and
Distributed Simulation (PADS'93), pages 109-118, May 1993.

Ananth I. Sundararaj and Peter A. Dinda. Towards virtual networks for virtual machine grid
computing. In Proceedings of the 3rd USENIX Conference on Virtual Machine
Technology (VM'04), pages 14-14, 2004.

Joe Touch. Dynamic Internet overlay deployment and management using the X-Bone. In
Proceedings of the 2000 International Conference on Network Protocols (ICNP'00),
pages 59-68, 2000.

Hung-ying Tyan and Jennifer Hou. JavaSim: A component based compositional network
simulation environment. In Proceedings of the Western Simulation
Multiconference, January 2001.

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic, Jeff Chase, and
David Becker. Scalability and accuracy in a large scale network emulator. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI'02), pages 271-284, December 2002.

Andrs Varga. The OMNeT++ discrete event simulation system. In Proceedings of the
European Simulation Multiconference (ESM 01), June 2001.

Kashi Venkatesh Vishwanath and Amin Vahdat. Evaluating distributed systems: Does back-
ground traffic matter. In Proceedings of the 2008 USENIX Technical Conference,
pages 227-240, May 2008.

VMWare ESX Server. http://www.vmware.com/products/vi/esx/.
VMWare Workstation. http://www.vmware.com/products/desktop/workstation.html.
VRF. Linux Virtual Routing and Forwarding. http://sourceforge.net/projects/ linux-vrf/.
Darrin West. Optimizing Time Warp: Lazy rollback and lazy re-evaluation. Master's thesis,

Department of Computer Science, University of Calgary, January 1988.

A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual machines for distributed
and networked applications. In Proceedings of the USENIX Annual Technical
Conference,

June 2002. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proceedings of
the 5th Symposium on Operating Systems Design and Implementation (OSDI 02),
pages 255-270, December 2002.

XORP. http://www.xorp.org/.
Garrett Yaun, David Bauer, Harshad Bhutada, Christopher Carothers, Murat Yuksel, and

Shiv-kumar Kalyanaraman. Large-scale network simulation techniques: examples
of TCP and OSPF models. ACM SIGCOMM Computer Communication Review,
33(3):27-41, 2003.

Zebra. http://www.zebra.org/.
Marko Zec. Implementing a clonable network stack in the FreeBSD kernel. In Proceedings of

the 2003 USENIX Annual Technical Conference, June 2003.
Pei Zheng and Lionel M. Ni. EMPOWER: a network emulator for wireline and wireless

networks. In Proceedings of the 2003 IEEE INFOCOM, volume 3, pages 1933-1942,
March/April 2003.

Junlan Zhou, Zhengrong Ji, Mineo Takai, and Rajive Bagrodia. MAYA: integrating hybrid
network modeling to the physical world. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 14(2):149-169, April 2004.

Moshe Zukerman, Timothy D. Neame, and Ronald G. Addie. Internet traffic modeling and
future technology implications. In Proceedings ofthe2003 IEEE INFOCOM, 2003.

Parallel	and	Distributed	Computing246 A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 247

A parallel simulated annealing algorithm 4pt as a tool for fitness
landscapes exploration

Zbigniew J. Czech

0

A parallel simulated annealing algorithm
as a tool for fitness landscapes exploration

Zbigniew J. Czech
Silesia University of Technology and University of Silesia

Poland

1. Introduction

Solving a discrete optimization problem consists in finding a solution which maximizes (or
minimizes) an objective function. The function is often called the fitness and the correspond-
ing landscape the fitness landscape. We are concerned with statistical measures of a fitness
landscape in the context of the vehicle routing problem with time windows (VRPTW). The
measures are determined by using a parallel simulated annealing algorithm as a tool for ex-
ploring a solution space. This chapter summarizes our experience in designing parallel simu-
lated annealing algorithms and investigating fitness landscapes of a sample NP-hard bicrite-
rion optimization problem.
Since 2002 we have developed several versions of the parallel simulated annealing (SA) al-
gorithm (11)-(19). Each of these versions comprises a number of parallel SA processes which
co-operate periodically by passing and exploiting the best solutions found during the search.
For this purpose a specific scheme of co-operation of processes has been devised. The meth-
ods of parallelization of simulated annealing are discussed in Aarts and van Laarhoven (2),
Aarts and Korst (1), Greening (20), Abramson (3), Boissin and Lutton (8), and Verhoeven and
Aarts (35). Parallel simulated annealing to solve the VRPTW is applied by Arbelaitz et al. (4).
Onbaşoğlu and Özdamar (26) present the applications of parallel simulated annealing algo-
rithms in various global optimization problems. The comprehensive study of parallelization
of simulated annealing is given by Azencott et al. (5)
The parallel SA algorithm allowed us to discover the landscape properties of the VRPTW
benchmarking tests (33). This knowledge not only increased our understanding of processes
which happen during optimization, but also helped to improve the performance of the parallel
algorithm. The usage of the landscape notion is traced back to the paper by Wright (37). The
more formal treatments of the landscape properties are given by Stadler (32), Hordijk and
Stadler (22), Reidys and Stadler (31). Statistical measures of a landscape are proposed by
Weinberger (36). The reviews of the landscape issues are given by Reeves (30) and Reeves and
Rowe (29).
Section 2 of this chapter formulates the optimization problem which is solved. Section 3 de-
scribes a sequential SA algorithm. In section 4 two versions of the parallel SA algorithm, called
independent and co-operating searches, are presented. Section 5 is devoted to the statistical
measures of the fitness landscapes in the context of the VRPTW. In subsections 5.1-5.2 some
basic notions are introduced, and in subsection 5.3 the results of the experimental study are
discussed. Section 6 concludes the chapter.

13

Parallel	and	Distributed	Computing246 A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 247

A parallel simulated annealing algorithm 4pt as a tool for fitness
landscapes exploration

Zbigniew J. Czech

0

A parallel simulated annealing algorithm
as a tool for fitness landscapes exploration

Zbigniew J. Czech
Silesia University of Technology and University of Silesia

Poland

1. Introduction

Solving a discrete optimization problem consists in finding a solution which maximizes (or
minimizes) an objective function. The function is often called the fitness and the correspond-
ing landscape the fitness landscape. We are concerned with statistical measures of a fitness
landscape in the context of the vehicle routing problem with time windows (VRPTW). The
measures are determined by using a parallel simulated annealing algorithm as a tool for ex-
ploring a solution space. This chapter summarizes our experience in designing parallel simu-
lated annealing algorithms and investigating fitness landscapes of a sample NP-hard bicrite-
rion optimization problem.
Since 2002 we have developed several versions of the parallel simulated annealing (SA) al-
gorithm (11)-(19). Each of these versions comprises a number of parallel SA processes which
co-operate periodically by passing and exploiting the best solutions found during the search.
For this purpose a specific scheme of co-operation of processes has been devised. The meth-
ods of parallelization of simulated annealing are discussed in Aarts and van Laarhoven (2),
Aarts and Korst (1), Greening (20), Abramson (3), Boissin and Lutton (8), and Verhoeven and
Aarts (35). Parallel simulated annealing to solve the VRPTW is applied by Arbelaitz et al. (4).
Onbaşoğlu and Özdamar (26) present the applications of parallel simulated annealing algo-
rithms in various global optimization problems. The comprehensive study of parallelization
of simulated annealing is given by Azencott et al. (5)
The parallel SA algorithm allowed us to discover the landscape properties of the VRPTW
benchmarking tests (33). This knowledge not only increased our understanding of processes
which happen during optimization, but also helped to improve the performance of the parallel
algorithm. The usage of the landscape notion is traced back to the paper by Wright (37). The
more formal treatments of the landscape properties are given by Stadler (32), Hordijk and
Stadler (22), Reidys and Stadler (31). Statistical measures of a landscape are proposed by
Weinberger (36). The reviews of the landscape issues are given by Reeves (30) and Reeves and
Rowe (29).
Section 2 of this chapter formulates the optimization problem which is solved. Section 3 de-
scribes a sequential SA algorithm. In section 4 two versions of the parallel SA algorithm, called
independent and co-operating searches, are presented. Section 5 is devoted to the statistical
measures of the fitness landscapes in the context of the VRPTW. In subsections 5.1-5.2 some
basic notions are introduced, and in subsection 5.3 the results of the experimental study are
discussed. Section 6 concludes the chapter.

13

Parallel and Distributed Computing248

2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i �= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)

minimize ∑n
i=0 ∑n

j=0,j �=i ∑K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K

∑
k=1

n

∑
j=1

xi,j,k = K, for i = 0, (3)

n

∑
j=1

xi,j,k =
n

∑
j=1

xj,i,k = 1, for i = 0 and k ∈ {1,2, . . . ,K}, (4)

K

∑
k=1

n

∑
j=0,j �=i

xi,j,k =
K

∑
k=1

n

∑
i=0,i �=j

xi,j,k = 1, for i, j ∈ {1,2, . . . ,n}, (5)

n

∑
i=1

qi

n

∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
i=0,i �=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S �→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =




Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 249

2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i �= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)

minimize ∑n
i=0 ∑n

j=0,j �=i ∑K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K

∑
k=1

n

∑
j=1

xi,j,k = K, for i = 0, (3)

n

∑
j=1

xi,j,k =
n

∑
j=1

xj,i,k = 1, for i = 0 and k ∈ {1,2, . . . ,K}, (4)

K

∑
k=1

n

∑
j=0,j �=i

xi,j,k =
K

∑
k=1

n

∑
i=0,i �=j

xi,j,k = 1, for i, j ∈ {1,2, . . . ,n}, (5)

n

∑
i=1

qi

n

∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
i=0,i �=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S �→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =




Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)

Parallel and Distributed Computing248

2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i �= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)

minimize ∑n
i=0 ∑n

j=0,j �=i ∑K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K

∑
k=1

n

∑
j=1

xi,j,k = K, for i = 0, (3)

n

∑
j=1

xi,j,k =
n

∑
j=1

xj,i,k = 1, for i = 0 and k ∈ {1,2, . . . ,K}, (4)

K

∑
k=1

n

∑
j=0,j �=i

xi,j,k =
K

∑
k=1

n

∑
i=0,i �=j

xi,j,k = 1, for i, j ∈ {1,2, . . . ,n}, (5)

n

∑
i=1

qi

n

∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
i=0,i �=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S �→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =




Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 249

2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i �= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)

minimize ∑n
i=0 ∑n

j=0,j �=i ∑K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K

∑
k=1

n

∑
j=1

xi,j,k = K, for i = 0, (3)

n

∑
j=1

xi,j,k =
n

∑
j=1

xj,i,k = 1, for i = 0 and k ∈ {1,2, . . . ,K}, (4)

K

∑
k=1

n

∑
j=0,j �=i

xi,j,k =
K

∑
k=1

n

∑
i=0,i �=j

xi,j,k = 1, for i, j ∈ {1,2, . . . ,n}, (5)

n

∑
i=1

qi

n

∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
i=0,i �=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S �→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =




Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)

Parallel and Distributed Computing250

If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞ P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥ R

log(i+1) for some constant R which depends on the cost function
landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼
(

K
i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f (f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches
In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect

to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼
(

Kp
i

)αp
. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches
The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 251

If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞ P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥ R

log(i+1) for some constant R which depends on the cost function
landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼
(

K
i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f (f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches
In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect

to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼
(

Kp
i

)αp
. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches
The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.

Parallel and Distributed Computing250

If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞ P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥ R

log(i+1) for some constant R which depends on the cost function
landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼
(

K
i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f (f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches
In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect

to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼
(

Kp
i

)αp
. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches
The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 251

If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞ P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥ R

log(i+1) for some constant R which depends on the cost function
landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼
(

K
i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f (f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches
In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect

to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼
(

Kp
i

)αp
. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches
The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.

Parallel and Distributed Computing252

1 parfor Pj, j = 0, 1, . . . , p − 1 do
2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;
6 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
7 T := T0, f ; {initial temperature of annealing}
8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);
11 end for;
12 if (f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}
18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);
2 Create new solution as a neighbor to current solution

(the way this step is executed depends on f);
3 δ := Cf (new solution)−Cf (current solution);
4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if Cf (new solution) < Cf (best solution) then
8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.

1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;
5 if Cf (best solutionj−1) < Cf (best solutionj) then
6 best solutionj := best solutionj−1;
7 current solutionj := best solutionj−1;
8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;
10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →





X(0)
0 → X(ω)

0 → X(2ω)
0 → • • → X(umω)

0
↓ ↓ ↓

X(0)
1 → X(ω)

1 → X(2ω)
1 → • • → X(umω)

1
↓ ↓ ↓

• • • • • •
• • • • • •

X(0)
p−2 → X(ω)

p−2 → X(2ω)
p−2 → • • → X(umω)

p−2
↓ ↓ ↓

X(0)
p−1 → X(ω)

p−1 → X(2ω)
p−1 → • • → X(umω)

p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 253

1 parfor Pj, j = 0, 1, . . . , p − 1 do
2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;
6 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
7 T := T0, f ; {initial temperature of annealing}
8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);
11 end for;
12 if (f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}
18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);
2 Create new solution as a neighbor to current solution

(the way this step is executed depends on f);
3 δ := Cf (new solution)−Cf (current solution);
4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if Cf (new solution) < Cf (best solution) then
8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.

1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;
5 if Cf (best solutionj−1) < Cf (best solutionj) then
6 best solutionj := best solutionj−1;
7 current solutionj := best solutionj−1;
8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;
10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →





X(0)
0 → X(ω)

0 → X(2ω)
0 → • • → X(umω)

0
↓ ↓ ↓

X(0)
1 → X(ω)

1 → X(2ω)
1 → • • → X(umω)

1
↓ ↓ ↓

• • • • • •
• • • • • •

X(0)
p−2 → X(ω)

p−2 → X(2ω)
p−2 → • • → X(umω)

p−2
↓ ↓ ↓

X(0)
p−1 → X(ω)

p−1 → X(2ω)
p−1 → • • → X(umω)

p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.

Parallel and Distributed Computing252

1 parfor Pj, j = 0, 1, . . . , p − 1 do
2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;
6 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
7 T := T0, f ; {initial temperature of annealing}
8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);
11 end for;
12 if (f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}
18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);
2 Create new solution as a neighbor to current solution

(the way this step is executed depends on f);
3 δ := Cf (new solution)−Cf (current solution);
4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if Cf (new solution) < Cf (best solution) then
8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.

1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;
5 if Cf (best solutionj−1) < Cf (best solutionj) then
6 best solutionj := best solutionj−1;
7 current solutionj := best solutionj−1;
8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;
10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →





X(0)
0 → X(ω)

0 → X(2ω)
0 → • • → X(umω)

0
↓ ↓ ↓

X(0)
1 → X(ω)

1 → X(2ω)
1 → • • → X(umω)

1
↓ ↓ ↓

• • • • • •
• • • • • •

X(0)
p−2 → X(ω)

p−2 → X(2ω)
p−2 → • • → X(umω)

p−2
↓ ↓ ↓

X(0)
p−1 → X(ω)

p−1 → X(2ω)
p−1 → • • → X(umω)

p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 253

1 parfor Pj, j = 0, 1, . . . , p − 1 do
2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;
6 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
7 T := T0, f ; {initial temperature of annealing}
8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);
11 end for;
12 if (f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}
18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);
2 Create new solution as a neighbor to current solution

(the way this step is executed depends on f);
3 δ := Cf (new solution)−Cf (current solution);
4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if Cf (new solution) < Cf (best solution) then
8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.

1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;
5 if Cf (best solutionj−1) < Cf (best solutionj) then
6 best solutionj := best solutionj−1;
7 current solutionj := best solutionj−1;
8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;
10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →





X(0)
0 → X(ω)

0 → X(2ω)
0 → • • → X(umω)

0
↓ ↓ ↓

X(0)
1 → X(ω)

1 → X(2ω)
1 → • • → X(umω)

1
↓ ↓ ↓

• • • • • •
• • • • • •

X(0)
p−2 → X(ω)

p−2 → X(2ω)
p−2 → • • → X(umω)

p−2
↓ ↓ ↓

X(0)
p−1 → X(ω)

p−1 → X(2ω)
p−1 → • • → X(umω)

p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.

Parallel and Distributed Computing254

In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106
5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3
15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min
10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7
15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0
20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112
5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1
15 E/3 E/3 1.1 min 6.7 3.7 1.4 min
20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8
10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6
15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7
20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.

A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202
5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4
15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6
20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5
5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0
15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7
20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2
10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4
20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 255

In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106
5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3
15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min
10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7
15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0
20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112
5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1
15 E/3 E/3 1.1 min 6.7 3.7 1.4 min
20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8
10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6
15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7
20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.

A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202
5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4
15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6
20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5
5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0
15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7
20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2
10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4
20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.

Parallel and Distributed Computing254

In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106
5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3
15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min
10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7
15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0
20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112
5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1
15 E/3 E/3 1.1 min 6.7 3.7 1.4 min
20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8
10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6
15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7
20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.

A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202
5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4
15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6
20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5
5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0
15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7
20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2
10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4
20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 255

In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106
5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3
15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min
10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7
15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0
20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112
5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1
15 E/3 E/3 1.1 min 6.7 3.7 1.4 min
20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8
10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6
15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7
20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.

A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202
5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4
15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6
20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5
5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0
15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7
20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2
10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4
20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.

Parallel and Distributed Computing256

the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions
Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S �→ R+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q) + d(Q, R). If d is symmetric, i.e. d(P, Q) = d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S �→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo) = {X : µ(X) = Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape
The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑

T−j
t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk
for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study
The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics
In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 257

the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions
Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S �→ R+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q) + d(Q, R). If d is symmetric, i.e. d(P, Q) = d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S �→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo) = {X : µ(X) = Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape
The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑

T−j
t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk
for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study
The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics
In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum

Parallel and Distributed Computing256

the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions
Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S �→ R+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q) + d(Q, R). If d is symmetric, i.e. d(P, Q) = d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S �→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo) = {X : µ(X) = Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape
The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑

T−j
t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk
for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study
The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics
In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 257

the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions
Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S �→ R+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q) + d(Q, R). If d is symmetric, i.e. d(P, Q) = d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S �→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo) = {X : µ(X) = Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape
The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑

T−j
t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk
for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study
The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics
In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum

Parallel and Distributed Computing258

number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −
ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.

Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax
% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5
R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4
RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 259

number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −
ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.

Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax
% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5
R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4
RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)

Parallel and Distributed Computing258

number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −
ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.

Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax
% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5
R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4
RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 259

number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −
ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.

Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax
% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5
R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4
RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)

Parallel and Distributed Computing260

980 990 1000 1010 1020

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)

885 895 905 915

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))

1365 1385 1405

0

10

20

30

40

50

1% 2% 3%

y

d

Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure
Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 261

980 990 1000 1010 1020

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)

885 895 905 915

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))

1365 1385 1405

0

10

20

30

40

50

1% 2% 3%

y

d

Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure
Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.

Parallel and Distributed Computing260

980 990 1000 1010 1020

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)

885 895 905 915

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))

1365 1385 1405

0

10

20

30

40

50

1% 2% 3%

y

d

Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure
Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 261

980 990 1000 1010 1020

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)

885 895 905 915

0

10

20

30

40

50

1% 2% 3% 4%

y

d

Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))

1365 1385 1405

0

10

20

30

40

50

1% 2% 3%

y

d

Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure
Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.

Parallel and Distributed Computing262

980 990 1000 1010 1020

30

35

40

45

50

1% 2% 3% 4%

y

d̄

Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)

885 895 905 915

33

35

37

39

41

43

1% 2% 3% 4%

y

d̄

Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)

1365 1385 1405

20

28

36

44

52

1% 2% 3%

y

d̄

Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances
Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 263

980 990 1000 1010 1020

30

35

40

45

50

1% 2% 3% 4%

y

d̄

Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)

885 895 905 915

33

35

37

39

41

43

1% 2% 3% 4%

y

d̄

Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)

1365 1385 1405

20

28

36

44

52

1% 2% 3%

y

d̄

Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances
Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105

Parallel and Distributed Computing262

980 990 1000 1010 1020

30

35

40

45

50

1% 2% 3% 4%

y

d̄

Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)

885 895 905 915

33

35

37

39

41

43

1% 2% 3% 4%

y

d̄

Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)

1365 1385 1405

20

28

36

44

52

1% 2% 3%

y

d̄

Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances
Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 263

980 990 1000 1010 1020

30

35

40

45

50

1% 2% 3% 4%

y

d̄

Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)

885 895 905 915

33

35

37

39

41

43

1% 2% 3% 4%

y

d̄

Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)

1365 1385 1405

20

28

36

44

52

1% 2% 3%

y

d̄

Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances
Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105

Parallel and Distributed Computing264

1486 1488 1490

0

5

10

15

20

0.28%

y

d

Fig. 11. Distance d from the best solution vs. total travel distance y for test R102 (700 solutions,
Xmin = (17, 1486.55))

(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties
In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created

1375 1380 1385

0

10

20

30

40

0.6%

y

d

Fig. 12. Distance d from the best solution vs. total travel distance y for test R105 (700 solutions,
Xmin = (14, 1377.11))

5 8

26

R104
R112

RC106

RC101
RC105

R101 ,R102 ,...

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2

Fig. 13. Difficulty of tests measured by probabilities P1 and P2 (1% approximate solution is
desired)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 265

1486 1488 1490

0

5

10

15

20

0.28%

y

d

Fig. 11. Distance d from the best solution vs. total travel distance y for test R102 (700 solutions,
Xmin = (17, 1486.55))

(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties
In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created

1375 1380 1385

0

10

20

30

40

0.6%

y

d

Fig. 12. Distance d from the best solution vs. total travel distance y for test R105 (700 solutions,
Xmin = (14, 1377.11))

5 8

26

R104
R112

RC106

RC101
RC105

R101 ,R102 ,...

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2

Fig. 13. Difficulty of tests measured by probabilities P1 and P2 (1% approximate solution is
desired)

Parallel and Distributed Computing264

1486 1488 1490

0

5

10

15

20

0.28%

y

d

Fig. 11. Distance d from the best solution vs. total travel distance y for test R102 (700 solutions,
Xmin = (17, 1486.55))

(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties
In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created

1375 1380 1385

0

10

20

30

40

0.6%

y

d

Fig. 12. Distance d from the best solution vs. total travel distance y for test R105 (700 solutions,
Xmin = (14, 1377.11))

5 8

26

R104
R112

RC106

RC101
RC105

R101 ,R102 ,...

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2

Fig. 13. Difficulty of tests measured by probabilities P1 and P2 (1% approximate solution is
desired)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 265

1486 1488 1490

0

5

10

15

20

0.28%

y

d

Fig. 11. Distance d from the best solution vs. total travel distance y for test R102 (700 solutions,
Xmin = (17, 1486.55))

(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties
In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created

1375 1380 1385

0

10

20

30

40

0.6%

y

d

Fig. 12. Distance d from the best solution vs. total travel distance y for test R105 (700 solutions,
Xmin = (14, 1377.11))

5 8

26

R104
R112

RC106

RC101
RC105

R101 ,R102 ,...

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P2

Fig. 13. Difficulty of tests measured by probabilities P1 and P2 (1% approximate solution is
desired)

Parallel and Distributed Computing266

5 32

2

R104
R112

RC106

RC101

RC105

R205

R105

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P3

Fig. 14. Difficulty of tests measured by probabilities P1 and P3 (best solution is desired)

R102

0 104 2×104 3×104 4×104
0

20

40

60

80

100

K̄

Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)

Test P1 P2 P3 K̄ ν Exp.
R104 0.003 0.002 0.001 12.00 15 41600
R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400
R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600
R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600
RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 267

5 32

2

R104
R112

RC106

RC101

RC105

R205

R105

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P3

Fig. 14. Difficulty of tests measured by probabilities P1 and P3 (best solution is desired)

R102

0 104 2×104 3×104 4×104
0

20

40

60

80

100

K̄

Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)

Test P1 P2 P3 K̄ ν Exp.
R104 0.003 0.002 0.001 12.00 15 41600
R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400
R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600
R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600
RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)

Parallel and Distributed Computing266

5 32

2

R104
R112

RC106

RC101

RC105

R205

R105

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P3

Fig. 14. Difficulty of tests measured by probabilities P1 and P3 (best solution is desired)

R102

0 104 2×104 3×104 4×104
0

20

40

60

80

100

K̄

Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)

Test P1 P2 P3 K̄ ν Exp.
R104 0.003 0.002 0.001 12.00 15 41600
R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400
R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600
R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600
RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 267

5 32

2

R104
R112

RC106

RC101

RC105

R205

R105

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

P1

P3

Fig. 14. Difficulty of tests measured by probabilities P1 and P3 (best solution is desired)

R102

0 104 2×104 3×104 4×104
0

20

40

60

80

100

K̄

Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)

Test P1 P2 P3 K̄ ν Exp.
R104 0.003 0.002 0.001 12.00 15 41600
R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400
R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600
R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600
RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)

Parallel and Distributed Computing268

out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase (f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first
annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or

stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.

7. Acknowledgments

We thank the following computing centers where the computations of our project were carried
out: Academic Computer Centre in Gdansk TASK, Academic Computer Centre CYFRONET
AGH, Kraków (computing grants 027/2004 and 069/2004), Poznań Supercomputing and Net-
working Center, Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University (computing grant G27-9), Wrocław Centre for Networking and Supercom-
puting (computing grant 04/97). The research of this project was supported by the Minister
of Science and Higher Education grant No 3177/B/T02/2008/35.

8. References

[1] Aarts, E.H.L., and Korst, J.H.M., Simulated annealing and Boltzmann machines, Wiley,
Chichester, 1989.

[2] Aarts, E.H.L., and van Laarhoven, P.J.M., Simulated annealing: Theory and applications,
Wiley, New York, 1987.

[3] Abramson, D., Constructing school timetables using simulated annealing: sequential and
parallel algorithms, Man. Sci. 37, (1991), 98–113.

[4] Arbelaitz, O., Rodriguez, C., and Zamakola, I., Low cost parallel solutions for the
VRPTW optimization problem, Proceedings of the International Conference on Parallel
Processing Workshops, (2001).

[5] Azencott, R., Parallel simulated annealing: An overview of basic techniques, in Azencott,
R. (Ed.), Simulated annealing. Parallelization techniques, J. Wiley, NY, (1992), 37–46.

[6] Azencott, R., and Graffigne, C., Parallel annealing by periodically interacting multiple
searches: Acceleration rates, In: Azencott, R. (Ed.), Simulated annealing. Parallelization
techniques, J. Wiley, NY, (1992), 81–90.

[7] K. D. Boese, A. B. Kahng, and S. Muddu, A new multi-start technique for combinatorial
global optimization, Operations Research Letters 16, (1994), 101–113.

[8] Boissin, N., and Lutton, J.-L., A parallel simulated annealing algorithm, Parallel Com-
puting 19, (1993), 859–872.

[9] Catoni, O., Grandes déviations et décroissance de la température dans les algorithmes de
recuit simulé, C. R. Ac. Sci. Paris, Ser. I, 307 (1988), 535-538.

[10] Cěrny, V., A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm, J. of Optimization Theory and Applic. 45, (1985), 41-55.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 269

out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase (f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first
annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or

stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.

7. Acknowledgments

We thank the following computing centers where the computations of our project were carried
out: Academic Computer Centre in Gdansk TASK, Academic Computer Centre CYFRONET
AGH, Kraków (computing grants 027/2004 and 069/2004), Poznań Supercomputing and Net-
working Center, Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University (computing grant G27-9), Wrocław Centre for Networking and Supercom-
puting (computing grant 04/97). The research of this project was supported by the Minister
of Science and Higher Education grant No 3177/B/T02/2008/35.

8. References

[1] Aarts, E.H.L., and Korst, J.H.M., Simulated annealing and Boltzmann machines, Wiley,
Chichester, 1989.

[2] Aarts, E.H.L., and van Laarhoven, P.J.M., Simulated annealing: Theory and applications,
Wiley, New York, 1987.

[3] Abramson, D., Constructing school timetables using simulated annealing: sequential and
parallel algorithms, Man. Sci. 37, (1991), 98–113.

[4] Arbelaitz, O., Rodriguez, C., and Zamakola, I., Low cost parallel solutions for the
VRPTW optimization problem, Proceedings of the International Conference on Parallel
Processing Workshops, (2001).

[5] Azencott, R., Parallel simulated annealing: An overview of basic techniques, in Azencott,
R. (Ed.), Simulated annealing. Parallelization techniques, J. Wiley, NY, (1992), 37–46.

[6] Azencott, R., and Graffigne, C., Parallel annealing by periodically interacting multiple
searches: Acceleration rates, In: Azencott, R. (Ed.), Simulated annealing. Parallelization
techniques, J. Wiley, NY, (1992), 81–90.

[7] K. D. Boese, A. B. Kahng, and S. Muddu, A new multi-start technique for combinatorial
global optimization, Operations Research Letters 16, (1994), 101–113.

[8] Boissin, N., and Lutton, J.-L., A parallel simulated annealing algorithm, Parallel Com-
puting 19, (1993), 859–872.

[9] Catoni, O., Grandes déviations et décroissance de la température dans les algorithmes de
recuit simulé, C. R. Ac. Sci. Paris, Ser. I, 307 (1988), 535-538.

[10] Cěrny, V., A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm, J. of Optimization Theory and Applic. 45, (1985), 41-55.

Parallel and Distributed Computing268

out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase (f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first
annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or

stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.

7. Acknowledgments

We thank the following computing centers where the computations of our project were carried
out: Academic Computer Centre in Gdansk TASK, Academic Computer Centre CYFRONET
AGH, Kraków (computing grants 027/2004 and 069/2004), Poznań Supercomputing and Net-
working Center, Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University (computing grant G27-9), Wrocław Centre for Networking and Supercom-
puting (computing grant 04/97). The research of this project was supported by the Minister
of Science and Higher Education grant No 3177/B/T02/2008/35.

8. References

[1] Aarts, E.H.L., and Korst, J.H.M., Simulated annealing and Boltzmann machines, Wiley,
Chichester, 1989.

[2] Aarts, E.H.L., and van Laarhoven, P.J.M., Simulated annealing: Theory and applications,
Wiley, New York, 1987.

[3] Abramson, D., Constructing school timetables using simulated annealing: sequential and
parallel algorithms, Man. Sci. 37, (1991), 98–113.

[4] Arbelaitz, O., Rodriguez, C., and Zamakola, I., Low cost parallel solutions for the
VRPTW optimization problem, Proceedings of the International Conference on Parallel
Processing Workshops, (2001).

[5] Azencott, R., Parallel simulated annealing: An overview of basic techniques, in Azencott,
R. (Ed.), Simulated annealing. Parallelization techniques, J. Wiley, NY, (1992), 37–46.

[6] Azencott, R., and Graffigne, C., Parallel annealing by periodically interacting multiple
searches: Acceleration rates, In: Azencott, R. (Ed.), Simulated annealing. Parallelization
techniques, J. Wiley, NY, (1992), 81–90.

[7] K. D. Boese, A. B. Kahng, and S. Muddu, A new multi-start technique for combinatorial
global optimization, Operations Research Letters 16, (1994), 101–113.

[8] Boissin, N., and Lutton, J.-L., A parallel simulated annealing algorithm, Parallel Com-
puting 19, (1993), 859–872.

[9] Catoni, O., Grandes déviations et décroissance de la température dans les algorithmes de
recuit simulé, C. R. Ac. Sci. Paris, Ser. I, 307 (1988), 535-538.

[10] Cěrny, V., A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm, J. of Optimization Theory and Applic. 45, (1985), 41-55.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 269

out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase (f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first
annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or

stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.

7. Acknowledgments

We thank the following computing centers where the computations of our project were carried
out: Academic Computer Centre in Gdansk TASK, Academic Computer Centre CYFRONET
AGH, Kraków (computing grants 027/2004 and 069/2004), Poznań Supercomputing and Net-
working Center, Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University (computing grant G27-9), Wrocław Centre for Networking and Supercom-
puting (computing grant 04/97). The research of this project was supported by the Minister
of Science and Higher Education grant No 3177/B/T02/2008/35.

8. References

[1] Aarts, E.H.L., and Korst, J.H.M., Simulated annealing and Boltzmann machines, Wiley,
Chichester, 1989.

[2] Aarts, E.H.L., and van Laarhoven, P.J.M., Simulated annealing: Theory and applications,
Wiley, New York, 1987.

[3] Abramson, D., Constructing school timetables using simulated annealing: sequential and
parallel algorithms, Man. Sci. 37, (1991), 98–113.

[4] Arbelaitz, O., Rodriguez, C., and Zamakola, I., Low cost parallel solutions for the
VRPTW optimization problem, Proceedings of the International Conference on Parallel
Processing Workshops, (2001).

[5] Azencott, R., Parallel simulated annealing: An overview of basic techniques, in Azencott,
R. (Ed.), Simulated annealing. Parallelization techniques, J. Wiley, NY, (1992), 37–46.

[6] Azencott, R., and Graffigne, C., Parallel annealing by periodically interacting multiple
searches: Acceleration rates, In: Azencott, R. (Ed.), Simulated annealing. Parallelization
techniques, J. Wiley, NY, (1992), 81–90.

[7] K. D. Boese, A. B. Kahng, and S. Muddu, A new multi-start technique for combinatorial
global optimization, Operations Research Letters 16, (1994), 101–113.

[8] Boissin, N., and Lutton, J.-L., A parallel simulated annealing algorithm, Parallel Com-
puting 19, (1993), 859–872.

[9] Catoni, O., Grandes déviations et décroissance de la température dans les algorithmes de
recuit simulé, C. R. Ac. Sci. Paris, Ser. I, 307 (1988), 535-538.

[10] Cěrny, V., A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm, J. of Optimization Theory and Applic. 45, (1985), 41-55.

Parallel and Distributed Computing270

[11] Czech, Z.J., and Czarnas, P., A parallel simulated annealing for the vehicle routing prob-
lem with time windows, Proc. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands, Spain, (January, 2002), 376–383.

[12] Czarnas, P., Czech, Z.J.,and Gocyla, P., Parallel simulated annealing for bicriterion op-
timization problems, Proc. of the 5th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003), (September 7–10, 2003), Czestochowa, Poland,
Springer LNCS 3019/2004, 233–240.

[13] Czech, Z.J., and Wieczorek, B., Solving bicriterion optimization problems by parallel sim-
ulated annealing, Proc. of the 14th Euromicro Conference on Parallel, Distributed and
Network-based Processing, (February 15–17, 2006), Montbéliard-Sochaux, France, 7–14
(IEEE Conference Publishing Services).

[14] Czech, Z.J., and Wieczorek, B., Frequency of co-operation of parallel simulated annealing
processes, Proc. of the 6th Intern. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2005), (September 11–14, 2005), Poznań, Poland, Springer LNCS 3911/2006, 43–
50.

[15] Czech, Z.J., Speeding up sequential annealing by parallelization, Proc. of the Inter-
national Conference on Parallel Computing in Electrical Engineering, PARELEC 2006,
(September 13–17, 2006), Bialystok, Poland, 349–354 (IEEE Conference Publishing Ser-
vices).

[16] Czech, Z.J., Co-operation of processes in parallel simulated annealing, Proc. of the 18th
IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS 2007), (November 13-15, 2006), Dallas, Texas, USA, 401–406.

[17] Debudaj-Grabysz, A., and Czech, Z.J., Theoretical and practical issues of parallel sim-
ulated annealing, Proc. of the 7th Intern. Conf. on Parallel Processing and Applied
Mathematics (PPAM 2007), (September 9–12, 2007), Gdansk, Poland, Springer LNCS
4967/2008, 189–198.

[18] Czech, Z.J., Statistical measures of a fitness landscape for the vehicle routing problem,
Proc. of the 22nd IEEE International Parallel and Distributed Symposium (IPDPS 2008),
11th Intern. Workshop on Nature Inspired Distributed Computing (NIDISC 2008), (April
14–18, 2008), Miami, Florida, USA, 1–8.

[19] Czech, Z. J., Mikanik, W., and Skinderowicz, R., Implementing a parallel simulated an-
nealing algorithm, (2009), 1–11 (submitted).

[20] Greening, D.R., Parallel simulated annealing techniques, Physica D 42, (1990), 293–306.
[21] Hajek, B., Cooling schedules for optimal annealing, Mathematics of Operations Research

13, 2, (1988), 311–329.
[22] W. Hordijk and P. F. Stadler, Amplitude spectra of fitness landscapes, J. Complex Systems

1, (1998), 39–66.
[23] Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P., Optimization by simulated annealing, Sci-

ence 220, (1983), 671-680.
[24] Lenstra, J., and Rinnooy Kan, A., Complexity of vehicle routing and scheduling prob-

lems, Networks 11, (1981), 221–227.
[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation

of state calculation by fast computing machines, Journ. of Chem. Phys. 21, (1953), 1087-
1091.

[26] Onbaşoğlu, E.,and Özdamar, L., Parallel simulated annealing algorithms in global opti-
mization, Journal of Global Optimization 19: 27–50, 2001.

[27] Reeves, C.R., (Ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-
Hill, London, 1995.

[28] Reeves, C. R., Direct statistical estimation of GA landscape properties, in: Foundations
of Genetic Algorithms 6, FOGA 2000, Martin, W. N., Spears, W. M. (Eds.), Morgan Kauf-
mann Publishers, (2000), 91–107.

[29] Reeves, C. R. and Rowe, J. E., Genetic algorithms: Principles and Perspective. A Guide
to GA Theory, Kluwer Academic Publishers, (2003), 231–263.

[30] C. R. Reeves, Fitness landscapes, In: Search methodologies. Introductory Tutorials in
Optimization and Decision Support Techniques, Burke, E. K. and Kendall, G. (Eds.), 587–
610, Springer-Verlag, Berlin, (2005).

[31] C. M. Reidys and P. F. Stadler, Combinatorial landscapes, SIAM Rev. 44, (2002), 3–54.
[32] P. F. Stadler, Towards a theory of landscapes, In: Complex Systems and Binary Networks,

Lopéz-Peña, R., Capovilla, R., Garcı́a-Pelayo, R., Waelbroeck, H., and Zurteche, F. (Eds.),
77–163, Springer-Verlag, Berlin, (1995).

[33] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems
with time window constraints, Operations Research 35, (1987), 254–265, see also
http://w.cba.neu.edu/˜msolomon/problems.htm.

[34] Toth, P., and Vigo, D., (Eds.), The vehicle routing problem, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia, PA, 2002.

[35] Verhoeven, M.G.A., and Aarts, E.H.L., Parallel local search techniques, Journal of Heuris-
tics 1, (1996), 43–65.

[36] Weinberger, E. D., Correlated and uncorrelated landscapes and how to tell the difference,
Biol. Cybernet. 63, (1990), 325–336.

[37] S. Wright, The role of mutation, inbreeding, crossbreeding and selection in evolution, In:
6th Int. Congress on Genetics 1, Jones, D. (Ed.), (1932), 356–366.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 271

[11] Czech, Z.J., and Czarnas, P., A parallel simulated annealing for the vehicle routing prob-
lem with time windows, Proc. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands, Spain, (January, 2002), 376–383.

[12] Czarnas, P., Czech, Z.J.,and Gocyla, P., Parallel simulated annealing for bicriterion op-
timization problems, Proc. of the 5th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003), (September 7–10, 2003), Czestochowa, Poland,
Springer LNCS 3019/2004, 233–240.

[13] Czech, Z.J., and Wieczorek, B., Solving bicriterion optimization problems by parallel sim-
ulated annealing, Proc. of the 14th Euromicro Conference on Parallel, Distributed and
Network-based Processing, (February 15–17, 2006), Montbéliard-Sochaux, France, 7–14
(IEEE Conference Publishing Services).

[14] Czech, Z.J., and Wieczorek, B., Frequency of co-operation of parallel simulated annealing
processes, Proc. of the 6th Intern. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2005), (September 11–14, 2005), Poznań, Poland, Springer LNCS 3911/2006, 43–
50.

[15] Czech, Z.J., Speeding up sequential annealing by parallelization, Proc. of the Inter-
national Conference on Parallel Computing in Electrical Engineering, PARELEC 2006,
(September 13–17, 2006), Bialystok, Poland, 349–354 (IEEE Conference Publishing Ser-
vices).

[16] Czech, Z.J., Co-operation of processes in parallel simulated annealing, Proc. of the 18th
IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS 2007), (November 13-15, 2006), Dallas, Texas, USA, 401–406.

[17] Debudaj-Grabysz, A., and Czech, Z.J., Theoretical and practical issues of parallel sim-
ulated annealing, Proc. of the 7th Intern. Conf. on Parallel Processing and Applied
Mathematics (PPAM 2007), (September 9–12, 2007), Gdansk, Poland, Springer LNCS
4967/2008, 189–198.

[18] Czech, Z.J., Statistical measures of a fitness landscape for the vehicle routing problem,
Proc. of the 22nd IEEE International Parallel and Distributed Symposium (IPDPS 2008),
11th Intern. Workshop on Nature Inspired Distributed Computing (NIDISC 2008), (April
14–18, 2008), Miami, Florida, USA, 1–8.

[19] Czech, Z. J., Mikanik, W., and Skinderowicz, R., Implementing a parallel simulated an-
nealing algorithm, (2009), 1–11 (submitted).

[20] Greening, D.R., Parallel simulated annealing techniques, Physica D 42, (1990), 293–306.
[21] Hajek, B., Cooling schedules for optimal annealing, Mathematics of Operations Research

13, 2, (1988), 311–329.
[22] W. Hordijk and P. F. Stadler, Amplitude spectra of fitness landscapes, J. Complex Systems

1, (1998), 39–66.
[23] Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P., Optimization by simulated annealing, Sci-

ence 220, (1983), 671-680.
[24] Lenstra, J., and Rinnooy Kan, A., Complexity of vehicle routing and scheduling prob-

lems, Networks 11, (1981), 221–227.
[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation

of state calculation by fast computing machines, Journ. of Chem. Phys. 21, (1953), 1087-
1091.

[26] Onbaşoğlu, E.,and Özdamar, L., Parallel simulated annealing algorithms in global opti-
mization, Journal of Global Optimization 19: 27–50, 2001.

[27] Reeves, C.R., (Ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-
Hill, London, 1995.

[28] Reeves, C. R., Direct statistical estimation of GA landscape properties, in: Foundations
of Genetic Algorithms 6, FOGA 2000, Martin, W. N., Spears, W. M. (Eds.), Morgan Kauf-
mann Publishers, (2000), 91–107.

[29] Reeves, C. R. and Rowe, J. E., Genetic algorithms: Principles and Perspective. A Guide
to GA Theory, Kluwer Academic Publishers, (2003), 231–263.

[30] C. R. Reeves, Fitness landscapes, In: Search methodologies. Introductory Tutorials in
Optimization and Decision Support Techniques, Burke, E. K. and Kendall, G. (Eds.), 587–
610, Springer-Verlag, Berlin, (2005).

[31] C. M. Reidys and P. F. Stadler, Combinatorial landscapes, SIAM Rev. 44, (2002), 3–54.
[32] P. F. Stadler, Towards a theory of landscapes, In: Complex Systems and Binary Networks,

Lopéz-Peña, R., Capovilla, R., Garcı́a-Pelayo, R., Waelbroeck, H., and Zurteche, F. (Eds.),
77–163, Springer-Verlag, Berlin, (1995).

[33] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems
with time window constraints, Operations Research 35, (1987), 254–265, see also
http://w.cba.neu.edu/˜msolomon/problems.htm.

[34] Toth, P., and Vigo, D., (Eds.), The vehicle routing problem, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia, PA, 2002.

[35] Verhoeven, M.G.A., and Aarts, E.H.L., Parallel local search techniques, Journal of Heuris-
tics 1, (1996), 43–65.

[36] Weinberger, E. D., Correlated and uncorrelated landscapes and how to tell the difference,
Biol. Cybernet. 63, (1990), 325–336.

[37] S. Wright, The role of mutation, inbreeding, crossbreeding and selection in evolution, In:
6th Int. Congress on Genetics 1, Jones, D. (Ed.), (1932), 356–366.

Parallel and Distributed Computing270

[11] Czech, Z.J., and Czarnas, P., A parallel simulated annealing for the vehicle routing prob-
lem with time windows, Proc. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands, Spain, (January, 2002), 376–383.

[12] Czarnas, P., Czech, Z.J.,and Gocyla, P., Parallel simulated annealing for bicriterion op-
timization problems, Proc. of the 5th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003), (September 7–10, 2003), Czestochowa, Poland,
Springer LNCS 3019/2004, 233–240.

[13] Czech, Z.J., and Wieczorek, B., Solving bicriterion optimization problems by parallel sim-
ulated annealing, Proc. of the 14th Euromicro Conference on Parallel, Distributed and
Network-based Processing, (February 15–17, 2006), Montbéliard-Sochaux, France, 7–14
(IEEE Conference Publishing Services).

[14] Czech, Z.J., and Wieczorek, B., Frequency of co-operation of parallel simulated annealing
processes, Proc. of the 6th Intern. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2005), (September 11–14, 2005), Poznań, Poland, Springer LNCS 3911/2006, 43–
50.

[15] Czech, Z.J., Speeding up sequential annealing by parallelization, Proc. of the Inter-
national Conference on Parallel Computing in Electrical Engineering, PARELEC 2006,
(September 13–17, 2006), Bialystok, Poland, 349–354 (IEEE Conference Publishing Ser-
vices).

[16] Czech, Z.J., Co-operation of processes in parallel simulated annealing, Proc. of the 18th
IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS 2007), (November 13-15, 2006), Dallas, Texas, USA, 401–406.

[17] Debudaj-Grabysz, A., and Czech, Z.J., Theoretical and practical issues of parallel sim-
ulated annealing, Proc. of the 7th Intern. Conf. on Parallel Processing and Applied
Mathematics (PPAM 2007), (September 9–12, 2007), Gdansk, Poland, Springer LNCS
4967/2008, 189–198.

[18] Czech, Z.J., Statistical measures of a fitness landscape for the vehicle routing problem,
Proc. of the 22nd IEEE International Parallel and Distributed Symposium (IPDPS 2008),
11th Intern. Workshop on Nature Inspired Distributed Computing (NIDISC 2008), (April
14–18, 2008), Miami, Florida, USA, 1–8.

[19] Czech, Z. J., Mikanik, W., and Skinderowicz, R., Implementing a parallel simulated an-
nealing algorithm, (2009), 1–11 (submitted).

[20] Greening, D.R., Parallel simulated annealing techniques, Physica D 42, (1990), 293–306.
[21] Hajek, B., Cooling schedules for optimal annealing, Mathematics of Operations Research

13, 2, (1988), 311–329.
[22] W. Hordijk and P. F. Stadler, Amplitude spectra of fitness landscapes, J. Complex Systems

1, (1998), 39–66.
[23] Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P., Optimization by simulated annealing, Sci-

ence 220, (1983), 671-680.
[24] Lenstra, J., and Rinnooy Kan, A., Complexity of vehicle routing and scheduling prob-

lems, Networks 11, (1981), 221–227.
[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation

of state calculation by fast computing machines, Journ. of Chem. Phys. 21, (1953), 1087-
1091.

[26] Onbaşoğlu, E.,and Özdamar, L., Parallel simulated annealing algorithms in global opti-
mization, Journal of Global Optimization 19: 27–50, 2001.

[27] Reeves, C.R., (Ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-
Hill, London, 1995.

[28] Reeves, C. R., Direct statistical estimation of GA landscape properties, in: Foundations
of Genetic Algorithms 6, FOGA 2000, Martin, W. N., Spears, W. M. (Eds.), Morgan Kauf-
mann Publishers, (2000), 91–107.

[29] Reeves, C. R. and Rowe, J. E., Genetic algorithms: Principles and Perspective. A Guide
to GA Theory, Kluwer Academic Publishers, (2003), 231–263.

[30] C. R. Reeves, Fitness landscapes, In: Search methodologies. Introductory Tutorials in
Optimization and Decision Support Techniques, Burke, E. K. and Kendall, G. (Eds.), 587–
610, Springer-Verlag, Berlin, (2005).

[31] C. M. Reidys and P. F. Stadler, Combinatorial landscapes, SIAM Rev. 44, (2002), 3–54.
[32] P. F. Stadler, Towards a theory of landscapes, In: Complex Systems and Binary Networks,

Lopéz-Peña, R., Capovilla, R., Garcı́a-Pelayo, R., Waelbroeck, H., and Zurteche, F. (Eds.),
77–163, Springer-Verlag, Berlin, (1995).

[33] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems
with time window constraints, Operations Research 35, (1987), 254–265, see also
http://w.cba.neu.edu/˜msolomon/problems.htm.

[34] Toth, P., and Vigo, D., (Eds.), The vehicle routing problem, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia, PA, 2002.

[35] Verhoeven, M.G.A., and Aarts, E.H.L., Parallel local search techniques, Journal of Heuris-
tics 1, (1996), 43–65.

[36] Weinberger, E. D., Correlated and uncorrelated landscapes and how to tell the difference,
Biol. Cybernet. 63, (1990), 325–336.

[37] S. Wright, The role of mutation, inbreeding, crossbreeding and selection in evolution, In:
6th Int. Congress on Genetics 1, Jones, D. (Ed.), (1932), 356–366.

A parallel simulated annealing algorithm as a tool for fitness landscapes exploration 271

[11] Czech, Z.J., and Czarnas, P., A parallel simulated annealing for the vehicle routing prob-
lem with time windows, Proc. 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands, Spain, (January, 2002), 376–383.

[12] Czarnas, P., Czech, Z.J.,and Gocyla, P., Parallel simulated annealing for bicriterion op-
timization problems, Proc. of the 5th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003), (September 7–10, 2003), Czestochowa, Poland,
Springer LNCS 3019/2004, 233–240.

[13] Czech, Z.J., and Wieczorek, B., Solving bicriterion optimization problems by parallel sim-
ulated annealing, Proc. of the 14th Euromicro Conference on Parallel, Distributed and
Network-based Processing, (February 15–17, 2006), Montbéliard-Sochaux, France, 7–14
(IEEE Conference Publishing Services).

[14] Czech, Z.J., and Wieczorek, B., Frequency of co-operation of parallel simulated annealing
processes, Proc. of the 6th Intern. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2005), (September 11–14, 2005), Poznań, Poland, Springer LNCS 3911/2006, 43–
50.

[15] Czech, Z.J., Speeding up sequential annealing by parallelization, Proc. of the Inter-
national Conference on Parallel Computing in Electrical Engineering, PARELEC 2006,
(September 13–17, 2006), Bialystok, Poland, 349–354 (IEEE Conference Publishing Ser-
vices).

[16] Czech, Z.J., Co-operation of processes in parallel simulated annealing, Proc. of the 18th
IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS 2007), (November 13-15, 2006), Dallas, Texas, USA, 401–406.

[17] Debudaj-Grabysz, A., and Czech, Z.J., Theoretical and practical issues of parallel sim-
ulated annealing, Proc. of the 7th Intern. Conf. on Parallel Processing and Applied
Mathematics (PPAM 2007), (September 9–12, 2007), Gdansk, Poland, Springer LNCS
4967/2008, 189–198.

[18] Czech, Z.J., Statistical measures of a fitness landscape for the vehicle routing problem,
Proc. of the 22nd IEEE International Parallel and Distributed Symposium (IPDPS 2008),
11th Intern. Workshop on Nature Inspired Distributed Computing (NIDISC 2008), (April
14–18, 2008), Miami, Florida, USA, 1–8.

[19] Czech, Z. J., Mikanik, W., and Skinderowicz, R., Implementing a parallel simulated an-
nealing algorithm, (2009), 1–11 (submitted).

[20] Greening, D.R., Parallel simulated annealing techniques, Physica D 42, (1990), 293–306.
[21] Hajek, B., Cooling schedules for optimal annealing, Mathematics of Operations Research

13, 2, (1988), 311–329.
[22] W. Hordijk and P. F. Stadler, Amplitude spectra of fitness landscapes, J. Complex Systems

1, (1998), 39–66.
[23] Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P., Optimization by simulated annealing, Sci-

ence 220, (1983), 671-680.
[24] Lenstra, J., and Rinnooy Kan, A., Complexity of vehicle routing and scheduling prob-

lems, Networks 11, (1981), 221–227.
[25] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equation

of state calculation by fast computing machines, Journ. of Chem. Phys. 21, (1953), 1087-
1091.

[26] Onbaşoğlu, E.,and Özdamar, L., Parallel simulated annealing algorithms in global opti-
mization, Journal of Global Optimization 19: 27–50, 2001.

[27] Reeves, C.R., (Ed.) Modern Heuristic Techniques for Combinatorial Problems, McGraw-
Hill, London, 1995.

[28] Reeves, C. R., Direct statistical estimation of GA landscape properties, in: Foundations
of Genetic Algorithms 6, FOGA 2000, Martin, W. N., Spears, W. M. (Eds.), Morgan Kauf-
mann Publishers, (2000), 91–107.

[29] Reeves, C. R. and Rowe, J. E., Genetic algorithms: Principles and Perspective. A Guide
to GA Theory, Kluwer Academic Publishers, (2003), 231–263.

[30] C. R. Reeves, Fitness landscapes, In: Search methodologies. Introductory Tutorials in
Optimization and Decision Support Techniques, Burke, E. K. and Kendall, G. (Eds.), 587–
610, Springer-Verlag, Berlin, (2005).

[31] C. M. Reidys and P. F. Stadler, Combinatorial landscapes, SIAM Rev. 44, (2002), 3–54.
[32] P. F. Stadler, Towards a theory of landscapes, In: Complex Systems and Binary Networks,

Lopéz-Peña, R., Capovilla, R., Garcı́a-Pelayo, R., Waelbroeck, H., and Zurteche, F. (Eds.),
77–163, Springer-Verlag, Berlin, (1995).

[33] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems
with time window constraints, Operations Research 35, (1987), 254–265, see also
http://w.cba.neu.edu/˜msolomon/problems.htm.

[34] Toth, P., and Vigo, D., (Eds.), The vehicle routing problem, SIAM Monographs on Dis-
crete Mathematics and Applications, Philadelphia, PA, 2002.

[35] Verhoeven, M.G.A., and Aarts, E.H.L., Parallel local search techniques, Journal of Heuris-
tics 1, (1996), 43–65.

[36] Weinberger, E. D., Correlated and uncorrelated landscapes and how to tell the difference,
Biol. Cybernet. 63, (1990), 325–336.

[37] S. Wright, The role of mutation, inbreeding, crossbreeding and selection in evolution, In:
6th Int. Congress on Genetics 1, Jones, D. (Ed.), (1932), 356–366.

Parallel and Distributed Computing272 Fine-Grained	Parallel	Genomic	Sequence	Comparison 273

Fine-Grained	Parallel	Genomic	Sequence	Comparison

Dominique	Lavenier

x

Fine-Grained Parallel Genomic
Sequence Comparison

Dominique Lavenier

ENS Cachan / IRISA Rennes
France

1. Introduction

Comparing DNA, RNA or protein sequences is a fundamental process in computational
biology. The information deduced by processing genomic sequences remain the base of a
large panel of bioinformatics activities such as genome assembly, gene annotation,
phylogeny, prediction of 3D protein structures, meta-genomic analysis, etc.
For almost two decades, the amounts of data have steadily increased, nearly doubling every
16-18 months. Hence, from gene level analyses, bioinformatics researches have moved to
full genome analysis, leading to extremely large quantities of data to process. Furthermore,
recent progresses in biotechnology, such as the next generation sequencing technology able
to generate billions of genomic sequences in a single day, still strengthen the needs for fast
and efficient solutions.
Basically, genomic data, which are considered here, are DNA or protein sequences. A DNA
sequence may be as simple as a single gene (a few thousands of nucleotides) or as complex
as a full genome (three billions of nucleotides for the human genome). A protein sequence is
shorter. It reflects the DNA to amino acids transcription of genes through the universal
genetic code. Their lengths range from a few hundreds of amino acids to a few thousands of
amino acids. The alphabet of a nucleotide sequence is composed of only 4 characters: A, C,
G and T. The protein alphabet is larger and includes 20 amino acids. From a computational
point of view, these data are seen as simple strings of characters.
These sequences are stored in genomic databases. SWISS-PROT and TrEMBL (Apweiler et
al., 2004), for example, are two well-known protein sequence databases containing
respectively 466739 and 7695149 entries (May 2009). From the DNA size, GenBank (release
171, Apr. 2009) contain more than 100 millions of sequences, representing more than 100
billions of nucleotides (Benson et al., 2008). New releases are made every two months to
include new data coming from worldwide research institutes. With the exponential growth
of these databases, performing computation on this mass of data is every day a more and
more challenging task.
A lot of bioinformatics applications need to compare genomic sequences in their early
processing steps. To illustrate our point, we briefly describe some of them in the next
paragraphs. The goal is not to provide an exhaustive list, but to give, through some
examples, an idea of the volume of data which are routinely processed.

14

Parallel and Distributed Computing272 Fine-Grained	Parallel	Genomic	Sequence	Comparison 273

Fine-Grained	Parallel	Genomic	Sequence	Comparison

Dominique	Lavenier

x

Fine-Grained Parallel Genomic
Sequence Comparison

Dominique Lavenier

ENS Cachan / IRISA Rennes
France

1. Introduction

Comparing DNA, RNA or protein sequences is a fundamental process in computational
biology. The information deduced by processing genomic sequences remain the base of a
large panel of bioinformatics activities such as genome assembly, gene annotation,
phylogeny, prediction of 3D protein structures, meta-genomic analysis, etc.
For almost two decades, the amounts of data have steadily increased, nearly doubling every
16-18 months. Hence, from gene level analyses, bioinformatics researches have moved to
full genome analysis, leading to extremely large quantities of data to process. Furthermore,
recent progresses in biotechnology, such as the next generation sequencing technology able
to generate billions of genomic sequences in a single day, still strengthen the needs for fast
and efficient solutions.
Basically, genomic data, which are considered here, are DNA or protein sequences. A DNA
sequence may be as simple as a single gene (a few thousands of nucleotides) or as complex
as a full genome (three billions of nucleotides for the human genome). A protein sequence is
shorter. It reflects the DNA to amino acids transcription of genes through the universal
genetic code. Their lengths range from a few hundreds of amino acids to a few thousands of
amino acids. The alphabet of a nucleotide sequence is composed of only 4 characters: A, C,
G and T. The protein alphabet is larger and includes 20 amino acids. From a computational
point of view, these data are seen as simple strings of characters.
These sequences are stored in genomic databases. SWISS-PROT and TrEMBL (Apweiler et
al., 2004), for example, are two well-known protein sequence databases containing
respectively 466739 and 7695149 entries (May 2009). From the DNA size, GenBank (release
171, Apr. 2009) contain more than 100 millions of sequences, representing more than 100
billions of nucleotides (Benson et al., 2008). New releases are made every two months to
include new data coming from worldwide research institutes. With the exponential growth
of these databases, performing computation on this mass of data is every day a more and
more challenging task.
A lot of bioinformatics applications need to compare genomic sequences in their early
processing steps. To illustrate our point, we briefly describe some of them in the next
paragraphs. The goal is not to provide an exhaustive list, but to give, through some
examples, an idea of the volume of data which are routinely processed.

14

Parallel	and	Distributed	Computing274

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

Fine-Grained	Parallel	Genomic	Sequence	Comparison 275

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

Parallel	and	Distributed	Computing274

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

Fine-Grained	Parallel	Genomic	Sequence	Comparison 275

Genome Assembly. Before getting the text of a genome, an initial phase is to sequence the
long DNA molecule contained in each cell of every living organism. This is achieved by
randomly breaking the DNA molecule into billions of short fragments which are re-
assembled to compose the final text. Many algorithms have been proposed for
reconstructing a genome from these short elements (Pop et al., 2002). However, the pre-
processing is always the same: finding overlapping regions between them. This requires
making intensive pair-wise comparisons to detect similarity between the beginning and the
end of all fragments. In other words, assembling N fragments leads to N2/2 pair-wise
independent comparisons. Typically, for eukaryote organisms, N range from 107 to 108.
Database Scanning. A common task of the molecular biology is to assign a function to an
unknown gene. To be functional, a protein must adopt a specific 3D shape related to its
sequence of amino acids. The shape is important because it determines the function of the
protein, and how it interacts with other molecules. It is assumed that two proteins with
identical functions may have similar 3D structures, yielding to a similar sequence of amino
acids. Even if this hypothesis is not always verified, a large number of algorithms were
proposed to rapidly extract sequences (or portion of sequences) having a high similarity
with a query sequence. But the scan of genomic databases is faced to the exponential growth
of the data. To be able to query databases of billions of nucleotides within reasonable time
(from seconds to minutes), the use of parallel systems is now the only solution.
Full Genome Comparison. Mid 2009, about 1000 genomes have been completely sequenced,
and more than 4000 other genome sequencing projects are under progression (Liolios et al.,
2008). By comparison, only 300 projects were referenced ten years ago. Actually, no decline
in this activity is expected in the next few years. More and more genomes will come from
many organisms: virus, bacterium, plants, fishes, vertebrates, etc. This avalanche of data
opens the door to new ways of investigating the various genome structures. From a
computational point of view, algorithms do not fundamentally differ from standard string
comparison algorithms, except that the length of the sequences may seriously limit their use.
Strings of hundreds of millions of characters need to be intensively processed to detect any
kind of similarities. Compared to gene analysis, which can be satisfactory performed (in
time) on a standard computer, genome analysis increases the complexity by several orders
of magnitude.
Molecular Phylogeny. On Earth, there are millions of different living organisms.
Morphological criteria and gene structure suggest that they are genetically related. Their
genealogical relationships can be represented by a vast evolutionary tree. This assumption
implies that different species arise from previous forms via descent, and that all organisms
are connected by the passage of genes along the branches of the phylogenic tree. To build
such a tree, identical (or near identical) genes present in all organisms are systematically
compared. This aims to calculate a distance between all genes (larger the distance, older the
relationship between genes). Based on these distances, trees can be constructed through
different phylogenic methods. Again, the pre-processing step involves comparing precisely
a large set of genomic sequences.
Next Generation Sequencing (NGS). For the last three years, the very fast improvements of
sequencing machines have revolutionized the genomic research field (Shenure & Hanlee,
2008). The equivalent (in raw data) of the human genome can now be generated in a single
day. Billions of nucleotides spread in millions of very short fragments (35 to 70 nucleotides)
are thus available allowing a large spectrum of new large scale applications to be set up:

genome re-sequencing, meta-genomic analysis, molecular bar-coding, etc. Once again, the
preliminary step often deals with intensive genomic sequence comparison.
Since the early 80’s, many efforts were made to optimize the genomic sequence comparison
problem, both on the software side with powerful heuristics, and on the hardware side with
dedicated hardwired systems. Another important effort has also been done on the parallel
side, ranging from pure parallel software implementations to highly specific parallel
machines.
The goal of this chapter is to present the various strategies which are used to parallelize this
essential bioinformatics task, and more specifically strategies using fine-grained parallelism.
Section 2 formally introduces the problem and section 3 presents the main algorithms. The
three next sections are devoted to three different technologies: VLSI and FPGA accelerators,
SIMD instructions, and graphical processing units (GPU). The last section concludes the
chapter.

2. The genomic sequence comparison problem

Basically, comparing two genomic sequences is equivalent to find similarities between these
two elements. Similarities are symbolized by alignments which are the objects that biologists
are able to interpret. An alignment is composed of two strings where most characters of both
strings match together. For instance, consider the following alignment:

A G T G G T C T T A - A C G T T A C A T G T T
 | | | : | | | : | | | | | | | | : | | |
 A G T T G T C A T A T A C G T - - C A A G T T

The symbol | represents a match between two characters. The symbol : represents a
mismatch. No symbol indicates a deletion or an insertion. In that case, this operation is
referred as a gap. Given two sequences, the game is to find regions which maximize the
number of consecutive matches and which represent significant biological similarities. To
decide if an alignment is significant or not, a score is associated. If the score exceeds a
statistically predefined threshold value, it is then considered as valid.
The score is computed as the sum of three elementary costs:

 Cost of a match
 Cost of a mismatch
 Cost of a gap

If we assign +1 for a match, -1 for a mismatch and -3 for a gap, the score of the above
alignment is equal to: 17 x matches + 3 x mismatches + 3 gaps = (17×1) +(3×-1)+(3×-3) = 5.
This simple scoring scheme is used for DNA sequences. The values of the match, mismatch
and gap costs are given by the user and depend of the applications. To better match the
biological reality, the gap cost is often calculated using an affine function giving a highest
cost for the first gap and a lower cost for the following ones. Taking again the example, and
setting the open gap cost to -3 and the extension gap cost to -1, the value of the score will
increase to 7: the cost of the first gap stay the same, but the cost of the second gap rise to -4.
For protein comparison, the match and mismatch cost is included in a single operation

Parallel	and	Distributed	Computing276

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:

���� �� � ��� �
��� � �� � � �� � ����� ���

 ��� � �� �� � �
���� � � �� � �

(1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

Fine-Grained	Parallel	Genomic	Sequence	Comparison 277

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:

���� �� � ��� �
��� � �� � � �� � ����� ���

 ��� � �� �� � �
���� � � �� � �

(1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

Parallel	and	Distributed	Computing276

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:

���� �� � ��� �
��� � �� � � �� � ����� ���

 ��� � �� �� � �
���� � � �� � �

(1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

Fine-Grained	Parallel	Genomic	Sequence	Comparison 277

called substitution given by a substitution matrix reflecting the mutation rate between the 20
amino acids.
Depending of the applications, different types of alignment may be considered. Figure 1
depicts the three main variations commonly used in molecular biology: global alignment,
local alignment and semi-global alignment. Historically, global alignments were first
studied. Global alignments try to find the best match between all characters of two
sequences of similar size. They are typically used for phylogeny studies: the score of the
alignment between two genes indicates their degrees of proximity.
On the other hand, local alignments aim to detect similarities of any length. Given two
sequences, the comparison process aims only to detect part of the sequences having
significant similarity. The difficulty is that the position and the length of the alignments are
unknown, leading to explore a vast search space. Finding local similarities represents the
major needs in bioinformatics. The scan of large databases is the best example. Biologists
don’t only want to know if there are similar items in the database, they also want to detect if
their queries shares some common functionalities with other elements. As proteins (or
genes) are often assemblies of different functional domains, extracting only local similarities
bring pertinent biological information.

Fig. 1. Schematic representation of the three types of alignments commonly used in
molecular biology

The semi-global alignments match all the characters of a small sequence over a large one.
The Next Generation Sequencing (NGS) approach which generates a very large number of
very short fragments is one of the main activities requiring this treatment. The goal is to
map small DNA sequences on full genomes allowing only a restricted number of errors.
Having defined the comparison sequence problem as the search of alignments between two
sequences, and having described the main features of an alignment, the next section focuses
on the algorithmic side of the problem.

3. The main algorithms

For the last 25 years, due to the tremendous increase of the genomic field, and the growing
demand for processing larger and larger amounts of data, many algorithms were proposed
to search alignments. The goal, here, is not to review in detail all of them. We will only focus
on the two main families which have been widely adopted by the scientific genomic
community and which have been implemented on a large panel of parallel structures. The
first algorithm introduced in 1970 by Needleman & Wunsch (Needleman & Wunsch, 1970)
and revisited in 1981 and 1982 respectively by Smith and Waterman (Smith & Waterman,
1981) and Gotoh (Gotoh, 1982) are based on dynamic programming. They are optimal in the

global local semi-global

way that they find the best alignments (local or global) between two sequences. But their
quadratic complexity – O(n2) – make them unsuitable for processing large quantity of data.
However, for some applications, such as phylogeny or search of weak similarities, there are
essential, thereby justifying all the efforts among the last three decades to provide efficient
parallel solutions.
By the end of the 80’s, however, an important algorithmic breakthrough has emerged, based
on a powerful heuristic providing extremely good results. This heuristic drastically reduces
the search space by focusing on interesting points, called hits, between two sequences.
Using this technique, the execution time could be decreased by nearly two orders of
magnitude. Two programs have been immediately proposed to the scientific community,
FASTA in 1988 (Pearson & Lipman, 1988) and BLAST in 1990 (Altschul et al., 1990). The
later, through many improvements, is now the reference in the bioinformatics community
(Altschul et al., 1997). It is maintained by the NCBI (National Center for Biotechnology
Information) as an open-source software including parallel implementations.

3.1 Dynamic programming algorithm
The dynamic programming algorithm compares two strings of characters by computing a
distance which represents the minimal cost to transform one segment into another one. As
stated earlier, two elementary operations are used: the substitution and the gap operations.
By using a list of such operations any segment may be transformed into any other segment.
It is then possible to take the smallest number of operations required to change one segment
to another as the measure of distance between them.
More formally, let X = (x1, x2, . . . xn) and Y = (y1, y2, . . . ym) two sequences to be compared.
Let d(x,y) the substitution cost to change x into y and g the gap cost. The Needleman &
Wunsch algorithm is given by the following recursion:

���� �� � ��� �
��� � �� � � �� � ����� ���

 ��� � �� �� � �
���� � � �� � �

(1)

with the following initialization:

 D(0,0) = 0 ;
 D(i,0) = H(i­1,0) – i x g for i>0
 D(0,i) = H(0,i­10) – i x g for i>0

D(i,j) represents the maximum similarity of the two segments ending at xi and yj. Thus,
D(n,m) gives the score representing the similarity between the strings X and Y. Higher the
score, better the similarity. From the D(n,m) point, a trace-back procedure can be applied to
recover the alignment, as shown figure 2. In that case, all the values D(i,j) must be stored in a
2D table. The trace-back procedure consists in reconstructing the optimal path from the last
two characters (bottom right) to the first two characters (up left).

Parallel	and	Distributed	Computing278

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ���
�
�
� ��� � �� � � �� � ����� ���

��� � �� �� � �
 ���� � � �� � �
 0

 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ���
�
�
�

 ��� � �� � � �� � ����� ���

 ���� ��
���� ��

 0
 (3)

���� �� � ��� ���� � �� �� � �����
��� � �� �� � ����

���� �� � ��� ����� � � �� � �����
���� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

Fine-Grained	Parallel	Genomic	Sequence	Comparison 279

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ���
�
�
� ��� � �� � � �� � ����� ���

��� � �� �� � �
 ���� � � �� � �
 0

 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ���
�
�
�

 ��� � �� � � �� � ����� ���

 ���� ��
���� ��

 0
 (3)

���� �� � ��� ���� � �� �� � �����
��� � �� �� � ����

���� �� � ��� ����� � � �� � �����
���� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

Parallel	and	Distributed	Computing278

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ���
�
�
� ��� � �� � � �� � ����� ���

��� � �� �� � �
 ���� � � �� � �
 0

 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ���
�
�
�

 ��� � �� � � �� � ����� ���

 ���� ��
���� ��

 0
 (3)

���� �� � ��� ���� � �� �� � �����
��� � �� �� � ����

���� �� � ��� ����� � � �� � �����
���� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

Fine-Grained	Parallel	Genomic	Sequence	Comparison 279

 A T T T G A C G T A T C

 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

 A -2 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21

 T -4 -1 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18

 T -6 -3 0 3 1 -1 -3 -5 -7 -9 -11 -13 -15

 G -8 -5 -2 1 2 2 0 -2 -4 -6 -8 -10 -12

 A -10 -7 -4 -1 0 1 3 1 -1 -3 -5 -7 -9

 C -12 -9 -6 -3 -2 -1 1 4 2 0 -2 -4 -6

 T -14 -11 -8 -5 -2 -3 -1 2 3 3 1 -1 -3

 G -16 -13 -10 -7 -4 -1 -3 0 3 2 2 0 -2

 T -18 -15 -12 -9 -6 -3 -2 -2 1 4 2 3 1

 A -20 -17 -14 -11 -8 -5 -2 -3 -1 2 5 3 2

 T -22 -19 -16 -13 -10 -7 -4 -3 -3 0 3 6 4

 C -24 -21 -18 -15 -12 -9 -6 -3 -4 -2 1 4 7

Fig. 2. Execution of the Needleman & Wunsch algorithm between two DNA sequences. The
cost of a match is set to +1, the cost of a mismatch to -1 and the cost of a gap to -2. Once the
similarity score is computed, a trace-back procedure permits to recover the global alignment
by reconstructing the optimal path.

Remember that the Needleman & Wunsch algorithm computes a global alignment between
two sequences. To find shorter similarities, or local alignments, the Smith & Waterman
algorithm introduces a slight modification to the former recursion:

 ���� �� � ���
�
�
� ��� � �� � � �� � ����� ���

��� � �� �� � �
 ���� � � �� � �
 0

 (2)

with the following initialization: D(0,0) = D(i,0) = D(0,i) = 0

A threshold value, sets to 0, prevents the score to become negative. The effect is that if,
somewhere on the 2D table, a local maximum occurs, it can reflect some local similarity.
Figure 3 illustrates this situation. The word ATTGA is present in both sequences and is
detected by the highest score inside the 2D table.

 C G T T G A A T T G A A

 0 0 0 0 0 0 0 0 0 0 0 0 0

 A 0 0 0 0 0 0 1 1 0 0 0 1 1

 T 0 0 0 1 1 0 0 0 2 1 0 0 0

 T 0 0 0 1 2 0 0 0 1 3 1 0 0

 G 0 0 1 0 0 3 1 0 0 1 4 2 0

 A 0 0 0 0 0 1 4 2 0 0 2 5 3

 C 0 1 0 0 0 0 2 3 1 0 0 3 4

 T 0 0 0 1 1 0 0 1 4 2 0 1 2

 G 0 0 1 0 0 2 0 0 2 3 3 1 0

 T 0 0 0 2 1 0 1 0 1 3 2 2 0

 A 0 0 0 0 1 0 1 2 0 1 2 3 3

 T 0 0 0 1 1 0 0 0 3 1 0 1 2

 C 0 1 0 0 0 0 0 0 1 2 0 0 0

Fig. 3. Execution of the Smith & Waterman algorithm between two DNA sequences. A
match is set to +1, a mismatch to -1 and a gap to -2. A trace-back procedure, starting from
the highest score, permits to recover the best local alignment.

To better reflect the biological reality, Gotoh improved both algorithms by modifying the
cost of N consecutive gaps. The fist gap has an open value gopen while the following ones
have an extended gap cost gext. The recursion is modified as follows:

 ���� �� � ���
�
�
�

 ��� � �� � � �� � ����� ���

 ���� ��
���� ��

 0
 (3)

���� �� � ��� ���� � �� �� � �����
��� � �� �� � ����

���� �� � ��� ����� � � �� � �����
���� � � �� � ����

These new equations can be applied both for searching local or global alignments. The
complexity for comparing two sequences is the same and is in O(nm), where n and m

Parallel	and	Distributed	Computing280

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

Fine-Grained	Parallel	Genomic	Sequence	Comparison 281

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

Parallel	and	Distributed	Computing280

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

Fine-Grained	Parallel	Genomic	Sequence	Comparison 281

represent the length of the two genomic sequences. Note that to get only the similarity score
between two sequences, it is not necessary to keep the complete 2D table in memory.

3.2 Heuristic optimization
The dynamic programming algorithm systematically explores a search space equals to n x
m. For genomic data mining applications which process billions of sequences, this approach
cannot practically be used due to its very high computational complexity. To bypass this
constraint, many heuristic algorithms have been developed having in mind to target only
regions of interest. These zones can be seen as short regions (sub-sequences) in both
sequences with good probabilities of match. The quality and the speed of the algorithms
highly depend of the ability to detect these regions.
In the FASTA and the BLAST packages, the idea is the following: Generally, the two strings
of an alignment share, at least, one identical word of W characters. These words, called
seeds, generate hits between the sequences. From these hits an alignment can thus be
reconstructed by extending the search on the left and right hand sides. The size of the seeds
has a great influence on the search sensitivity: small seeds have a high probability to belong
to all the alignments detected by programming dynamic methods. On the other hand, large
seeds often miss weak similarity alignments because such alignments do not include at least
one similar word of W consecutive characters. Similarly, small seeds will increase the
computation time while large seeds will tend to limit it, just because of the direct
relationship between the size of the seed and the number of generated hits: larger the seeds,
smaller the number of hits, and smaller the time spent in computing extensions. Users are
then faced to a difficult tradeoff: fast and approximate results or slow and sensitive results.
Using this technique, the search of alignments is generally split into a few distinct steps. For
example, the BLAST program works as follows:

 Step 1: find hits of W character words
 Step 2: perform ungap extension
 Step 3: perform gap extension

Figure 4 illustrates the process. The first step marks the regions in the 2D space where
similar words of W characters are found. These regions are called hits. The second step
starts a restricted search on the hit neighborhoods. The complexity of the search is
intentionally limited by considering only substitution operations. At this stage, gaps are not
allowed. This step aims to investigate if a significant similarity exists near the hit before
launching a full alignment computation. An intermediate score is thus calculated. If it
exceeds a predefined threshold value, then the third step is run. The last step, only triggered
by step 2, performs a dynamic programming on both side of the hit (see Figure 4). Again, a
score is calculated. If this new score becomes greater than a statistically significant threshold
value, an alignment is generated.
Algorithms based on seed heuristics have been widely adopted by biologists because of
their great speed improvements compared to programming dynamic approaches.
Furthermore, their sensitivity can be efficiently tuned to match the requirements of many
bioinformatics applications just by setting a simple parameter: the size of the seed. Today,
these families of algorithms are daily used by thousands of researchers. They represent a
large part of the processing time of many bioinformatics centers. Their parallelization on

clusters, super-computers or grids has been one of the responses to increase the interactivity
with end-users for rapidly processing huge masses of genomic data.

Fig. 4. 3-step BLAST strategy to detect similarity: (1) hit location; (2) ungap extension; (3)
gap extension.

However, this type of parallelization is not the only issue. A lot of research works have been
done to parallelize the genomic sequence algorithms on other hardware platforms. The next
three sections present three different alternatives which exploit the fine-grained potential
parallelism of the algorithms

4. VLSI and FPGA accelerators

Historically, the hardware acceleration of the string comparison problem is related to the
parallelization of the dynamic programming algorithm on systolic arrays. The immediate
implementation consists in hardwiring the recursion of equation (1) on a 2D systolic array as
depicted Figure 5. According to the data dependencies, a cell D(i,j) receives data from its
three top left neighbouring cells D(i-1,j-1), D(i,j-1), D(i-1,j), computes a similarity score and
propagates it to its three bottom right cells D(i+1,j+1), D(i+1,j), D(i,j+1).
If the size of both sequences is n, then, due to the data dependencies, a similarity score is
computed in 2n-1 cycles, providing a speedup of n2/2n-1 ≈ n/2. The efficiency of this
implementation is far from the optimum, since n2 cells provide only a speedup of n/2. It can
be noted that during the computation, only one anti diagonal of cells is active at each cycle.
It is thus possible to emulate one column (or one line) on a single cell. The resulting
architecture is a linear systolic array of n cells. Details of this kind of architectures can be
found in (Lavenier & Giraud, 2005). In that configuration, the number of cycles to compute a
similarity score between two sequences of size n stays the same, but the efficiency is much
better: a speedup of n/2 is obtained with n cells.
To compare one sequence of size n with P sequences of size m with an n-cell array, n+P×m-1
cycles are required. The speedup is thus given by:

Search Space
hit

ungap extension

gap extension

Sequence A

Sequence B

Parallel	and	Distributed	Computing282

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

Fine-Grained	Parallel	Genomic	Sequence	Comparison 283

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

Parallel	and	Distributed	Computing282

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

Fine-Grained	Parallel	Genomic	Sequence	Comparison 283

In that case, a speedup of n is obtained with a systolic array of n cells. This optimal situation
occurs, for example, in phylogeny studies where thousands of sequences must be compared
together. The systolic array is initialized with one sequence and all the other sequences pass
sequentially through the array. This operation is iterated for all sequences.

Fig. 5. Implementation of the programming dynamic algorithm on a 2D systolic array. Each
cell performs a maximum of three terms. The similarity score is obtained on the bottom right
cell in 2n-1 cycles (n is the length of the sequences).

Many systolic implementations have been studied and prototypes have demonstrated the
efficiency of the systolic approach. Historically, dynamic programming algorithms were
first accelerated with ASIC solutions, such as P-NAC (Lopresti, 1987), BioSCAN (White et
al., 1991), Kestrel (Dashe et al., 1997), Samba (Guerdoux & Lavenier, 1997) or Swasad
(Han & Parameswaran, 2002) accelerators. The performances of these parallel machines
were impressive due to the high number of small processing units running in parallel.
However, they suffered from:

 The high cost induced by the design of specific chips and the relatively small
market niche where these accelerators were intended.

 The competition with software enhancements, such as seed heuristics, making
them not so interested in terms of speed for a wide range of bioinformatics
applications.

With the fast evolution of the FPGA technology, the successors of these machines naturally
moved to reconfigurable hardware. Basically, their parallel structures didn’t change but
they could adapt their configuration according to the nature of the data to process (DNA,
protein), or according to the type of alignments required by the applications (global
alignment, local alignment, with gap, without gap, etc). Pioneer works were realized on the
Splash and Splash-2 FPGA systolic machines in the beginning of the 90's (Hoang, 1993).
Since this date, a lot of variants have been published in the literature, making this specific
domain extremely active to product efficient reconfigurable accelerators (Yamaguchi et al.,
2002) (Puttegowda et al., 2003) (Yu et al., 2003) (Dydel et al., 2004) (Pfeiffer et al., 2005) (Li
et al., 2007).

A T C G

A

T

C

G

D V

H

X

Y

S

S = max
D + d(X,Y)
V – gap
H ‐ gap{

It is also interesting to note that commercial products based on these parallel architectures
are now available. For example, the DeCypher engine from TimeLogic1 or the Cube from
CLCbio2 are two FPGA accelerators dedicated to bioinformatics applications, and especially
tailored for genomic sequence comparisons. Other generic systems, like the SGI RASC-100
reconfigurable platform, for example, are not specifically devoted to this domain, but permit
to implement extremely fast systolic operators (Nguyen et al., 2009).

5. SIMD instructions

The use of SIMD instructions available in each microprocessor for video and image
processing purpose is also a very interesting way to parallelize genomic sequence
comparison, and especially the dynamic programming algorithm. It can be efficiently
speedup by considering groups of cells which can be computed concurrently on the 2D
matrix. As stated earlier, the propagation of the computation follows the anti diagonal of the
matrix. Cells belonging to a same anti diagonal can thus be processed independently. This
can be done with SIMD instructions able to perform K instructions in parallel, as shown
figure 6.
A first implementation of the Smith & Waterman algorithm was proposed by Woznia in
1997 (Wozniac, 1997) with the Visual Instruction Set (VIS) available on the SUN ULTRA
SPARC processor. It follows the parallel scheme of figure 6. VIS instructions are executed in
a specially enhanced floating point unit (FPU) and use its 64-bit registers. Instructions
operate on two 32-bit, or four 16-bit integer data packed in a 64-bit double word. In this
pioneer implementation, four cells of the matrix are executed in parallel by VIS instructions,
storing the running score on 16-bit integers. A speedup of two was obtained.

Fig. 6. Diagonal parallelization. Due to the data dependencies of the dynamic programming
algorithm, only cells belonging to the same anti diagonal can be simultaneously processed.
SIMD instructions can process K cells in parallel.

1 www.timelogic.com
2 www.clcbio.com

4 cells can be
computed
simultaneously

anti diagonal
wave front

Parallel	and	Distributed	Computing284

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

Fine-Grained	Parallel	Genomic	Sequence	Comparison 285

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

Parallel	and	Distributed	Computing284

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

Fine-Grained	Parallel	Genomic	Sequence	Comparison 285

In (Rognes & Seeberg, 2000). the SSEARCH program (a quasi standard implementation of
Smith-Waterman for comparing one query with many sequences from a database) was
parallelized using the Intel SSE instructions (Streaming SIMD Extension). Eight cells are
processed in parallel, each of them manipulating only 8-bit integer values. To increase the
precision, unsigned integers are used and a bias mechanism is added to avoid negative
values coming from the matrix substitution costs. Speedup of 6 is measured compared to the
purely sequential version of SSEARCH.

The speedup improvement, compared to the Wozniac implementation, is due to (1) the
superior number of cells computed in parallel, (2) to a clever preprocessing of the query
consisting in building a structure called a profile and (3) to a programming optimization
allowing the cells to be processed in a vertical way as shown figure 7.

Fig. 7. Vertical parallelization. Under certain assumptions, the horizontal or vertical
dependencies can be temporary omitted, leading to the possibility to compute several
horizontal or vertical cells in parallel. Here, the vertical dependency is suppressed.

The optimization of the Smith & Waterman algorithm implemented in the Rognes &
Seeberg version is based on the observation that in equation (3) V and H are often close to
zero and, hence, most of the time, do not participate to the calculation of D. If for K
consecutive vertical cells, the V values do not exceed a threshold value, then the vertical
dependency can be suppressed, saving many computations. It is possible to check
simultaneously if any of the K cells are above a threshold value. If so, the computation of the
D values can be very fast. If not, the K scores are computed sequentially.
Farrar (Farrar, 2007) goes one step further by striping the query sequence into T fragments
where T = n/K (n is the length of the query and K the size of the SIMD vector). As in the
previous implementation, the V values are also neglected to reduce data dependencies. The
combination of these two techniques provides better data accesses to the SSE registers and
greatly optimizes the SIMD parallelization. After the full computation of the 2D matrix, a
lazy evaluation of V is done. Depending of the D scores in some points of the matrix, V
values are updated and D scores are recalculated accordingly. This method is very efficient

Query

Database sequence

for sequences with a low level of similarity. The D scores remain low and a very small
fraction of the matrix needs to be updated. This situation typically happens in the case of
database scanning where only a few sequences have significant similarity among millions of
others. Speedup between 2 to 8 is reported compared to the previous SIMD
implementations. Performance variations come from the fact that the Rognes & Seeberg
implementation is very sensitive to the gap and substitution costs while the Farrar’s
implementation remains stable.
The Farrar implementation has still been improved in the SWSP3 package (Szalkowski,
2008). Modifications of the code are minors but they significantly reduce the cache footprint
especially when long sequences are processed. Furthermore, the lazy V evaluation loop was
restructured by transforming it into two nested loops with specific index ranges to hint the
compiler at execution counts.
Finally, successive software improvements of the Smith & Waterman algorithm and their
clever implementations using SIMD instructions have drastically reduced the performance
gap with the seed heuristic algorithms which cannot directly benefit from these SIMD
optimizations due to their irregular nature. However, in PLAST, a parallel BLAST-like
version for comparing two large databases, SIMD instructions are efficiently used to
speedup the computation of the ungap step which represents an important fraction of the
execution time (Nguyen and Lavenier, 2008). Identical hits of both databases are grouped
together to construct two lists of short sequences. Each sequence of one list is then compared
with all sequences of the other list. At this step, gaps are not allowed, easing the
computation of the scores to bit fit onto SSE instructions manipulating 16 × 8-bit integers.
The parallelization of this part of the algorithm with SSE instructions makes PLAST three to
ten times faster than BLAST.
The next generation of microprocessors will increase the SIMD instructions capabilities.
New instructions will be provided with larger SIMD registers. For instance, the new Intel set
of SSE instructions, called AVX (Firasta et al., 2008), will extend the SIMD integer registers
to 256 and/or 512 bits. The genomic sequence comparison will directly benefit from these
future improvements.

6. Graphical Processing Units (GPU)

GPGPU stands for General-Purpose computation on Graphics Processing Units. Graphics
Processing Units (GPUs) are high-performance many-core processors that can be used to
accelerate a wide range of applications3. Bioinformatics applications and especially the
genomic sequence comparison problem did not escape from deep investigations to evaluate
the potential gain these low-cost hardware accelerators can offer.
The last generation of GPU houses hundred of small processing units than can be easily
programmed with high-level language, such as CUDA proposed by NVIDIA4 or OpenCL
(Open Computing Language) which is the future standard proposed by the Khronos
Group5. In such a language, the GPU is viewed as a compute device suitable for massive
parallel data application. It can randomly access its own data memory and can run a very

3 www.gpu.org
4 www.nvidia.com
5 www.khronos.org/opencl/

Parallel	and	Distributed	Computing286

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

Fine-Grained	Parallel	Genomic	Sequence	Comparison 287

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

Parallel	and	Distributed	Computing286

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

Fine-Grained	Parallel	Genomic	Sequence	Comparison 287

high numbers of tasks in parallel. These tasks, called threads, are grouped in blocks and
perform the same algorithms in a SIMD mode. Threads of the same block share data
through a complex memory hierarchy and can be synchronized through specific
synchronization points.
Again, the dynamic programming algorithm is a good candidate to for GPU because of its
high regularity. Different parallelization techniques have been tested. The first relies on the
independence of the computation which can be performed on the anti diagonal of the matrix
(cf. previous sections). In that case, a thread is assigned to the computation of one anti
diagonal. If n is the length of the sequences to be compared, then there is the possibility to
run simultaneously up to n threads performing the recursion of equation (3). This approach
has been implemented in (Liu et al., 2007). Speedup from 3 to 10 have been measured
compared to the SSEARCH program, depending of the length of the sequences. Long
sequences favor the use of GPU accelerators.
The implementation of (Manavski & Valle, 2008) is quite different and targets the scan of
databases. The genomic bank is first sorted by the length of the sequences. Then each thread
is assigned with a complete comparison between the query and one sequence of the
database. As the threads are executed in a SIMD mode, it is important to have the same
volume of computation per thread. This is why the sequences are sorted: blocks of
sequences of identical size are processed together. Blocks of 64 threads are executed
simultaneously, leading to a speedup of 30 compared to SSEARCH (not optimized with SSE
instructions). The same style of implementation is done in (Ligowski & Rudnicki, 2009), but
with a more efficient use of the global memory bandwidth, providing still better
performance.
Another GPU implementation, called CUDASW++, and based on the same parallelization
scheme as described above, compares its own performance with one of best multithreaded
heuristic implementation (BLAST). A standard Linux workstation (3 GHz dual core
processor) equipped with the latest NVIDIA board (GTX 295) including two GPU chips
provides much better performance: an average speedup of 10 was reported. In that
configuration, the adjunction of a low-cost accelerator outperforms the best seed-based
heuristic software while increasing the quality of the results.
In the GPU version of PLAST (cf. previous section), the ungap alignment step for detecting
local similarity near the hits are deported on GPU. Two lists (List1 and List2) of short
sequences are sent to the GPU in order to make an all-by-all comparison. The parallelization
is an adaptation of the matrix multiplication algorithm proposed in the CUDA
documentation (Cuda, 2007). Matrices of numbers are simply replaced by blocks of strings.
More precisely, suppose that block B1[N1, L] and block B2[N2,L] correspond respectively to
List1 and List2, with L the length of the sequences and N1 (N2) the number of sequences in
List 1 (List2). A third block SC[N1,N2] stores the scores of all the computation between
block B1 and block B2.
The global treatment is done by partitioning the computation into block of threads
computing only a sub block of SC, called SCsub. Each thread within the block processes one
element of SCsub dimensioned as a 16.x16 square matrix. This size has been chosen to
optimize the memory accesses, allowing the GPU internal fast memory to store short
sequences which can simultaneously be shared by 256 threads. At the end, the host
processor gets back an N1xN2 matrix of scores from which significant ones need to be

extracted. Figure 8 illustrates the parallelization scheme of a 16 x 16 string comparison,
corresponding to a sub bloc SCsub.

Fig. 8. Principle of the parallelization of an all-by-all string comparison on GPU. A thread
(i,j) performs the comparison between the ith and the jth sequences.

Compared to an optimized sequential algorithm an average speedup of 10 is measured for
performing this computation on recent NVIDIA graphic boards (GTX 280).

7. Conclusion

This chapter presented three approaches to parallelize the genomic sequence comparison
problem: (1) systolic parallelization with VLSI or FPGA accelerators, (2) SIMD
parallelization with microprocessor SSE instruction sets, and (3) streaming parallelization
with GPU boards. These types of parallelization, referred as fine-grained parallelization,
exploit the internal parallelism of the algorithms.
Another possibility is the data-level parallelism. This is actually the approach which is
mostly exploited in many bioinformatics applications. A sequence, or a group of sequences,
is generally compared with millions of other sequences. There is thus a natural way to split
the computation on parallel machines, starting from multicores to clusters or grid platforms.
The implementation is immediate: the database is dispatched among the available
processing units, and each node works independently on its own subset of data. This
approach is very efficient and fit well with the structures of the bioinformatics centres which
are mainly composed of clusters of multiprocessors. Besides, MPI versions of the most
popular bioinformatics software are now available.
These two alternatives, however, are not antagonist and can be combined to provide higher
performance. A few nodes of a general purpose cluster can be equipped with hardware
accelerators such as FPGA or GPU boards. When intensive comparisons are required, the
system automatically assigns these nodes for this specific process, freeing the rest of the
machines for other tasks. As a matter of fact, the scan of genomic databases may represent
up to 60%-70% of the execution time of a bioinformatics server. As seen in this chapter, the
heart of the algorithms mostly manipulates small integers and, consequently, exploits a
relatively small fraction of the microprocessor computational power. Fitting these

. . . T T A G C T G G C

. . . C A T G T G T A A

. . . C C T A T A G G T

0,0

0,1

0,15

1,0

1,1

1,15

15,0

15,1

15,15

. . . C A A C T G T A A

. . . C A A C T G T A A

. . . C A A C T G T A A

Block 1: 16 sequences

Block 2: 16 sequences

Parallel	and	Distributed	Computing288

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

Fine-Grained	Parallel	Genomic	Sequence	Comparison 289

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

Parallel	and	Distributed	Computing288

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

Fine-Grained	Parallel	Genomic	Sequence	Comparison 289

algorithms into dedicated platforms is much more efficient both in terms of cost and electric
power consumption.
With the next generation sequencing technology, the amounts of data to process become a
real challenge. Comparing billions of genomic sequences is not the ultimate goal; it is just a
necessary step before more complex data analysis in order to filter, organize or classify raw
data coming from the fast sequencing machines. In order for this step to not become a
serious bottleneck, comparison algorithms must exploit any forms of parallelism available in
the next generation of microprocessors. The structures of the genomic sequence comparison
algorithms probably need to be revisited to better fit tomorrow architectures such as
manycores architectures enhanced with powerful SIMD instruction sets.

8. References

Altschul, S.; Gish, W.; Miller ,W.; Myers, E. & Lipman, D. (1990). Basic local alignment
search tool, J. Mol. Biol., vol. 215, no. 3, pp. 403–410

Altschul, S.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W. & Lipman, D. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs, Nucleic Acids Res, vol. 25, pp. 3389-3402

Apweiler, R. et al. (2004). UniProt: the Universal Protein knowledgebase, Nucleic Acids Res.,
vol. 32, database issue, pp. 115-119

Benson, D. et al. (2008). GenBank, Nucleic Acids Res., vol. 36, database issue, pp. 25-30
Cuda. (2007). NVIDUA CUDA: Compute Unified Device Architecture, Programming guide,

Version 1.0
Dahle, D.; Hirschberg, J.; Karplus, K.; Keller, H.; Rice, E.; Speck, D.; Williams, D. & Hughey,

R. (1997). Kestrel: Design of an 8-bit SIMD Parallel Processor, Proceedings of the 17th
Conference on Advanced Research in VLSI (ARVLSI '97), September 15 – 16, pp. 145-
163, Ann Arbor, Michigan

Dydel, S. & Piotr, B. (2004). Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices, 14 th International conference on field-programmable
logic and applications, Antwerp , Belgique, pp. 23-32

Farrar, M. (2007). Striped Smith–Waterman speeds database searches six times over other
SIMD implementations, Bioinformatics, vol. 23, no. 2, pp. 156-161

Firasta, N.; Buxton, M.; Jimbo, P.; Nasri, K. & Kuo, S. (2008). Intel AVX: New frontiers in
performance improvements and Energy Efficiency. Intel White paper

Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of
Molecular biology, vol. 162, no. 3, pp. 705-708

Gpu .(2009). http://gpgpu.org
Green, P. (1996). SWAT Optimization, www.phrap.org/phredphrap/swat.html
Guerdoux-Jamet, P. & Lavenier, D. (1997). SAMBA: hardware accelerator for biological

sequence comparison, Bioinformatics, vol. 13, no. 6, pp. 609-615.
Han, T. & Parameswaran, S. (2002). Swasad: An Asic Design For High Speed Dna Sequence

Matching, Proceedings of the 2002 Conference on Asia South Pacific Design
automation/VLSI Design, January 07–11, Bangalore, India

Hoang, D. (1993). Searching genetic databases on SPLASH2, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 185-191, Napa, California

Lavenier, D. & Giraud, M. (2005). Bioinformatcs Applications, in Reconfigurable Computing:
Accelerating Computation with Field-Programmable Gate Arrays, Gokhale, M. & P.S.
Graham P. editor, chapter 9, Springer, ISBN 0-387-26105-2

Liolios, K. et al. (2008). The Genomes On Line Database (GOLD) in 2007: status of genomic
and metagenomic projects and their associated metadata, Nucl. Acids Res., vol. 36,
database issue, pp. 475-479

Li, IT.; Shum, W. & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinformatics. vol.
8, no. 185

Ligowski, L. & Rudnicki, W. (2009). An efficient implementation of the Smith-Waterman
algorithm on GPU using CUDA for massively parallel scanning of sequence
databases, HiComb 2009: Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy

Liu, Y.; Huang, W.; Johnson, j; & Vaidya, S. (2006). GPU Accelerated Smith-Waterman,
General Purpose Computation on Graphics Hardware (GPGPU): Methods, Algorithms and
Applications, LNCS, vol. 3994, pp. 188-195, ISSN 0302-9743

Liu, W.; Schmidt, B.; Voss, G.; Muller-Wittig, W., (2007). Streaming Algorithms for
Biological Sequence Alignment on GPUs, Parallel and Distributed Systems, IEEE
Transactions on Parallel and Distributed Systems , vol. 18, no. 9, pp. 1270-1281

Liu, Y.; Maskell, D. & Schmidt, B. (2009). CUDASW++: Optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units, BMC
Research Notes, vol. 2 no. 73

Lopresti, D. (1987). P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences.
Computer, vol. 20, no. 7, pp. 98-99

Manavski A. & Valle, G. (2008). CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment, BMC Bioinformatics, vol. 9,
no. 10.

Needleman , S. & Wunsch, C. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol Biol., vol. 48, no. 3,
pp. 443–53

Nguyen, V. ; Cornu, A. & Lavenier, D. (2009). Implementing Protein Seed-Based
Comparison Algorithm on the SGI RASC-100 platform, 16th Reconfigurable
Architectures Workshop, May 25-26, Rome, Italy

Nguyen, V. & Lavenier, D. (2008) Fine-grained parallelization of similarity search between
protein sequences, INRIA Report, (RR-6513)

Pearson, W. & Lipman, D. (1988) Improved tools for biological sequence comparison. Proc.
National Academy of Science, vol. 85, no. 8, pp. 2444–2448

Pfeiffer G,; Kreft H. & Schimmler, M. (2005) Hardware Enhanced Biosequence Alignment,
International Conference on METMBS’05, Monte Carlo Resort, Las Vegas, Nevada,
USA

Pop,M.; Salzberg, S. & Shumway, M. (2002). Genome Sequence Assembly:Algorithms and
Issues, Computer, vol. 35, no. 7, pp. 47-54

Puttegowda, K.; Worek, W.; Pappas, N.; Dandapani, A.; Athanas, P. & Dickerman, A. (2003).
A Run-Time Reconfigurable System for Gene-Sequence Searching, Proceedings of the
16th international Conference on VLSI Design, January 04 - 08, New Delhi, India

Parallel	and	Distributed	Computing290

Rognes, T., Seeberg, E. (2000). Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors, Bioinformatics, vol.
16, no. 8, pp. 699–706

Shendure, J. & Hanlee, J. (2008). Next-generation DNA sequencing, Nature Biotechnology, vol.
26, no. 10, pp.1135-1145

Smith, T. & Waterman, M. (1981). Identification of common molecular subsequences. Journal
of Molecular Biology, vol. 147, no .1, pp. 195–197

Szalkowski A.; Ledergerber, C.; Krähenbühl, P. & Dessimoz C. (2008). SWP3 – fast multi-
threaded vectorized Smith-Waterman for IBM Cell/BE and x86/SSE2, BMC
Research notes, vol. 1, no. 107

White, C.; Singh, R.; Reintjes, P.; Lampe, J.; Erickson, B.; Dettloff, W.; Chi, V. & Altschul, S.
(1991). BioSCAN: A VLSI-Based System for Biosequence Analysis, IEEE
International Conference on Computer Design: VLSI in Computer & Processors, pp. 504-
509, October 14 – 16, Cambridge, Massachusetts, USA

Wozniak, A. (1997). Using video-oriented instructions to speed up sequence comparison,
Comput Appl Biosci., vol.13, no. 2, pp. 145–50.

Yamaguchi, Y.; Marumaya, T. & Konagaya, A. (2002). High speed homology search with
FPGAs, Pacific Symposium on Biocomputing, pp. 271–282, Lihue, Hawaii

Yu C.; Kwon K. ; Lee K. & Leong P. (2003). A Smith-Waterman systolic cell, 13 th
International conference on field-programmable logic and applications, Lisbon , Portugal

Parallel	and	Distributed	Computing290

Rognes, T., Seeberg, E. (2000). Six-fold speed-up of Smith-Waterman sequence database
searches using parallel processing on common microprocessors, Bioinformatics, vol.
16, no. 8, pp. 699–706

Shendure, J. & Hanlee, J. (2008). Next-generation DNA sequencing, Nature Biotechnology, vol.
26, no. 10, pp.1135-1145

Smith, T. & Waterman, M. (1981). Identification of common molecular subsequences. Journal
of Molecular Biology, vol. 147, no .1, pp. 195–197

Szalkowski A.; Ledergerber, C.; Krähenbühl, P. & Dessimoz C. (2008). SWP3 – fast multi-
threaded vectorized Smith-Waterman for IBM Cell/BE and x86/SSE2, BMC
Research notes, vol. 1, no. 107

White, C.; Singh, R.; Reintjes, P.; Lampe, J.; Erickson, B.; Dettloff, W.; Chi, V. & Altschul, S.
(1991). BioSCAN: A VLSI-Based System for Biosequence Analysis, IEEE
International Conference on Computer Design: VLSI in Computer & Processors, pp. 504-
509, October 14 – 16, Cambridge, Massachusetts, USA

Wozniak, A. (1997). Using video-oriented instructions to speed up sequence comparison,
Comput Appl Biosci., vol.13, no. 2, pp. 145–50.

Yamaguchi, Y.; Marumaya, T. & Konagaya, A. (2002). High speed homology search with
FPGAs, Pacific Symposium on Biocomputing, pp. 271–282, Lihue, Hawaii

Yu C.; Kwon K. ; Lee K. & Leong P. (2003). A Smith-Waterman systolic cell, 13 th
International conference on field-programmable logic and applications, Lisbon , Portugal

Parallel and Distributed
Computing

Edited by Alberto Ros

Edited by Alberto Ros

Photo by zaozaa09 / iStock

The 14 chapters presented in this book cover a wide variety of representative works
ranging from hardware design to application development. Particularly, the topics that

are addressed are programmable and reconfigurable devices and systems, dependability
of GPUs (General Purpose Units), network topologies, cache coherence protocols,

resource allocation, scheduling algorithms, peertopeer networks, largescale network
simulation, and parallel routines and algorithms. In this way, the articles included in this
book constitute an excellent reference for engineers and researchers who have particular

interests in each of these topics in parallel and distributed computing.

ISBN 978-953-307-057-5

Parallel and D
istributed C

om
puting

ISBN 978-953-51-5909-4

	Parallel and Distributed Computing
	Contents
	 Preface
	1. Fault tolerance of programmable devices
	2. Fragmentation management for HW multitasking in 2D Reconfigurable Devices: Metrics and Defragmentation Heuristics
	3. TOTAL ECLIPSE—An Efficient Architectural Realization of the Parallel Random Access Machine
	4. Facts, Issues and Questions - GPUs for Dependability
	5. Shuffle-Exchange Mesh Topology for Networks-on-Chip
	6. Cache Coherence Protocols for Many-Core CMPs
	7. Using hardware resource allocation to balance HPC applications
	8. A Fixed-Priority Scheduling Algorithm for Multiprocessor Real-Time Systems
	9. Plagued by Work: Using Immunity to Manage the Largest Computational Collectives
	10. Scheduling of Divisible Loads on Heterogeneous Distributed Systems
	11. On the Role of Helper Peers in P2P Networks
	12. Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks
	13. A parallel simulated annealing algorithm 4pt as a tool for fitness landscapes exploration
	14. Fine-Grained Parallel Genomic Sequence Comparison

