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Abstract

This paper introduces a framework for studying the intéoast of autonomous system components and the design of the

connectivity structure in Systems of Systems (SoSs). Thaiméwork, which uses complex network models, is also usestutty

the connectivity structure’'s impact on resource managénwa discuss resource sharing as a mechanism that addslafeve
flexibility to distributed systems and describe the conmiygtstructures that enhance components’ access to theiress available
within the system. The framework introduced in this papeplieitly incorporates costs of connection and the benefitd are
received by direct and indirect access to resources anddgwmeasures of the optimality of connectivity structul#fe discuss
central and a distributed schemes that, respectivelyesept systems in which a central planner determines theectwity
structure and systems in which distributed components llowed to add and sever connections to improve their ownueso

access. Furthermore, we identify optimal connectivityctinres for systems with various heterogeneity conditions
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I. INTRODUCTION

YSTEMS of Systems (So0Ss), comprised of heterogeneous auenpocapable of localized, autonomous decision making,
Sare becoming increasingly ubiquitous in a wide range of astethnical systems [Sauser et al., 2010; Mdier, 1996;
Jamshidi/ 2011; Mina et al., 2006]. SoSs often rely on midtigpes of localized resources, whose management is aatruci
challenge for the optimal performance of the system. So8x#ien operated in highly uncertain environments, becatfise
this it is difficult to anticipate demand for resources iniwas parts of the system at every moment of time; this meaaus th
even if the total demand for a resource can be met, achievirgffecient distribution of the resource is not a trivial deabe.
The efficient distribution of resources is, among otherdes;ta strong function of the system architecture, thus tiagléhis
interdependency—that of the architecture and resouroeailbn mechanisms—becomes an important area of resea8iSs
engineering.

Using a centralized scheme for resource management carireenely difficult or impossible, because of the large sdaiigh

complexity, and environmental uncertainty of SoSs. Attestip manage all decision making centrally, by gatheringrimfation
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from widely-dispersed system components and then brotdgatecisions back to those components, can lead to a syktgm

is slow to respond to changes in the environment and theréfiefficient (se¢ Koutsopoulos and losifidis [2010] for aecas
radio systems). Allocation by a central planner is made nsoraplex in situations with heterogeneous system compsnast

is often the case in SoSs. The tendency of SoSs to have hetexmgs components arises from the fact that these comgonent
often operate in different environments, which lead toetiffg operational constraints and resource requireménts. way

to overcome the challenge posed by uncertain variable dérf@mresources is to ensure that all components of the system
are supplied with resources equal to the maximum possibteadd for any one component; while this will eliminate the
risk of under-supplying any part of the system it is very fioé#nt and likely to be prohibitively expensive in most systs.
Alternatively, a centralized decision making process ditate resources as and when they are needed throughaytdteen;
however, as was explained before, this can lead to an impatgtslow and unresponsive system.

There has been a shift in the system design paradigm to takentadje of the capabilities that distributed, autonomous
or semi-autonomous decision making provides; examplesheaseen in many SoSs: fractionated satellite sygémwhich
detection, processing, and communication tasks are dymdlyniassigned to members of the satellite cluster [Browalet
2009;| Mosleh et al., 2014]; communication networks in whidguency spectrum is dynamically allocated for efficiesé u
[Mitola 11l and Maguire Jr, 1999; Ji and Liu, 2007]; and graupf unmanned, autonomous vehicles (such as aerial drones)
that make dynamic assignment of tasks between them and canneske use of information gathered by other members of
the group |[Alighanbari and How, 2005]. Computational pgwendwidth, and information are examples of scarce ressurc
that the satellites, communication systems, and unmanekeidles respectively must make efficient use of in their apens.

The distributed, autonomous scheme can also help with aptiesource management of systems of systems: Rather than
attempting to address the challenge of resource allocagotrally, one can accept that at any given time some partiseof
system will have more resources than needed and other pants;fthis is not necessarily a problem if the system compisne
are capable of sharing resources between themselvesylofatine part of the system is connected to another part of the
system, then those parts are able to exchange resource ddrenections could be direct or indirect; for example caré q@f
a system could receive resources from another part via ampauof intermediary components. Connections betweersyst
components typically come with a price, however, there ismiikely some immediate cost associated with creating and
maintaining a direct connection between two system compisnalso, while it may be possible for a resource to be shared
indirectly between parts of a system, the quantity or guadit that resource will likely be decreased during the msiép
transmission e.g., attenuation, delay, or cost of invg\anthird party.

An architecture perspective, represented by the coniigcttructure, can be taken in distributed resource managém
of a variety of technical and socio-technical SoSs, in whaghilability of resources is subject to uncertainty. Foaraple,
an interconnected network of electrical microgrids canagtie resource access between the units, in which avaijabfli
energy resources is affected by the inherent uncertaintgréwable energy resources and fluctuations in electrigtpand

1A fractionated satellite system is a systems architectareept with the idea being to replace large-scale, expenaid rigid monolithic satellite systems
with anetworkof small-scale, agile, inexpensive, and less complexfiy@eg satellites that communicate wirelessly and accoshplhe same goal as the single
monolithic satellite. This new distributed architectumr §pace systems is argued to be more flexible when respotalingcertainties, such as technology
evolution, technical failures, funding availability, angarket fluctuations_[Brown and Eremehko. 2006].


HTTP://DOI.ORG/10.1002/SYS.21342

TO APPEAR IN SYSTEMS ENGINEERING JOURNAL, DOI: 10.1002/S¢$342 3

[Katiraei et al.,[ 2005| Saad etlal., 2011] i.e., the connégtistructure of the system will play an important role invho
unmet demand of one microgrid is supplied by the excess gBaerof another in an interconnected network of microgrids
Connectivity structure is also a key contributor in distitdd resource management of organizations and entergasanss. For
example, in R&D collaboration networks, firms can eitheedity combine knowledge, skills, and physical assets tovate or
access innovations of other firms through intermediary fitlha¢ serve as conduits through which knowledge and infaomat
can spread [Konig et al., 2012]. Direct collaboration begw two firms has higher benefits, but involves communicatith
coordination costs while indirect access to resourcesaftscounts benefits due to involving third parties. Giveat ti is
probably inefficient and not practical for every part of ateys to be directly connected to every other part, the questio
becomes that of decidinghat is the best way to connect the system components in todemhance resource access in
uncertain environments

Traditional systems engineering methods and theoriesarsufficient for analyzing and explaining the dynamics ciowgrce
allocation for SoSs with autonomous parts. Any framewoik b used to address this challenge has to be able to take into
account the local interactions between components of tetesy while also ensuring that the structure of the connestio
between components is optimal for the system as a whole. phimality of the connectivity structure should be evaluhate
both in the case that it is designed by a central planner dsasethen the connectivity structure can change at the disore
of autonomous components.

A viable approach to find the connectivity structures thdtagrce access to resources within SoSs is to use Networkylheor
Network Theory provides methods that go beyond the tratilieystems engineering approach as it combines graphytheor
game theory, and uncertainty analysis. The system can beletds a graph, with the various components of the system
being nodes in the graph; the resource-sharing interacti@ween the autonomous components can be represented usin
game theory and uncertainty analysis, in the form of gamesetworks.

In this paper, we will study the system connectivity struetuthat enhance access to resources in heterogeneous SoSs.
We employ Strategic Network Formation from the economitezditure as the underlying framework for finding the optimal
connectivity structure when the system is centrally desigras well as when the connectivity structure is determihed
namically by distributed autonomous components. We dsstiws characteristics of those connectivity structuredffferent
heterogeneity conditions.

The organization of the rest of paper is as follows. In Sedlid we discuss a spectrum of systems architectures and
explain the role of system connectivity structure and dyigaiesource sharing in response to changes in the enviranimen
Sectiorll, we discuss why Network Theory provides a prongigheoretical foundation for studying the architectuf&oSs.

In Sectiol 1V, we introduce a framework based on Economiavdsets to model resource access in SoSs with heterogeneous
components. In SectidnlV, we introduce models that are us@tentify optimal connectivity structures for resourceess in
SoSs with different heterogeneity conditions, and centratl distributed-design schemes. In Sections[VI] VII, [add] We

discuss applications of the suggested framework, conchuale provide opportunities for future studies.
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Il. RESOURCE SHARING AND SYSTEM CONNECTIVITY STRUCTURE

Several frameworks have been developed for the archieofiBoSs [Maier, 2009; Rhodes et al., 2009; Morganwalp amd Sa
2002]. In this paper, we will focus on using the system’s @miivity structure to represent its architecture and wseu
the framework developed in our previous work [Heydari et 12016; Mosleh et al., 2016]. This framework is capable of
describing many levels of system connectedness, from faiggral monolithic systems to distributed, adaptive, dgdamic
systems. The systems architecture framework is inspirea ¢neral concept of modularity that combines systems raatiul
[Baldwin and Clark| 2000] and network modularity [NewmaB0B]: that of breaking the larger system into smaller, diter
pieces that are able to interact (communicate) with onehamaotia standardized interfaces [Langlois, 2002]. Givasa kioad
definition of modularity, the systems architecture framdwdefines five levels of modularityMy— Integral (e.g, multi-
function valve),M;— Decomposable (e.g., Smartphone’s mainboakd),- Modular yet monolithic (e.g., PC’s mainboard),

Ms— Static-Distributed (e.g., Client-server), add,— Dynamic-Distributed (e.g., Internet of Things).

A. Systems architecture spectrum

The five levels of modularity in the systems architecturenieavork, developed in our previous work [Heydari et al.,
2016; Mosleh et al!, 2016], form a spectrum in which incrdasedularity improves system responsiveness to the opegrati
environment. The level of modularity, together with syssdtaxibility, increases fromd/, to M,. However, increased modularity
comes with increased interfacing costs, increased systemplexity, and increased potential for system instabilitye operating
environment encompasses the physical surroundings of ybiers and the effects of stakeholder requirements, consume
demand, market forces, policy and regulation, and budgetanstraints. The ability to respond in a flexible manner lto a
of these environmental factors comes at a cost: if therettle lincertainty in the environment then the flexibility agh
modularity will be costly and could lead to instability beise of unintended emergent behavior.

The three lowest modularity levels of the framework (i/dy, M, andMs) are related to monolithic systems: systems com-
prised of a single unit and the interfaces within the mohdalisystem. The two higher modularity levels of the framew(@v/s
and M,) correspond to distributed systems that have multiplesurgpable of inter-unit communications. The interconrtecte
components of thé/; system, which can be clients or servers, communicate arreé shsources with tasks being assigned to
the component with the most appropriate capabilities atingrto a centralized process. At tiié¢; level (“static-distributed”)
decision-making is centralized and the structure of irtiivas between components is static; while components il ghevel
system may have different roles, processing capacitiesladle resources, etc., the assignments do not changdimesand
the structure of the interactions is fixed.

While the assignment of tasks to system components is dgntantrolled in the static-distributed)Ms) architecture,
in the dynamic-distributed{,) architecture tasks are assigned locally to those comgsribat are currently idle or have
spare processing capacity for the required task. The assighdecisions are made by the components themselvegheg.,
communicate with each other. The dynamic resource shariogepty of an)M, system significantly increases the flexibility
and scalability of the system, allowing it to adapt effeelyvto uncertainties in the environment.

While the connectivity structure of a static-distributed{) system is typically a tree or two-mode (or bipartite) netiyo
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(a) (b) (©)

Fig. 1. Connectivity structure of distributed systems wdifferent levels of flexibility (solid lines represent statonnections and dotted lines represent
dynamic connections; nodes with solid colors denote fixddsrdclient/server) and nodes with gradient color denot@pments with dynamic roles) (a)
Resource allocation and the design of the connectivitycira are centralized)M/3). (b) Resource sharing is decentralized but the conngcttructure is
static and designed centrallp/4y). (c) Resource sharing is decentralized and connectititycire is dynamic and formed by distributed components )

the system connectivity structure of ad,-level dynamic-distributed system will be more complexyihg multi-paths and
loops. The level of responsiveness to environmental uaicgyt of an M, system can be increased further if its connectivity
structure is dynamic, changing in response to environnhéatéors or additional resource availability. These amttures are

illustrated in FigurélL.

B. Multi-layered resource sharing

The sharing of resources between components of a systerhaha dynamic-distributed architecture can be considered t
be a multi-layer phenomenon. A multi-layered resourceisagffect occurs when the sharing of a resource by a comgonen
affects its consumption of other resources; a componentlraable to indirectly access another component’s resothoasgh
a different resource channel. For example, if one compdm&shexcess power supply, it may not be able to directly sharep
with another component but it could accept a power-consgr@sk from another component that lacks the power to perform
the task. The fractionated satellite system is an examptaisfscenario as the components of the system have limitd lo
power and processing capacity but the ability to transfekgdetween components via communication channels [Bravah,e
2009;| Mosleh et al., 2014]; further examples can be foundases of distributed computing with heterogeneous hardware
and software, and distributed robotic systems [Roberts\desisler| 1970; Wang and Premvuti, 1994]. There are thredslev
of resource sharing in this case because even though ordyiglahared directly, power and processing capacity cankaso
indirectly shared, as illustrated in Figurke 2.

The relationship between the layers has this structureusecthe demand for processing capacity affects the data semm
nications between components, which could have a negdfeet ®@n pre-existing tasks requiring communication baiuttv
In addition, a component could delegate a task that has adsgbciated power drain if its own power supply is at or near
capacity.

In a dynamic-distributed system the number of possible ganditions for sharing multiple resource types can grow very
quickly. The difficulty in optimizing the configuration ceatly is one of the primary reasons why in many such dynamic
systems the components have some level of autonomy withidégaesource sharing decisions and the connectivity strac
itself. Due to the interconnected, dynamic, and autonomnaiigre of theses systems, the framework required for timailyais
has to capture both the component-level autonomous dasisind the effects of the connectivity structure on ovesaltesn

efficiency.


HTTP://DOI.ORG/10.1002/SYS.21342

TO APPEAR IN SYSTEMS ENGINEERING JOURNAL, DOI: 10.1002/S¢$342 6

Component X I I Component Y

Communication Communication
Bandwidth I Bandwidth

1 |
| |
| |
1 |
1 |
: Data Processing Data Processing :
| |
| |
1 |
1 |
1 |

Power Power

5 |~

Stored Energy Stored Energy

Fig. 2. An Example of multi-layer resource sharing: a hiehéral multi-layer resource sharing scheme across twdlisatgystems. While bandwidth sharing
is directly possible, sharing of data processing is indiegw is restricted by the limits of bandwidth sharing. Egesbaring is one stage lower and is achieved
by moving data processing load to other fractions to saveggne

IIl. M ODELING RESOURCE ACCESS IN NETWORKS

Network theory, an interdisciplinary field at the intersexntof computer science, physics, and economics [Jacksah,et
2008; Easley and Kleinberg, 2010; Newman, 2010], providgsamising approach for studying the architecture of SoSs.
Network representations make it possible to create a rigoend domain-independent model of distributed systems. Th
methods and tools of network theory can be used to study ltividual system components’ interactions and aggregate
system-level behaviors.

A network, by its very nature, is distributed and can be ugerkpresent system-heterogeneity in the following ways:

« Degree, centrality, clustering coefficient, and other préips of each node represent a system’s structural heteedy.

« Edge weights in the network represent the heterogeneitigdgrconnections between components in the system.

« The type, state, and any associated goals or objectiveifunsadf nodes represent heterogeneity of the system comfmne

« Multilayer networks|[Kivela et al., 2014; De Domenico el, &013] represent the resource heterogeneity (such agyener

information, and risk).

« The autonomy of decision-making components in the systembeamodeled by considering the network’s nodes as

agents in a game and using game theory to analyze the auteisacomponents’ behavior.

Although network-based analysis has been used in somevsystiegineering research, such as when studying produdt arch
tecturel[Bartolomei et al., 2012; Braha and Bar-Yam, 20G8aBas et all, 2006] and supply chain systems [Bellamy aasbk?,
2013], it has not been used to study resource sharing inmegstéth a distributed architecture. Different theoretitameworks,
based in network theory, can be used to describe the inienadbetween autonomous system components depending on the
protocol used for making the resource sharing decisions.ekample, the interactions can be modeled through exchange
networks |[Bayati et al., 2015; Kleinberg and Tardos, 20084 ibargaining process is used to decide on resource sharing
actions; in exchange networks the connectivity structdrt® network determines each nodbargaining powerand the way
any surplus resources are divided between the nodes. Ipdpier we will focus on finding the connectivity structurettha
leads to enhanced resource access by considering two sxefarthe formation of the network connectivity structu(#)

Connectivity structure is static and is determined by are¢mianner; (2) connectivity structure is dynamic and detred
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by the autonomous decisions of the distributed system coems.

IV. FRAMEWORK

In a system in which components can obtain their requiresliegs both directly and indirectly, deciding which cortity
structure enhances access to resources leads to a dilenmmmaeChand, direct connection between two components i$/cost
(e.g., cost of interface); on the other hand, indirect cotine may depreciate the benefits of acquiring the resoti#eace, to
find the optimal connectivity, we need a framework that eifhyi models the heterogeneous costs and benefits of individ
components as a function of the network structure (baseth@mpaths of access to the resources). The framework als® need

to enable the study of the optimal connectivity structured o be able to model and quantify the subsequent trade-offs

A. Strategic Networks

A rigorous framework for studying the optimal connectivsjructure is Strategic Network Formation, as it explicitly
incorporates the costs and benefits of creating and remewiclg connection into the model. This framework enables asitty
how networks evolve as a result of individual incentivesdmf links or sever links, and to measure the collectivetytoif the
whole network[[Jackson et fal., 2008]. Hence, this approadapable of modeling both centralized and autonomous shem
for the formation of the system’s connectivity structur@isTmodel was originally introduced in the economics litera and
has been widely used to study the economic reasons behirfdrthation of many real-world networks [Jackson and Rogers,
2005; Fricke and Lux, 2012].

Most of the theoretical and analytical literature on sgateetwork formation is built on the work by Jackson and \ekiy
[1996]. They introduced an economic network model callezl @onnection Model in which an agent (node in the network)
can benefit from both direct and indirect connections witheos, but will only pay a cost for its direct connections. The
benefits of indirect connections decrease as the netwoténdis (shortest path) between the nodes increases. Thissres
a recurring dilemma when creating the optimal connectisityicture (whether static with a central planner or dynaithjc
created by distributed individual agents): (1) should a&giagent be connected directly to another agent, in which teey
both receive higher benefits, but each also pays a directection cost, or (2) should the two nodes be connected through
other nodes, in which case, they save the connection casgau only an indirect benefit, which is smaller due to theglen
distance between the two nodes. While this dilemma existbdth centrally-designed, static systems and for dynagstesns
with autonomous link formation, the resulting structuregeneral, can be quite different.

In the Connection Model each agent is assumed to have @& dtiliiction, which can represent the costs and benefits of
accessing a resource from another part of the system. Thenaadf strong efficiencyand pairwise stabilitycan represent
optimality of the connectivity structures for networks thare built by a central planner and by autonomous components
respectively. Strong efficiency means maximizing the tataity of all agents in the network. In other words, for a givset
of nodes and utility functions, we say a network is strondficient if there is no other network that has higher totalityti
Pairwise stability is a generalized form of Nash Equilimla,l which depends on the intention of self-interested indigid to

2A Nash Equilibrium is a solution concept in game theory fonswmoperative games in which each player is assumed to kneweduilibrium strategy of
other players and no player can benefit from a unilateral glbaf strategy if the strategies of others remain unchan@sthdrne and Rubinstéein, 1994].
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form new links or sever existing ones; a network is said to Aewise stable if for every pair of nodes: (1) neither has an
incentive to sever the link between them ifdbesexist, and (2) only one or zero of them has an incentive to farhmk if

onedoes notexist [Jackson and Wolinsky, 1996].

B. Connection model

In this section, we describe the Connection Model as the nlyidg framework for studying the connectivity structure i
order to enhance access to resources in SoS.

For a finite set of agent& = {1,...,n}, letb : {1,....,n — 1} — R represent the benefit that an agent receives from
(direct or indirect) connections to other agents as a fonabif the distance (shortest path) between them in a graplowtiog
Jackson and Wolinsky [19096], the (distance-based) utflityction of each nodey;(g), in a graphg and the total utility of

the graphlU(g), are as follows:

wilg)= Y bdyle)— Y ey

J#EGEN] " (g) j#i:jEN}(9)

n 1)
Ulg) =Y uilg)
=1

where N} (g) is the set of nodes to whichis linked directly, andN/(g) is the set of nodes that are path-connected to
i by a distance no larger than d;;(g) is the distance (shortest path) betweeand j, c;; is the cost that node pays for
connecting toj, andb is the benefit that nodereceives from a connection with another node in the netwaldk.assume that
b(k) > b(k + 1) > 0 for any integerk > 1.

The¢;; values in Equatiof]1 are elements of the matrix of potentiats; and only those elements corresponding to direct
links will eventually be realized. The connection model baen extended to also account for asymmetry and heteragefei
benefits (e.gl, Persitz [2010]). Note that in the originaldeldntroduced by Jackson and Wolinsky [1996], it is assued
the benefits are homogeneous and are a function of the shpstisbetween two nodes, while direct connection costs ean b
heterogeneous in general. We will revisit this later in thpgr in Sectiof V-C. However, even only assuming cost hgesreity
can capture many real forms of complexities that arise, fnaning agents with different bandwidths and informatioogassing
capacities, to distance-based cost variations. Morebeterogeneous cost models automatically capture heteedgén direct
benefits, since the difference in direct benefits can be hbdanto the cost.

Potential costs and benefits are identified based on comfgebaracteristics, such as location [Johnson and Gilee3],
available energy or processing power, and interface stded@he assumption is that the states and attributes of ddesn
are known and are inputs to the model. Hence, this model doesptimize the location of nodes, or other attributes that a
related to individual nodes. Instead, it is used to studyctvitiomponents should be connected to each other in ordeffitb fu
a system-level criterion.

For systems with a centrally-determined connectivitycttite, we use the notion of an efficient network, that is thevagk

structure that maximizes total utility of all nodes:
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Let the complete graph” denote the set of all subsets & of size 2. The network is efficient, if U(g) > U(g') for all

g' C ¢", which indicates that:

g= argmaxZui(g) 2

9 =1

For systems where autonomous components are allowed tgehha structure, using strong efficiency as the sole notion
of optimality is not sufficient. In such systems, differemngponents can change the structure based on local incgntive
which might or might not be aligned with the global optimafi@éncy. The concept of optimality for the connectivity
structure of systems with autonomous components can beeddiased on a game-theoretic equilibrium that capturesidhadil
and mutual incentives for the formation of connections. ¢¢erwe will use the notion of pairwise stability as defined by
Jackson and Wolinsky [1996] and that has been used in mamy sthbsequent works. This definition describes the inwiitiv
scenario in which adding a link between two agents requirastaal decision while decisions to remove links can be tevitd.
The networkg is pairwise stableif:

(i) forall ij € g, ui(g) = ui(g — ij) andw;(g) > u,(g — ij) and

(i) for all ij € g, if u;(g+1ij) > ui(g) thenw;(g +ij) < u;(g).

whereg + ij denotes the network obtained by adding ligkto the existing networlg, andg — ij represents the network
obtained by removing linkj from the existing networlg.

The connection model captures dependencies of componeditsyaergies at the micro level. The utility function of each
component represents its goals, which can be aligned or ligoted with those of the whole system. The utility function
depends on the connections of one component to the othersaandccount for the heterogeneous states of components. The
utility function has a general form and can capture nondiitg in the preference functions of autonomous components

Thus far, we have mainly discussed (strong) efficiency amuvis®e stability as two system-level criteria. Howeverpdading
on the context, a variety of criteria can be defined to meadw@erformance of the system based on individual compshent
utility functions. The notion of (strong) efficiency is dedith based on the assumption that a central authority wouligries
system to maximize the sum of individual utilities. One clsoa&onsider Pareto efficiency as a criterion for a centrddigigned
system. However, the pairwise stability metric can represaverall satisfaction” in the sense that no autonomousmanent
in the system would be willing to change its connections,hés Wwould not improve its utility. The assumption behind the
pairwise stability or two-sided link formation is that alims formed upon the “mutual consent” of two agents. Howeueg
can study the connectivity structure that results from sided and non-cooperative link formation, where agenttatarally
decide to form the links with another agent [Bala and Ccya0®

Using the connection model framework we can find the optinsainectivity structure for various conditions for costs and
benefits associated with access to a resource in the system.

SFor a thorough comparison between strong efficiency, Paféiiency, and pairwise stability, please refef to_Jacksbal. [2008], Chapter 6, Section 2.
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Fig. 3. Optimal connectivity structure for optimized resmiaccess when the cost of connection between componemtsnisgeneous and the connectivity
structure is designed centrally. (a) Low cost of connectienc < b(1) —b(2). (b) Moderate cost of connection i.&(1) —b(2) < ¢ < b(1)+0.5(n—2)b(2).
(c) High cost of connection i.eq > b(1) 4+ 0.5(n — 2)b(2).

V. OPTIMAL CONNECTIVITY STRUCTURE FOR RESOURCE ACCESS

A. Homogeneous connection cost

A system in which connecting every two components has equstl can be presented by the simple homogeneous form
of Equation[l, where;; = c. Following/Bloch and Jackson [2007], when the connectigitycture is decided by a central
planner, the optimal network does not have a diameter gréaae two and will have the following structures dependimg o
the cost and the benefit functﬂm

(i) a complete graph ib(1) — b(2) > ¢,

(i) a star structure iH(1) — b(2) < ¢ < b(1) + 0.5(n — 2)b(2),

(i) an empty graph ifc > b(1) + 0.5(n — 2)b(2).
The structures of efficient networks imply that when the afstonnecting two components in the system is below a certain
limit, it is worthwhile to connect all components so thatytheenefit from direct access to each others resources. Hopfeve
a moderate cost of connection, a star structure optimizessac in this structure a component acts as a hub throughhwhic
other components can access resources from throughouyskensvia at most one intermediary. For this cost range, star
is the unique efficient structure in that it has the minimunmber of links connecting all nodes and minimizes the average
path length given the minimal number of links. When the catine cost is beyond a certain limit, sharing resources is no
beneficial in the system. These structures are depictedginr€fi3.

In a system in which components can autonomously estahtidrsaver links to maximize their own access to resources, the
optimal network is not necessarily unique. Following Blanid Jackson [2007] the description of the pairwise stakii@arks
with homogeneous costs is as follows:

(i) for ¢ < b(1) — b(2), the unique pairwise stable network is the complete graph,

(i) for b(1) — b(2) < ¢ < b(1), a star structure is pairwise stable, but not necessamyutfique pairwise stable graph ,
(iii) for b(1) < ¢, any pairwise stable network which is non-empty is such #zah player has at least two links and thus is

inefficient.
Although for the low connection cost the efficient and passvihetworks coincide, for the higher costs, the stable n&two
is not unique and may not be the same as the efficient netwbik. desirable to know how much total inefficiency will

result from allowing networks to form at the discretion ot@omous components as opposed to being designed by alcentra

4For details of mathematical proofs, please refefr to Jacksal. [2008] Chapter 6, Section 3.
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Periphe Core

Fig. 4. Optimal connectivity structure for optimized resmiaccess when the cost of connection between componemgeimgeneous and separable, and
connectivity structure is designed centrally.

planner. Knowing the magnitude of this inefficiency is oftetognized as therice of anarchyin the literature as was first

introduced and coined hy Papadimitriou [2001].

B. Heterogeneous connection cost

The homogeneity assumption does not hold in many real-vgydtems, where the cost of connection is different from one
link to another. A number of models have been proposed inité@ture to introduce heterogeneity into the connectiaaleh
[Galeaotti et al., 2006; Jackson and Rogers, 2005; Vandeschesand Demuynck, 2013]. As an example of these heterogsneo
models, we focus on the Separable Connection Cost modetitiegt al.| 2015], which is motivated by the distributedteyss
in which heterogeneous components are each endowed with lmagetand the total budget needed to establish and maintain
connections for each component can be approximated to Ip@gi@nal to the number of components to which it is connécte
In this model each node pays a fixed cost for each connectit@pendent of to whom it connects (i.e,; = ¢; in Equatiori1),
but this cost varies from node to node.

When centrally designed, the connectivity structure thatinoizes access to resources with separable and hetexgene
connection costs is as follows (mathematical proofs areigedl in|Heydari et al..[2015] )

» Assuming that; < ¢z < -+ < ¢, letm be the largest integer between 1 anduch thaRb(1)+2(m—2)b(2) > (¢ +c1).

o If i > m, theni is isolated. Ifi < m, then there is exactly one link betweémand 1;

« also there is one link betweenandj(1 < ¢,57 < m) if and only if b(1) — b(2) > 0.5(¢c; + ¢;).

In the efficient connectivity structure, components witgthtonnection cost are isolated and the rest of the compsaeat
connected in generalized staistructure. In this structure the component with the minimeonnection cost plays the role
of the hub, through which other components can access eaelnsotesources. Moreover, if the cost of connection betwee
two components is less than the gain in benefit of a direct ection compared to indirect, they are also connected. ThHis w
form a Core-Peripherystructure where components in the Core are fully intercotateand the components in the Periphery
are only connected to those in the Core (Fidure 4). Althoughefits are still assumed to be homogeneous, one can easily
take into account heterogeneity of direct benefits throungt, as long as the separability assumption is maintainedcost
and direct benefit terms appear together in all analyses lamddst terms can capture heterogeneity of direct benefits by

embedding them as an offset to the fixed costs of nodes.
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C. Dynamic heterogeneous connectivity

By integrating heterogeneity of the environment and conepdsi characteristics (e.g., processing capacity, state)
the model, we can capture their effects on the dynamic iotierss of the autonomous system components that evolve
the connectivity structure. Based on the connection moddl agent-based simulation, Heydari and Dalili [2015] sstyge
computational framework for studying the connectivityusture that emerges from the component-level decisionsrating
and severing links. This model extends the original modelatkson and Wolinsky [1996] to capture the effect of both
heterogeneous benefits and heterogeneous connectioroods$is pairwise stable network. Note that in this model, duthé
heterogeneity in both benefits and costs of connectiondnfjritie efficient network is intractable in general. Usinig tinodel,
self-optimizing components can play a network formatiomgan a heterogeneous environment and organize themseles i
manner that balances the benefits of access to resourcestatlj@ associated costs in a way that also takes into actioeint
limited processing capacity of the components.

Based on the cost and benefits of access to a resource defittéd model, each component maximizes its own utility by
establishing new links, with the mutual consent of the congmis at the other end of those links, or unilaterally remgvi
existing ones. In a heterogeneous environment, an autamoowmponent is faced with a fundamental dilemma regardiag t
aggregate heterogeneity of its connections. On one hanximizing the diversity of connections, i.e., direct andinedt, is
desirable because it ensures access to a larger pool ofrcesaio respond to changes of environment. On the other hand,
each component, when considered to have limited processipgcity, can only handle a certain level of heterogenaeaity i
its direct connections. The reason is that each link impas&snsaction cost on the connected nodes that is a function o
expected heterogeneity of the link's endpoints. The effédhe environment further amplifies this dilemma. This isdese
more heterogeneous environments give rise to a higher tegpéenefit to nodes from a given diversity in their connexgio

In this model, heterogeneity of the system environment [gwrad by the nodes’ states. That is, each node in the network
exchanges resources with a different environment, whitthénces its state. Another aspect of this model is the limkn&dion
capacity, which is a characteristic of each node. Each adimmeimposes a cost on a node and the node cannot maintain
connections that have a total cost more than its capacitg. ddst of link formation depends on the internal states of the
two connected nodes. This implies that it is more expensiveah autonomous component to connect to another component
that is very different compared with connecting to a componeth similar characteristics. For instance, in commatian
networks, direct connection to a distant node is more expertsan connecting to a node in a close neighborhood. A sode’
state also affects the benefits another node receives framecting to it. Having a path to a node with different chagastics
provides greater opportunities for resource exchange.ir®ance, in the communication network a connection to tanlis
node provides access to a hew geographic location.

The pairwise stable network that is formed based on dedsafnindividual heterogeneous components is not unique.
This makes the analysis of the exact connectivity structdrallenging, particularly when the network is large. Hoaev
the study of structural features reveals that the pairwiable connectivity structures exhibit distinctive chaesistics for
systems containing self-optimizing heterogeneous compisnIntuitivelymodular communitiefNewman, 2006] emerge when

autonomous components maximize their indirect connestidiversity while keeping their link cost within their pressing
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(a)

Fig. 5. Optimal connectivity structure that has emergedfformation and removal of links by autonomous componentschvseek to improve their access
to resources in the systein_[Heydari and Dalili, 2015]. Thekiess of the links denotes the connection cost, which isnation of the difference between
nodes’ states (a) Homogeneous set of components in a hoemgeenvironment. (b) In a heterogeneous environment,srioglee different rates of resource
exchange with the environment and will become heterogenewar time. The transaction cost of having many links witlréase as a result. (c) Due to the
limited processing capacities, components cannot affthrof éheir links, and sever a large percentage of them to kbep total transaction costs below their
capacity, while still having access to a diverse set of nodlbs creates modularity in the connectivity structure.

capacities. This is achieved by obtaining indirect benefitsugh direct connections to components with higher psiog
capacities that have the ability to manage a larger numbeire€t connections to heterogeneous resources. Higuheskites
how connectivity structures evolve as the result of setfrojzing decisions in creating and severing connectiongn€asure the
strength of the community structure, Heydari and DaliliI&pused the modularity indey developed by Newman and Girvan
[2004], where@ = 1 is the maximum and indicates strongest community struciline results in[Heydari and Dalili, 2015]
show that when heterogeneity of the environment (measwediviersity of nodes’ states) is low and components have high
processing capacities, the connectivity structure haswerlanodularity index. However, high environmental hetemegjty
together with limited processing capacities results inghr modularity index (Figurgl 6).

Note that although the changes of connectivity structuraltpnomous agents in real-time might be partially atteduio
the operation of the system, the proposed dynamic netwarkdtion model can be used as the basis of several archiéctur
decisions. The model can be used to determine the initialégy of an autonomous system based on a given environment
profile. The proposed framework can also be employed to degliut the level of autonomy of distributed agents, i.eickwh
agents are allowed to dynamically form or sever links (anthwihom). Moreover, using the framework, one can decide the
initial distribution of resources and the allocation ofdéregeneous agents in the network to influence the agentisicles on

link formation.

VI. A NOTE ON POTENTIAL APPLICATIONS

The proposed framework is applicable in determining thenegtivity structure of SoSs when components can autonolyous
share resources in order to manage uncertainty in the bhilayleof distributed resources. This includes technicatiaocio-
technical systems such as the Internet of Things (IoT), €otaad Autonomous Vehicles, fractionated satellite systdR&D
collaboration networks, or hybrid teams of human and autane agents for disaster response. The main focus of thirpap
is on introducing a framework to enhance resource accessSnaid expanding on the theoretical foundations. In this®sec
we will discuss two potential application areas for the feavark. The finer details of these implementations are beybad
scope of the present paper and require that one quantifiesotingection costs and benefit functions in the context of the
problem, captures components’ heterogeneous chardiciis the individual agents’ utility functions, and usgpeopriate

system-level criteria to determine the connectivity dinoe.
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Fig. 6. Effect of environmental heterogeneity on modwaititdex of optimal connectivity structure when autonomoamponents create and sever links to
improve their access to heterogeneous resources withisytstem [[Heydari and Dalill, 2015].

In fractionated satellite systems, multi-layer resourcari;g enables the exchanging of resources, such as cadiiopata
capacity, energy, and communication bandwidth, acrosgidres in the face of uncertainty in the availability of resces.
The sources of uncertainty include variations in demangl. @arket fluctuations and changes of stakeholders’ rempeings)
and supply (e.g., change of mission and technical failuté3. neither practical nor efficient for all fractions to camnicate
directly with each other, thus it becomes important to find tommunications connectivity structure between frastithrat
optimally enhances resource access throughout the sy$tamcan be modeled through the proposed framework wheresnod
represent satellite fractions and nodes’ states capterfdbtion’s heterogeneous characteristics (e.g., psinggapacity limit

and locations). Connection costs and the benefits of dindatct resource access can be defined as a function of nstdéss.

The proposed model can also be employed to study the effembrofectivity structure on performance of socio-technical
systems such as hybrid teams of human and autonomous algkamig critical systems of the future will rely on hybrid teams
in which human and autonomous technology agents (such as@ubus robots, self-driving cars or autonomous micrdsjri
coordinate their actions, cooperate, share informatiad, dynamically divide sensing, information processing] decision-
making tasks. For example in a disaster response scenagimu@ of geographically distributed heterogeneous ageeds!
to cooperate and share information in a rapidly changinguarwtrtain environment. On the one hand agents seek to improv
their access to information while their processing capaisitlimited in handling connections. On the other hand, ireag
information through intermediaries is subject to delay an@e. An extended model based on the dynamic network fasmat
model (Sectiof V-C) can be used to study connectivity stmest that result in a stable network in which agents—whilérta

autonomy over connection formation or severance—do noftdmmneficial to deviate from the designated structure.

VIl. DISCUSSION

The framework proposed in this paper is domain independedtcan be applied in a variety of contexts to study the

connectivity structure of systems of systems comprisedetéiogeneous and autonomous components. The framewerk off
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a new perspective on distributed resource management iuS@é& uncertainty that has been missing in the existintplitee.
However, the proposed framework is not intended to replatsieg approaches that focus on reliability, or contegpendent
operational or functional models. Instead, the proposedaihcan complement the existing approaches for resourcageament
in SoS. Integrating an architecture perspective appraatchexisting frameworks is a topic of future research.

The key difference between the proposed economic networdeihrend classical operations research network approaches,
such as minimum spanning trees [Kruskal, 1956], is thetghii capture autonomous behavior of heterogeneous comgmne
In the proposed framework the utility function of individuk@mponents has a general form and, together with the cémoép
efficiency and pairwise stability, can be used to study betitral and decentralized schemes for forming a connegcstiiticture.
Moreover, the framework explicitly incorporates the betsedif connections as a function of the distance between coewnie
and accounts for heterogeneous connection costs. Thestagdgeamework can be used to study how a connectivity stract
emerges within a group of agents that are improving their atilities by severing and creating links (e.g., a commutiica
network of autonomous agents for disaster response). Tllelnraables us to study the economic reasons behind emergénc
network structures as a result of individual componentsisiens, and also provides us with insights to steer theuthesl of
those structures by influencing individuals’ incentivescbntrast, a minimum spanning tree approach might be useehtoally
design a cost effective network encompassing all compsniené system (e.g., laying out cables for a telecommunicatio
networks in a new area [Graham and Hell, 1985]).

The proposed framework can be used to find the optimal netwapklogy for a given set of parameters at a moment
in time. Once a new component is added to/removed from theersyshe same framework can be used to find the new
optimal topology. However, the proposed framework doescapture the optimal transition strategy and the requirethghs
in the overall architecture to obtain a globally optimalwetk. This depends on a set of parameters, such as the edpecte
frequency of addition/removal, and the location and intpehdency of added/removed nodes that are not considetldsin
paper. Integrating optimal strategies for transitionsyiatems with dynamic set of components and finding a globatraht
topology are important directions that can complement wWosk.

We used deterministic cost and benefit functions in the agtioonnectivity structure models in this paper. When using
stochastic functions, with expected values of costs anefiiensimilar results will still be valid. Using stochasfienctions
for costs and benefits enables the integration of other caemocharacteristics such as reliability into the model,, ithe
probability of failure of each component will negativelyffexdt the expected benefits that are received from connectmthat
node. However, for more complex analysis, one needs to malé framework to accommodate probability distributioris o
cost and benefit functions.

This paper focused mainly on enhancing individual comptsiesccess to resources within the system by finding an
optimal connectivity structure. However, the study of memkms for sharing resources between autonomous compgonent
(a.k.a. Multi-Agent Resource Allocation) is another tgpihich is widely studied jointly by computer scientists awbnomists.
These mechanisms are intended to align individual compshetilities, obtained from sharing a resource, with syst@ide
goals. The resource sharing mechanisms between systemonentp can be defined according to a variety of protocols

depending on factors such as the type of the resource (&gle ¥s. multi-unit, continuous vs. discrete), and comjijeof
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the resource allocation algorithm. Many of these protoaddsinspired by market mechanisms such as auctions andiatéyot

[Chevaleyre et all, 20086].

VIII. CONCLUSION

Dynamic resource sharing, as a systems mechanism, can agdlaf flexibility to SoSs and improve their responsiveness
to uncertainty in the environment. In this paper, we took stewys architecture approach to distributed resource neamat
in SoSs. We introduced a framework based on Economic Nesaforkthe connectivity structure of SoSs in which components
can share resources through direct and indirect connectidris framework enables us to study the effect of the cdivitgc
structure on individual components’ utility that is obtaéhfrom access to diverse resources available to other coems

The optimal connectivity structure depends on the hetereitye parameters of the system, the environment, and theiway
which the connectivity structure is formed (i.e., by a ceahplanner or distributed components). The proposed moqxicély
incorporates the cost of creating and maintaining a coiorebetween two components as well as the benefits that se&eec
through direct and indirect access to a resource. It cancalsture a wide range of heterogeneity of system parameidrtha
environment. Moreover, the notion of strong efficiency iediso represent the optimality of a connectivity structureated
by a central planner; similarly, the notion of pairwise #igbis used to study the structures emerging from selfiojing
components’ incentives to create and sever links.

In this paper, we mainly focused on the optimal connectisttyicture of few particular heterogeneity conditions. ldwer,
the cost and benefit functions in the proposed framework eaxtended to capture various levels of heterogeneity trildlised
systems while finding the optimal network remains fairlyctedble. For example, systems where constituents can baedivi
into a number of groups (islands), in which connections ketwislands are generally more costly than connectiongrwith
islands, can be studied based on the Island-connectionlifilad&son and Rogers, 2005]. Moreover, in the original nhtlue
benefit received from connection to another component isnatifon of the distance between two components. However, the
benefits of resource access might be negatively affecteldgpumber of connections to the component providing theureso
Extended models such as the degree-distance-based donsetindel [[Mohimeier et all, 2013] can be used to model this

effect.
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