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Abstract

In Multiple-Input Multiple-Output (MIMO) systems, SphereDecoding (SD) can achieve performance equiv-

alent to full search Maximum Likelihood (ML) decoding, withreduced complexity. Several researchers reported

techniques that reduce the complexity of SD further. In thispaper, a new technique is introduced which decreases

the computational complexity of SD substantially, withoutsacrificing performance. The reduction is accomplished

by deconstructing the decoding metric to decrease the number of computations and exploiting the structure of a

lattice representation. Furthermore, an application of SD, employing a proposed smart implementation with very

low computational complexity is introduced. This application calculates the soft bit metrics of a bit-interleaved

convolutional-coded MIMO system in an efficient manner. Based on the reduced complexity SD, the proposed

smart implementation employs the initial radius acquired by Zero-Forcing Decision Feedback Equalization (ZF-

DFE) which ensures no empty spheres. Other than that, a technique of a particular data structure is also incorporated

to efficiently reduce the number of executions carried out bySD. Simulation results show that these approaches

achieve substantial gains in terms of the computational complexity for both uncoded and coded MIMO systems.

Index Terms

MIMO, ML Decoding, SD, Low Computational Complexity.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have drawnsubstantial research and development

interest because they offer high spectral efficiency and performance in a given bandwidth. In such

http://arxiv.org/abs/0909.0555v4
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systems, the goal is to minimize the Bit Error Rate (BER) for agiven Signal-to-Noise Ratio (SNR).

A number of different MIMO systems exist. The optimum decoding of these systems is typically highly

complicated. Therefore, a number of decoding algorithms with different complexity-performance tradeoffs

have been introduced. Linear detection methods such as Zero-Forcing (ZF) or Minimum Mean Squared

Error (MMSE) provide linear complexity, however their performance are suboptimal. Ordered successive

interference cancellation decoders such as Vertical Bell Laboratories Layered Space-Time (V-BLAST)

algorithm, show slightly better performance compared to ZFand MMSE, but suffer from error propa-

gation and are still suboptimal [1]. It is well-known that, for a MIMO system, Maximum Likelihood

(ML) detection is optimum. However, the complexity of the MLalgorithm in MIMO systems increases

exponentially with the number of possible constellation points for the modulation scheme, making the

algorithm unsuitable for practical purposes [2]. Sphere Decoding (SD), on the other hand, is proposed as

an alternative for ML that provides optimal or near-optimalperformance with reduced complexity [3].

Although the complexity of SD is much smaller than ML decoding, there is still room for complexity

reduction in conventional SD. To that end, several complexity reduction techniques for SD have been

proposed. In [4] and [5], attention is drawn to initial radius selection strategy, since an inappropriate

initial radius can result in either a large number of latticepoints to be searched or a large number of

restart actions. In [6] and [7], this complexity is attackedby making a proper choice to update the sphere

radius. In [8], the Schnorr-Euchner (SE) strategy is applied to SD, which executes intelligent enumeration

of candidate symbols at each level to reduce the number of visited nodes when the system dimension

is small [9]. Channel reordering techniques can also be applied to reduce the number of visited nodes

[9], [10], [11]. Other methods, such as the K-best lattice decoder [12], [13], can significantly reduce the

complexity at low SNR, but with the tradeoff of BER performance degradation.

In this paper, the complexity of SD is efficiently improved byreducing the number of operations required

at each node to obtain the ML solution for flat fading channels. This complexity reduction is achieved

by deconstructing the decoding metric in order to reduce thenumber of computations and exploiting the

structure of a lattice representation of SD [10], [11]. In simulations,2× 2 and4× 4 MIMO systems with

4-QAM and 64-QAM have been studied. In these systems, the reduction in the number of real additions

is in the range of40%− 75%, and the reduction in the number of real multiplications is in the range of

70%− 90%, without any change in performance. The complexity gains increase with the MIMO system

dimension or the modulation alphabet size. Moreover, for calculating the soft bit metrics of a bit-interleaved
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convolutional-coded MIMO system, an application of SD, employing a proposed smart implementation

with very low computational complexity is also introduced.Other than the operation reduction at each node

achieved by the reduced complexity SD, the initial radius ofSD is acquired by Zero-Forcing Decision

Feedback Equalization (ZF-DFE) [5], which ensures no emptyspheres. Furthermore, a technique of a

particular data structure is applied to efficiently reduce the number of executions carried out by SD.

Simulation results show that conventional SD substantially reduces the complexity, in terms of the average

number of real multiplications needed to acquire one soft bit metric, compared with exhaustive search.

With the proposed smart implementation, further reductions of orders of magnitude are achieved. As with

the previous techniques, the reduction becomes larger as the MIMO system dimension or the constellation

size increases.

The remainder of this paper is organized as follows: In Section II, the problem definition is introduced

and a brief review of conventional SD algorithm is presented. In Section III, a new technique to implement

the SD algorithm with low computational complexity is proposed, and the mathematical derivations for

the complexity reduction are carried out. In section IV, an application of SD, employing a proposed

smart implementation with very low complexity for calculating the soft bit metrics of a bit-interleaved

convolutional-coded MIMO system is presented. In Section V, complexity comparisons with different

number of antennas and modulation schemes of both uncoded and coded MIMO systems are provided.

Finally, a conclusion is provided in Section VI.

II. CONVENTIONAL SPHEREDECODER

In this paper, MIMO systems using square Quadrature Amplitude Modulation (QAM) withNt transmit

andNr receive antennas are considered, and the channel is assumedto be flat fading. Then, the input-output

relation is given by

ỹ = H̃x̃ + ñ, (1)

whereỹ ∈ C
Nr is theNr dimensional received vector symbol andC denotes the set of complex numbers,

H̃ ∈ CNr×Nt is the channel matrix whose channel coefficients are independent and identically distributed

(i.i.d.) zero-mean unit-variance complex Gaussian randomvariables,x̃ ∈ CNt is an Nt dimensional

transmitted complex vector with each element in square QAM format, andñ ∈ CNr is a zero-mean

complex white Gaussian noise vector with varianceσ2 for each element.
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AssumingH̃ is known at the receiver, ML detection is

ˆ̃x = arg min
x̃∈χ̃Nt

‖ỹ − H̃x̃‖2 (2)

whereχ̃ denotes the sample space for QAM modulation scalar symbols.For example,̃χ = {−3,−1, 1, 3}2

for 16-QAM.

Solving (2) is known to be NP-hard, given that a full search over the entire lattice space is performed

[14]. SD, on the other hand, solves (2) by searching only lattice points that lie inside a sphere of radius

δ centering around the received vectorỹ.

A frequently used solution for the QAM-modulated signal model is to decompose theNr-dimensional

complex-valued problem (1) into a2Nr-dimensional real-valued problem, which can be written as





ℜ{ỹ}

ℑ {ỹ}



 =





ℜ
{

H̃
}

−ℑ
{

H̃
}

ℑ
{

H̃
}

ℜ
{

H̃
}









ℜ{x̃}

ℑ {x̃}



+





ℜ{ñ}

ℑ {ñ}



 , (3)

whereℜ{r} andℑ{r} denote the real and imaginary parts ofr respectively [3], [14]. Let

y =
[

ℜ{ỹ}T ℑ{ỹ}T
]T

, (4)

H =





ℜ
{

H̃
}

−ℑ
{

H̃
}

ℑ
{

H̃
}

ℜ
{

H̃
}



 , (5)

x =
[

ℜ{x̃}T ℑ{x̃}T
]T

, (6)

n =
[

ℜ{ñ}T ℑ{ñ}T
]T

, (7)

then (3) can be written as

y = Hx+ n. (8)

AssumingNt = Nr = N in the sequel, and using the QR decomposition ofH = QR, whereR is an

upper triangular matrix, and the matrixQ is unitary, SD solves

x̂ = argmin
x∈Ω

‖y̆ −Rx‖2 (9)

with y̆ = QHy, whereΩ denotes a subset ofχ2N whose elements satisfy‖y̆−Rx‖2 < δ2, andχ denotes
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the sample space for one dimension of QAM-modulated symbols, e.g.,χ = {−3,−1, 1, 3} for 16-QAM.

The SD algorithm can be viewed as a pruning algorithm on a treeof depth 2N , whose branches

correspond to elements drawn from the setχ [10], [11], [14]. Conventional SD implements a Depth-First

Search (DFS) strategy in the tree, which can achieve ML performance.

Conventional SD starts the search process from the root of the tree, and then searches down along

branches until the total weight of a node exceeds the square of the sphere radius,δ2. At this point, the

corresponding branch is pruned, and any path passing through that node is declared as improbable for

a candidate solution. Then the algorithm backtracks and proceeds down a different branch. Whenever a

valid lattice point at the bottom level of the tree is found within the sphere,δ2 is set to the newly-found

point weight, thus reducing the search space for finding other candidate solutions. In the end, the path

from the root to the leaf that is inside the sphere with the lowest weight is chosen to be the estimated

solution x̂. If no candidate solutions can be found, the tree is searchedagain with a larger initial radius.

III. PROPOSEDSPHEREDECODING

The complexity of SD is measured by the number of operations required per visited node multiplied

by the number of visited nodes throughout the search procedure [14]. The complexity can be reduced

by either reducing the number of visited nodes or the number of operations to be carried out at each

node, or both. Making a judicious choice of initial radius tostart the algorithm with [4], [5], executing a

proper sphere radius update strategy [6], applying an improved search strategy [8], and exploiting channel

reordering [9], [10], [11] can all reduce the number of visited nodes. In this paper, our focus is on reducing

the average number of operations required at each node for SD.

The node weight is given by [10], [11],

w(x(u)) = w(x(u+1)) + wpw(x
(u)), (10)

for u = 2N, · · · , 1, with w(x(2N+1)) = 0 andwpw(x
(2N+1)) = 0, wherex(u) denotes the partial vector

symbol at layeru. The partial weight corresponding tox(u) is written as

wpw(x
(u)) = |y̆u −

2N
∑

v=u

ru,vxv|
2, (11)

whereru,v denotes the(u, v)th element ofR, andxv denotes thevth element ofx.
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A. Check-Table T

Note that for one channel realization, bothR andχ are independent of time. In other words, to decode

different received symbols for one channel realization, the only term in (11) which depends on time is

y̆u. Consequently, a check-tableT is constructed to store all values ofru,vx, whereru,v 6= 0 andx ∈ χ,

before starting the tree search procedure. Equations (10) and (11) imply that only one real multiplication

is needed instead of2N − u+ 2 for each node to calculate the node weight by usingT. As a result, the

number of real multiplications can be significantly reduced.

Taking the square QAM lattice structure into consideration, χ can be divided into two smaller setsχ1

with negative elements andχ2 with positive elements. Take 16-QAM for example,χ = {−3,−1, 1, 3},

thenχ1 = {−3,−1} andχ2 = {1, 3}. Any negative element inχ1 has a positive element with the same

absolute value inχ2. Consequently, in order to buildT, only terms in the form ofru,vx, whereru,v 6= 0

andx ∈ χ1, need to be calculated and stored. Hence, the size ofT is

|T| =
NR|χ|

2
, (12)

whereNR denotes the number of non-zero elements in matrixR, and |χ| denotes the size ofχ.

In order to buildT, both the number of terms that need to be stored and the numberof real multiplications

required are|T|. Since the channel is assumed to be flat fading andT only depends on theR matrix and

χ, only oneT needs to be built in one burst. If the burst length is very long, its computational complexity

can be neglected.

B. Intermediate Node Weights

Define

M(x(u)) = y̆u −
2N
∑

v=u+1

ru,vxv, (13)

with M(x(2N)) = 0, then (11) can be rewritten as

wpw(x
(u)) = |M(x(u))− ru,uxu|

2. (14)

Equation (13) shows thatM(x(u)) is independent ofxu, which means for any node not in the last

level of the search tree, all children nodes share the sameM(x(u)). In other words, for these nodes, the

M(x(u)) values need to be calculated only once to get the whole set of weights for their children nodes.
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Consequently, the number of operations will be reduced ifM(x(u)) values are stored at each node, except

nodes of the last level, until the whole set of their childrenare visited. Based on (10), (13), and (14), by

storing theM(x(u)) values, the number of real additions needed to get all partial weights of the children

nodes at layeru, for a parent node of layeru+ 1, reduces to2N − u+ |χ| from (2N − u+ 1)|χ|. Note

that after implementing the check-tableT, storingM(x(u+1)) values does not affect the number of real

multiplications.

C. New Lattice Representation

In our previous work [10], [11], a new lattice representation was proposed for (8) that enables decoding

the real and imaginary parts of each complex symbol independently. Also, a near ML decoding algorithm,

which combines DFS, K-best decoding, and quantization, wasintroduced. In this work, a different

application of the lattice representation, which achievesno performance degradation, is employed.

For the new lattice representation, (4)-(7) become

y =
[

ℜ{ỹ1} ℑ {ỹ1} · · · ℜ {ỹN} ℑ {ỹN}
]T

, (15)

H =





















ℜ
{

H̃1,1

}

−ℑ
{

H̃1,1

}

· · · ℜ
{

H̃1,N

}

−ℑ
{

H̃1,N

}

ℑ
{

H̃1,1

}

ℜ
{

H̃1,1

}

· · · ℑ
{

H̃1,N

}

ℜ
{

H̃1,N

}

...
...

. . .
...

...

ℜ
{

H̃N,1

}

−ℑ
{

H̃N,1

}

· · · ℜ
{

H̃N,N

}

−ℑ
{

H̃N,N

}

ℑ
{

H̃N,1

}

ℜ
{

H̃N,1

}

· · · ℑ
{

H̃N,N

}

ℜ
{

H̃N,N

}





















, (16)

x =
[

ℜ{x̃1} ℑ {x̃1} · · · ℜ {x̃N} ℑ {x̃N}
]T

, (17)

n =
[

ℜ{ñ1} ℑ {ñ1} · · · ℜ {ñN} ℑ {ñN}
]T

. (18)

Define each pair of column in (16) as one set starting from the left hand side. Then, it is obvious that

the columns in each set are orthogonal, and this property hasa substantial effect on the structure of the

problem. Using this channel representation changes the order of the detection of the transmitted symbols.

For example, the first and second levels of the search tree correspond to the real and imaginary parts of

x̃N , unlike the conventional SD, where these levels correspondto the imaginary parts of̃xN and x̃N−1,

respectively. The structure of the new lattice representation (15)-(18) becomes advantageous after applying

the QR decomposition toH, which is formalized in the following theorem.
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Theorem. Applying QR decomposition to the real representation of the channel matrix H, which has the

aforementioned orthogonal property between the two columns in one set, produces an upper triangular

matrix R whose elements ru,u+1 are all zero for u = 1, 3, . . . , 2N − 1.

Proof: Let hu denote theuth column of H for u = 1, . . . , 2N . Then definef1 = h1, and fu =

hu −
∑u−1

v=1 φfv(hu) for u = 2, . . . , 2N , based on the Gram-Schmidt algorithm, whereφfv(hu) is the

projection of vectorhu onto fv defined by

φfv(hu) =
〈hu, fv〉

〈fv, fv〉
fv. (19)

Also defineeu = fu

‖fu‖
for u = 1, . . . , 2N . Then the column vectors of the channel matrixH can be

rewritten as

h1 = e1‖f1‖,

h2 = φf1
(h2) + e2‖f2‖,

h3 = φf1
(h3) + φf2

(h3) + e3‖f3‖,
...

hu =
∑u−1

v=1 φfv(hu) + eu‖fu‖.

Then, defineQ = [e1 · · · e2N ], and these equations can be written in matrix form as

Q



















‖f1‖ 〈e1,h2〉 〈e1,h3〉 . . .

0 ‖f2‖ 〈e2,h3〉 . . .

0 0 ‖f3‖ . . .

...
...

...
. . .



















. (20)

Obviously, the matrixQ is unitary, and the matrix on the right is the upper triangular R matrix of the

QR decomposition.

Now the goal is to show that the terms〈eu,hu+1〉 are zero foru = 1, 3, . . . , 2N−1. Three observations

conclude the proof.

First, sincehu andhu+1 are orthogonal foru = 1, 3, . . . , 2N − 1, thenφfu(hu+1) = φfu+1
(hu) = 0 for

the sameu.

Second, the inner products offv for v = 1, 3, . . . , u− 2 with the columnshu andhu+1 are equal to the
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inner products offv+1 with the columnshu+1 and−hu respectively, which are formalized as

〈fv,hu〉 = 〈fv+1,hu+1〉,

〈fv,hu+1〉 = −〈fv+1,hu〉,

for u = 1, 3, . . . , 2N − 1 and v = 1, 3, . . . , u − 2. These properties become obvious by using the first

observation and revisiting the special structure of (16).

Third, making use of the first two observations, and noting that‖hu‖ = ‖hu+1‖ for u = 1, 3, . . . , 2N−1,

it can be easily shown that‖fu‖ = ‖fu+1‖ for the sameu.

Then,

〈eu,hu+1〉 =〈
fu

‖fu‖
,hu+1〉

=
1

‖fu‖
〈hu −

u−1
∑

v=1

φfv(hu),hu+1〉

=
1

‖fu‖
(〈hu,hu+1〉 −

〈hu, f1〉〈f1,hu+1〉

〈f1, f1〉

−
〈hu, f2〉〈f2,hu+1〉

〈f2, f2〉
− · · ·

−
〈hu, fu−2〉〈fu−2,hu+1〉

〈fu−2, fu−2〉

−
〈hu, fu−1〉〈fu−1,hu+1〉

〈fu−1, fu−1〉
).

Now, applying the above observations, then

〈eu,hu+1〉 =
1

‖fu‖
(0−

〈hu, f1〉〈f1,hu+1〉

‖f1‖2

−
−〈f1,hu+1〉〈hu, f1〉

‖f1‖2
− · · ·

−
〈hu, fu−2〉〈fu−2,hu+1〉

‖fu−2‖2

−
−〈fu−2,hu+1〉〈hu, fu−2〉

‖fu−2‖2
)

=0.

This concludes the proof.

The locations of these zeros introduce orthogonality between the real and imaginary parts of every

detected symbol, which can be taken advantage of to reduce the computational complexity of SD. The
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following example is provided to explain this fact.

Example: Consider a MIMO system withNr = Nt = N = 2, and employing4-QAM. Then, SD

constructs a tree with2N = 4 levels, where the branches coming out from each node represent the real

values in the setχ = {−1, 1}. This tree is shown in Fig. 1. Now using the real-valued lattice representation

(15)-(18), and applying the QR decomposition to the channelmatrix, the input-output relation is given by



















y̆1

y̆2

y̆3

y̆4



















=



















r1,1 0 r1,3 r1,4

0 r2,2 r2,3 r2,4

0 0 r3,3 0

0 0 0 r4,4





































x1

x2

x3

x4



















+



















n̆1

n̆2

n̆3

n̆4



















, (21)

where[n̆1 n̆2 n̆3 n̆4]
T = n̆ = QHn.

Based on (11) and (21), calculating partial node weights forthe first level and the second level are

independent, similar to the third level and the fourth level, because of the additional zero locations in

the R matrix. For instance, the partial weights of nodeA and nodeB only depend onx3 but x4, and

the partial weights of nodeC, nodeD, nodeE, and nodeF , depend onx4, x3, andx1 (not onx2). In

other words, the partial weights of nodeA and nodeB are equal, and only need to be calculated once.

Similarly, partial weights of nodeC and nodeD can be used when calculating the partial weights of node

E and nodeF , respectively.

SD is then modified because of this feature. Once the tree is searched in layeru, whereu is an odd

number, partial weights of this node and all of its sibling nodes are computed, stored, and recycled when

calculating partial node weights with the same grandparentnode of layeru+ 2 but with different parent

nodes of layeru+ 1.

By applying the modification, further complexity reductionis achieved beyond the reduction due to the

check-tableT and intermediateM(x(u+1)) values. For a node of layeru+ 2, whereu is an odd number,

let α ∈ [0, |χ|] denote the number of non-pruned branches for its children nodes of layeru+1. If α = 0,

which means all branches of its children nodes of layeru+1 are pruned, the number of operations needed

stay the same. Ifα 6= 0, to get all partial weights of its grandchildren nodes in layer l, the number of real

multiplications and real additions reduce further from(α+1)|χ| to 2|χ|, and(α+1)(2N−u−1+ |χ|)+α

to 2(2N − u− 1 + |χ|), respectively.
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IV. SOFT BIT METRIC

In many MIMO systems, channel coding, e.g., convolutional coding, is employed to provide coding

gain. In this section, an application of SD employing a proposed smart implementation with very low

complexity for calculating the soft bit metrics of a bit-interleaved convolutional-coded MIMO system is

presented. Bit-interleaved convolutional-coded MIMO systems exist in many standards, such as802.11n

or WiMax.

Definec as the codeword generated by a convolutional encoder with rate Rc from the information bits.

The codewordc is first interleaved by a bit-wise interleaver, then the interleaved bits are modulated by

Gray mapped square QAM and transmitted through theN transmit antennas. At thekth time instant, an

N × 1 complex-valued symbol vector̃xk is transmitted at the transmitter and anN × 1 complex-valued

symbol vector̃yk is received at the receiver. The location of the coded bitck′ within the complex-valued

symbol sequencẽX = [x̃1 · · · x̃K ] is given ask′ → (k, l, i), wherek, l, and i are the time instant iñX,

the symbol position iñx′
k, and the bit position on the label of the scalar symbolx̃′

k,l, respectively. At the

receiver, instead of decoding each transmitted symbol as in(2), the ML soft bit metrics are calculated for

each coded bit as

γl,i(ỹk, ck′) = min
x̃∈ξ̃

l,i
c
k′

‖ỹk − H̃x̃‖2, (22)

where ξ̃l,ick′ is a subset of̃χN , defined as

ξ̃
l,i

b = {x̃ = [x̃1 · · · x̃N ]
T : x̃u|u=l ∈ χ̃i

b, and x̃u|u 6=l ∈ χ̃},

andχ̃i
b denotes a subset of̃χ whose labels haveb ∈ {0, 1} in the ith bit position. Finally, the ML decoder,

which uses Viterbi decoding, makes decisions according to the rule

ĉ = argmin
c

∑

k′

γl,i(ỹk, ck′). (23)

SD can be employed to solve (22). Defineyk andxk as the corresponding real-valued representations

of ỹk and x̃k, respectively. For square QAM with size2m wherem is an even integer, the first and

the remainingm
2

bits of labels for the2m-QAM are generally Gray coded separately as two2
m
2 -PAM

constellations, and represent the real and the imaginary axes, respectively. Assume that the same Gray

coded mapping scheme is used for the the real and the imaginary axes. As a result, each element ofxk
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belongs to a real-valued signal setχ, and one bit in the label ofxk corresponds tock′. The new position

of ck′ in the label ofxk needs to be acquired ask′ → (k, l̂, î), which meansck′ lies in theîth bit position

of the label for thêlth element of real-valued vector symbolxk. Let χî
b denote a subset ofχ whose labels

haveb ∈ {0, 1} in the îth bit position. Defineξ l̂,̂ick′ ⊂ χ2N as

ξ
l̂,̂i

b = {x = [x1 · · · x2N ]
T : xu|u=l̂ ∈ χî

b, andxu|u 6=l̂ ∈ χ}.

Then SD solves

γl,i(ỹk, ck′) = min
x∈Ω

‖y̆k −Rx‖2 (24)

with y̆k = QHyk, whereΩ ⊂ ξ l̂,̂ick′ , and‖y̆k −Rx‖2 < δ2. The only difference between (24) and (9) is

that the search space is nowξ l̂,̂ick′ instead ofχ2N . In other words, the problem can be viewed as a pruning

algorithm on a tree of depth2N , whose branches correspond to elements drawn from the setχ, except for

branches of the layeru = l̂, which correspond to elements drawn from the setχî
ck′

. As a result, proposed

smart implementation of SD can be applied. Other than the computational complexity reduction at each

node achieved by the reduced complexity SD presented in Section III, two more techniques are employed

by the proposed smart implementation to reduce the computational complexity further.

A. Acquiring Initial Radius by ZF-DFE

The initial radiusδ should be chosen properly, so that it is not too small or too large. Too small an

initial radius results in too many unsuccessful searches and thus increases complexity, while too large an

initial radius results in too many lattice points to be searched.

In this work, for ck′ = b whereb ∈ {0, 1}, ZF-DFE is used to acquire an estimated real-valued vector

symbol x̆b
k, which is also the Baiba point [15]. Then the square of initial radiusδ2b , which guarantees no

unsuccessful searches is calculated by

δ2b = ‖y̆k −Rx̆b
k‖

2. (25)

The estimated real-valued vector symbolx̆b
k is detected successively starting from̆xb

k,2N until x̆b
k,1,

wherex̆b
k,u denotes theuth element ofx̆b

k. The decision rule on̆xb
k,u is

x̆b
k,u =















argmin
x∈χ

|y̆k,u −M(x̆(u))−Ru,ux|, u 6= l̂,

argmin
x∈χî

b

|y̆k,u −M(x̆(u))−Ru,ux|, u = l̂.
(26)
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The estimation of the symbols (26) can be carried out recursively by rounding (or quantizing) to the

nearest constellation element inχ or χî
b.

B. Reducing Number of Executions in SD

For thekth time instant, the real-valued vector symbolxk carriesmN bits. Since each bit generates

two bit metrics forck′ = 0 and ck′ = 1, then 2mN bit metrics in total need to be acquired. However,

some bit metrics have the same value, hence SD can be modified to be executed less than2mN times,

as observed in [16].

Define x̂k, x̂ck′

k , andγk as

x̂k = arg min
x∈χ2N

‖y̆k −Rx‖2, (27)

x̂
ck′

k = arg min
x∈ξl̂,̂ic

k′

‖y̆k −Rx‖2, (28)

and

γk = ‖y̆k −Rx̂k‖
2, (29)

respectively. Then

γl,i(ỹk, ck′) = ‖y̆k −Rx̂
ck′

k ‖2, (30)

Note thatξ l̂,̂i0 ∪ ξ
l̂,̂i
1 = χ2N and ξ l̂,̂i0 ∩ ξ

l̂,̂i
1 = ∅. Then

γk = min {γl,i(ỹk, ck′ = 0), γl,i(ỹk, ck′ = 1)}, (31)

which means that, for themN bits corresponding toxk, the smaller bit metric for each bit ofck′ = 0 and

ck′ = 1 have the same valueγk.

Let b̂l̂
î
∈ {0, 1} denotes the value of thêith bit in the label ofx̂

k,l̂
, which is thel̂th element ofx̂k. Then

γl,i(ỹk, ck′ = b̂l̂
î
) = γk. (32)

First, two bit metricsγl,i(ỹk, ck′ = 0) andγl,i(ỹk, ck′ = 1) for one of themN bits corresponding toxk

and their related̂xck′

k are derived by SD. Then thêxck′

k corresponding to the smaller bit metric is chosen

to be x̂k, andγk is acquired by (31). For each of the othermN − 1 bits, γl,i(ỹk, ck′ = b̂l̂
î
) is acquired by

(32), andγl,i(ỹk, ck′ =
¯̂
bl̂
î
) is calculated by SD. Consequently, the execution number of SD for one time

instant is reduced from2mN to mN + 1.
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V. SIMULATION RESULTS

A. Uncoded Case

To verify the proposed technique, simulations are carried out for 2 × 2 and 4 × 4 systems using4-

QAM and 64-QAM. Assuming a sequence of vector symbols are transmitted, and considering multiple

channel realizations for each simulation, the average number of real multiplications and real additions

for decoding one transmitted vector symbol are calculated.In the figures, conventional SD is denoted by

CSD and proposed SD by PSD. In the simulations,δ2 = 2σ2
nN is chosen as the square of initial radius.

A lattice point lies inside a sphere of this radius with high probability [8].

Fig. 2 and Fig. 3 show comparisons of the number of operationsbetween CSD and PSD for2 × 2

systems using4-QAM and 64-QAM. For 4-QAM, the complexity gains for the average numbers of real

multiplications and real additions are around70% and 45% respectively at high SNR. Corresponding

numbers are75% and40% respectively at low SNR. For the64-QAM case, the gains increase to around

70% and65% at high SNR respectively, while they are around85% and60% at low SNR respectively.

Similarly, Fig. 4 and Fig. 5 show complexity comparisons using4-QAM and64-QAM for 4×4 systems.

For 4-QAM, gains for the average number of real multiplications and real additions are around80% and

50% respectively at high SNR, while they are around85% and 45% respectively at low SNR. For64-

QAM, gains rise to around80% and75% respectively at high SNR, while they are around90% and70%

respectively at low SNR.

Simulation results show that PSD reduces the complexity significantly compared to CSD, particularly for

real multiplications, which are the most expensive operations in terms of machine cycles, and the reduction

becomes larger as the system dimension or the modulation alphabet size increases. An important property

of our PSD is that the substantial complexity reduction achieved causes no performance degradation. The

proposed technique can be combined with other techniques which reduce the number of visited nodes

such as SE, and other near-optimal techniques such as K-best.

B. Coded Case

In [17], [18], and [19], a novel bit-interleaved convolutional-coded MIMO technique called Bit-Interleaved

Coded Multiple Beamforming with Constellation Precoding (BICMB-CP) was proposed. BICMB-CP

achieves both full diversity order and full spatial multiplexing1. In [22], SD employing the proposed smart

1In this paper, the term “spatial multiplexing” is used to describe the number of spatial subchannels, as in [20]. Note that the term is
different from “spatial multiplexing gain” defined in [21].
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implementation was applied to reduce the computational complexity of acquiring one soft bit metric.

To verify the proposed smart implementation of SD, anN-dimensional implementation of Bit-Interleaved

Coded Multiple Beamforming with Full Precoding (BICMB-FP), which becomes BICMB-CP when all

the subchannels obtained by Singular Value Decomposition are precoded, is considered [17], [18], [19],

[22]. Exhaustive Search (EXH), CSD, and Proposed Smart Implementation (PSI) are applied. The average

number of real multiplications, the most expensive operations in terms of machine cycles, for acquiring

one bit metric is calculated at different SNR. Since the reductions in complexity are substantial, they are

expressed as orders of magnitude (in approximate terms) in the sequel.

Fig. 6 shows comparisons for2×2 Rc =
2
3

BICMB-FP. For4-QAM, the complexity of EXH is reduced

by 0.4 and0.5 orders of magnitude at low and high SNR respectively, by CSD.PSI yields larger reductions

by 1.1 and1.2 orders of magnitude at low and high SNR respectively. In the case of64-QAM, reductions

between CSD and EXH are1.5 and 2.1 orders of magnitude at low and high SNR respectively, while

larger reductions of2.6 and3.0 are achieved by PSI.

Similarly, Fig. 7 shows complexity comparisons for4 × 4 Rc = 4
5

BICMB-FP. For 4-QAM, the

complexity of EXH decreases by1.3 and 1.5 orders of magnitude at low and high SNR respectively.

PSI gives larger reductions by2.3 orders of magnitude at low SNR, and2.4 orders of magnitude at high

SNR. For the64-QAM case, reductions between EXH and CSD by3.2 and4.4 orders of magnitude are

observed at low and high SNR respectively, while larger reductions by4.4 and5.4 are achieved by PSI.

Simulation results show that CSD reduces the complexity substantially compared to EXH, and the

complexity can be further reduced significantly by PSI. The reductions become larger as the system

dimension and the modulation alphabet size increase. One important property of our decoding technique

which needs to be emphasized is that the substantial complexity reduction achieved causes no performance

degradation.

VI. CONCLUSIONS

A simple and general technique to implement the SD algorithmwith low computational complexity

is proposed in this paper. The focus of the technique is on reducing the average number of operations

required at each node for SD. The BER performance of the proposed SD is the same as conventional

SD, and a substantial complexity reduction is achieved. Furthermore, an application of SD employing

a proposed smart implementation with very low computational complexity for calculating the soft bit

metrics of a bit-interleaved convolutional-coded MIMO system is presented. Simulation results show that
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these approaches achieve substantial gains in terms of the computational complexity for both uncoded

and coded MIMO systems.
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Fig. 1. Tree structure for a2× 2 system employing4-QAM.
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Fig. 2. Average number of real multiplications vs. SNR for CSD and PSD over a2× 2 MIMO flat fading channel.
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Fig. 3. Average number of real additions vs. SNR for CSD and PSD over a2× 2 MIMO flat fading channel.
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Fig. 4. Average number of real multiplications vs. SNR for CSD and PSD over a4× 4 MIMO flat fading channel.
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Fig. 5. Average number of real additions vs. SNR for CSD and PSD over a4× 4 MIMO flat fading channel.
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Fig. 6. Average number of real multiplications vs. SNR for2× 2 BICMB-FP.
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Fig. 7. Average number of real multiplications vs. SNR for4× 4 BICMB-FP.
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