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Abstract

In Multiple-Input Multiple-Output (MIMO) systems, Sphef@ecoding (SD) can achieve performance equiv-
alent to full search Maximum Likelihood (ML) decoding, witeduced complexity. Several researchers reported
techniques that reduce the complexity of SD further. In gaper, a new technique is introduced which decreases
the computational complexity of SD substantially, witheacrificing performance. The reduction is accomplished
by deconstructing the decoding metric to decrease the nuofbeomputations and exploiting the structure of a
lattice representation. Furthermore, an application of &Dploying a proposed smart implementation with very
low computational complexity is introduced. This applioatcalculates the soft bit metrics of a bit-interleaved
convolutional-coded MIMO system in an efficient manner. &h®n the reduced complexity SD, the proposed
smart implementation employs the initial radius acquirgdZiero-Forcing Decision Feedback Equalization (ZF-
DFE) which ensures no empty spheres. Other than that, aiteehaf a particular data structure is also incorporated
to efficiently reduce the number of executions carried outSlBy Simulation results show that these approaches

achieve substantial gains in terms of the computationalptexity for both uncoded and coded MIMO systems.

Index Terms

MIMO, ML Decoding, SD, Low Computational Complexity.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have drawsubstantial research and development

interest because they offer high spectral efficiency andopeance in a given bandwidth. In such
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systems, the goal is to minimize the Bit Error Rate (BER) fogieen Signal-to-Noise Ratio (SNR).
A number of different MIMO systems exist. The optimum decwpof these systems is typically highly
complicated. Therefore, a number of decoding algorithnik different complexity-performance tradeoffs
have been introduced. Linear detection methods such asFEeoing (ZF) or Minimum Mean Squared
Error (MMSE) provide linear complexity, however their perhance are suboptimal. Ordered successive
interference cancellation decoders such as Vertical Babotatories Layered Space-Time (V-BLAST)
algorithm, show slightly better performance compared toafid MMSE, but suffer from error propa-
gation and are still suboptimall[1]. It is well-known thagrfa MIMO system, Maximum Likelihood
(ML) detection is optimum. However, the complexity of the Migorithm in MIMO systems increases
exponentially with the number of possible constellationnp® for the modulation scheme, making the
algorithm unsuitable for practical purposes [2]. Sphereddéng (SD), on the other hand, is proposed as
an alternative for ML that provides optimal or near-optirpalformance with reduced complexity [3].

Although the complexity of SD is much smaller than ML decagithere is still room for complexity
reduction in conventional SD. To that end, several compfteseduction techniques for SD have been
proposed. In[[4] and_[5], attention is drawn to initial rasligelection strategy, since an inappropriate
initial radius can result in either a large number of lattp@ints to be searched or a large number of
restart actions. In_[6] and [7], this complexity is attacksdmaking a proper choice to update the sphere
radius. In [8], the Schnorr-Euchner (SE) strategy is appieeSD, which executes intelligent enumeration
of candidate symbols at each level to reduce the number dgédisiodes when the system dimension
is small [9]. Channel reordering techniques can also beiegpb reduce the number of visited nodes
[9], [10], [11]. Other methods, such as the K-best latticeadier [12], [13], can significantly reduce the
complexity at low SNR, but with the tradeoff of BER perforncandegradation.

In this paper, the complexity of SD is efficiently improvedigglucing the number of operations required
at each node to obtain the ML solution for flat fading chann&lis complexity reduction is achieved
by deconstructing the decoding metric in order to reducentimaber of computations and exploiting the
structure of a lattice representation of SDJ[10],/[11]. Imslations,2 x 2 and4 x 4 MIMO systems with
4-QAM and 64-QAM have been studied. In these systems, the reductioneimtimber of real additions
is in the range oft0% — 75%, and the reduction in the number of real multiplicationsnidhe range of
70% — 90%, without any change in performance. The complexity gaiseiase with the MIMO system

dimension or the modulation alphabet size. Moreover, faautating the soft bit metrics of a bit-interleaved



convolutional-coded MIMO system, an application of SD, égmg a proposed smart implementation
with very low computational complexity is also introduc€ther than the operation reduction at each node
achieved by the reduced complexity SD, the initial radiusSef is acquired by Zero-Forcing Decision
Feedback Equalization (ZF-DFE)![5], which ensures no engpiyeres. Furthermore, a technique of a
particular data structure is applied to efficiently redube humber of executions carried out by SD.
Simulation results show that conventional SD substagtralluces the complexity, in terms of the average
number of real multiplications needed to acquire one sdftr@tric, compared with exhaustive search.
With the proposed smart implementation, further reduatiohorders of magnitude are achieved. As with
the previous techniques, the reduction becomes largeread MO system dimension or the constellation
Size increases.

The remainder of this paper is organized as follows: In 8edi, the problem definition is introduced
and a brief review of conventional SD algorithm is presente®ectiori 1ll, a new technique to implement
the SD algorithm with low computational complexity is prged, and the mathematical derivations for
the complexity reduction are carried out. In section 1V, apleation of SD, employing a proposed
smart implementation with very low complexity for calcutef the soft bit metrics of a bit-interleaved
convolutional-coded MIMO system is presented. In Secligncdmplexity comparisons with different
number of antennas and modulation schemes of both uncodkdaated MIMO systems are provided.

Finally, a conclusion is provided in Sectién]VI.

II. CONVENTIONAL SPHEREDECODER

In this paper, MIMO systems using square Quadrature AngeitModulation (QAM) withV; transmit
and N, receive antennas are considered, and the channel is astubetlat fading. Then, the input-output
relation is given by

y = Hx +n, 1)

wherey € C"" is the N, dimensional received vector symbol aBicdenotes the set of complex numbers,
H e CV* js the channel matrix whose channel coefficients are indégrerand identically distributed
(i.i.d.) zero-mean unit-variance complex Gaussian rand@mables,x € C» is an N, dimensional
transmitted complex vector with each element in square QAkinft, andn € C" is a zero-mean

complex white Gaussian noise vector with varianéefor each element.



AssumingH is known at the receiver, ML detection is
x = arg min ||y — Hx|? )
N,

wherey denotes the sample space for QAM modulation scalar symboieexampley = {—3, -1, 1, 3}2
for 16-QAM.

Solving [2) is known to be NP-hard, given that a full searclerahe entire lattice space is performed
[14]. SD, on the other hand, solves (2) by searching onlyckapoints that lie inside a sphere of radius
0 centering around the received vecgar

A frequently used solution for the QAM-modulated signal rabid to decompose th&’,.-dimensional

complex-valued probleni](1) into &V, -dimensional real-valued problem, which can be written as

[ére{y} ) w{m}-o{m} [?R{fc}] N [?R{ﬁ}] -
3 {3} S{H} %{H} s{z}|  |s{a)|
whereR {r} and< {r} denote the real and imaginary partsrofespectively([3], [14]. Let
y= [R5 sy @
g |ME) S {fl}} | -
a{n} w{nj
T
X = [éR {x}" %{X}T} , (6)
T
n= [éR {a}” %{ﬁ}T} , (7)
then [3) can be written as
y = Hx + n. (8)

AssumingN; = N, = N in the sequel, and using the QR decompositiorHof= QR, whereR is an

upper triangular matrix, and the matry is unitary, SD solves
% = argmin ||y — Rx|? 9
xeN

with y = Q”y, where() denotes a subset gf" whose elements satisfiy — Rx||? < §2, andy denotes



the sample space for one dimension of QAM-modulated symledadls,y = {—3, —1, 1, 3} for 16-QAM.

The SD algorithm can be viewed as a pruning algorithm on a ¢fedepth 2N, whose branches
correspond to elements drawn from the gdl0], [11], [14]. Conventional SD implements a Depth-First
Search (DFS) strategy in the tree, which can achieve ML padoce.

Conventional SD starts the search process from the rooteotrée, and then searches down along
branches until the total weight of a node exceeds the squfateecsphere radiusi?. At this point, the
corresponding branch is pruned, and any path passing thrthag node is declared as improbable for
a candidate solution. Then the algorithm backtracks andgaas down a different branch. Whenever a
valid lattice point at the bottom level of the tree is foundhin the sphere§? is set to the newly-found
point weight, thus reducing the search space for findingrothedidate solutions. In the end, the path
from the root to the leaf that is inside the sphere with thedstwveight is chosen to be the estimated

solutionx. If no candidate solutions can be found, the tree is searalgath with a larger initial radius.

IIl. PROPOSEDSPHEREDECODING

The complexity of SD is measured by the number of operatieqsired per visited node multiplied
by the number of visited nodes throughout the search proeeldd4]. The complexity can be reduced
by either reducing the number of visited nodes or the numibeperations to be carried out at each
node, or both. Making a judicious choice of initial radiusstart the algorithm with[[4],[[5], executing a
proper sphere radius update strategy [6], applying an ivgot@earch strategy![8], and exploiting channel
reorderingl[9], [10],[11] can all reduce the number of \@sitnodes. In this paper, our focus is on reducing
the average number of operations required at each node for SD

The node weight is given by [10], [11],
w(x™) = w(x") 4w, (x™), (10)

for u = 2N, --- 1, with w(x®*)) = 0 and w,,,(x®¥*+Y) = 0, wherex™ denotes the partial vector
symbol at layer:.. The partial weight corresponding 6% is written as

2N

wPW(X(U)> = ‘gu - Z Tu,vxv‘zy (11)

v=U

wherer, , denotes théu, v)™" element ofR, andz, denotes the' element ofx.



A. Check-Table T

Note that for one channel realization, bdhand y are independent of time. In other words, to decode
different received symbols for one channel realizatiom, ¢mly term in [(11l) which depends on time is
7. Consequently, a check-tableis constructed to store all values of ,z, wherer, , # 0 andx € y,
before starting the tree search procedure. Equations (idD)Hl) imply that only one real multiplication
is needed instead &N — u + 2 for each node to calculate the node weight by udihgAs a result, the
number of real multiplications can be significantly reduced

Taking the square QAM lattice structure into consideratiprcan be divided into two smaller sets
with negative elements ang, with positive elements. Take 16-QAM for example= {-3,—1, 1,3},
theny; = {—3,—1} and x» = {1, 3}. Any negative element iry; has a positive element with the same
absolute value in,. Consequently, in order to build@, only terms in the form of-, ,x, wherer, , # 0
andzx € y;, need to be calculated and stored. Hence, the siZe isf

Ng|x|
2 b)

IT| = (12)

where N denotes the number of non-zero elements in majxand |x| denotes the size of.

In order to buildT, both the number of terms that need to be stored and the nwhiesal multiplications
required ardT|. Since the channel is assumed to be flat fading Brahly depends on th& matrix and
X, only oneT needs to be built in one burst. If the burst length is very Jategcomputational complexity

can be neglected.

B. Intermediate Node Weights

Define
2N
M(X(U)) = gju - Z Tu,vxva (13)
v=u+1
with M (x?M) = 0, then [I1) can be rewritten as
W (X)) = | M (x™) — 7y |*. (14)

Equation [(IB) shows that/(x®) is independent of:,, which means for any node not in the last
level of the search tree, all children nodes share the sffie™). In other words, for these nodes, the

M (x™) values need to be calculated only once to get the whole seeiafhts for their children nodes.



7

Consequently, the number of operations will be reduced (k) values are stored at each node, except
nodes of the last level, until the whole set of their childegr visited. Based o (110}, (13), and|(14), by
storing theM (x™)) values, the number of real additions needed to get all paveahts of the children
nodes at layef, for a parent node of layer + 1, reduces t&N — u + |x| from (2N — u + 1)|x|. Note
that after implementing the check-talile storing M (x+1)) values does not affect the number of real

multiplications.

C. New Lattice Representation

In our previous work([10],[[11], a new lattice representatiwas proposed fof {8) that enables decoding
the real and imaginary parts of each complex symbol indegrthd Also, a near ML decoding algorithm,
which combines DFS, K-best decoding, and quantization, im&®duced. In this work, a different
application of the lattice representation, which achievegperformance degradation, is employed.

For the new lattice representatioh] (4)-(7) become
T
y=[R{n} S@) - R S (15)

(i} -s{m, - v{imy} -3 {ﬁl,N}_
0 YV B P

H= : S : ; (16)

=

%{ﬁN,l} é)%{ﬁfN,l} s{HNN} %{HN,N}

x=[R{n} S{m} - R{in} O{in} a7

}T
T

n=R{mn} S} - Rian} S{an}| - (18)
Define each pair of column in_(L6) as one set starting from #fienand side. Then, it is obvious that
the columns in each set are orthogonal, and this propertyatmgstantial effect on the structure of the
problem. Using this channel representation changes ther ofdhe detection of the transmitted symbols.
For example, the first and second levels of the search treespmnd to the real and imaginary parts of
Zn, unlike the conventional SD, where these levels correspgorttie imaginary parts of y andzy_1,

respectively. The structure of the new lattice represemt4fl5)-(18) becomes advantageous after applying

the QR decomposition tbl, which is formalized in the following theorem.



Theorem. Applying QR decomposition to the real representation of the channel matrix H, which has the
aforementioned orthogonal property between the two columns in one set, produces an upper triangular

matrix R whose elements r,, .., are all zerofor v =1,3,...,2N — 1.

Proof: Let h, denote theu!” column of H for « = 1,...,2N. Then definef;, = h;, andf, =
h, — 25;11 ¢g,(h,) for u = 2,...,2N, based on the Gram-Schmidt algorithm, whexe(h,) is the

projection of vectorh, onto f, defined by

¢¢,(h,) = f,. (19)

Also definee, = ﬁ for u = 1,...,2N. Then the column vectors of the channel matHxcan be
rewritten as

h, = e|/f;
hy = ¢y, (hy)

hs = ¢r, (h3) + éx,(hs) + es||f5]],

+ e ||f2],

h, = "7 ég, (hy) + e, |||

Then, defineQ = [e; - -- ean], and these equations can be written in matrix form as

Il (e, hz) (e1, hy)

Q 0 2] (e, h3) ... . (20)
0 0 5]

Obviously, the matrixQ is unitary, and the matrix on the right is the upper triangBamatrix of the
QR decomposition.

Now the goal is to show that the terns,, h,,,) are zero foru = 1,3,...,2N — 1. Three observations
conclude the proof.

First, sinceh, andh,, are orthogonal for: = 1,3,...,2N — 1, then¢g, (h,41) = ¢%,,,(h,) = 0 for
the sameu.

Second, the inner products ff for v = 1,3, ..., u — 2 with the columnsh,, andh,,,; are equal to the



inner products of,,; with the columnsh,.; and —h,, respectively, which are formalized as

<fU7 hu> == <fv+17 hu+1>7

<fU7 hu+1> = _<fv+17 hu>7

foru=1,3,...,2N —1 andv = 1,3,...,u — 2. These properties become obvious by using the first

observation and revisiting the special structure[of (16).

Third, making use of the first two observations, and notirag fth,, || = ||h,4.|| foru=1,3,...,2N -1,
it can be easily shown thdf,|| = ||f..1]|| for the sameu.
Then,

f,
whu = —uahu
<e +1> <||f || +1>

Hf || Z¢fv u+1

1 (hy, f1) (£, hy )
e e e T T
R
(fy, f)

(b fu) (s )
(fu—2,fu2)

_ <huv fu—1> <fu—1> hu+1> )
(fu—1,fu1) '

Now, applying the above observations, then

<hu7 f1><f17 hu+1>
<ew h, > = (0 -
I [[£1]2

_<f17 hu+1><hU7 f1> N

ksl
i <hu7 fu—2> <fu—27 hu+1>

[[£u—2][?

_<fu—27 hu+1> <hu7 fu—2> )

[ fu—2l?
=0.
This concludes the proof. O

The locations of these zeros introduce orthogonality betwihe real and imaginary parts of every

detected symbol, which can be taken advantage of to red@ceaimputational complexity of SD. The
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following example is provided to explain this fact.

Example: Consider a MIMO system withV, = N, = N = 2, and employingd-QAM. Then, SD
constructs a tree witB N = 4 levels, where the branches coming out from each node rayrédse real
values in the set = {—1, 1}. This tree is shown in Fig] 1. Now using the real-valued dattiepresentation

(@5)-(18), and applying the QR decomposition to the chanmatix, the input-output relation is given by

Al 11 0 13 Ti4 x n
U2 0 7op 7123 Toa| |T2 No
= + ; (21)
gg 0 0 r33 0 T3 ﬁg
gj4 0 0 0 44 Ty fL4

where it i1y i3 114)7 =11 = Q¥ n.

Based on[(11) and_(21), calculating partial node weightstlier first level and the second level are
independent, similar to the third level and the fourth le\m#cause of the additional zero locations in
the R matrix. For instance, the partial weights of nhodeand nodeB only depend oncs but 24, and
the partial weights of nodé€’, node D, node E/, and nodeF’, depend oney, =3, andx; (not onxzs). In
other words, the partial weights of nodeand nodeB are equal, and only need to be calculated once.
Similarly, partial weights of nodé’ and nodeD can be used when calculating the partial weights of node
E and nodeF, respectively.

SD is then modified because of this feature. Once the treeaislsed in layen, wherew is an odd
number, partial weights of this node and all of its siblingles are computed, stored, and recycled when
calculating partial node weights with the same grandpamede of layeru + 2 but with different parent
nodes of layemn + 1.

By applying the modification, further complexity reductimnachieved beyond the reduction due to the
check-tableT and intermediaté// (x“*V) values. For a node of layer+ 2, whereu is an odd number,
let o € [0, |x|] denote the number of non-pruned branches for its childrelesof layer. + 1. If « =0,
which means all branches of its children nodes of layerl are pruned, the number of operations needed
stay the same. I # 0, to get all partial weights of its grandchildren nodes inelaly the number of real
multiplications and real additions reduce further frém-1)|x| to 2|x|, and(a+1)(2N —u—1+]x|) +«
to 2(2N —u — 1+ |x|), respectively.
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IV. SOFTBIT METRIC

In many MIMO systems, channel coding, e.g., convolutioralieg, is employed to provide coding
gain. In this section, an application of SD employing a psggbsmart implementation with very low
complexity for calculating the soft bit metrics of a bit@nteaved convolutional-coded MIMO system is
presented. Bit-interleaved convolutional-coded MIMOteyss exist in many standards, such8ag.11n
or WiMax.

Definec as the codeword generated by a convolutional encoder wighafrom the information bits.
The codewordc is first interleaved by a bit-wise interleaver, then the rile@ved bits are modulated by
Gray mapped square QAM and transmitted throughXh&ansmit antennas. At the” time instant, an
N x 1 complex-valued symbol vectox; is transmitted at the transmitter and ahx 1 complex-valued
symbol vectory, is received at the receiver. The location of the coded:bitvithin the complex-valued
symbol sequencX = [X; -+ Xg| is given ask’ — (k,l,i), wherek, [, and: are the time instant iX,
the symbol position irx;, and the bit position on the label of the scalar symbjg], respectively. At the
receiver, instead of decoding each transmitted symbol &&)jrthe ML soft bit metrics are calculated for
each coded bit as

V(s ) = min I3 — Hx|)?, (22)

x 5ck/

Whereéé;j, is a subset off?, defined as
2 o . ) y . .
gbl = {X = [xl T xN]T F Tylu=l S Xé? and Lu|u#l S X}7

andy: denotes a subset gf whose labels have € {0, 1} in the " bit position. Finally, the ML decoder,

which uses Viterbi decoding, makes decisions accordindpeortile
¢ =argmin ) 4" (3. cw). (23)
k/

SD can be employed to solvie (22). Defipg and x,, as the corresponding real-valued representations
of y, and x;, respectively. For square QAM with sizZZ" wherem is an even integer, the first and
the remainingy bits of labels for the2™-QAM are generally Gray coded separately as two-PAM
constellations, and represent the real and the imaginagg, aespectively. Assume that the same Gray

coded mapping scheme is used for the the real and the imggamas. As a result, each elementxgf
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belongs to a real-valued signal sgtand one bit in the label af, corresponds te;.. The new position
of ¢ in the label ofx;, needs to be acquired & — (k, [, 1), which means; lies in theit" bit position
of the label for thd’" element of real-valued vector symhg). Let Xi denote a subset of whose labels

haveb € {0,1} in the ™ bit position. Definegif, c x*N as

i"’: 4
gbl = {X = [1’1 T 'T2N]T : xu\u:[ S X%)? andxu\u;ﬁ[ S X}

Then SD solves

Vs ex) = min 35 — R (24)

with v, = Qyy, whereQ C éZ and ||y, — Rx|> < §2. The only difference betweef (24) arid (9) is
that the search space is n@@, instead ofy?". In other words, the problem can be viewed as a pruning
algorithm on a tree of deptl/V, whose branches correspond to elements drawn from thg setept for
branches of the layer = [, which correspond to elements drawn from the)s;%t. As a result, proposed
smart implementation of SD can be applied. Other than thepatational complexity reduction at each
node achieved by the reduced complexity SD presented ino8ddf two more techniques are employed

by the proposed smart implementation to reduce the conmpngitcomplexity further.

A. Acquiring Initial Radius by ZF-DFE

The initial radiusd should be chosen properly, so that it is not too small or tegelaToo small an
initial radius results in too many unsuccessful searchestlams increases complexity, while too large an
initial radius results in too many lattice points to be shart

In this work, forc,, = b whereb € {0, 1}, ZF-DFE is used to acquire an estimated real-valued vector
symbolx?, which is also the Baiba point [15]. Then the square of ihitélius 67, which guarantees no

unsuccessful searches is calculated by
& = [lyr — Rx; || (25)

The estimated real-valued vector symbq] is detected successively starting fraty,, until z} |,

wherez} , denotes the/" element ofx}. The decision rule on} , is

S
LN

argmin [, — M(x") — R, ],
B.=9 9 (26)
“ 7 argmin fg, — MED) - Ryl u=1.

TEXG

I
Il
=~
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The estimation of the symbols _(26) can be carried out reeeigsby rounding (or quantizing) to the

nearest constellation element ynor ;.

B. Reducing Number of Executions in SD

For the k™ time instant, the real-valued vector symbgl carriesm N bits. Since each bit generates
two bit metrics forc,, = 0 andc¢,y = 1, then2m N bit metrics in total need to be acquired. However,
some bit metrics have the same value, hence SD can be modifieel ¢xecuted less tham N times,
as observed in [16].

Definex;, x;*, and~; as
k v

X, = arg min ||y, — Rx||?, (27)
X€X2N
X = arg min [[yx — Rx|%, (28)
€€,
and
= [[¥r — Ry 1%, (29)
respectively. Then
V(s ew) = [[ye = RE|?, (30)

Note thatfff U 5? =x?" and g’é’% N 5{7 = (. Then

Ve = min {y" (¥, iy = 0), 7" (F&, oo = 1)}, (31)

which means that, for thee N bits corresponding tay, the smaller bit metric for each bit @f, = 0 and
¢ = 1 have the same valug..

Let bﬁ € {0,1} denotes the value of thé" bit in the label ofz, ;, which is thel™ element ofk,. Then
Vo Tk = Ei) =", (32)

First, two bit metricsy"(yy., cx» = 0) and~"*(y, cr» = 1) for one of them N bits corresponding te,
and their relateck,” are derived by SD. Then th&€*' corresponding to the smaller bit metric is chosen
to bex,, and~, is acquired by[(31). For each of the otherN — 1 bits, v (yy, cp = Bg) is acquired by
B2), andy" (g, cpr = Bﬁ) is calculated by SD. Consequently, the execution numberDofd® one time

instant is reduced fro@m/N to mN + 1.
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V. SIMULATION RESULTS
A. Uncoded Case

To verify the proposed technique, simulations are carriedfor 2 x 2 and4 x 4 systems using\-
QAM and 64-QAM. Assuming a sequence of vector symbols are transmitiad considering multiple
channel realizations for each simulation, the average eurob real multiplications and real additions
for decoding one transmitted vector symbol are calculdtedhe figures, conventional SD is denoted by
CSD and proposed SD by PSD. In the simulatiaofts= 262N is chosen as the square of initial radius.
A lattice point lies inside a sphere of this radius with higlolpbility [8].

Fig.[2 and Fig[B show comparisons of the number of operatimteeen CSD and PSD far x 2
systems using-QAM and 64-QAM. For 4-QAM, the complexity gains for the average numbers of real
multiplications and real additions are aroufd’ and 45% respectively at high SNR. Corresponding
numbers ard5% and40% respectively at low SNR. For th&l-QAM case, the gains increase to around
70% and65% at high SNR respectively, while they are arowsids and60% at low SNR respectively.

Similarly, Fig.[4 and Fig. /5 show complexity comparisonswgsi-QAM and 64-QAM for 4 x 4 systems.
For 4-QAM, gains for the average number of real multiplicationsl aeal additions are arours®% and
50% respectively at high SNR, while they are arousie)o and 45% respectively at low SNR. Fog4-
QAM, gains rise to around0% and75% respectively at high SNR, while they are arouitds and 70%
respectively at low SNR.

Simulation results show that PSD reduces the complexityifsigntly compared to CSD, particularly for
real multiplications, which are the most expensive operatin terms of machine cycles, and the reduction
becomes larger as the system dimension or the modulatitialadp size increases. An important property
of our PSD is that the substantial complexity reduction @i causes no performance degradation. The
proposed technique can be combined with other techniquéshwhduce the number of visited nodes

such as SE, and other near-optimal techniques such as K-best

B. Coded Case

In [17], [18], and [19], a novel bit-interleaved convolutial-coded MIMO technique called Bit-Interleaved
Coded Multiple Beamforming with Constellation Precodir§iGMB-CP) was proposed. BICMB-CP
achieves both full diversity order and full spatial mule'pinﬂ. In [22], SD employing the proposed smart

In this paper, the term “spatial multiplexing” is used to cfitse the number of spatial subchannels, adii [20]. Note the term is
different from “spatial multiplexing gain” defined in_[21].
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implementation was applied to reduce the computationalpbexity of acquiring one soft bit metric.

To verify the proposed smart implementation of SD M&glimensional implementation of Bit-Interleaved
Coded Multiple Beamforming with Full Precoding (BICMB-FERyhich becomes BICMB-CP when all
the subchannels obtained by Singular Value Decompositierpeecoded, is considered [17], [18], [19],
[22]. Exhaustive Search (EXH), CSD, and Proposed Smartdmehtation (PSI) are applied. The average
number of real multiplications, the most expensive operatiin terms of machine cycles, for acquiring
one bit metric is calculated at different SNR. Since the ctidus in complexity are substantial, they are
expressed as orders of magnitude (in approximate termseirsequel.

Fig.[8 shows comparisons farx 2 R, = % BICMB-FP. For4-QAM, the complexity of EXH is reduced
by 0.4 and0.5 orders of magnitude at low and high SNR respectively, by O%8l.yields larger reductions
by 1.1 and 1.2 orders of magnitude at low and high SNR respectively. In #eeaf64-QAM, reductions
between CSD and EXH are5 and 2.1 orders of magnitude at low and high SNR respectively, while
larger reductions o2.6 and3.0 are achieved by PSI.

Similarly, Fig.[@ shows complexity comparisons férx 4 R. = g BICMB-FP. For 4-QAM, the
complexity of EXH decreases by.3 and 1.5 orders of magnitude at low and high SNR respectively.
PSI gives larger reductions &3 orders of magnitude at low SNR, addt orders of magnitude at high
SNR. For the64-QAM case, reductions between EXH and CSD3¥ and4.4 orders of magnitude are
observed at low and high SNR respectively, while larger cédas by4.4 and5.4 are achieved by PSI.

Simulation results show that CSD reduces the complexitystaubially compared to EXH, and the
complexity can be further reduced significantly by PSI. Thductions become larger as the system
dimension and the modulation alphabet size increase. Opertant property of our decoding technique
which needs to be emphasized is that the substantial coityptegluction achieved causes no performance

degradation.

VI. CONCLUSIONS

A simple and general technique to implement the SD algorittith low computational complexity
is proposed in this paper. The focus of the technique is onciag the average number of operations
required at each node for SD. The BER performance of the pep&D is the same as conventional
SD, and a substantial complexity reduction is achievedthéamore, an application of SD employing
a proposed smart implementation with very low computatiamenplexity for calculating the soft bit

metrics of a bit-interleaved convolutional-coded MIMO s is presented. Simulation results show that
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these approaches achieve substantial gains in terms ofotheutational complexity for both uncoded

and coded MIMO systems.
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Fig. 1. Tree structure for @ x 2 system employingl-QAM.
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Fig. 2. Average number of real multiplications vs. SNR forBC&nd PSD over & x 2 MIMO flat fading channel.
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