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ABSTRACT

In this paper, we study the problem of how to detect the current transportation mode of the user from the smartphone sen-
sors data, because this issue is considered crucial for the deployment of a multitude of mobility-aware systems, ranging
from trace collectors to health monitoring and urban sensing systems. Although some feasibility studies have been per-
formed in the literature, most of the proposed systems rely on the utilization of the GPS and on computational expensive
algorithms that do not take into account the limited resources of mobile phones. On the opposite, this paper focuses on the
design and implementation of a feasible and efficient detection system that takes into account both the issues of accuracy of
classification and of energy consumption. To this purpose, we propose the utilization of embedded sensor data (accelerom-
eter/gyroscope) with a novel meta-classifier based on a cascading technique, and we show that our combined approach can
provide similar performance than a GPS-based classifier, but introducing also the possibility to control the computational
load based on requested confidence. We describe the implementation of the proposed system into an Android framework
that can be leveraged by third-part mobile applications to access context-aware information in a transparent way. Copyright
© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In 2013, just 6 years after the launch of the first iPhone
device from Apple Inc., the number of smartphones in use
worldwide has been estimated to overcome the one bil-
lion of units [1]. Beyond the straight-forward implications
on the evolution of the Mobile Internet, we expect that
the high complexity of these devices will fuel the proposal
of novel Information and Communication Technologies
(ICT) applications, business opportunities and research
studies. Indeed, today’s smartphones integrate communi-
cation capabilities (through multiple wireless technologies,
such as Wi-Fi, Bluetooth, and Near Field Communication
(NFC)) with computational and sensing functionalities,
provided by a wide range of embedded sensors (e.g.,
accelerometer, gyroscope, and GPS). This enables new ser-
vices, such as big data [2], the whole new world of Internet
of Things, along with the web of things [3], and also the
complex task of monitoring the traffic to classify it [2,4].
Taking benefits from the pervasiveness of these devices
and from the cooperation among users, people-centric
urban sensing applications [5–10] are being progressively

deployed in several domains (e.g., vehicular traffic [11,12]
and noise pollution monitoring), providing larger coverage
and higher resources than traditional static sensor net-
works [13]. At the same time, raw data from embedded
sensors (e.g., accelerometer and gyroscope) can provide
useful information about the users’ context, thus adding
a new degree of context awareness to the mobile appli-
cations [14,15]. How to collect, analyze, and merge these
(potentially big) data while guaranteeing the privacy and
anonymity of the end-users constitutes a challenging and
active research field in the area of mobile computing [16].

Transportation mode recognition techniques attempt to
automatically identify the current vehicle used by the user
(e.g., car, bus, and train) by analyzing the smartphone’s
sensors data, without any human feedback [17–21].
Knowledge of current transportation mode constitutes a
precious information in several application domains. On
the one hand, novel mobile services can be deployed
with fine-grained context-aware functionalities, which for
instance might enable the device to self-configure on the
basis on the detected mode [22]. On the other hand, when
multiple users share their context-related data in a partic-
ipatory way, aggregated survey can be produced, giving
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indications about the life quality of the individual (e.g.,
health monitoring systems [23,24]) or of the collectivity
(e.g., through the estimation of the environmental expo-
sure and emissions [17]). From the technical point of view,
research studies have demonstrated the possibility to rec-
ognize human activities from the analysis of wearable
sensors data since 2000 [25,26]. As a result, the transporta-
tion mode recognition problem can be considered a sub-
case of the activity classification problem, and the same
methodology of study (e.g., supervised learning) can be
applied with good results, as already discussed in previous
works [20,21,27]. However, most of these studies focus on
proposing, comparing, and evaluating the performance of
classification algorithms on synthetic environments, while
less attention is posed on practical considerations about
implementation. Indeed, many assumptions might not be
feasible for a practical deployment of transportation mode
detection systems on current today’s smartphones:

� Several proposed systems (e.g., [21,27,28]) utilize
GPS data, which might not be available at specific
locations, and also introduce a considerable impact on
the battery lifetime of the device.

� Machine-learning algorithms are adopted for the clas-
sification, and computational expensive techniques
(e.g., Random Forest (RF) algorithm) are usually
demonstrated to perform better in terms of accu-
racy. However, the CPU load becomes an issue when
considering end-user mobile devices with limited
resources.

� Crowdsourcing techniques used in [17,21,27,28]
demonstrate the generality of the detection process
regardless of the users’ habits; however, they can be
difficult to be implemented on a large-scale scenario,
because of the need to consider incentive mechanisms
to favor collaborative actions by users.

Addressing these issues constitute a trade-off between
detection accuracy and energy consumption that can be
summarized by the following question: How to take into
account the specific computational/communication capa-
bilities of each mobile device while guaranteeing an
acceptable performance of the classification process?

In this paper, we attempt to answer to the previous ques-
tion by designing and implementing an efficient transporta-
tion detection system, which can be effectively used on
today’s smartphones. Our study includes both methodolog-
ical and practical contributions. About the methodological
aspects, we remove most of assumptions of previous stud-
ies, and we show how to build a classification system that
(i) does not use GPS-classifier, (ii) dynamically adapts to
the computational capabilities of the device, while pro-
viding the best energy-accuracy trade-off, and (iii) runs
in a decentralized way without the need of collaborative
training. To this aim, we first show -through experimental
results- that aggregating the data from embedded sensors
(i.e., accelerometer/gyroscope) can outperform the perfor-
mance of a GPS-only classifier, by also discriminating

among transportation modes with similar speeds (e.g., bus
vs. train). Then, we propose to combine multiple learners
usually adopted in the literature of activity recognition sys-
tems through a novel cascading approach [29], which takes
into account the requested confidence of the classification
and the computational capabilities of a mobile device. As a
main result, we provide evidence of the fact that the multi-
stage learner achieves higher accuracy than the individual
learners (e.g., RF) and provides performance comparable
with a system utilizing both GPS/sensors data [21], but
involving much lower energy consumption of the smart-
phone. Finally, we compare the case in which the training
set is obtained by the collaboration of multiple users (shar-
ing their data collected through heterogeneous devices)
with the case where individual training is used (with-
out cooperation), and we demonstrate that the individual
training can perform equally or slightly better, thus jus-
tifying a decentralized deployment of the transportation
mode recognition system. After having demonstrated the
soundness and efficiency of our methodological approach,
we describe how the proposed system can be practically
implemented in a framework for the Android platform. The
framework runs as a stand-alone Android application that
samples the sensors’ values in background, extracts the fea-
tures from the accelerometer/gyroscope data, determines
the current transportation mode through the cascading
algorithm, and exports this information at system-layer
through a Content Provider. As a result, other Android
applications can access and leverage this information to
provide advanced context-aware functionalities, in a trans-
parent way to our framework.

The rest of the paper is organized as follows. In
Section 2, we discuss a list of use-case scenarios where
transportation mode recognition techniques can be applied,
and we further motivate the technical feasibility of the
classification process. In Section 3, we review the exist-
ing studies pertaining to human activity detection from
mobile devices sensors data. In Section 4, we detail our
recognition system, by describing the methodology used
for the training, the feature extraction, and classification
phases. Results about the accuracy of detection, energy
consumption on mobile devices, and impact of training
parameters are provided in Section 5. In Section 6, we
describe the framework implementation over an Android
platform, together with a brief presentation of a sample
application (e.g., the Device Adapter one) that is built on
top of the framework. Conclusions follow in Section 7.

2. MOTIVATIONS

In this section, we discuss possible scenarios where auto-
matic transportation mode recognition techniques can be
applied (Section 2.1), and we also provide evidence of
the fact that such classification can be performed on the
basis of recognizable patterns associated to each mode
(Section 2.2).

2524 Wirel. Commun. Mob. Comput. 2016; 16:2523–2541 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



L. Bedogni, M. Di Felice and L. Bononi Context-aware Android applications through transportation mode det.

2.1. Use case scenarios

Information about users’ transportation modes can be use-
ful both for real-time context-aware applications that might
adapt their functionalities to the detected mobility and for
non real-time applications that might collect the mobility
data to provide aggregate statistics and services, possibly
relaying the collaboration among users through a mobile
crowdsourcing approach [7]. At the light of the existing
prototypes, we foresee five different use case scenarios:

� Mobility data collection. In several areas of the world,
surveys are used by transportation agencies and plan-
ning bodies to collect information about the urban
transportation mobility, in order to improve the trans-
portation system as a whole and to generate fine-
grained and realistic traffic models. The utilization
of automatic detection techniques (instead of ques-
tionnaires) can greatly simplify the data collection
procedures and also increase their capillarity, because
of the intrinsic pervasiveness of smartphone devices.
At the same time, knowing the transportation mode
of end-users (together with their GPS traces) can be
fundamental to detect critical situations of the urban
mobility, such as congestion in vehicular or pedestrian
traffic [11].

� Health monitoring and user habits profiling. In [17],
the authors present a social platform that collects GPS
traces from users and automatically detects the trans-
portation mode, so that personalized reports about
environmental exposure and impact (for instance,
the daily carbon impact and smog exposure) can
be returned to each user. Similarly, quantifying the
physical activity duration and intensity during travel
trips is considered of high interest to deploy health
monitoring systems, as discussed in [23].

� Device profiling and self-adaptation. Transportation
mode information can provide a further layer of
device customization, because the end-users might
associate a specific device profile to each mode. A
profile can be defined in terms of hardware settings
(e.g., turn on/off the ring-tones while walking) and/or
as a set of actions to be performed once specific con-
ditions are met, following the popular if-this-then-that
approach [30]. Moreover, the device can self-adapt
its configuration to the detected mobility mode in
order to prolong battery lifetime, for instance by
dynamically turning off the GPS while in walking
mode.

� Enhanced mobile advertising. As pointed out in [18],
customized advertisements can be sent to the end-
users, targeted to their actual mobility context. For
instance, information about the presence of gas sta-
tion in the neighborhood can be delivered to car
drivers, while real-time bus schedule information can
be dynamically provided to users traveling on a bus.

� Service adaptation. Nowadays, several Internet ser-
vices require the user to specify its transportation

mode for content access. This is the case for instance
of route planning applications (e.g., Google Maps)
that requires the users to recalculate the path each
time he/she changes the transportation mode. In
case of dynamic detection, no human interaction is
required, and the service content can be dynamically
adapted to the user mobility.

2.2. Preliminary data insights

Transportation mode detection can be performed by using
several different sensors and network data (e.g. accelerom-
eter, GPS, and Global System for Mobile Communication
(GSM) information). Apparently, some modes can be eas-
ily distinguished by considering only the speed factor, like
walking or driving a car [28,31]. However, the problem
becomes more challenging when we consider both motor-
ized and non-motorized modes and different typologies
of motorized modes. In Figure 1, we show the average
speed of each mode, provided by the GPS. The data-set is
composed of 5400 samples collected by eight different par-
ticipants, through heterogeneous Android devices and in
heterogeneous environments (e.g., driving a car in urban,
rural, and highway scenarios). Details about the data col-
lection process are provided in Section 4. Figure 1 reveals
that while non-motorized modes present low deviation
from the average values, the speed of motorized ones (e.g.,
national bus and car) can fall into a wide range, with pos-
sible overlappings among different classes. In these cases,
the speed values alone cannot be enough for an accurate
transportation mode detection, as better demonstrated in
Section 5.

For these reasons, an alternative approach is to mea-
sure the oscillations induced by each transportation
mode through the accelerometer [25,27,32]. However,
accelerometer values have the problem that they might
depend on the specific orientation of the device. This
is confirmed by Figure 2(a), where we show the three
accelerometer values over time (one line for each axis) in
a scenario where the user is walking and he is dynamically
changing the position of the device, always carried in the

Figure 1. Average speed of different transportation modes.
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Figure 2. The raw accelerometer values (on the x, y, z axes) and the magnitude of the waking mode are shown in Figure 2(a) and
(b), respectively. The magnitude of the car mode is shown in Figure 2(c).

pocket of his trousers. It is easy to see that high fluctua-
tions are introduced on each axis, as a consequence of the
orientation changes. To overcome this problem, accelerom-
eter synthesization techniques have been proposed. In this
work, we rely on the magnitude metric [22,33], which is
computed as follows:

magnitude.s/ D jvsj D
q

v2
x,s C v2

y,s C v2
z,s (1)

where vx,s, vy,s, vz,s denotes the values of sensor s on the
x, y, and z axes. Figure 2(b) shows the magnitude values
for the accelerometer data of Figure 2(a). Conversely to
the previous case, the magnitude values are almost stable
and are not affected by the orientation changes. Moreover,
in Figure 2(c), we show the magnitude values when driv-
ing a car. Even from these raw data, it is easy to see that
there are qualitative and quantitative differences between
the patterns of Figure 2(b) and Figure 2(c) that motivate the
utilization of transportation mode recognition techniques.

3. RELATED WORKS

In the following, we review the existing literature on the
analysis of smartphone sensors data for the extraction
of context-related information. First, in Section 3.1, we
consider the research works addressing the problem of
human activity recognition through mobile devices. Then,
in Section 3.2, we focus on the issue of transportation
mode recognition, and we highlight the novel contributions
and advances provided by our work with respect to the
existing studies.

3.1. Activity recognition

Human activity recognition from accelerometer sam-
plings constitutes a well-investigated research area since
2000 [25]. In most of the existing works, researchers
rely on a common methodology, that is: They build a
training set of accelerometer samplings for each of the
activities to recognize (i.e., walking, biking, running, and
jumping); they extract features from the raw data, and
they utilize data-mining techniques to classify the vector

features. However, there exists significant differences in
the hardware used for the experiments. In [26,32,34–36],
the classification is performed through the utilization of
wearable accelerometer devices, with fixed position and
orientation. The results shown in [26] demonstrate that
the utilization of multiple devices placed on different parts
of the body might significantly reduce the classification
errors caused by random noise. A comprehensive com-
parison of different classification techniques is reported
in [32], where the authors show that combining classifiers
through voting techniques produces the best results for
the correct classification of most of the activities. Feature
extraction from accelerometer data is discussed in [34–36].
More specifically, in [34,35], the authors propose to extract
frequency-related patterns of the accelerometer data using
discrete cosine transform. The same problem is also inves-
tigated in [36], where however the goal of the authors is to
determine an efficient set of features that involve low com-
putation efforts for the extraction/recognition processes.
Despite the encouraging results in terms of classification
accuracy, the utilization of wearable accelerometer makes
extremely impractical the large-scale implementation of
these systems. For these reasons, recent studies investi-
gate the possibility to perform activity and gesture recog-
nition through embedded accelerometer of smartphone
devices [33,37–40]. Here, the main challenge is constituted
by the fact that devices can be carried in different locations
and styles. To solve this issue, in [41], the authors suggest
techniques for orientation-independent features extraction
and acceleration synthesization. In [33], a new metric
(called magnitude) is introduced to compute the intensity
of the acceleration, regardless of the smartphone’s orien-
tation [33]. The proposed metric is then used to recognize
whenever a user is crossing a road, in order to produce a
database of traffic lights for a specific urban environment.
Results shown in [39,40] demonstrate that using embedded
accelerometer, it is possible to recognize human activi-
ties characterized by well-defined patterns (e.g., walking
or running) with high classification accuracy (over 90%),
while the classification of complex activities combining
different motions (e.g., cooking) might be challenging.
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3.2. Transportation mode recognition

While most of the existing works focus on gesture and
human motion recognition, there is also an increasing
interest in transportation mode detection techniques that
might enrich the context awareness of mobile applica-
tions [17–22,27,28,31]. From the algorithmic point of
view, the problem is similar to the activity recognition
described so far. However, the existing studies mainly
differ in the sensors data required by the training and clas-
sification phases and in the transportation modes they are
able to recognize. GPS-only classifiers (like [17,28,31]) are
shown to provide high accuracy in distinguishing between
motorized and non-motorized modes, while they might
fail in classifying motorized modes with similar speeds
(e.g., bus and car). In [17], the authors propose a partici-
patory sensing application (called PEIR), which leverages
the GPS location data to infer the transportation modes
used along a path and thus to compute personalized statis-
tics of the environmental impact and exposure. Similarly,
in [28], the authors propose a point-based segmentation
mode to divide a path into separate segments, and a super-
vised classifier (based on decision trees) is used to decide
the mode of each segment. In [18], the performance of a
GPS-classifier are enhanced with transportation network
information (such as bus schedules and bus stop locations),
in order to extract features specific to each motorized trans-
portation mode. More recent studies attempt to provide a
fine-grained characterization of the environment through
the utilization of accelerometer and wireless radio fin-
gerprinting information [19–21,27]. In [20], the authors
combine accelerometer readings with geo-location data
(provided by the GPS and cellular network) and utilize a
classifier based on hidden Markov model to distinguish
between nine transportation mode categories, also mod-
eling the probability to switch modes along a path. At
present, Reddy et al. [21] constitute the most exhaustive
study on the topic of transportation mode recognition from
smartphone data. The authors evaluate different feature
selection strategies, classification algorithms, and training
techniques and demonstrate that a GPS-classifier enhanced
with accelerometer data can provide the best performance
in terms of classification accuracy. In [23], the authors
show that the utilization of accelerometer data alone (with-
out GPS) can provide lower accuracy than the combined
case, but significantly prolonging the battery lifetime of
the smartphones. Similarly, in [27], an accelerometer-
based classifier is presented, and two different techniques
to extract accelerometer features (e.g., synthesization and
decomposition) are discussed. More recently, also Google
released their activity awareness Application Programming
Interface (API) [42], which might recognize if the user is
still, if he is driving a car, walking or riding a bicycle.
The API does not got into the technical details of how it
is implemented, and on the website, it is only stated that
they use low-power sensors, in order to be optimized for
the battery. In our study, we mainly follow the approaches

described in [21,27]. At the same time, we provide these
novel contributions compared with the existing literature:

� Conversely to [21,27,28], we do not rely on GPS
information for transportation mode recognition.
Instead, we utilize the embedded sensors of the smart-
phone (e.g., accelerometer and gyroscope), and we
demonstrate that combining the sensors data can
improve the accuracy of the classifier, while greatly
reducing the energy consumption than a GPS-based
classifier.

� Conversely to [27], we do not focus on a single
classification algorithm. Instead, we integrate mul-
tiple classifiers through a cascading technique, by
taking into account both the confidence requirements
(defined by the end-user) and the hardware constraints
of a device. We are aware that the accuracy/energy
trade-off has been discussed also in previous papers
[21,43,44]. However, we address the problem for a
specific class of devices (e.g., smartphones), and we
propose a solution to account the computational load
during the classification process, which has not been
considered in existing works.

� Conversely to [17,28], we do not rely on a centralized
infrastructure for the training phase. The classification
algorithm is integrated into an Android application,
which can share the detected transportation mode
information with other mobile applications installed
on the device, in a seamless way (implementation
details are provided in Section 6).

3.3. Prototypes

In literature, it is possible to find a plethora of works target-
ing applications prototypes’ for commercial smartphones.
These includes the following:

� In [11,45], the authors present Nericell, a sensing
application to determine the traffic conditions from
sensor data. Nericell utilizes a three-axis accelerom-
eter sensor, without computing the magnitude of the
received signal, but analyzing separate values for each
axis. This allows to recognize road bumps and heavy
brakes, for instance. They also use the microphone
to sense the rumors and determine whether a road
is particularly noisy, and thus potential consequence
of heavy traffic jams. Finally, in order to reduce the
battery consumption of their applications, triggered
sensing is used. This results in using more inten-
sively low battery demanding sensors such as the
accelerometer, and turn on other sensors such as GPS
and microphone only when something important is
noticed by examining the accelerometer traces.

� In [46], the authors describe CenceMe, an applica-
tion that uses sensors on smartphones to infer several
information about the user behavior. They use the
accelerometer, the microphone, the GPS, and the
bluetooth modules. In additon, they also use the cam-

Wirel. Commun. Mob. Comput. 2016; 16:2523–2541 © 2016 John Wiley & Sons, Ltd. 2527
DOI: 10.1002/wcm



Context-aware Android applications through transportation mode det. L. Bedogni, M. Di Felice and L. Bononi

era to take quick snapshot about the user current loca-
tion and activity. Combining informations from these
different sources, CenceMe can infer the location, the
social context, the mobility model, and the “sociabil-
ity” of the user. Some data is processed locally to the
smartphone and then sent to a remote backend server
in order to be analyzed. To reduce the battery con-
sumption, the authors describe a reduced duty-cycle
method. To classify the data, they use a decision tree
algorithm, more precisely the J48.

� In [47], the authors describe the Mobile Sensing Plat-
form (MSP), detailingthe milestones from version 1
to version 3. They are able to utilize seven different
sensors, including microphone, accelerometer, and
temperature, in order to recognize the human activi-
ties. The focus is on non-motorized activities such as
walking, running, watching TV and so on.

� In [48], the authors tackle the challenging problem
of online classification using only the smartphone
accelerometer. Instead of dividing the samples in
time windows, they continuosly try to identify the
action performed by the user. They implemented it
on a smartphone and run experimental tests, showing
that most complex activities can be detected within
around 5–25% of their overall activity length. For
long actions such as cooking or watching TV, which
can last from 40 min to 2 h, this mean recognizing the
activity after it started from only 2 min.

� In [49] the authors use the accelerometer, the gyro-
scope and the magnetic sensor of a smartphone to
recognize the user activity over a set of 15 possible
activities. The focus is just on non-motorized activi-
ties such as walking, climbing stairs and standing still.
They sample the data at 25 Hz, and compute differ-
ent statistical data on the samples collected, namely
the average, the median, the standard deviation, the
skewness, the kurtosis, the interquartile range and the
percentage of decline. Over all these computed fea-
tures, the authors build several classifiers, connected
through a hierarchical structure, which achieves an
overall accuracy classification of 95.03%.

� In [50], the authors perform classification for dif-
ferent non-motorized activities of a human being
by considering artificial neural networks (ANN) and
support vector machines (SVM). They rely only on
accelerometer and orientation sensors, and they show
good performance in recognizing the user activity,
even though the data-set used is relatively small.

� In [51] the authors present a novel method to rec-
ognize the transportation mode, and compare it with
other well know approaches, such as [21] and [27].
They focus on using acceleroemeter data, in order to
reduce the consumption of the GPS and its unrelia-
bility underground or in challenging situations. They
build several classifiers, and make distinction between
stationary behavior, non-motorized and motorized
behaviors. Improvements against [21] and [27] in
terms of higher accuracy are shown.

4. DATA COLLECTION AND
ANALYSIS

In this Section, we detail the methodology used to collect
and classify the transportation mode from the smartphone
sensors data. Section 4.1 introduces the training process,
while Section 4.2 and Section 4.3 describe the features’
extraction and classification phases.

4.1. Data collection

As a first step toward the performance evaluation of a
transportation mode recognition system, we developed an
Android application that allows to sample the sensor values
at a fixed rate r (set to 10 Hz) and to save each sample on a
log file. Like previous studies, we limited our attention to
a restricted set (i.e., M) of transportation modes:

M D fmS, mW , mC, mT , mBK , mBc, mBrg (2)

with the following meanings:

� mS is the pattern associated to the mode of standing
still.

� mW is the pattern associated to the mode of walking.
� mC is the pattern associated to the mode of driving a

car.
� mT is the pattern associated to the mode of being on a

train.
� mBk is the pattern associated to the mode of driving a

bike.
� mBc is the pattern associated to the mode of being on

a city bus.
� mBn is the pattern associated to the mode of being on

a national bus.

Similarly, we considered a set S of three sensor types, that
is, S=faccelerometer (Ac), gyroscope (Gy), gps (Gps)g. For
each mode m, we built a data-set Dm containing on avarage
4500 samples (corresponding to around 6 h and half of
continuous sampling). Each entry of Dm has the following
structure:

< t, vAc, vGy, vGps > (3)

where t is the time-stamp of the sample, vAc and vGy are the
magnitude values of the accelerometer/gyroscope (com-
puted through Equation (1)) and vGps is the current speed
value, provided by the GPS. Each data-set Dm was built
in an heterogeneous way, that is, samples were collected
from eight distinct people, using different hardware plat-
forms. Moreover, we left each user free to carry and use
the device at his taste during the experiments (i.e., we did
not impose fixed orientations and locations of the wearable
devices like in [26,32]).

To collect the data from different human beings, thus
having different physical characteristics and thus probably
different patterns, we run an experiment with six different
people in order to gather the data to be processed.
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Table I.Demographics for the samples collected.

Name Height Weight Age Actions
(cm) (kg) (year) collected

M1 180 100 28 mfS,C,Bc,T ,Wg

M2 175 75 33 mfS,Bn,T ,Wg

M3 174 105 56 mfS,C,T ,Wg

M4 170 68 24 mfBk,Cg

M5 168 75 25 mBk

M6 166 80 22 mfC,T ,Wg

F1 165 72 28 mfC,Bcg

F2 169 57 29 mfBk,Cg

In Table I ,we report the demographics for the samples
collected. Clearly, not all the human beings could collect
samples for all the different kind of transportation modes,
so we report the actions collected by each individual on
the last column. As it is possible to see, we performed the
test with five males, marked with the M, and one female,
marked with the F.

4.2. Feature extraction

After having collected the data, we divided each data-set
Dm into consecutive non-overlapping time sequences of
length T (equal to 5 s in our tests).

From each sequence k and sensor s, we extracted the
following set of features:

� min.s, k/: This is the minimum value of sensor s over
the sequence k.

� max.s, k/: This is the maximum value of sensor s over
the sequence k.

� avg.s, k/: This is the average value of sensor s over
the sequence k.

� std.s, k/: This is the standard deviation of sensor s
over the sequence k.

In Section 5.3, we investigate the impact of the sequence
length (i.e., T) on the accuracy of the classifiers. While sev-
eral set of features can be used to represent a sequence,
our choice is mainly motivated by the observation (sup-
ported by Figure 2(b) and (c)) that different transportation
modes produce different time-behaviors of the sensor mag-
nitude, in terms of mean and fluctuations between the peak
values. Also, we highlight that our choice involves much
lower computational costs than frequency-based feature
extraction techniques [34,35].

We introduce here some notations used in the rest of the
paper. We denote with Fs the set of features’ values relative
to sensor s (e.g., FAc), over all the data-set Dm, and for each
mode m. Analogously, we denote with Fs1Cs2C...sh , the set
of features’ values associated to the combined utilization
of sensors s1, s2 ... sh (e.g., FAcCGy).

Even though [26] states that it is better to use over-
lapping windows to classify data, we show in Figure 3
a comparison we run in order to justify our choice of

Figure 3. Comparison between overlapping and
non-overlapping windows.

using non-overlapping windows. We show the accuracy
for the different actions, and the overall accuracy, for four
different window configurations, which are 1 and 5 s non-
overlapping windows, and 1 s with 0.1 s of overlapping
windows, and 5 s with 1 s of overlapping. As it is evident
to see from Figure 3, most of the gain in accuracy is given
by a greater window size rather than an overlapped por-
tion of the window. Moreover, for some specific actions
(i.e., the mC), the overlapped windows perform better than
overlapped ones.

4.3. Data classification algorithm

In its general definition, a transportation mode classifica-
tion scheme l takes as input an instance x, composed by a
set of features F�k for a sequence k and for a given com-
bination of sensors data, and a training set, and produces
as output a value m 2 M, that represents the estimated
transportation mode. Previous studies on transportation
mode recognition [18–21,27,28] rely on the utilization of
a single classification algorithm, which is often selected
as the one providing the highest accuracy (e.g., RF),
but without taking into account the computational costs.
Conversely, in our approach we attempt to reduce the
energy consumption of mobile devices, while maintain-
ing a pre-defined level of accuracy. For this reason, we
combine multiple learners through cascading [29], which
is a widely used machine-learning technique to increase
the overall accuracy while using relatively inaccurate (but
simple) classification algorithms. Let l1, l2, ...lK the set of
learners used for the classification, ordered on the basis
on their computational costs, that is, ljC1 is costlier than
lj. Let � be the requested confidence of the transportation
mode recognition scheme. In our case, � can be defined
by the end-user through the mobile application interface
(Section 6). Reasonably, higher values of � produce more
accurate classifications, but might also introduce additional
computational overhead. The classification scheme works
through an iterative classification process over the set of
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K learners, as described by Algorithm 1. Let x be the new
instance to be classified. At each step, learner lj decides
the detection mode mij, and computes its confidence over
instance x (i.e., w.lj, x/), calculated as the posterior proba-
bility of selecting mode mij, given learner lj and instance x:

w.lj, x/ D maxiP.mijjlj, x/ (4)

If the confidence w.lj, x/ exceeds the requested threshold
� , then the algorithm ends, and mij is returned as the out-
put of the classification. Otherwise, learner ljC1 is used,
till the requested confidence is met or all the K algorithms
are evaluated.

Algorithm 1 Cascading classification algorithm

Given: x (instance), l1, l2, ...lK (learners), � (threshold)
Set index j=0
repeat

Set j=j+1
Execute lj and obtain mij // Execute the jth learner on
input x,

and return the classification mij

Compute w.lj, x/ through Equation 4
until w.lj, x/ � � or j � K
return mij

The training phase is carried out individually on each
learner in an iterative way, as described in [52]. At the
beginning, learner l1 (i.e., the simplest one) is trained over
all whole training set. At each step j, learner lj is trained
over the set of instances not learnt correctly by the learner
lj�1, that is, it localizes on patterns rejected by previous
algorithms and also on the instances for which w.lj�1, x/ <
� , that is, on those instances for which previous algorithms
were not confident. Because the learners are ordered on the
basis on their increasing complexities, this approach guar-
antees the fact that costlier algorithms are trained (and then
used) on complex patterns not recognized by the previous
(simpler) algorithms [53,54].

5. DATA CLASSIFICATION RESULTS

In this Section, we evaluate the performance of a trans-
portation mode recognition system, by using the train-
ing set and the classification methodology previously

described in Section 4. First, we investigate (in Section 5.1)
the ability of traditional base learners to recognize the
transportation mode from different combinations of sen-
sors data, considering the issues of accuracy, detection
time, and power consumption. Then, in Section 5.2 we
demonstrate the benefits of combining multiple learners
through the cascading algorithm defined in Section 4.3.
Finally, in Section 5.3, we analyze the impact of data acqui-
sition methodologies and parameters used for training,
such as time-sequence length and sensing rate.

5.1. Analysis of individual learners

From a machine-learning perspective, recognizing the cur-
rent transportation mode from sensors data can be seen as
an instance of a classification problem, and any supervised
learning algorithm can be applied to solve it. However,
bacause of cause of there is no single algorithm that
induces the most accurate learner in any domain [29], it
is worth to investigate because approach can fit the char-
acteristics of our environment, like the fact that training
data might exhibit noise, and that patterns relative to some
transportation modes might be intrinsically more diffi-
cult to detect than others. Moreover, understanding which
sensor data to utilize are a unique issue of our domain,
because this choice might have a remarkable impact on the
performance of the learner and of the mobile application.

Based on these considerations, we consider six base
learners in our preliminary study: Random Tree (RT),
RF [55], Support Vector Machines (SVM) [56], Nayve
Bayes, Bayesian Network (BN) [57], and Decision Table
(DT) [29]. These learners are also used by other works
found in literature: Stenneth et al. [18] performs an evalu-
ation among different learners, including BN, RT, and RF,
eventually choosing the latter thanks to its performance.
DT are instead used by [18,21,28,46]. In Table II, we report
the overall accuracy of each learner by performing a 10-
fold cross-validation on our training set through the WEKA
tool [58]. We repeat the experiments for every possible
combinations of sensor data of the training set (i.e., FAc,
FGy, FGps, FAcCGy, etc), and then we report the average.
Sensors data selection is discussed later in this Section. In
Table II we also report the (i) building time, that is, the
time to generate the classification model on WEKA, and
the (ii) classification time, that is, the time to run the model
and classify a new instance. Both these values are com-

Table II. Accuracy of different algorithms.

Algorithm Accuracy (%) Time (%) Time (%)

(Building) (Classification)

Random Forest 83.94 100 100
Decision Table 82.47 26.77 62.5
Bayesian Network 77.87 16.95 37.5
Random Tree 79.72 8.5 48.5
Support Vector Machines 61.62 216.47 48.6
Nayve Bayes 54.45 13.98 11.1
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Table III. Accuracy by using different sensor data (Random Forest).

Features Accuracy (%) Consumption(mW) Consumption(mW)

Measured Theoretical

F Ac 79.53 6.85 5.99
F Gy 65.45 49.28 42.12
F Gps 82.87 480 440.11
F AcCGy 86.93 56.12 48.11
F AcCGps 93.91 526.58 446.1
F GyCGps 90.81 487.85 482.23
F AcCGyCGps 95.44 533.43 488.22

puted on a target smartphone (i.e., Google Nexus 4) and
are expressed in percentage from the performance of the
Random Forest algorithm. From the results contained in
Table II, we can deduce the following facts: (i) Sensors
data of different transportation modes exhibit unique pat-
terns that can be recognized by automatic learners, with
reasonably good accuracy. This is also in accordance with
results presented in [18,21,31,40], and (ii) except for SVM
(polykernel discriminants are used), costlier learning mod-
els improve the accuracy of the classification process; (iii)
techniques that partition the training set on the basis of
feature values’ range (such as Decision Table and Ran-
dom Forest) outperform techniques that rely on a geometric
partitioning of the training set (such as the SVM). Ran-
dom Forest is shown to produce the highest accuracy
(considering the average of all possible combinations of
sensors data). Again, this is also in accordance with previ-
ous studies [18]. However, the accuracy varies significantly
for different transportation modes, because some patterns
appear more difficult to identify correctly, as discussed
later in this section.

In Table III, we report the overall accuracy of the RF
algorithm, when we vary the sets of sensors data used
for the classification. We use the notation introduced in
Section 4.2. For each row, we also report the average
power consumption required to perform a single sensor
sampling or multiple samplings in case of combinations
of sensors (e.g., FAcCGy). We distinguish between mea-
sured values (i.e., power consumption measured through
the PowerTutor [59] application), and theoretical values
(i.e., as indicated by the vendors’ datasheet), although
no significant differences can be observed between the
two columns.

Again, lots of useful information can be drawn from
results in Table III. First, we can easily notice that com-
bining multiple sensors data always guarantees a perfor-
mance increment, which reaches its maximum when all
the available sensors are used for the classification purpose
(i.e., FAcCGyCGps). Also, Table III demonstrates that the
utilization of GPS alone is not enough to distinguish trans-
portation modes with similar speeds (Figure 1), thus further
motivating the utilization of accelerometer/gyroscope for
human activity classification purposes. At the same time,
it is easy to see that the energy consumption involved
by the utilization of GPS is quite high and might easily
constitute a bottleneck on a realistic deployment, because

Figure 4. Average accuracy of learners on different combination
of sensor data.

of the limited resources of smartphones, and the need
to acquire several samplings before producing a classi-
fication. For sake of fairness, we must also point out
that the energy consumption values of embedded sensors
(accelerometer/gyroscope) might depend on the specific
hardware equipments of a smartphone, but in any case, it
results to be much lower than the GPS [60–62].† We can
conclude that the FAcCGy configuration provides the best
trade-off between classification accuracy and power con-
sumption, and for this reason, we used it for the system
implementation described in Section 6.

In Figure 4, we expand results of Tables II and III,
by showing the performance of the six learners when
using seven different combinations of sensors data. Again,
it is possible to notice that – on the average – the RF
algorithm guarantees the highest accuracy, while the per-
formance of some algorithms depends on the sensors data
in use. For instance, the BN algorithm provides the high-
est performance when combining multiple sensors data
including the GPS (i.e., FAcCGps, FGyCGps, FAcCGyCGps).
We can generalize the results previously shown in Table III:
Increasing the number of sensor data used for the classifi-
cation translates into higher accuracy, independently from
the learner.

†In Table III, we report the average energy consumption for a GPS

sampling. Our result is comparable with previous experiments in [60].
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We conclude the analysis by further elaborating on the
ability of learners to identify specific transportation modes.
Table IV provides the confusion matrix for the RF algo-
rithm, when using the FAcCGy features, over the full set of
transportation modes under analysis. Here, rows represent
the real transportation modes, while the columns report the
classification produced by the learner. Each cell < x, y >
provides the percentage of samples belonging to mode x
classified as mode y. For the cells forming the the diagonal
(i.e., < x, x >), the percentage is also the accuracy of the
classifier on mode x.

From Table IV, we can see that motorized modes
(e.g., mT , mC, mBc) can be more easily recognized than
non-motorized modes (e.g., mW or mBk). This might be
explained considering the fact that – on the average – the
smartphone is less subject to orientation/acceleration vec-
tor changes when the user is on a car, on a bus, or on a
train, respect when he/she is doing physical activities (like
driving a bike or walking). An exception is constituted by
the case of national bus (i.e., mBn), where misclassification
errors occur more frequently because of similarity with the
city bus. To confirm these considerations, we also report in
Table V the confusion matrix when only GPS is used (i.e.,
FGps). Here, we experience a dual situation than Table IV,
because the highest accuracy is achieved for non-motorized
modes (e.g., mW or mBk), while a significant amount of
misclassification errors occurs for motorized modes (e.g.,
mT , mC, mBc), which might exhibit overlapping intervals
of speed values.

5.2. Analysis of multi-learners approaches

In this section, we study the benefits of combining mul-
tiple learners through the cascading technique defined by
Algorithm 1. To this purpose, we consider only a subset

(K) of the six learners evaluated in Section 4, that is,
RT, BN, DT, and RF, because they provide much higher
accuracy than the other two approaches (i.e., SVM and
Naive Bayes). The order in which they are executed: l1=
BN, l2= RT, l3= DT, l4=RF, is based on the computa-
tional overhead to classify a new instance, according to the
results in Table II. We consider only the features extracted
from to the accelerometer and gyroscope (i.e., FAcCGy),
because this configuration can provide the best trade-off
between classification accuracy and energy-consumption,
as previously shown in Table III. Beside cascading, sev-
eral techniques have been proposed to combine learners in
parallel or through multi-stages, and thus, it is worth inves-
tigating which approach can be suitable for our domain. To
this aim, Table VI reports the overall accuracy of five dif-
ferent multi-learner techniques, built over the set K of base
learners, that is:

� Cascading: This refers to Algorithm 1, where the
threshold � is set to 97.5%.

� Boosting(AdaBoost) [63]: Similar to the previous
case, the learners are ordered on the basis of their
complexity, and trained incrementally. However, no

Table VI. Accuracy of different multi-learner algorithms.

Algorithm Accuracy (%) Time (%) Time (%)

(Building) (Classification)

Cascading 87.94 100 100
Bagging 87.93 648 289
Boosting 87.45 587 312
Voting 85.88 173 106
Stacking 84.39 1146 103

Table IV. Confusion matrix (Random Forest, FAcCGy ).

Real/Predicted Still Walk Car Train Bike CityBus NatBus

Still 100 0 0 0 0 0 0
Walk 0 81.9 0.9 14.5 1.8 0.6 0.3
Car 0 1.1 95.5 3.7 0.2 0.2 0.1
Train 0 1.9 7.5 87.1 0.5 1.5 1.4
Bike 0 2.6 1.3 5.4 80.9 6.5 3.2
CityBus 0 0 0.5 2.4 5.6 89.8 1.6
NatBus 0 0.1 2.8 10.1 7.2 10.2 69.4

Table V. Confusion Matrix (Random Forest, FGps).

Real/Predicted Still Walk Car Train Bike CityBus NatBus

Still 99.6 0.2 0 0 0 0 0.2
Walk 0.1 91.8 0 0 0.1 2.7 5.3
Car 0 0 65.6 13.1 11.8 0 9.5
Train 0 0 13.2 66.5 12.1 0.1 8.1
Bike 5.1 0 2.1 2.2 89.7 5.1 0.9
CityBus 0 0.8 0 0 3.3 95.6 0.3
NatBus 0.4 4.7 3.4 1.9 4 6.9 78.7
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confidence metric is defined (Equation 4), and liC1 is
trained only on the wrong classifications of li.

� Voting [64]: In this case, all the learners are executed,
and the final output is computed as the average of
individual predictions.

� Stacking [65]: Like the previous case, all the learners
are executed, but the individual outputs are combined
according to a nonlinear function whose parameters
are also learnt by the algorithm.

� Bagging [66]: Like the previous case, all the learners
are executed, but they are trained on slightly dif-
ferent training sets, which are built through random
replacements from a common set of instances.

From Table VI, we can deduce that the cascading
approach provides the best performance in terms of clas-
sification accuracy, because each learner decides only for
the patterns for which it is confident. As a result, complex
patterns (as those associated to the mBk mode, for instance)
are classified by costlier learners, while simple patterns can
be identified by quicker learners. Also, the cascading tech-
nique is highly efficient from the computational side, as
indicated by the average values of model building and clas-
sification time. Results shown are normalized with respect
to the cascading time (�=100%). Not surprisingly, cascad-
ing provides the lowest average classification time, because
on some instances, only a subset of the K learners might be
used, while the other techniques require to execute all the
K base learners on each instance. The same benefits can be
also appreciated in terms of model building time, because
each learner is built on a subset of the training set.

In the following, we demonstrate another characteris-
tic of the Algorithm 1, which makes it suitable for a
mobile application deployment, that is, the possibility to
control the load produced by the classification process on
the basis of the available computational resources. To this
purpose, Figure 5(a) shows the overall accuracy of the cas-
cading algorithm when varying the threshold � , that is, the
minimum confidence required. We do not plot confidence

thresholds below 90%, because there is a high probability
that the first algorithm of the cascade (i.e., the BN) would
be confident on that specific samples; thus, the accuracy
would be equal to the BN algorithm alone (i.e., 77.87%).
Increasing � translates into higher accuracy, because pat-
tern classification is performed through costlier and more
accurate algorithms (i.e., the RF). We can think to � in
a double way: as (i) a user-defined parameter, which can
be tuned to limit the energy consumption involved by the
mobile application or as (ii) a configuration parameter,
which is automatically tuned by the system on the basis
of the hardware characteristics of the device. Moreover,
in Figure 5(a), we also plot the accuracy of the RF algo-
rithm over the same sensors data (FAcCGy). No confidence
threshold is used by the RF, and thus, all the bars refer
to the same value. It is interesting to notice that, when
requiring the maximum confidence (i.e., � D 100%), the
cascading algorithm provides higher accuracy than the best
base learner (i.e., the RF) , thus demonstrating the benefits
of combining multiple learners with a multi-stage training
technique. Also, Figure 5(a) shows that our approach can
provide accuracy values comparable with the configuration
used in [21] including also the GPS (i.e., FAcCGps), but
with a significant reduction of the energy consumption. In
Figures 5(b) and 6, we provide further insights on the scal-
ability of Algorithm 1. More specifically, in Figure 5(b),
we report the average detection time required by the cas-
cading algorithm, as a function of the threshold � . While
model building time does not depend on � , detection time
increases with � , because costlier learners are more heav-
ily involved in the classification. This is clearly shown by
Figure 6, where we show the percentage of classifications
performed by each learner, as a function of the threshold
� . On the same instance, multiple learners can be executed
at different stages, based on the requested confidence. This
explain why the classification time of cascading exceeds
the performance of the RF for � � 95%.

For sake of completeness, we report in Table VII the
confusion matrix of the cascading algorithm for a threshold

Figure 5. The accuracy of Algorithm 1 as a function of the confidence threshold � is shown in Figure 5(a). The average detection
time of Algorithm 1 as a function of � is shown in Figure 5(b).
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Table VII. Confusion matrix (algorithm 1, FAcCGy ).

Real/predicted Still Walk Car Train Bike CityBus NatBus

Still 89.4 0 5 5.6 0 0 0
Walk 0 91.5 1.1 4.1 1.9 1 0.3
Car 0.5 0. 89.1 9.7 0.1 0.2 0.2
Train 0.2 2.7 7.8 87.5 1.1 0.1 0.3
Bike 0 3.2 1.8 6.2 80.6 3.6 4.4
CityBus 0 0.1 1.4 3.3 5.6 85 3.6
NatBus 0 0.6 2.8 4.2 3.8 4.3 84
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Figure 6. Percentage of instances classified by each base
learner, as a function of the confidence threshold � .

� equal to 0.975. By comparing results later with those
contained in Table IV (i.e., the confusion matrix of the
RF algorithm), we can notice that differences among
transportation modes are reduced, that is, there is no
clear distinction among motorized/non-motorized modes
and that the accuracy is higher than 80% for all the
evaluated modes.

5.3. Analysis of methodologies and
parameters for training

In supervised learning, how to build and populate the train-
ing set constitutes a fundamental issue affecting the system
performance. In the evaluation conducted so far, a mobile
data crowd-sourcing [7] approach is assumed, that is, the
training set is produced by aggregating sensors data from
different sources (people/devices). This is mainly moti-
vated by issues of generality, because we were interested in
investigating the performance of the transportation mode
recognition systems without assuming any specific target
device and any specific habit from the end-users. How-
ever, implementing a data crowdsourcing technique poses
several problems [7], both in terms of data acquisition
(i.e., how to protect the users’ anonymity and privacy?)
and management (a centralized infrastructure is needed).
As an alternative, training can be performed locally, by
using the sensors data collected by each end-user on its
mobile device.
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Figure 7. Data acquisition approaches: Individual versus Mobile-
crowdsourcing.

In Figure 7, we compare these two alternatives of train-
ing set creation, when we vary the learner used for the
classification. Figure 8 presents instead the same data,
but sketched for every user rather than averaged. For the
individual training, we consider the accuracy experienced
by each of the eight participants to our experiments, and
we plot the average. Surprisingly, the individual training
provides performance equal or slight better than a crowd-
sourcing approach, mainly because of the ability to track
the user habits, such as the way to carry the smartphone
while he is driving or is on the train. We highlight the rel-
evance of this result, because it justifies the possibility to
implement a transportation mode recognition system as a
stand-alone mobile application, solving the data anonymity
challenge mentioned before, and greatly simplifying the
system deployment. However, we also note that it would be
possible to distribute the application with anonymous data
coming from different sources, thus requiring no specific
training in the beginning. Individual training would then by
an option that each user would decide whether to perform
or not, based on his/her satisfaction with the classification
of the transportation modes.

Other two important parameters influencing the training
phase are the time-sequence length (T) and the sampling
rate r, introduced in Section 4. In Figure 9(a), we show the
overall accuracy as a function of the time-sequence length
T (on the x-axis) used to collect the data. On the x-axis,
we plot the training frequency; on the y-axis the accu-
racy, and the different bars represent different sampling
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Figure 8. Data acquisition approaches: Individual versus Mobile-crowdsourcing per single user.
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Figure 9. The accuracy of Algorithm 1 computed over differ-
ent sequence lengths (T ) and for different sampling rates (r) is

shown in Figure 9(a) and (b), respectively.

frequencies. From this result, it is easy to notice that this
parameter can affect overall accuracy because (i) too short
sampling windows do not allow to capture the distinctive
features of a transportation mode and (ii) too long sampling
windows can produce classification errors among trans-
portation modes with similar features. In Figure 9(b), we
show the impact of the sensing sampling rate r on the over-
all detection accuracy. More specifically in Figure 9(b),
we plot the accuracy when classifying samples at a given
rate r, using a varying training data-set, performed at dif-
ferent sampling frequencies. The results in Figure 9(b)
show that (i) optimal accuracy can be achieved when train-
ing and predicting rates are the same, (ii) on average, the
detection accuracy tends to increase in under-sampling
conditions (i.e., prediction rate lower than the training
rate) and to decrease in over-sampling conditions (i.e., pre-
diction rate higher than the training rate), and (iii) high
frequency sampling does not provide significant perfor-
mance improvements, that is, the accuracy of the classifier
is almost independent by the training rate, at the conditions
of using the same prediction rate.

6. IMPLEMENTATION

After having investigated the performance of a transporta-
tion mode recognition system based on a multi-learner
approach, we implemented it into a mobile application for
the Android ‡ platform. Figure 10 shows the architecture
of our framework, called WAID (What Am I Doing).

The WAID framework can run in foreground or in back-
ground as an Android Service and supports two different

‡Target version is Android 2.3.3 or later.
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Figure 10. The What Am I Doing framework architecture. RF, Random Forest; RT, Random Tree; BN, Bayesian Network; DT,
Decision Table.

modes: Training and Predicting. In the Training mode,
the application asks the user to indicate the current trans-
portation mode and starts collecting samples from the
accelerometer/gyroscope at a fixed rate r (see the screen-
shot in Figure 12(a)). Every T seconds, the Feature Extrac-
tor module computes the features defined in Section 4.2
from each sensors data (i.e., min.s, k/, max.s, k/, avg.s, k/,
std.s, k/) and stores them on a Training Set repository,
implemented as an SQLite database. Both the sampling
rate r and the observation window length T (set to 10 Hz
and 10 s by default) can be tuned by the user through the
graphical interface. Once the user stops the data acquisi-
tion, the Model Builder executes WEKA [58] to generate
the models of the four base learners (i.e., RF, RT, DT, and
BN) from the Training Set, based on the training algo-
rithm defined in Section 4.3. The model of Cascading is
then generated according to Algorithm 1. In the Predicting
Mode, the application recalls the Feature Extractor mod-
ules (as in Training mode) to extract the features from
sensors data relative to the current time sequence t and then
executes the Predictor module, which produces in output
the estimated transportation mode at time t, that is, m0.t/.
The Predictor Module is based on the Cascading algo-
rithm but also includes an additional mechanism (i.e., the
History module, explained in Section 6.1, with h set to 5
in our implementation) to reduce the occurrence of mis-
classification errors on time-series. Figure 12(b) shows a
screenshot of the WAID user interface in Predicting mode,
where the m0.t/ values are plotted to the screen. More-
over, these values are also exported into a Content Provider,
which represents an Android facility to share data among
different processes/applications. As a result of this choice,
other Android applications can be built on top of the WAID

framework and can leverage the information about the
current transportation mode for enhanced context-aware
experiences. Because the data sharing process is imple-
mented through a standard interface of Content Providers,
the external applications do not need to know the imple-
mentation details of WAID in order to access and consume
the m0.t/ data. In Section 6.2, we provide details of a sam-
ple application (i.e., the Device Adapter) that has been built
on top of the WAID framework.

6.1. Predictor module

In Predicting mode, the classification algorithm used by
WAID relies on the output of Algorithm 1, with a thresh-
old set to � D 100. At each time sequence t, features
are extracted from sensors data (i.e., FAcCGy), and the
algorithm is executed to produce a new classification mt.
However, treating each classification response in isolation
without considering possible time correlations might lead
to bizarre sequences like: mC

t , mC
tC1, mT

tC2, mC
tC3, mC

tC4,
which is clearly wrong, because the user cannot intermit-
tently change its transportation mode in a short observation
window.

We adopted a similar approach to [20], that is. we
considered the time-correlation among consecutive classi-
fications through the History Module of Figure 10. This
component keeps track of the latest h classifications per-
formed by Algorithm 1 and stores them into an history-set
H, that is:

H D fmt�h�1, mt�hC1, ...mt�1g (5)
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(a) Training mode (b) Predicting mode (c) Device Adapter

Figure 12. The screenshots of the What Am I Doing framework in Training Mode and Predicting Mode are shown in Figure 12(a) and
(b), respectively. The Device Adapter interface is shown in Figure 12(c).

Figure 11. Impact of history length (h).

Once a new classification m.t/ is performed by the Cas-
cading algorithm, it is inserted into the history-set H, and
the mt�h�1 value is removed, so that the sliding window
is adjusted properly. At the same time, a reference answer
m0.t/ is computed as the transportation mode having more
occurrences in H. Then, m0.t/ is returned to the user and
placed into the Content Provider. We highlight here that
m0.t/ might be different than m.t/, that is, the History
Module might correct the current classification on the basis
on the past values. As a result, fluctuating sequences like
the one previously described are more unlikely to occur.

An important parameter of the History Module is h,
that is, the history size. Indeed, short values of h might
still induce classification errors because of random fluctu-
ations, while long values of h might impact the reactivity

of the application in tracking effective transportation mode
changes. This trade-off is captured by Figure 11, where
we show the accuracy of Algorithm 1 for different val-
ues of h. We consider a realistic scenario in which the
user dynamically changes its transportation mode during
the experiment (i.e., from mW to mC), and we depict the
average detection accuracy of Algorithm 1 over the whole
length of the experiment and the average accuracy during
the mode switch §. As expected, Figure 11 demonstrates
that the configuration with the longest value of h mini-
mizes the occurrences of classification errors (on average).
At the same time, it is easy to see that shorter values of h
provide higher accuracy in proximity of the transportation
mode switch.

We highlight here that there exist a trade-off to detect
transitions. If one wants to be more responsive to transi-
tions from one action to another, the he/she would set a
low h values, to give more importance to the new values
over the old ones. However, this might induce classifica-
tion errors, as also shown in Figure 11. Inversely, if the
user wants to be more confident on the classification, at
the expense of a slower reaction to transitions, then he/she
would set a higher h value. This would need a higher
number of classified action after the transition to actu-
ally detect it but clearly generates less classification errors,
as Figure 11 shows. We note that no magical value does
exist, because the h value of the history might be different
according to the user wanted application behavior.

§In practice, we computed the average accuracy over the next five

predictions following the mode switch.
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6.2. Transportation mode-aware
applications

Transportation mode information provided by the WAID
framework can enhance the context awareness of mobile
applications in lots of possible domains, as discussed in
Section 2.1. Because the information is exported through
a Content Provider, new applications can be deployed on
top of WAID framework. To provide a proof-of-concept,
we deployed another Android application, called Device
Adapter, through which the user can customize the con-
figuration of its smartphone based on the detected trans-
portation mode. The application comprises a classification
model based on anonymous data from the crowd, which
can be further specialized by each user. More specifically,
this application allows the user to define a profile associ-
ated to each transportation mode. A profile is constituted
by a list of preferences about the ring-tone state (e.g.,
volumes of ring-tones, vibration on/off) and/or about the
network interfaces’ state (e.g., Wi-Fi on/off). An example
of profile associated to mT (train mode) might be 3G data
network: off, vibration: on, ring-tones: off. Figure 12(c)
shows the screenshot of the application where the user is
associating a profile to a mode. Once such mode is detected
by WAID, the Device Adapter is notified through the Con-
tent Provider, and the device configuration is adjusted
according to the profile.

7. CONCLUSIONS

In this paper, we have addressed the problem of how to
automatically recognize the current transportation mode of
an user from its smartphone sensors data. We have dis-
cussed possible use-cases of a recognition system, and the
challenges for its practical deployment on a mobile device.
Through participatory measurements, we have built a train-
ing set, which has been used to evaluate different classifi-
cation algorithms and features’ sets. From the evaluation
results, we have found that a combined multi-stage learner
using the embedded sensors (accelerometer/gyroscope)
data can provide reasonably high accuracy for differ-
ent class of motorized and non-motorized transportation
modes and can prolong the energy lifetime of the device
when compared with a GPS-based classifier. Finally, we
have proposed the implementation of our recognition sys-
tem into an Android framework, and we have detailed the
software architecture and the possible integrations with
other third-part Android applications. Although our sys-
tem guarantees reasonably accuracy in detecting several
classes of transportation modes (seven classes tested in our
analysis), there are several research issues that might be
further explored and that we are currently investigating.
One of this issue is intrinsically related to the utilization of
supervised machine-learning techniques, that is, the need
of an extensive and accurate training phase. In our case,
training is fundamental, because the accuracy of the clas-
sification depends on the amount of data available for each

transportation mode, and by the noise affecting the regis-
trations (for instance, an user can stop several times while
walking or might change the orientation/position of the
devices during the experiments). Because training requires
an explicit feedback from the end-user, it might constitute
a practical limitation to the usage of the WAID frame-
work. For these reasons, we are considering the possibility
to equip the WAID application with a pre-defined training
set, which might eventually be extended by each end-user
through the Training mode of the WAID application. We
are currently evaluating the accuracy of this solution on
a real scenario. Another potential issue (pointed out also
in Section 5.1) is that the proposed system might fail in
distinguishing transportation modes where human activity
is prevalent (i.e., walking or biking), while the combined
utilization of GPS traces might help in correctly classify-
ing these cases. For this reason, we are currently studying
duty-cycle techniques to dynamically turn on/off the GPS
receiver, which – combined with rate-adaptive sampling
algorithms for the embedded sensors – might guaran-
tee high classification accuracy over all the transportation
modes considered so far, while producing a limited impact
on the energy consumption of the device.
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