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Abstract— Time synchronization is essential for several
ad-hoc network protocols and applications, such as TDMA
scheduling and data aggregation. In this paper, we propose
a time synchronization framework for clustered, multi-hop
sensor networks. We assume that relative node synchro-
nization is sufficient, i.e., consensus on one time value is not
required. Our goal is to divide the network into connected
synchronization regions (nodes within 2-hops) and perform
inter-regional synchronization in O(LLSync)×Niter time,
where O(LLSync) denotes the complexity of the under-
lying low-level synchronization technique (used for single
hop synchronization), and Niter denotes the number of
iterations where the low-level synchronization protocol is
invoked. Thus, our main objective israpid convergence. We
propose novel fully-distributed protocols, SYNC-IN and
SYNC-NET, for regional and network synchronization,
respectively, and prove thatNiter is O(1) for all protocols.
Our framework does not require any special node capabil-
ities (e.g., being GPS-enabled), or the presence of reference
nodes in the network. Our framework is also independent
of the particular clustering, inter-cluster routing, and l ow-
level synchronization protocols. We formulate a density
model for analyzing inter-regional synchronization, and
evaluate our protocols via extensive simulations.

I. I NTRODUCTION

Time synchronization is critical for several ad-hoc
and sensor network applications. Data aggregation
in sensor networks requires timestamps to com-
bine events occurring within specified time frames.
Applications that exploit caching need timestamps
to avoid adding stale (or duplicate) information to
the cache tables. Time Division Multiple Access
(TDMA) scheduling requires accurate knowledge
of time lags and continuous synchronization among

– This research has been sponsored in part by NSF grant ANI-
0238294 (CAREER).

participating nodes to avoid interference. Time syn-
chronization is also essential for coordinating the
sleep and wakeup schedules (duty cycles) of sen-
sors.Several cryptography schemes for ad-hoc net-
works also require that timestamps be included as
part of the digital signature, e.g., inµTESLA [1].

Time synchronization in sensor networks faces
unique challenges, most importantly (i) energy-
scarcity, (ii) hardware cost, and (iii) dense sen-
sor deployment. The foremost challenge is energy-
scarcity, which renders the use of energy-consuming
devices, such as Global Positioning Systems (GPS),
uneconomical (a GPS-enabled node synchronizes its
clock with a satellite). Energy-efficiency also dic-
tates using low overhead protocols, which may trade
off accuracy for reduced message exchange. An-
other challenge is the high cost of adding hardware
devices for clock synchronization (such as GPS).
The efficacy of approaches such as [2] depends on
the distribution of the reference nodes in the net-
work. In addition, in environments with malicious
users, attacks can target such highly equipped ref-
erence nodes. Finally, dense deployment of sensor
nodes necessitates the design of scalable solutions.

A. Synchronization Approaches

Network time synchronization can be classified
as low-level synchronization or high-level synchro-
nization (that uses low-level methods). High-level
synchronization gives methods for an entire multi-
hop network to be synchronized [3], [4], [5], [2], re-
gardless of the underlying protocol used to synchro-
nize the clocks. Low-level synchronization involves
synchronizing two or more clocks [2], [6], [7], [8],
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[5]. Low-level synchronization can be further classi-
fied into sender-receiver (SR) and receiver-receiver
(RR) approaches. In SR approaches, e.g., [2], a
receiver adjusts its clock according to the timestamp
of a reference node. In RR approaches, e.g., [6], [9],
receivers within 1 hop use a number of synchroniza-
tion pulses initiated by a “synchronization initiator”
to synchronize among themselves. The received
pulses are timestamped at every reachable sensor,
and these timestamps are exchanged. Every sensor
(other than the initiator) can thus compute the time
offset and clock skewness with every other sensor
in this single-hop region. Fig. 1 depicts a single-
hop (i.e., 1-hop) region synchronization using [6],
where an initiator sends synchronization pulses in
step 1 and nodesv1, v2, v3, and v4 exchange the
timestamps in step 2.

2

v4

v3

v2

v1
2

1
1

1

2

initiator (sender)
Synchronization

2
Exchanged

pulses (step 1)

Synchronization

timestamps (step 2)1

2

Fig. 1. Receiver-receiver time synchronization.

RR synchronization has two primary advantages:
(1) it does not require the presence of GPS-enabled
nodes in the network to act as reference nodes, and
(2) it gives higher accuracy than SR approaches if
timestamping is not possible at the MAC layer. Even
if MAC layer timestamping is possible, it is not
preferable for a node to follow the clock of another
node which does not have a reference clock. For
these reasons, we use RR synchronization for low-
level synchronization in our work.

B. Application Scenarios

Sensor network applications also have differ-
ent synchronization requirements according to their
traffic patterns. Consider an application where the
sensors send timestamped measurements of field
temperature to a number of observers. Assume an
observer queries the network for temperatures ex-
ceeding 150 degrees. An SQL-like query will be in
the form:SELECT TimeTi, TemperatureTe FROM
SENSORS S WHERETe > 150. The query may be
pre-defined, or a sensor may possess simple query
processing capabilities [10]. Two cases may arise:

(1) the network is lightly-loaded, i.e., the expected
number of replies is small. For energy-efficiency,
reactive routing techniques, e.g., Directed Diffu-
sion [10], are used to construct paths between the
observer and the responding nodes. Thus, synchro-
nization on the routing paths is sufficient to handle
possible data aggregation, and (2) the network is
heavily-loaded, e.g., in data streaming applications.
The observer divides the data stream into time
frames (windows) according to their source times-
tamps for further analysis. In-network aggregation
may be performed using a query processor or sim-
ple aggregation operations for pre-defined queries.
Therefore, routing paths in the entire network must
be pro-actively synchronized. This second case is
the primary focus of our work.

Prior approaches have not consideredrapid con-
vergenceof multi-hop network synchronization, es-
pecially when observers may query the network
from various locations. The presence of multiple
mobile unsynchronized observers necessitates sep-
arating sensor synchronization from the observers,
since multiple (possibly different) reference times-
tamps may be available.

C. Our Contributions

In this work, we propose a novel framework for
high-level time synchronization in clustered, multi-
hop sensor networks. Clustering is typically used
in applications to facilitate data aggregation and
reduce the communication overhead (data aggre-
gation applications typically require timestamping
as mentioned above). We will consider the more
challenging scenario of using a RR low-level syn-
chronization approach, since it providesfine-grained
synchronization and doesnot assume the presence
of any specially-equipped reference nodes in the
network. In contrast to prior work, our primary goal
is to achieverapid network synchronization(i.e.,
in only Niter = O(1) iterations). In addition, our
proposed techniques have low message overhead,
which is essential for energy-efficiency.

It is important to note that, although node clus-
tering facilitates collaboration for aggregating data
and reducing communication overhead, it doesnot
solve the network synchronization problem. To the
best of our knowledge, our proposed framework for
high-level time synchronization is unique in accom-
plishing rapid multi-hop network synchronization
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(without reference nodes in the network). Our goal
is end-to-end synchronization ofcommunicating
nodes, and not common time consensus amongall
network nodes. Our synchronization framework is
independent of the particular clustering, routing, and
low-level synchronization protocols.

The rest of the paper is organized as follows.
Section II briefly surveys related work. Section III
defines the problem and objectives. Section IV gives
the design rationale and synchronization algorithms.
Section V evaluates the proposed algorithms via
simulations. Finally, Section VI concludes our work.

II. RELATED WORK

Several protocols have been proposed for network
time synchronization. The Reference-Broadcast
Synchronization (RBS) [6] is alow-level RR pro-
tocol that computes therelative clock skewness
between two neighbors. CesiumSpray [8] also uses
RR synchronization and applies a GPS-based hi-
erarchical structure to achieve scalable synchro-
nization. Romer’s synchronization mechanism [5]
for ad-hoc networks assumes uni-directional links
and achieves 1 ms accuracy. Recent work [11]
extends Romer’s mechanism for higher synchro-
nization accuracy. Cristian [12] proposes a proba-
bilistic approach where synchronization is achieved
by sending multiple packets until the error is bound
by a pre-defined constant. The Timing-sync Pro-
tocol for Sensor Networks (TPSN) [2] and Ping’s
technique [7] use SR synchronization to achieve
high accuracy,assumingthat timestamping can be
done at the MAC layer. The Automatic Self-time
Correcting Procedure (ASP) [13] assigns higher
probability to nodes with faster clocks to act as
beacons. The Lightweight Time Synchronization
protocol (LTS) [9] uses a simple RR mechanism,
where only 3 packets are exchanged. Biaz and
Welch [14] proved that the lower bound on the
achievable synchronization under uncertainties in an
arbitrary graph is equal to half the graph diameter.

Several protocols were proposed forhigh-level
synchronization. Lamport [15] introduced the no-
tion of virtual clocks for event ordering. The post-
facto synchronization mechanism [4] was proposed
for systems where events do not occur too often,
and thus synchronization is performed only when
necessary. A high-level synchronization technique
was proposed in [2] (which we refer to as multi-
hop TPSN) to build a tree hierarchy using message

flooding. In [6], high-level synchronization (which
we refer to as multi-hop RBS) is achieved by
assuming that intersecting regions have nodes that
perform inter-regional synchronization. The multi-
hop LTS protocol [9] constructs a spanning tree and
synchronizes only among neighboring tree levels.
The FTSP protocol [16] exploits message flooding,
MAC layer timestamping, and clock skew estima-
tion to improve the achieved accuracy over RBS and
TPSN. Li and Rus [3] assume that all network nodes
need to agree on a clock value, which is different
from our goal. Their distributed (diffusion-based)
approach requires a time complexity that islinear
in the number of nodes. In [17], we classify the
key research in time synchronization in ad-hoc and
sensor networks according to goals and approach.

Clustering ad-hoc networks has been employed
for efficient routing, increasing network capacity,
supporting data aggregation, and prolonging net-
work lifetime. The reader is referred to [18] for a
classification of recent clustering protocols and their
deployment challenges.

III. PROBLEM DEFINITION

In this section, we define new terms and func-
tions that will be used throughout this paper, and
formulate our problem.

Definition 1: For any two nodesu and v, the
function SYNC(u,v) = 1 if v is synchronized with
u; and SYNC(u,v) = 0 otherwise. SYNC(u,v) is
transitive, i.e., if SYNC(u,v) = 1 and SYNC(v,w)
= 1, then SYNC(u,w) = 1.

Definition 2: Nodes u and v are said to be
relatively synchronizedif one of them (or both) is
aware of the difference|clock(u)− clock(v)|. This
type of synchronization is asymmetric.

Definition 3: A strictly synchronized path
P (v1, v|P |) is an ordered set of nodes between
a source v1 and a destinationv|P |, such that
SYNC(v1, v|P |) = 1 if |P | = 2; otherwise∀vi ∈ P ,
SYNC(vi−1, vi) = SYNC(vi, vi+1) = 1, where
1 < i < |P |.

Definition 4: A loosely synchronized path
P (v1, v|P |) is an ordered set of nodes between
a source v1 and a destinationv|P |, such that
either SYNC(v1, v|P |) = 1, if |P | = 2, or
∃i, j : 1 < i, j < |P |, such thatvi, vj ∈ P (v1, v|P |),
j ≥ i, SYNC(v1, vi) = 1, SYNC(vj, v|P |) = 1, and
the pathP (vi, vj) is loosely synchronized.
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In other words, a strictly synchronized path is
one in which every two adjacent nodes on the path
are synchronized. On the other hand, a loosely
synchronized path is one in which not every two
adjacent nodes on the path are synchronized. Loose
synchronization requires that a node on the path
is synchronized with the source and another node
on the path is synchronized with the receiver, and
the path among these two nodes is loosely synchro-
nized. For example, in a military field, a soldier may
ask if and when any node has sensed a moving tank.
One or more nodes (senders) can reply positively
and report their timestamps. The soldier should be
able to interpret these timestamps according to his
clock, regardless of whetherall the nodes on each
path from a sender to the soldier are synchronized.
However, if data aggregation occurs on different
paths to the soldier, then strict path synchronization
is required. Fig. 2 gives an example of strictly versus
loosely synchronized paths. Our main focus in this
work is on strict synchronization since. In [17], we
exploit loose synchronization to synchronize a path
in a lightly-loaded network.
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Fig. 2. An example of strictly versus loosely synchronized paths

A. System Model

Assume thatn sensors are randomly and in-
dependently dispersed in a field. We assume the
nodes are quasi-stationary and links are symmetric,
but do not assume any infrastructure support. Each
node is assumed to have a unique identifier and its
transmission power can be tuned (as in Berkeley
motes). Nodes are left unattended after deployment
and are location unaware. We assume that the sensor
radio has an omni-directional antenna that covers
a circular range. This range is smaller than the
theoretical range to account for signal fading and
irregularities [19].

We assume that the network is clustered (e.g.,
for data aggregation purposes) using distributed

protocols that do not require knowledge of node
locations, such as [20]. A node affiliates itself with
only one cluster. Clusters can be of different sizes
(number of nodes). We assume that the applica-
tion selects a power level, which corresponds to a
cluster rangeRc, for cluster formation and intra-
cluster communication, and reserves a higher level
corresponding to rangeRt (Rt > Rc) for inter-
cluster communication. The selection of the best
cluster power level is beyond the scope of this
work. Our main concern is that the cluster head
overlay (i.e., the network of CHs) is connected.
This can be achieved if the relation between the
number of nodes in this overlay,n0, and the inter-
cluster transmission rangeRt satisfies the connec-
tivity conditions specified in [21]. That is, assuming
that a node is active with probabilityp, the necessary
condition for connectivity and coverage is thatR2

t ≥
c log n0

p n0

, where c = 1

πβ2 , and β ≤ 0.5 (this is a
generalization of the result in [22]).

We make two assumptions related to the synchro-
nization process: (1) any two neighboring nodes can
be synchronized inO(1) time, which we calldirect
synchronization. This is reasonable since two nodes
can typically be synchronized by exchanging a fixed
number of messages and averaging the delay [12];
and (2) a synchronization initiator node (one that
generates synchronization pulses) can synchronize
its neighbors, but will not be synchronized with
them (as in RR low-level synchronization, e.g.,
RBS [6]).

B. Goals

The goal of this work is to provide a framework
for time synchronization in clustered networks with
complexityNiter ×O(LLSync), whereNiter is the
number of iterations in which a low-level synchro-
nization protocol of complexityO(LLSync) is in-
voked. We consider relative synchronization, which
is sufficient for most sensor networking applica-
tions. Our framework will provide mechanisms for
synchronizing a 2-hop region or the entire network.
We define a 2-hopregion R in the network as
follows. Any two nodesu, v ∈ R can reach each
other in either: (1) one hop, or (2) two hops through
a nodew, such thatw ∈ R. We design mechanisms
to support the following requirements:

1) Regional (intra-cluster) synchronization:
Assume that∃ a nodew ∈ R, such that∀v ∈
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R, distance(v, w)=1. Then, SYNC(v, w)=1 (R
is a region in the network).

2) Relative network synchronization: For a
multi-hop network with a setV of nodes,∃
at least one strictly synchronized routing path
P from anyvi ∈ V to the observer(s) (vi can
be a cluster head (CH) or a non-cluster head).

Relative synchronization means that one node’s
clock does not have to follow the clock of another
node. However, adjacent nodes know the time differ-
ences among them. This helps a nodev to interpret
the timestamp associated with an event reported by a
neighboring nodeu before forwardingu’s message
to the observer. Since our approach enforces relative
synchronization between every pair of neighboring
nodes, the network is globally synchronized.Our
focus is thus on rapid relative synchronization to the
best that the underlying low-level synchronization
mechanism can provide.

IV. A T IME SYNCHRONIZATION FRAMEWORK

In lightly loaded networks, synchronization can
be performed “reactively”. In contrast, network
synchronization must be periodically performed in
heavily-loaded networks because queries do not
follow a distinct locality pattern. This type of syn-
chronization is “pro-active” (we borrow these terms
from the routing literature). Data-driven networks
can typically exploit locality of requests more than
source-driven networks, unless the observer is mo-
bile and its location significantly changes between
the issuance of queries.

The notion of a “region”, where single-hop com-
munication is possible between every pair of nodes,
is central to many synchronization protocols. For
example, in [6] the network is assumed to be
divided into regions. The protocol relies on nodes
in region intersection areas to propagate synchro-
nization information as data is forwarded. Consider
the scenario in Fig. 3 where the application of RBS
may fail. In this scenario, the network is divided
into three regions around nodes A, B, and C. These
regions have no nodes in the intersection areas.
Therefore, a packet sent from node 1 to node 8
will not find a synchronized path, although this
would have been possible if nodes 2, 5, and 7
were the synchronization initiators. Therefore, the
network must be organized such that regions are
clearly defined and inter-regional communication is
possible, even if regions are non-intersecting.
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3
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Fig. 3. Failure to find inter-regional synchronized paths

Grid network organization (by node clustering)
and intelligent communication power level selec-
tion can alleviate the above problem. In a clus-
tered network, a number of nodes act as CHs
and communicate with their cluster members, their
neighboring CHs, and any close-by observer(s). For
node synchronization, clustering can play an impor-
tant role in: (1) defining synchronizationregions
to be clusters; (2) selecting the synchronization
initiators in the network (e.g., to be the CHs); (3)
adapting to application requirements by expanding
or contracting the synchronization regions (cluster
sizes); (4) synchronizing 2-hop neighbors through
CHs; and (5) enabling scalable and efficient multi-
hop synchronization by synchronizing each cluster
independently and only relying on the cluster head
overlay for synchronizing the network and propa-
gating time information.

A. Intra-cluster Synchronization (SYNC-IN)

For intra-cluster synchronization, all nodes within
a cluster need to be synchronized with the cluster
head. Fig. 4 gives the pseudo-code for the intra-
cluster synchronization algorithm executed at each
CH. Let setS hold cluster members that are already
synchronized with CH and setVc hold all cluster
members. CH randomly elects an unsynchronized
cluster memberu to act as an initiator (line 3). If
u has any neighborv that is not inS, it initiates
RR synchronization to synchronizev with CH (line
9). Otherwise,u synchronizes itself directly with
CH (line 6). The “Synchronize” function (line 6)
can use techniques in [12] to directly synchronize
the last initiator with CH. Any newly synchronized
node with CH is added toS. CH repeats the same
process until all the nodes subscribed to its cluster
are synchronized with it. Since this is an intra-
cluster operation pulses (messages) for intra-cluster
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// Let S = φ, Cluster = C, Cluster head = CH
// Range is given as an input parameter
1. Vc ← {v : v ∈ C, v 6= CH}
2. WHILE |S| < |Vc|
3. Pick u ∈ (Vc − S) as synchronization initiator
4. SendS to u

5. IF (6 ∃v ∈ S, s.t. v ∈ neighbor(u) andv 6= CH)
6. Synchronize(u, CH) // last node
7. S ← S ∪ {u}
8. ELSE
9. RR synchronization with initiatoru
10. S ← S ∪ {v: SYNC(v,CH) = 1}

Fig. 4. SYNC-IN: Intra-cluster Synchronization Algorithm

synchronization are sent using the power level used
for intra-cluster communication.

The best synchronization initiator to select is the
node closest to the CH because it is likely able to
cover most of the nodes in the cluster using range
Rc. A CH can maintain lists of neighbors using each
of its available power levels, so that neighbors in
the smallest level are identified as closest. If the CH
cannot deduce the proximity of its cluster members,
random selection can be employed.

Correctness: It is easy to see that when the
SYNC-IN algorithm terminates, all nodes in the
cluster are synchronized with the cluster head,CH.
Assume thatSi and Si+1 are the sets of nodes
synchronized withCH at the beginning of iterations
i and i + 1, respectively. At iterationi, CH picks
a nodeu 6∈ Si to act as a synchronization initia-
tor. This results in at least one new synchronized
node(s) that was not inSi. Thus,|Si+1| > |Si|. The
algorithm only terminates when|S| = |Vc|.

Proposition 1: The SYNC-IN algorithm termi-
nates inNiter = O(1) iterations, where an iteration
is O(LLSync) time.

Proof. The number of iterations depends on the
part of the cluster that is covered each time a node is
elected to act as an initiator. A worst case scenario
is demonstrated in Fig. 5 where the elected nodes
are very close to the boundary of the cluster, i.e.,
on the perimeter of the virtual transmission circle
of the cluster head.

Assuming that the cluster circle has a perimeter
p, the length of the arc covered in circleCH by
circle A is p/3. In the worst case, the next elected
nodeB is also on the perimeter ofCH andA. This

node
sensor

cluster A’s range

Cluster

B’s range

A

range

CH g

Rc

Rc/2

B

Fig. 5. Worst case scenario for electing initiators to perform intra-
cluster synchronization

covers another arc ofCH of lengthπ/3. We can add
at most three other nodes on the perimeter ofCH
to cover the entire area ofCH. Therefore, SYNC-
IN requires at most 5 iterations to visit all “non-
initiator” nodes and at most another 5 iterations to
visit each of the initiators again (we will validate
this result in Section V). An “iteration” in this
context denotes a low-level synchronization process
of a group of nodes in the cluster (as shown in
Fig. 1). Interference is avoided since only one node
transmits synchronization pulses at any time.2

Proposition 2: The SYNC-IN algorithm re-
quiresO(1) messages per node in the cluster (proof
can be found in [17]).

B. Inter-cluster Network Synchronization (SYNC-
NET)

We now turn to the main focus of this work:
global network synchronization. We design an algo-
rithm, SYNC-NET, for pro-active time synchroniza-
tion of the hierarchical network. Since pro-active
network synchronization is typically carried out in
a heavily-loaded network, our goal is to construct
strictly synchronized routing paths among every pair
of nodes, and consequently between any node and
the observer. If the observer is not included in
the clustered network, it can be synchronized with
the last node(s) on its routing path(s). SYNC-NET
synchronizes the CH overlay and uses SYNC-IN to
independently synchronize each cluster. We assume
the network has been clustered using any clustering
approach [18]. Note that the specific details of how
the network is clustered does not affect our syn-
chronization framework. For illustration, we assume
that the network is clustered using HEED [20].
HEED uses a probabilistic approach for electing
CHs in O(1) time. It assumes that intra-cluster
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communication is done at rangeRc which is shorter
than that used for inter-cluster communications (Rt).
Non CH nodes only communicate with their CHs
and the CH overlay routes packets to the observer.

Fig. 6 gives the pseudo-code for Algorithm
SYNC-NET. LetCcomm be the set of nodes in the
CH overlay, determined by the execution of the
clustering protocol. SYNC-NET will re-cluster the
network by applying the same clustering protocol
on the setV − Ccomm. This results in another
CH overlay with a disjoint set of CHsCsync,
i.e., Ccomm ∩ Csync = φ. Since sensor networks
are usually dense, we assume that this is possible
(asymptotic conditions are given in Section IV-B.1).
The two CH overlays have different roles. The first
overlay,Ccomm, is the overlay that will later be used
for “time-aware” forwarding. CHs inCcomm are also
responsible for applying SYNC-IN for intra-cluster
synchronization. In contrast, CHs in the overlay
Csync are only used to synchronize the setCcomm,
and therefore, other nodes in the network do not
need to register themselves with CHs inCsync. CHs
in Csync discover their neighboring heads inCcomm

(within range Rt) by overhearing the exchanged
messages ofCcomm, e.g., routing updates (line 1).
A “neighbor” in the remainder of this section refers
to a node within a rangeRt. CHs in Ccomm do not
need to discover their neighbors inCsync

1.
Network synchronization proceeds as follows. In

the first iteration of SYNC-NET, a nodev ∈ Csync

elects to become a synchronization initiator for its
neighbors inCcomm with a small probabilityPs, 0 <
Ps ≤ 1 (line 4). The elected initiatorv synchronizes
a CH u ∈ Ccomm that covers an intersecting region
with that of v, with all the CH neighbors ofu in
Ccomm (line 6). This probabilistic election reduces
redundant message exchange. In addition, starting
with a small value ofPs allows gradual network
synchronization and thus reduces interference. We
will study the number of messages exchanged via
simulations in Section V.

At the end of the first iteration, a CH that has
elected to act as a synchronization initiator exits
SYNC-NET (line 7). A nodeu ∈ Ccomm that
detects that it is currently synchronized with all its
neighbors inCcomm broadcasts a “SYNC-DONE”
message, and exits SYNC-NET. If all neighbors

1We assume that the inter-cluster routing protocol will exploit a
neighbor as the next hop in the inter-cluster routing path.

// Two CH overlays are usedCcomm ∩ Csync = φ

// The following is executed at every nodev ∈ Csync

1. Snbrs[v]← {u : u ∈ Ccomm, distance(u, v) ≤ Rt}
2. Max iter ← ⌈log2

1

Ps

⌉+ 1, iter ← 0

3. REPEAT
4. iter ← iter + 1, r ← Uniform(0,1)
5. IF r < Ps

6. Send SYNC beacons with rangeRt

7. EXIT SYNC-NET
8. Scovered = {u : u ∈ Ccomm,

u has sent message “SYNC-DONE”}
9. IF Scovered 6= Snbrs

10. Ps ← min(Ps × 2, 1)

11. UNTIL (iter = Max iter OR Scovered = Snbrs)

Fig. 6. SYNC-NET: Inter-cluster Synchronization atv ∈ Csync

in Ccomm of CH v ∈ Csync have sent “SYNC-
DONE” messages,v exits SYNC-NET. Otherwise,
v doubles itsPs value (line 10), and proceeds to
the next iteration. This process is repeated until
Ps reaches 1. Note that when a node exits SYNC-
NET, it ignores any newly received synchronization
pulses. SYNC-NET is asynchronous, i.e., all nodes
need not start executing it simultaneously. Observe
that using SYNC-IN and SYNC-NET, non-cluster
head nodes need not maintain any synchronization
information, while a CH inCcomm only maintains
relative synchronization information with its cluster
members and its neighboring CHs inCcomm.

1) Density Model: Since SYNC-NET requires
two independent CH overlays (Ccomm and Csync),
we specify what node density is required to be able
to form such overlays. Assume thatn nodes are uni-
formly and independently dispersed at random in an
areaR = [0, L]2. Assume thatR is divided intoN
square cells of sizeRc√

2
× Rc√

2
(thusN = 2L2

R2
c

), where
a cell is an approximation of a cluster. This implies
that every node in each cell can reach every other
node residing in the same cell using a transmission
range Rc. We have formulated a general density
model in [23] that allows formingk connected CH
overlays. This requires a minimum cell occupancy
of at leastk > 1 nodes asymptotically almost surely
(a.a.s.).2 We can simply use the special casek = 2
of the following theorem (which we proved in [23]):

Theorem 1: Let η(n,N) be a random variable

2A cell is an approximation of a cluster, and thusRc defines the
required density, andRt is used to define connectivity.
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denoting the minimum number of nodes in a cell.
For a fixed arbitraryk > 0, assume thatn nodes are
uniformly and independently distributed at random
in an areaR = [0, L]2. AssumeR is divided intoN
square cells, each of sideRc

√
2. If R2

cn ≥ aL2ln N
for some constanta ≥ 2, Rc ≪ L, andn≫ 1, then
limn,N→∞E[η(n,N)] = k iff k ∼ ln N .

Corollary 1: Each cell will a.a.s. have two dis-
tinct CHs, one inCcomm and the other inCsync.

The proof is not included due to space limitation
and can be found in [17].

2) Protocol Analysis: Correctness: When all
nodes inCsync terminate SYNC-NET, every node
u ∈ Ccomm is synchronized with all its neighbors
in Ccomm. To prove this, assume thatRt is se-
lected such that it covers every CH in the com-
plete neighborhood of cells around any cellA. The
complete neighborhood aroundA constitutes all the
eight cells surroundingA (this can be ensured by
enforcing a relation betweenRt and Rc). Assume
that ∃a1 ∈ Ccomm, such thatSnbr(a1) is the set
of neighbor CHs ofa1 in Ccomm. We can prove
synchronization by contradiction. Assume that∃u ∈
Snbr(a1), such thatSY NC(a1, u) = 0. We assume
that Theorem 1 holds (wherek = 2), and therefore
every cell contains two CHs (one inCcomm and the
other inCsync). There are two cases foru:
Case 1.The cell of nodeu is within the complete
neighborhood of the cell ofa1. For example, as
depicted in Fig. 7,a1 is in cell A, u can be one
of {b1, d1, e1, f1}. In this case, the CHa2 ∈ Csync

can reach all of these nodes, and therefore can
synchronize them witha1, which is a contradiction.
Case 2.The cell of nodeu is not in the neigh-
borhood of the cell ofa1 (cell A). For example,
cell G in Fig. 7 is one such case. Assume that
a1 and g1 are neighbors, whilea2 and g1 are not.
However, there must exist another CH in a neighbor
cell that belongs toCsync (noded2 in this example)
which will not exit SYNC-NET untila1 andg1 are
synchronized and send “SYNC-DONE” messages.
This means thata1 and g1 will be synchronized,
which is a contradiction.

Proposition 3: ∀v ∈ Csync, SYNC-NET termi-
nates inNiter = O(1) iterations, assuming that the
clustering protocol takesO(1) time.
Proof. Since SYNC-NET continues untilPs reaches
1, the number of iterations,Niter can be computed
as:Niter ≤ ⌈log2

1

Ps
⌉+1, which isO(1). We assume

that the underlying clustering protocol ensures that
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Fig. 7. Example of node synchronization using SYNC-NET.
{a1, b1, c1, d1, e1, f1} ⊂ Ccomm and {a2, d2} ⊂ Csync

the number of CH neighbors of each CH is constant.
Thus, neighborhood discovery also takesO(1). 2

Proposition 4: SYNC-NET has anO(1) mes-
sage overhead per node in each CH overlay.

Proof. A node may elect to become an initiator in
Csync only once, and sendsO(1) synchronization
pulses. A node to be synchronized inCcomm replies
to synchronization pulses until all its neighbors are
synchronized with it. The number of neighbors is
O(1) (depends on the ratioRt/Rc). Thus, every
node inCcomm also sendsO(1) messages (clustering
message overhead per node isO(1) [20]). 2

The worst case synchronization accuracy of
SYNC-NET is approximatelyO(

√
N×q), whereN

is the number of cells in the network, andq is the ac-
curacy of the low-level synchronization mechanism.
We consider only the CH overlay, since (except for
the first/last hop), communication proceeds through
it. We assume CHs are non-neighbors, and thus
the CH overlay can be approximated by a 2-D
mesh network. Synchronization accuracy depends
on the length of the path from the source to
the destination,Lp, and the underlying low-level
synchronization mechanism. In the worst case,Lp

can be as long as the network diameter, which
is O(

√
N). Therefore, the accuracy provided by

SYNC-NET isO(
√

N × q). For example, consider
a sensor network withn = 10, 000, N = 100 and
RBS [6] as the underlying low-level synchronization
scheme. RBS achieves an absolute accuracy per hop
in the order ofq ≈ 29µs on Berkeley sensor motes,
as measured in [2]. Therefore, according to the
above discussion, SYNC-NET achieves an accuracy
of 10×29×10−6 = 290 µs on the longest expected
path, in the worst case when errors add up.
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C. Secure Synchronization

We comment on the security features of our
framework since secure communication is essential
in security-sensitive applications. Clustering is in-
herently resistant to several types of attacks [24],
such as sinkhole (all traffic directed through one
node), Sybil (node claiming multiple identities),
and bogus routing updates. This is due to the
continuous topology update and rotation of node
roles. Consequently, our synchronization approach
is also robust to these attacks in clustered net-
works. Our framework can resist outsider attacks
(e.g., eavesdropping) by link-layer encryption of
timestamps and identity authentication. However,
both clustering and synchronization are vulnerable
to insider attacks in which one or more nodes
are compromised. If compromised nodes are well
situated in the network such that they frequently
lie on the path of data to the observer, they can
tamper with the included timestamps. One possible
approach to mitigate this effect is to transmit re-
ports redundantly using multiple node-disjoint CH
overlays for routing.

V. PERFORMANCEEVALUATION

We verify via simulations the properties of our
proposed approaches for intra-cluster and inter-
cluster synchronization. We developed a C-based
simulator that is scalable to thousands of nodes.
Our simulator assumes a MAC layer that ensures no
packet losses. This is reasonable for three reasons.
First, all the presented results are comparative and
use the same simplifications for all scenarios. Sec-
ond, we assume that the MAC layer uses orthogonal
channels to allow simultaneous intra-cluster and
inter-cluster transmissions. Imperfections, such as
collisions, have little impact on the performance
of SYNC-NET. The occurrence of collisions can
be significantly reduced by using TDMA among
cluster members. Third, the typical packet sizes in
current systems are small (the default is 36 bytes
for TinyOS [25]), which reduces the probability of
collisions. We assume that nodes are deployed inde-
pendently at random in the field. Packets are routed
throughCcomm using a greedy geographic routing
mechanism. In this mechanism, the next hop of a
packet is the one that is geographically closest to
the destination. Every reported result is the average
of 100 experiments on different topologies.

A. Intra-cluster Synchronization

We explore the two possibilities for selecting
synchronization initiators that were discussed in
Section IV-A: (1) randomly, and (2) closest to the
cluster head. We vary the number of nodes per clus-
ter from 10 to 1000 to study how fast the algorithm
terminates for different node densities: node density
ranges from 0.1 nodes/m2 to 10 nodes/m2. The
transmission range (Rc = 10 m). Fig. 8 illustrates
that: (1) the number of iterations until SYNC-IN
converges is less than 8 for different densities, which
agrees with the result in Proposition 1, and (2) the
number of iterations when the closest neighbors are
selected as initiators is lower than that when random
initiators are selected, as expected. Selecting the
closest neighbors as initiators, however, adds over-
head on the CH for discovering neighbors at each
power level smaller than the cluster power level.
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Fig. 8. Convergence of the SYNC-IN protocol

B. Inter-cluster Synchronization

We assume that nodes are dispersed uniformly
and independently in a 100×100 m2 area. We use
2500 nodes, unless otherwise specified. Throughout
this section, we use the term “neighbors” in SYNC-
NET to refer to two CHs which can communicate
using a transmission rangeRt. Two neighbor CHs
can belong to the same CH overlay, or belong to
different overlays. As defined in Section IV-B, we
useCcomm andCsync to refer to the forwarding and
synchronizing overlays, respectively, and use “node
density” to refer to the number of nodes per cluster.

1) Effect of varying SYNC-NET parameters:
We investigate SYNC-NET parameters with respect
to: (i) the average number of neighbors as the trans-
mission range grows; (ii) the convergence speed as
the node density increases; and (iii) how probabilis-
tic synchronization initiation reduces the number of
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messages exchanged in the network. We keepRc

fixed in most experiments. ChangingRc only results
in changing the average number of CHs inCcomm

and Csync, and has no impact on the performance
of SYNC-NET.

To verify that the nodes inCsync can synchronize
theCcomm overlay, we conduct an experiment where
the inter-cluster rangeRt is varied from double
to four times the cluster rangeRc (Rc = 10 m).
We use average node densities of 2.5 nodes/cell,
5 nodes/cell, and 10 nodes/cell, for 500, 1000,
and 2000 nodes, respectively. Results (given in our
technical report [17]) illustrate that the average
number of neighbors inCcomm for each node in
Csync exceeds five, for all values ofRt. This number
gives an indication of number of nodes typically
synchronized when a nodev ∈ Csync acts as a
synchronization initiator. Node density, as long as
it satisfies Theorem 1, does not appear to have as
significant an impact on the results in this case.

We now perform two experiments to verify
Proposition 3. In the first experiment, we compute
the actual average number of iterations in these
experiments to compare with the analytical upper
bound. In both experiments, the transmission range
Rt varies from 2Rc to 4Rc, and Rc = 6 m.
Experiments are performed forn = 1000, 2000, and
3000. This results in node densities ranging from
2 nodes/cell to 6 nodes/cell. Fig. 9(a) shows that
SYNC-NET terminates more rapidly asRt grows
relative to Rc. We also examine the number of
exchanged messages associated with longer trans-
mission ranges. Fig. 9(b) shows that the percentage
of actual number of synchronization initiators out of
the total number of viable initiators inCsync is about
95% for Rt = 2Rc, and about 60% forRt = 3Rc.
This is a significant reduction in message exchange,
compared to the simple approach of making every
node inCsync a synchronization initiator.

Finally, we study the effect ofPs on the con-
vergence speed and message overhead of SYNC-
NET. We let Ps range from 0.01 to 1 and set the
number of nodesn to 2000. The cluster rangeRc

is 6 m, while the transmission rangeRt varies from
2Rc to 4Rc. Fig. 9(c) shows that (1) the average
number of iterations until all the nodes inCcomm

are synchronized with their neighbors is strictly
less than the maximum specified by Proposition 3,
and (2) asPs increases, termination is faster, since
the synchronization probability goes to 1 quickly.

This is not a desirable behavior, however, since
more nodes inCsync send redundant synchronization
pulses. Results in [17] also show that smaller values
of Ps generally result in a lower average number
of initiators, and hence lower message overhead.
Therefore, we surmise that a smallPs (e.g., 5%)
will help achieve two goals: fast termination and
lower message exchange. Even for a smallPs, the
convergence speed is within practical bounds.

2) Comparisons to other approaches:We com-
pare the performance of SYNC-NET to another
RR approach, the Diffusion-based protocol [3], and
an SR approach, multi-hop TPSN [2]. Observe,
however, that this comparison is only for demon-
stration, since protocols like TPSN and Diffusion-
based assume that the application needs to achieve
time consensusin the network, which is not our
goal. In TPSN, a reference node (carrying GPS) ini-
tiates synchronization by forming a hierarchy using
message flooding, while SYNC-NET does not rely
on the presence of any infrastructure support. We
will demonstrate that SYNC-NET provides compa-
rable performance to multi-hop TPSN. We focus on
three performance metrics: (i) convergence speed;
(ii) message overhead, which is directly related to
energy savings; and (iii) perceived accuracy, which
is the goal of any synchronization protocol.

In our first experiment, the cluster range for
SYNC-NET (Rc), TPSN neighbor discovery, and
Diffusion-based communications, varies from 5 m
to 9 m. We plot the average number of iterations for
multi-hop TPSN and the Diffusion-based protocol.
We also plot the maximum number of iterations of
SYNC-NET for Ps = 0.05, (which gives 6 itera-
tions). We assume that anO(1) clustering protocol
is used, and hence add 7 iterations to the SYNC-
NET iterations to constructCsync. Fig. 10(a) illus-
trates a significant difference in convergence speed
between SYNC-NET and the other two protocols,
especially for the more typical small transmission
ranges. In fact, multi-hop TPSN and Diffusion-
based protocols are expected to be even slower in a
1-dimensional space since the number of iterations
is expected to beO(n) in the average case.

In our second experiment, we compare the three
protocols in terms of their perceived accuracy (or
error propagation). We assume that the Diffusion-
based target accuracyγ = 100 msec. The algorithm
terminates only when thisγ is achieved. We as-
sume RBS low-level synchronization is employed
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Fig. 10. SYNC-NET performance compared to TPSN [2] and the Diffusion-based approach [3]. Note that TPSN assumes the presence of
reference nodes, in contrast to our model which assumes that nodeshave minimum capabilities.

by SYNC-NET for an absolute RR synchronization
error value of mean 29µs/hop, while TPSN low-
level synchronization achieves an absolute SR error
value of mean 17µs. These values were reported
in [2] based on an implementation of RBS and
TPSN, and experimental results on Berkeley sensor
motes. We consider the synchronization error prop-
agated across the network as reports are transmitted
from a source closest to the bottom left corner of
the network area to an observer that is closest to
the upper right corner (the longest path). Fig. 10(b)
illustrates that both SYNC-NET and the Diffusion-
based approach provide comparable synchronization
granularity for the network. Multi-hop TPSN has
higher error for smaller ranges. The reason for
SYNC-NET performing better than TPSN although
it has a higher relative error propagation is that
SYNC-NET uses the CH overlay for forwarding,
and thus has a fewer number of hops than TPSN.

Finally, we compute the message overhead for
the three approaches to demonstrate their energy
efficiency. Fig. 10(c) shows the price paid by
the Diffusion-based approach to achieve its tar-

get accuracy. Results (shown on a log scale) also
demonstrate that multi-hop TPSN requires the least
message overhead since timing information is only
forwarded and copied by the nodes. SYNC-NET
overhead is slightly higher than multi-hop TPSN
but significantly lower than the Diffusion-based
approach. The primary contributor to the overhead
in SYNC-NET is the RBS low-level synchronization
at both the intra-cluster and inter-cluster levels.

VI. CONCLUSIONS

In this work, we proposed a distributed, high-
level time synchronization framework for clustered
sensor networks that provides scalability and rapid
convergence. We define synchronization regions as
clusters, where two-hop communication can take
place through a cluster head. We designed fully
distributed protocols for intra-cluster synchroniza-
tion (SYNC-IN), and inter-cluster synchronization
(SYNC-NET). We showed in [17] how to adapt
SYNC-NET for flat networks. Results show that by
gradual network synchronization (through a prob-
ability Ps), message overhead can be significantly
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reduced. Results also show that SYNC-NET can
achieve a synchronization accuracy that is compa-
rable to other approaches
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