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Abstract—In wireless sensor networks, in-network aggregation is 
the process of compressing locally the data gathered by the sen-
sor nodes, so that only the compressed data travel across several 
hops to their destination. We address the problem of aggregating 
data generated by sporadic events in random locations of the 
monitored area. The sensor nodes keep their transceivers off 
most of the time in order to preserve their batteries, and these 
sleep periods dominate the time to react to the events. We pro-
pose a distributed protocol that, after each event, constructs a 
routing tree to regulate the aggregation process. It is cross-layer 
because, in order to accelerate the tree construction process, the 
routing decision considers the sleep periods of the nodes. If the 
nodes sleep for long periods, our protocol divides the tree con-
struction time by the number of hops when compared to centra-
lized protocols. For a fixed maximum tolerable delay, this allows 
us to extend the sleep periods and thus to save energy. Our simu-
lations reveal that this comes at the price of an aggregation tree 
with degraded performance, but we retain an advantage over 
trees not customized to each event. Our protocol requires global 
time synchronization and periodic link state monitoring, especial-
ly as the network size increases. 
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I.  INTRODUCTION 
Wireless sensor networks (WSNs) often require battery life-

times of several years. Duty-cycling and in-network data ag-
gregation are two very efficient techniques to enhance the 
energy efficiency. Duty-cycling consists of turning off the ra-
dio transceiver periodically. It reduces idle listening, which 
typically consumes most part of the sensors' energy, but it in-
creases latency. In-network data aggregation [1] is the process 
of compressing the correlated data of neighboring nodes locally 
before transmitting them to their destination, possibly across 
many hops. When the data are highly correlated, data aggrega-
tion greatly shortens the transmissions, and thus saves energy 
and time. 

In order to aggregate data, most systems construct tree 
structures for routing and aggregation. Each node waits for data 
from its children, compresses the data, and it forwards the re-
sult to its parent. These systems neglect the overhead they incur 
in constructing the trees because they assume periodic monitor-
ing applications with long-lasting data flows. Their overhead is 
excessive for event-triggered applications that report events 
that do not last for a long period of time. In this paper, we ad-
dress applications that, in addition to that, are time-sensitive 
They arise in the WINES research project [2], to which this 
work belongs. This project researches the use of WSNs in civil 

engineering applications. As an example, WINES investigates 
how to detect fractures in bridges and report them promptly to 
a data center connected to the Internet with sensor nodes 
equipped with microphones that listen for the acoustic emis-
sions that the fractures release. Prompt reporting is necessary to 
stop the traffic over the bridge as soon as possible when severe 
fractures occur. 

In order to report this kind of events quickly, we propose a 
fast cross-layer protocol to construct an aggregation tree. Con-
structing the aggregation tree is essentially a routing layer task, 
but our protocol also involves the application layer, as it con-
siders which nodes have relevant data, and the MAC layer, as it 
considers the transmission schedule of the nodes. 

II. PROBLEM FORMULATION 
Consider a multi-hop WSN monitoring an area in which 

randomly located events occur sporadically and need to be re-
ported to a special node referred to as the sink within Dt after 
the event, where Dt is the maximum tolerable delay. Only some 
sensor nodes, referred to as data sources, detect each event, and 
they generate moderate data volumes. The data of the sources 
are highly correlated, so the neighboring nodes can and should 
aggregate these data before forwarding them towards the sink. 
We say an aggregation protocol is structured if it builds a 
routing structure prior to any data transmission and we call it 
unstructured otherwise. 

The radio transceivers of the sensor nodes are turned off 
most of the time in order to achieve battery lifetimes of a few 
years. They check periodically for incoming messages (data), 
consuming energy Echeck, and then sleep during the period Tsleep. 

The data reporting process consists of building an aggrega-
tion structure and transmitting the data over that structure. Let 
(Dbuild, Ebuild) and (Dtx, Etx) be the time and energy of each of 
these processes. The total delay also involves the delay due to 
the duty-cycled operation before the building process begins, 
which can be as high as Tsleep. The average power consumption 
is 
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where Tevent is the average interval between events. When Tevent  
is large, the power of the periodic channel checks dominates P, 
and we can reduce it by increasing Tsleep. The longest value of 
Tsleep that allows reporting the event within Dt is Dt – Dbuild – 
Dtx. Therefore, to save power we have to reduce Dbuild or Dtx. 
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There is a tradeoff between Dbuild and Dtx. Reducing Dbuild 
usually comes at the cost of finding a aggregation structure 
with degraded performance, which increases Dtx. Our goal is to 
achieve a good balance between Dbuild and Dtx. 

III. RELATED WORK 
The optimal data aggregation structure is the Steiner Tree in 

graphs, which is NP-hard and difficult to approximate, which is 
what structured protocols attempt to do. Most of them compute 
the tree centrally in the sink. Oceanus [3] is one of them. It 
requires the sink to find out each node's neighbors, which in 
big networks strains the batteries of the nodes close to the sink. 
Because its expected applications are for periodic flows, it fails 
to address some of the challenges of event-triggered applica-
tions. It does not specify how the sources report themselves to 
the sink, how the sink distributes its decisions, or what the cost 
of the whole process is. We discuss these problems later. 

Unstructured aggregation protocols, such as DB-MAC [4] 
and DAA+RW [5], specifically target event-triggered WSNs 
with small amounts of data. They do not build an aggregation 
structure in order to suppress Dbuild. Each node chooses as its 
next hop its neighbor holding the greatest number of packets 
according to the information it gathered by snooping its neigh-
bors’ transmissions. The main drawback of unstructured proto-
cols is that they handle the timing requirements of aggregation 
poorly. The sensor nodes hold their packets for some time be-
fore relaying them to the next hop, so that, if they receive pack-
ets during this time, they will be able to aggregate them with 
the packets they are holding. This mechanism does not guaran-
tee that a node will hold the packets for long enough to aggre-
gate as many packets as possible and introduces artificial de-
lays. These delays affect every packet, as the nodes handle each 
packet independently. For sources generating over a dozen 
packets, unstructured protocols are less efficient than structured 
protocols that invest some time creating an aggregation tree 
initially in order to aggregate more packets later and suppress 
the artificial delays. 

The existing unstructured aggregation protocols and the tree 
construction phase of the existing structured protocols neglect 
the delays introduced by the duty-cycled operation. However, 
for sleep periods Tsleep longer than a second, these delays may 
exceed the transmission time. DMAC [6] addresses this prob-
lem. It organizes the nodes in tiers, as illustrated in Figure 1. A 
node's tier is the length of its shortest path to the sink. All the 
nodes are time synchronized and the activity schedules of 
nodes in different tiers are staggered. This greatly minimizes 
the sleep latency towards the sink. However, DMAC does not 
manage the data aggregation process, as it is only a MAC pro-
tocol. In addition, we cannot accommodate the above-
mentioned protocols directly on top of DMAC because DMAC 
only allows the data to flow towards sink and because its tim-
ing policy does not let a node wait for all the data from its 
children.  

IV. THE FAST AGGREGATION TREE (FAT) 
We propose the FAT method to quickly and distributedly 

construct an aggregation tree after each event. It uses DMAC's 
tiered architecture. In our discussion, when considering Tier i, 
we refer to Tier (i+1) as the previous tier and to Tier (i−1) as 

the next tier. In the network initialization, each node executes 
the distributed Bellman-Ford algorithm to compute its tier and 
its neighbors in the next tier. All the nodes in the network share 
a common time reference. This requires periodical synchroni-
zation to compensate for clock drifts, either by software or 
hardware [7]. 

The nodes check periodically the channel state, which is a 
process that lasts for the channel sensing time Tcheck. If the 
channel is idle, they turn their transceivers off and wait for 
Tsleep before checking the channel state again. The checks of 
nodes in the same tier are simultaneous, and the checks of 
nodes in neighboring tiers have an offset of Ttier as shown in 
Figure 2. 

When some nodes detect an event, they become sources. 
The sources wait until the channel check time of the nodes in 
the next tier and transmit signals referred to as activation tones, 
thereby triggering the tree construction process. A node per-
forming a channel check may receive several activation tones 
simultaneously, but this is fine. The node performing the chan-
nel check will sense the channel busy and remain active for a 
period of duration Ttier−Tcheck after the check. During this pe-
riod, the nodes that performed the check will be looking for 
children and the sources will be looking for a parent.  

The nodes looking for a parent back off for a random time 
before transmitting a Parent Request (PR) to the node that they 
wish to have as a parent. The nodes that lost the contention 
remain quiet and snoop the Parent Confirmation (PC) that re-
sponds to the PR of the node that won the contention. Every 
node looking for children that receives a PR always replies to it 
with a PC and adds the source of the PR to its children list, 
which was empty before the reception of the activation tone.  

Each node looking for a parent transmits PRs until it rece-
ives a PC or its period to do so ends. It may only choose the 
recipient of its PRs among its neighbors in the next tier. Initial-
ly, it makes that decision randomly, but it may change it until it 
receives a PR. At each point, in order to promote early data 
aggregation, it chooses the node from which it has overheard 
more PCs. If the chosen node fails to reply to several PRs, the 
link to that node is likely to be poor and the node looking for a 
parent changes its decision.  

When a node's period for looking for children ends, it 
counts the number of nodes in its children list. If it is zero and 
it does not have any data, the node considers itself unnecessary 
in the reporting process and it sleeps until its next normal 
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Figure 1. Organization of the nodes in tiers of the FAT method. The solid 
lines link each node with all its neighbors with whom it can communicate. 



channel check, which will occur Tsleep−Ttier later. Otherwise, it 
transmits an activation tone immediately, because, due to the 
staggered schedule, the nodes in the next tier are checking the 
channel state exactly then. After transmitting the activation 
tone, it looks for a parent in the next tier as its children did. The 
tree construction process continues in this way without any 
delay due to duty-cycling until the nodes in Tier 1 that have 
data in their subtree have found a parent, which for nodes in 
this tier is necessarily the sink. The sources can start transmit-
ting data over the tree as soon as the construction process has 
moved far enough from them so that they will not interfere 
with it.  

Let us illustrate the tree construction process with an exam-
ple based on the topology of Figure 1. Let nodes A, B and C be 
the only sources. They simultaneously transmit activation tones 
when the nodes in Tier 1 check the channel, causing nodes D, 
E and F to start looking for children. Let us consider the case in 
which nodes A, B and C initially choose nodes D, E and F, 
respectively, as the recipients of their PRs. Nodes A, B and C 
contend to transmit their PRs. If B wins the contention, E rep-
lies to B's PR with a PC. Both A and C overhear the PC and set 
E as the recipient of their PRs and they proceed to transmit 
their PRs. Eventually, nodes A, B and C obtain E as a parent, 
achieving early aggregation. However, this would have not 
been the case if node A had been the first node to transmit a 
PR, because the constructed tree would not aggregate the data 
of the three sources in Tier 1. 

Ttier is the same for the entire network. If it is too long, 
nodes looking for children wait unnecessarily long for PRs. If it 
is too short, some nodes may not have time to find a parent. A 
node also fails to find a parent if all the links to its neighbors in 
the next tier fail. In both cases, we say that the normal con-
struction of the tree has failed and our protocol resorts to a 
more powerful mechanism to construct the tree that we term 
backup construction. Every node that has not found a parent 
and whose slot to do so is about to expire transmits a so-called 
emergency tone, which triggers the backup construction. Every 
node looking for children checks for emergency tones at the 
end of its slot to look for children. If it senses the medium idle, 
it proceeds with normal construction. Otherwise, it sends an 
activation tone and an emergency tone when the nodes in the 
previous and next tier expect them. The goal is to propagate the 
emergency tones to all the nodes in the network. Every node 
that received an emergency tone remains active for enough 
time to execute a reactive routing protocol such as Ad-hoc On-
Demand Distance Vector (AODV). This process ensures that 
all the sources find a path to the gateway if it exists. 

V. PERFORMANCE EVALUATION 

A. Analysis of the Tree Construction Delay 
Let k be the number of the outermost tier that contains a da-

ta source and K be the total number of tiers. The construction 
delay Dbuild for the FAT's method normal construction is kTtier. 
For the backup construction, Dbuild is much higher and it con-
sists of the propagation time of the emergency tones and the 
execution time of AODV. The first delay can be as high as 
K(Tsleep–Ttier), because the propagation of an activation tone 
from one tier to the previous one involves almost a full sleep 
period, as can be deduced from Figure 2. 

Centralized tree construction protocols for aggregation in-
volve three steps. First, the sources report themselves to the 
sink. Second, the sink computes the tree. Third, the sink distri-
butes this information to the nodes. The durations of the first 
and third steps depend on the MAC layer. Centralized proto-
cols fail to study these durations and we do this now with the 
MAC protocols we believe to be best suited for them. The first 
and third steps involve flows of data in opposite directions. We 
claim that this precludes sleep delays as short as those of the 
normal construction of the FAT, which only involves traffic in 
a single direction, namely towards the sink. If the centralized 
protocols use a MAC with globally synchronous wakeup, e.g. 
T-MAC [8], each of the first and third steps involve k sleep 
periods. Using a staggered schedule such as DMAC's, the first 
step involves no sleep periods, but the third steps involves 
roughly k sleep periods. In contrast, the normal construction of 
the FAT method involves no sleep periods. 

B. Aggregation Tree Quality 
A better aggregation tree compresses more information in-

side the network, thereby reducing the transmission time Dtx. 
We wrote a custom simulator to compare Dtx using the FAT 
with Dtx using the trees computed with the following tech-
niques:  

• Shortest Path Tree (SPT): This is the shortest path to 
the sink, which is the default path. As such, it is not 
adapted to maximize aggregation for the sources re-
lated to a specific event.  

• Dijkstra1: It is an enhancement of Dijkstra’s algorithm 
to promote aggregation. It uses the number of hops as 
the cost metric. When choosing deciding the next node 
to add to the tree, it prefers data sources to nodes with-
out data if their cost is the same. When choosing the 
next hop for the new addition, it prefers nodes with da-
ta if the cost is the same. 

•  Centralized1: It constructs with Dijkstra1 the tree 
rooted in the node q closest to the event. Then, it re-
moves all the nodes that are neither sources nor in the 
path from a source to q. Finally, it links q with the sink 
through the shortest path. In practice, q may be un-
known.  

In order to compare fairly the transmission time with all 
these trees, we use the same MAC protocol for all of them. We 
choose CSMA although other protocols may be more efficient. 
We also simulate the DMAC protocol, which provides very 
short sleep delay and involves no tree construction overhead, to 
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Figure 2. Staggered schedule of the FAT method, whereby the channel 

checks of nodes in consecutive tiers are shifted by Ttier. 



serve as benchmark of the achievable performance without data 
aggregation. 

We simulate 50 nodes randomly deployed over a 200m by 
200m rectangle. The transmission and interference ranges are 
60m and 150m, respectively. The sink is at one corner of the 
rectangle. The event occurs in the other corner and the s = 12 
nodes closest to it become sources. Each source generates ten 
packets. The transmission time of a packet containing the data 
of n sources is  

 (1 ( 1)),aggD nD α= + −  (2) 

where D is 8ms and α is a parameter between 0 and 1. For α = 
0, we can compress any number of packets into one packet as 
short as one containing only one node’s data. For α = 1, no 
compression is feasible. Figure 3 reveals that the performance 
greatly varies with α. The results may differ widely for other 
aggregation models. For α = 0, Centralized1 is a reasonable 
approximation of the optimal solution, which is the Steiner 
tree. The FAT performs about 20% worse than Centralized1, 
but it offers a similar improvement over the SPT. The FAT 
method achieves this improvement without having a longer 
setup when there is not node failure. This is because in the SPT 
method each node needs to find out which of its children have 
data, so that it waits for their data in the transmission phase. 
The nodes can gather this information very efficiently by using 
the same MAC as the FAT method, but without updating the 
recipients of their PRs based on the information they overhear. 
Dijkstra1 approximates the tree our protocol would obtain if 
every node, rather than making an initial random choice of the 
recipient of its PR, made the optimal choice. We do not plot the 
results of Dijkstra1 because they are very similar to those of the 
FAT, indicating that the randomness of the initial parent choice 
hardly degrades the tree quality. For α = 1, aggregation is un-
feasible and the SPT is the optimal tree. DMAC outperforms 
the simulation labeled as SPT, although both use the same tree, 
because the latter uses CSMA, which does not multiplex 
transmissions spatially as good as DMAC. Figure 4 shows that 
the benefit of good aggregation increases with the number of 
sources s. 

C. Vulnerability to Outdated Topological Information 
The normal construction of the FAT method always finds a 

path to the sink if it exists and every node’s tier number and list 
of nodes in the next tier are up-to-date. The nodes may refrain 
from continuously updating this information in order to save 
energy, but outdated information may force to resort to the 
backup construction, which is slower and more energy consum-
ing. Therefore, it is not clear whether it pays off to update the 
topological information. In order to address this question, we 
obtain here fnormal, which we define as the probability that a 
source will fail to find a path to the gateway using the normal 
construction when the nodes are unaware of which nodes have 
failed. 

Let each node’s failure probability be f. In a regular dep-
loyment wherein every node has n neighbors in the next tier 
and the sources are h hops away from the sink, fnormal is 
1− (1− f  n) 

h. Therefore, in order to reduce the probability of  
resorting to backup construction fnormal, we have to increase n or 
decrease h. 

  
We use simulations to evaluate fnormal in a random deploy-

ment with node density ρ = Nπr2/A, where N is the number of 
nodes, r is the transmission range of the nodes and A is the area 
being monitored. We place the nodes randomly, but, if more 
than 20% of the nodes are disconnected, we discard the dep-
loyment and try again. This requires few attempts for ρ ≥ 7. 
The monitored area is a rectangle whose height is 4r. The sink 
and the event center are a distance d away from each other. 
They are in the middle of the left and the right borders of the 
rectangle, respectively. Figure 5 compares the probability of 
not finding a path to the gateway for three techniques, namely 
the default tree (T1), the FAT method's normal construction 
(T2), and the backup construction (T3). The probability of not 
finding a path for T2 is fnormal. We see that as the number of 
hops increases, the damage of outdated topological information 
increases. This is because more hops imply a greater number of 
potential failure points. For ρ = 7, the probability that failed 
node disconnect the network (T3) is significant. However, for 
higher densities, the path exists but T2 and T1 do not find it. 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Aggregation coefficient α

tra
ns

m
is

si
on

 ti
m

e 
(s

ec
on

ds
)

 

 

DMAC
SPT
FAT
Centralized1

 
Figure 3. If little aggregation is feasible (α ≈ 1), there is little benefit in 

aggregating data. For  small values of α, FAT outperforms DMAC and SPT 
and approaches Centralized1. 
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Figure 4.  FAT's advantage over both SPT and DMAC increases with 

the number of sources. We obtained this graph for α  = 0. 



 

VI. CONCLUSIONS AND FUTURE WORK 
We have proposed the FAT method, a distributed protocol 

for WSNs that constructs an aggregation tree to report data 
generated by events whose location and timing are unpredicta-
ble. Its main advantage is that, when the sensor nodes' sleep 
period is long, it constructs the tree k times faster than centra-
lized approaches, where k is the tier number of the sources. 
This is because of its staggered schedule and because it only 
generates data in the direction towards the gateway. Our proto-
col is a cross-layer one because the routing decision considers 
the transmission schedule of the nodes in order to accelerate the 
construction process. 

In our simulations, our protocol constructed trees signifi-
cantly better than the shortest path tree, because it customizes 
the tree to the data sources of each event. This is only true 
when the nodes can compress the data intensely. We imple-
mented a centralized algorithm that constructed a tree substan-

tially better than the FAT. The performance gap is due to our 
tiered architecture, which restricts potential parents to the 
neighbors in the next tier.  

The FAT method's normal construction always finds a path 
if it exists and the nodes have up-to-date topological informa-
tion. If this information is outdated, our protocol can trigger the 
backup construction, which incurs high overhead. It is possible 
that our protocol will find a path if the nodes have outdated 
information. However, our simulations reveal that this is un-
likely for events occurring seven hops away from the sink or 
further, and increasing the node density hardly helps. There-
fore, each node needs to monitor periodically the functioning of 
its neighbors. In the future, we aim to investigate how to do this 
with little overhead and how to organize transmissions after the 
tree construction to maximize concurrency and reduce interfe-
rence.  
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Figure 5. Fraction of nodes that fail to find a path in 3200 simulations of 

randomly deployed WSNs with node failure probability f. For three 
different event-sink distances and for three different node densities ρ, the 

figure compares techniques T1, T2 and T3. For each technique, the 
obtained value should be read from 0 to the upper location of the bar, as 
opposed to from the difference between the locations of the lower and 

upper borders of the bar. This representation is possible because T3 always 
outperforms T2, and T2 always outperforms T1. 


