
Dynamic Data Aggregation and Transport
in Wireless Sensor Networks

Mario O. Díaz and Kin K. Leung
Electrical & Electronic Engineering Department, Imperial College, London, UK

{orne.diaz06, kin.leung}@imperial.ac.uk

Abstract—In wireless sensor networks, in-network aggregation is
the process of compressing locally the data gathered by the sen-
sor nodes, so that only the compressed data travel across several
hops to their destination. We address the problem of aggregating
data generated by sporadic events in random locations of the
monitored area. The sensor nodes keep their transceivers off
most of the time in order to preserve their batteries, and these
sleep periods dominate the time to react to the events. We pro-
pose a distributed protocol that, after each event, constructs a
routing tree to regulate the aggregation process. It is cross-layer
because, in order to accelerate the tree construction process, the
routing decision considers the sleep periods of the nodes. If the
nodes sleep for long periods, our protocol divides the tree con-
struction time by the number of hops when compared to centra-
lized protocols. For a fixed maximum tolerable delay, this allows
us to extend the sleep periods and thus to save energy. Our simu-
lations reveal that this comes at the price of an aggregation tree
with degraded performance, but we retain an advantage over
trees not customized to each event. Our protocol requires global
time synchronization and periodic link state monitoring, especial-
ly as the network size increases.

Keywords: data aggregation, tiers, tree, wireless sensor

I. INTRODUCTION
Wireless sensor networks (WSNs) often require battery life-

times of several years. Duty-cycling and in-network data ag-
gregation are two very efficient techniques to enhance the
energy efficiency. Duty-cycling consists of turning off the ra-
dio transceiver periodically. It reduces idle listening, which
typically consumes most part of the sensors' energy, but it in-
creases latency. In-network data aggregation [1] is the process
of compressing the correlated data of neighboring nodes locally
before transmitting them to their destination, possibly across
many hops. When the data are highly correlated, data aggrega-
tion greatly shortens the transmissions, and thus saves energy
and time.

In order to aggregate data, most systems construct tree
structures for routing and aggregation. Each node waits for data
from its children, compresses the data, and it forwards the re-
sult to its parent. These systems neglect the overhead they incur
in constructing the trees because they assume periodic monitor-
ing applications with long-lasting data flows. Their overhead is
excessive for event-triggered applications that report events
that do not last for a long period of time. In this paper, we ad-
dress applications that, in addition to that, are time-sensitive
They arise in the WINES research project [2], to which this
work belongs. This project researches the use of WSNs in civil

engineering applications. As an example, WINES investigates
how to detect fractures in bridges and report them promptly to
a data center connected to the Internet with sensor nodes
equipped with microphones that listen for the acoustic emis-
sions that the fractures release. Prompt reporting is necessary to
stop the traffic over the bridge as soon as possible when severe
fractures occur.

In order to report this kind of events quickly, we propose a
fast cross-layer protocol to construct an aggregation tree. Con-
structing the aggregation tree is essentially a routing layer task,
but our protocol also involves the application layer, as it con-
siders which nodes have relevant data, and the MAC layer, as it
considers the transmission schedule of the nodes.

II. PROBLEM FORMULATION
Consider a multi-hop WSN monitoring an area in which

randomly located events occur sporadically and need to be re-
ported to a special node referred to as the sink within Dt after
the event, where Dt is the maximum tolerable delay. Only some
sensor nodes, referred to as data sources, detect each event, and
they generate moderate data volumes. The data of the sources
are highly correlated, so the neighboring nodes can and should
aggregate these data before forwarding them towards the sink.
We say an aggregation protocol is structured if it builds a
routing structure prior to any data transmission and we call it
unstructured otherwise.

The radio transceivers of the sensor nodes are turned off
most of the time in order to achieve battery lifetimes of a few
years. They check periodically for incoming messages (data),
consuming energy Echeck, and then sleep during the period Tsleep.

The data reporting process consists of building an aggrega-
tion structure and transmitting the data over that structure. Let
(Dbuild, Ebuild) and (Dtx, Etx) be the time and energy of each of
these processes. The total delay also involves the delay due to
the duty-cycled operation before the building process begins,
which can be as high as Tsleep. The average power consumption
is

 ,check build tx

sleep event

E E E
P

T T
+

= + (1)

where Tevent is the average interval between events. When Tevent
is large, the power of the periodic channel checks dominates P,
and we can reduce it by increasing Tsleep. The longest value of
Tsleep that allows reporting the event within Dt is Dt – Dbuild –
Dtx. Therefore, to save power we have to reduce Dbuild or Dtx.

This work is funded by UK EPSRC Research Grant EP/D076838/1, entitled: "Smart Infrastructure: Wireless Sensor Network System for Condition Assess-
ment and Monitoring of Infrastructure".

978-1-4244-2644-7/08/$25.00 © 2008 IEEE

There is a tradeoff between Dbuild and Dtx. Reducing Dbuild
usually comes at the cost of finding a aggregation structure
with degraded performance, which increases Dtx. Our goal is to
achieve a good balance between Dbuild and Dtx.

III. RELATED WORK
The optimal data aggregation structure is the Steiner Tree in

graphs, which is NP-hard and difficult to approximate, which is
what structured protocols attempt to do. Most of them compute
the tree centrally in the sink. Oceanus [3] is one of them. It
requires the sink to find out each node's neighbors, which in
big networks strains the batteries of the nodes close to the sink.
Because its expected applications are for periodic flows, it fails
to address some of the challenges of event-triggered applica-
tions. It does not specify how the sources report themselves to
the sink, how the sink distributes its decisions, or what the cost
of the whole process is. We discuss these problems later.

Unstructured aggregation protocols, such as DB-MAC [4]
and DAA+RW [5], specifically target event-triggered WSNs
with small amounts of data. They do not build an aggregation
structure in order to suppress Dbuild. Each node chooses as its
next hop its neighbor holding the greatest number of packets
according to the information it gathered by snooping its neigh-
bors’ transmissions. The main drawback of unstructured proto-
cols is that they handle the timing requirements of aggregation
poorly. The sensor nodes hold their packets for some time be-
fore relaying them to the next hop, so that, if they receive pack-
ets during this time, they will be able to aggregate them with
the packets they are holding. This mechanism does not guaran-
tee that a node will hold the packets for long enough to aggre-
gate as many packets as possible and introduces artificial de-
lays. These delays affect every packet, as the nodes handle each
packet independently. For sources generating over a dozen
packets, unstructured protocols are less efficient than structured
protocols that invest some time creating an aggregation tree
initially in order to aggregate more packets later and suppress
the artificial delays.

The existing unstructured aggregation protocols and the tree
construction phase of the existing structured protocols neglect
the delays introduced by the duty-cycled operation. However,
for sleep periods Tsleep longer than a second, these delays may
exceed the transmission time. DMAC [6] addresses this prob-
lem. It organizes the nodes in tiers, as illustrated in Figure 1. A
node's tier is the length of its shortest path to the sink. All the
nodes are time synchronized and the activity schedules of
nodes in different tiers are staggered. This greatly minimizes
the sleep latency towards the sink. However, DMAC does not
manage the data aggregation process, as it is only a MAC pro-
tocol. In addition, we cannot accommodate the above-
mentioned protocols directly on top of DMAC because DMAC
only allows the data to flow towards sink and because its tim-
ing policy does not let a node wait for all the data from its
children.

IV. THE FAST AGGREGATION TREE (FAT)
We propose the FAT method to quickly and distributedly

construct an aggregation tree after each event. It uses DMAC's
tiered architecture. In our discussion, when considering Tier i,
we refer to Tier (i+1) as the previous tier and to Tier (i−1) as

the next tier. In the network initialization, each node executes
the distributed Bellman-Ford algorithm to compute its tier and
its neighbors in the next tier. All the nodes in the network share
a common time reference. This requires periodical synchroni-
zation to compensate for clock drifts, either by software or
hardware [7].

The nodes check periodically the channel state, which is a
process that lasts for the channel sensing time Tcheck. If the
channel is idle, they turn their transceivers off and wait for
Tsleep before checking the channel state again. The checks of
nodes in the same tier are simultaneous, and the checks of
nodes in neighboring tiers have an offset of Ttier as shown in
Figure 2.

When some nodes detect an event, they become sources.
The sources wait until the channel check time of the nodes in
the next tier and transmit signals referred to as activation tones,
thereby triggering the tree construction process. A node per-
forming a channel check may receive several activation tones
simultaneously, but this is fine. The node performing the chan-
nel check will sense the channel busy and remain active for a
period of duration Ttier−Tcheck after the check. During this pe-
riod, the nodes that performed the check will be looking for
children and the sources will be looking for a parent.

The nodes looking for a parent back off for a random time
before transmitting a Parent Request (PR) to the node that they
wish to have as a parent. The nodes that lost the contention
remain quiet and snoop the Parent Confirmation (PC) that re-
sponds to the PR of the node that won the contention. Every
node looking for children that receives a PR always replies to it
with a PC and adds the source of the PR to its children list,
which was empty before the reception of the activation tone.

Each node looking for a parent transmits PRs until it rece-
ives a PC or its period to do so ends. It may only choose the
recipient of its PRs among its neighbors in the next tier. Initial-
ly, it makes that decision randomly, but it may change it until it
receives a PR. At each point, in order to promote early data
aggregation, it chooses the node from which it has overheard
more PCs. If the chosen node fails to reply to several PRs, the
link to that node is likely to be poor and the node looking for a
parent changes its decision.

When a node's period for looking for children ends, it
counts the number of nodes in its children list. If it is zero and
it does not have any data, the node considers itself unnecessary
in the reporting process and it sleeps until its next normal

A B C

D E F

Sink Tier 0 (the sink)

Tier 1 (nodes one hop
away from sink)

Tier 2 (nodes 2 hops
away from sink)

Figure 1. Organization of the nodes in tiers of the FAT method. The solid
lines link each node with all its neighbors with whom it can communicate.

channel check, which will occur Tsleep−Ttier later. Otherwise, it
transmits an activation tone immediately, because, due to the
staggered schedule, the nodes in the next tier are checking the
channel state exactly then. After transmitting the activation
tone, it looks for a parent in the next tier as its children did. The
tree construction process continues in this way without any
delay due to duty-cycling until the nodes in Tier 1 that have
data in their subtree have found a parent, which for nodes in
this tier is necessarily the sink. The sources can start transmit-
ting data over the tree as soon as the construction process has
moved far enough from them so that they will not interfere
with it.

Let us illustrate the tree construction process with an exam-
ple based on the topology of Figure 1. Let nodes A, B and C be
the only sources. They simultaneously transmit activation tones
when the nodes in Tier 1 check the channel, causing nodes D,
E and F to start looking for children. Let us consider the case in
which nodes A, B and C initially choose nodes D, E and F,
respectively, as the recipients of their PRs. Nodes A, B and C
contend to transmit their PRs. If B wins the contention, E rep-
lies to B's PR with a PC. Both A and C overhear the PC and set
E as the recipient of their PRs and they proceed to transmit
their PRs. Eventually, nodes A, B and C obtain E as a parent,
achieving early aggregation. However, this would have not
been the case if node A had been the first node to transmit a
PR, because the constructed tree would not aggregate the data
of the three sources in Tier 1.

Ttier is the same for the entire network. If it is too long,
nodes looking for children wait unnecessarily long for PRs. If it
is too short, some nodes may not have time to find a parent. A
node also fails to find a parent if all the links to its neighbors in
the next tier fail. In both cases, we say that the normal con-
struction of the tree has failed and our protocol resorts to a
more powerful mechanism to construct the tree that we term
backup construction. Every node that has not found a parent
and whose slot to do so is about to expire transmits a so-called
emergency tone, which triggers the backup construction. Every
node looking for children checks for emergency tones at the
end of its slot to look for children. If it senses the medium idle,
it proceeds with normal construction. Otherwise, it sends an
activation tone and an emergency tone when the nodes in the
previous and next tier expect them. The goal is to propagate the
emergency tones to all the nodes in the network. Every node
that received an emergency tone remains active for enough
time to execute a reactive routing protocol such as Ad-hoc On-
Demand Distance Vector (AODV). This process ensures that
all the sources find a path to the gateway if it exists.

V. PERFORMANCE EVALUATION

A. Analysis of the Tree Construction Delay
Let k be the number of the outermost tier that contains a da-

ta source and K be the total number of tiers. The construction
delay Dbuild for the FAT's method normal construction is kTtier.
For the backup construction, Dbuild is much higher and it con-
sists of the propagation time of the emergency tones and the
execution time of AODV. The first delay can be as high as
K(Tsleep–Ttier), because the propagation of an activation tone
from one tier to the previous one involves almost a full sleep
period, as can be deduced from Figure 2.

Centralized tree construction protocols for aggregation in-
volve three steps. First, the sources report themselves to the
sink. Second, the sink computes the tree. Third, the sink distri-
butes this information to the nodes. The durations of the first
and third steps depend on the MAC layer. Centralized proto-
cols fail to study these durations and we do this now with the
MAC protocols we believe to be best suited for them. The first
and third steps involve flows of data in opposite directions. We
claim that this precludes sleep delays as short as those of the
normal construction of the FAT, which only involves traffic in
a single direction, namely towards the sink. If the centralized
protocols use a MAC with globally synchronous wakeup, e.g.
T-MAC [8], each of the first and third steps involve k sleep
periods. Using a staggered schedule such as DMAC's, the first
step involves no sleep periods, but the third steps involves
roughly k sleep periods. In contrast, the normal construction of
the FAT method involves no sleep periods.

B. Aggregation Tree Quality
A better aggregation tree compresses more information in-

side the network, thereby reducing the transmission time Dtx.
We wrote a custom simulator to compare Dtx using the FAT
with Dtx using the trees computed with the following tech-
niques:

• Shortest Path Tree (SPT): This is the shortest path to
the sink, which is the default path. As such, it is not
adapted to maximize aggregation for the sources re-
lated to a specific event.

• Dijkstra1: It is an enhancement of Dijkstra’s algorithm
to promote aggregation. It uses the number of hops as
the cost metric. When choosing deciding the next node
to add to the tree, it prefers data sources to nodes with-
out data if their cost is the same. When choosing the
next hop for the new addition, it prefers nodes with da-
ta if the cost is the same.

• Centralized1: It constructs with Dijkstra1 the tree
rooted in the node q closest to the event. Then, it re-
moves all the nodes that are neither sources nor in the
path from a source to q. Finally, it links q with the sink
through the shortest path. In practice, q may be un-
known.

In order to compare fairly the transmission time with all
these trees, we use the same MAC protocol for all of them. We
choose CSMA although other protocols may be more efficient.
We also simulate the DMAC protocol, which provides very
short sleep delay and involves no tree construction overhead, to

Ttier

Tsleep

Ttier

Tier 2

Tier 1

Tier 0

Figure 2. Staggered schedule of the FAT method, whereby the channel

checks of nodes in consecutive tiers are shifted by Ttier.

serve as benchmark of the achievable performance without data
aggregation.

We simulate 50 nodes randomly deployed over a 200m by
200m rectangle. The transmission and interference ranges are
60m and 150m, respectively. The sink is at one corner of the
rectangle. The event occurs in the other corner and the s = 12
nodes closest to it become sources. Each source generates ten
packets. The transmission time of a packet containing the data
of n sources is

 (1 (1)),aggD nD α= + − (2)

where D is 8ms and α is a parameter between 0 and 1. For α =
0, we can compress any number of packets into one packet as
short as one containing only one node’s data. For α = 1, no
compression is feasible. Figure 3 reveals that the performance
greatly varies with α. The results may differ widely for other
aggregation models. For α = 0, Centralized1 is a reasonable
approximation of the optimal solution, which is the Steiner
tree. The FAT performs about 20% worse than Centralized1,
but it offers a similar improvement over the SPT. The FAT
method achieves this improvement without having a longer
setup when there is not node failure. This is because in the SPT
method each node needs to find out which of its children have
data, so that it waits for their data in the transmission phase.
The nodes can gather this information very efficiently by using
the same MAC as the FAT method, but without updating the
recipients of their PRs based on the information they overhear.
Dijkstra1 approximates the tree our protocol would obtain if
every node, rather than making an initial random choice of the
recipient of its PR, made the optimal choice. We do not plot the
results of Dijkstra1 because they are very similar to those of the
FAT, indicating that the randomness of the initial parent choice
hardly degrades the tree quality. For α = 1, aggregation is un-
feasible and the SPT is the optimal tree. DMAC outperforms
the simulation labeled as SPT, although both use the same tree,
because the latter uses CSMA, which does not multiplex
transmissions spatially as good as DMAC. Figure 4 shows that
the benefit of good aggregation increases with the number of
sources s.

C. Vulnerability to Outdated Topological Information
The normal construction of the FAT method always finds a

path to the sink if it exists and every node’s tier number and list
of nodes in the next tier are up-to-date. The nodes may refrain
from continuously updating this information in order to save
energy, but outdated information may force to resort to the
backup construction, which is slower and more energy consum-
ing. Therefore, it is not clear whether it pays off to update the
topological information. In order to address this question, we
obtain here fnormal, which we define as the probability that a
source will fail to find a path to the gateway using the normal
construction when the nodes are unaware of which nodes have
failed.

Let each node’s failure probability be f. In a regular dep-
loyment wherein every node has n neighbors in the next tier
and the sources are h hops away from the sink, fnormal is
1− (1− f n)

h. Therefore, in order to reduce the probability of
resorting to backup construction fnormal, we have to increase n or
decrease h.

We use simulations to evaluate fnormal in a random deploy-

ment with node density ρ = Nπr2/A, where N is the number of
nodes, r is the transmission range of the nodes and A is the area
being monitored. We place the nodes randomly, but, if more
than 20% of the nodes are disconnected, we discard the dep-
loyment and try again. This requires few attempts for ρ ≥ 7.
The monitored area is a rectangle whose height is 4r. The sink
and the event center are a distance d away from each other.
They are in the middle of the left and the right borders of the
rectangle, respectively. Figure 5 compares the probability of
not finding a path to the gateway for three techniques, namely
the default tree (T1), the FAT method's normal construction
(T2), and the backup construction (T3). The probability of not
finding a path for T2 is fnormal. We see that as the number of
hops increases, the damage of outdated topological information
increases. This is because more hops imply a greater number of
potential failure points. For ρ = 7, the probability that failed
node disconnect the network (T3) is significant. However, for
higher densities, the path exists but T2 and T1 do not find it.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

Aggregation coefficient α

tra
ns

m
is

si
on

 ti
m

e
(s

ec
on

ds
)

DMAC
SPT
FAT
Centralized1

Figure 3. If little aggregation is feasible (α ≈ 1), there is little benefit in

aggregating data. For small values of α, FAT outperforms DMAC and SPT
and approaches Centralized1.

2 4 6 8 10 12
0

1

2

3

4

5

Number of sources

tra
ns

m
is

si
on

 ti
m

e (
se

co
nd

s)

DMAC
SPT
FAT
Centralized1

Figure 4. FAT's advantage over both SPT and DMAC increases with

the number of sources. We obtained this graph for α = 0.

VI. CONCLUSIONS AND FUTURE WORK
We have proposed the FAT method, a distributed protocol

for WSNs that constructs an aggregation tree to report data
generated by events whose location and timing are unpredicta-
ble. Its main advantage is that, when the sensor nodes' sleep
period is long, it constructs the tree k times faster than centra-
lized approaches, where k is the tier number of the sources.
This is because of its staggered schedule and because it only
generates data in the direction towards the gateway. Our proto-
col is a cross-layer one because the routing decision considers
the transmission schedule of the nodes in order to accelerate the
construction process.

In our simulations, our protocol constructed trees signifi-
cantly better than the shortest path tree, because it customizes
the tree to the data sources of each event. This is only true
when the nodes can compress the data intensely. We imple-
mented a centralized algorithm that constructed a tree substan-

tially better than the FAT. The performance gap is due to our
tiered architecture, which restricts potential parents to the
neighbors in the next tier.

The FAT method's normal construction always finds a path
if it exists and the nodes have up-to-date topological informa-
tion. If this information is outdated, our protocol can trigger the
backup construction, which incurs high overhead. It is possible
that our protocol will find a path if the nodes have outdated
information. However, our simulations reveal that this is un-
likely for events occurring seven hops away from the sink or
further, and increasing the node density hardly helps. There-
fore, each node needs to monitor periodically the functioning of
its neighbors. In the future, we aim to investigate how to do this
with little overhead and how to organize transmissions after the
tree construction to maximize concurrency and reduce interfe-
rence.

REFERENCES
[1] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, "In-network aggregation

techniques for wireless sensor networks: a survey," IEEE Wireless
Communications, vol. 14, no. 2, pp. 70-87, 2007.

[2] WINES consortium, "Wired and Wireless Intelligent Networked
Systems (WINES) - Smart Infrastructure Project,"
www.WINESinfrastructure.org, 2008.

[3] A. F. Harris III, R. Kravets, and I. Gupta, "Building trees based on
aggregation efficiency in sensor networks," Springer Ad Hoc Networks,
vol. 5, no. 8, pp. 1317-1328, Nov 2007.

[4] G. di Bacco, T. Melodia, and F. Cuomo, "A MAC protocol for delay-
bounded applications in wireless sensor networks," in Proc. Med-Hoc-
Net 2004, Bodrum, Turkey, June 2004.

[5] K.-W. Fan, S. Liu, and P. Sinha, "Structure-free data aggregation in
sensor networks," IEEE Transactions on Mobile Computing, vol. 6, no.
8, pp. 929-942, 2007.

[6] G. Lu, B. Krishnamachari, and C. S. Raghavendra, "An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor
networks," in Proc. IEEE 18th International Parallel and Distributed
Processing Symposium (IPDPS '04) 2004, p. 224-235.

[7] R. Mangharam, A. Rowe, and R. Rajkumar, "FireFly: a cross-layer
platform for real-time embedded wireless networks," Springer Real-
Time Systems, vol. 37, no. 3, pp. 183-231, Dec 2007.

[8] K. Langendoen, "Medium access control in wireless sensor networks,"
in Medium Access Control in Wireless Networks, Volume II: Practice
and Standards. H. Wu and Y. Pan, Eds. Nova Science Publishers, 2008.

Figure 5. Fraction of nodes that fail to find a path in 3200 simulations of

randomly deployed WSNs with node failure probability f. For three
different event-sink distances and for three different node densities ρ, the

figure compares techniques T1, T2 and T3. For each technique, the
obtained value should be read from 0 to the upper location of the bar, as
opposed to from the difference between the locations of the lower and

upper borders of the bar. This representation is possible because T3 always
outperforms T2, and T2 always outperforms T1.

