
An infrastructure for detecting and punishing
malicious hosts using Mobile Agent

Watermarking

Oscar Esparza Jose L. Muñoz Joan Tomàs-Buliart Miguel Soriano

Abstract

Mobile agents are software entities consisting of code, data and state that
can migrate autonomously from host to host executing their code. In such
scenario there are some security issues that must be considered. In particu-
lar, this article deals with the protection of mobile agentsagainst manipula-
tion attacks performed by the host, which is one of the main security issues
to solve in mobile agent systems. This article introduces aninfrastructure
for Mobile Agent Watermarking (MAW). MAW is a lightweight approach
that can efficiently detect manipulation attacks performedby potentially ma-
licious hosts that might seek to subvert the normal agent operation. MAW is
the first proposal in the literature that adapts software watermarks to verify
the execution integrity of an agent. The second contribution of this arti-
cle is a technique to punish a malicious host that performed amanipulation
attack by using a Third Trusted Party (TTP) called Host Revocation Author-
ity (HoRA). A proof-of-concept has also been developed and we present
some performance evaluation results that demonstrate the usability of the
proposed mechanisms.

Keywords: mobile agent security, malicious hosts, software watermarking,
host revocation

1 Introduction

Mobile agents are software entities that consist of code, data and state, and that
can migrate from host to host performing actions on behalf ofa user. For in-
stance, mobile agents can be used to support wireless terminals, which usually
are resource-constrained. In fact, mobile agents are especially useful to perform
functions automatically in almost all electronic services, like distributed comput-
ing, e-commerce or data mining. Figure 1 shows a possible mobile agent scenario.

1



Agent

Creator

Repository

User

User Platform Agent

Sender

Network

Operator

INTERNET

Host

Host

Host

Mobile

Agent

Certificate

Authority

Attribute

Authority

Reputation

Server

Timestamping

Server

Yellow

Pages

Location

Server
ORIGIN

HOST

OTHER

SERVICES

SECURITY

SERVICES

Host

Figure 1: Mobile Agent Scenario

In this scenario, let us imagine that the user wants to arrange a meeting in
which invitees are spread all over the country in different local offices. The date
and place of the meeting may depend on several parameters such as room avail-
ability, room capacity, available commodities (projector, blackboard, etc) and, of
course, on the invitees’ agendas. Then, the user uses a mobile agent that travels all
the hosts of the invitees. Finally, the mobile agent will decide the place and date
of the meeting, and it will introduce a new entry in the agendaof each invitee. We
consider that the user and the agent sender platform are the same entity. We call
this entity “Origin Host” and we consider it trustworthy.

On the contrary, executing hosts cannot be considered trusted entities. For
instance, these executing hosts might be competitors. Before sending the agent,
the user can have information about the trustworthiness of the hosts, for instance
obtained in previous transactions, or consulted to external reputation servers. De-
pending on the degree of trustworthiness of these hosts, theuser can decide if
protection techniques are needed or not, or it simply can avoid sending the agent
to them. There are several reasons that can lead a host to become malicious and
attack a mobile agent to obtain a certain profit. In the previous example, one of
the invitees could try to manipulate the agent to impose the meeting to be in her
local office because she is averse to travel, or simply to avoid spending money in
a flight. Even, she can try to impose a date in which an adversary of another local
office cannot assist to the meeting to damage the reputation of this adversary. In
this article we assume a pessimistic view, considering the executing hosts as non
trusted entities (they can try to attack an agent when they execute it), so protection

2



mechanisms are needed. Other principals can appear in this scenario, like entities
that provide security services, or others that provide other services.

Two entities must be considered to study the security weaknesses of the sce-
nario: the mobile agent and the executing host (or simply host). Protection is nec-
essary when trustworthy relationships between these entities cannot be assured.
Accordingly, these are the main cases that can be found [5, 27, 17]:

• Host protection: the system administrator’s duty is protecting the hosts
from attacks that try to exploit the weaknesses of the execution platform.
The attacks performed by external entities (e.g. other hosts) are out of the
scope of this article because they can appear irrespective of the use of mo-
bile agents. However, there are new threats that must be taken into account.
The hosts must be protected against the attacks that an agentcan perform
while it is executing its code. Continuing with the example of the arrange-
ment of a meeting, a malicious mobile agent could try to delete entries that
should not have permission to access in the agenda of a user. Fortunately,
most of these attacks can be detected or avoided by using a proper access
control and sandboxing techniques, which are techniques that control the
execution environment. In addition, some other proposals try to determine
if the agent’s code is malicious before executing it [14, 26].

• Communications security: the agent can receive multiple attacks from any
external entity while it is migrating from host to host. Typical attacks are
eavesdropping or manipulation of data. Data eavesdroppingattacks can be
avoided by using encryption techniques, so any confidentialinformation
should be encrypted. Data manipulation attacks can be detected by using
digital signature [19]. This includes any part of the mobileagent (the code,
the itinerary, etc). In fact, before sending the agent the origin host signs
the mobile agent to assure that it will not be modified during its journey
by any host. So then, the hosts are sure that the agent’s code has not been
manipulated by any external entity (this includes any otherprevious host in
the itinerary). In both cases, data eavesdropping and manipulation, the use
of well-known cryptographic protocols is necessary.

• Agent protection: it is not so easy to protect the agents from the attacks of
the execution platform. This is considered the most difficult security prob-
lem to solve in mobile agent systems for most of the authors [13, 18]. There
are many reasons that can lead a host to attack the agents thatis executing.
The host can try to obtain an economical benefit or a favorableexecution, or
just it can try to damage the reputation of another principal. Following the
previous example, a rival host could try to manipulate the agent to impose
the meeting in another local office, but in a room without projector, so the

3



organizer of that local office will make a bad impression. It is difficult to
prevent or detect eavesdropping and manipulation attacks performed by the
host during the execution. The host has complete control of the execution
and hence it can read or modify any part of the mobile agent: the code, the
execution flow, the state, the itinerary, the communications, or even the re-
sults. This is the reason why there is not a published solution that protects
the mobile agents completely from the attacks of an executing host. This
kind of attacks is also known as the problem of the “malicious hosts”.

In this article, we address the detection and punishment of manipulation at-
tacks performed by malicious hosts. A malicious host performs a manipulation
attack when, trying to achieve a certain purpose, modifies any part of the mobile
agent to disrupt its proper execution. In the previous example, a possible manipu-
lation attack could be that a malicious host modifies the execution of the agent to
impose the date of the meeting without taking into account the agendas of the rest
of invitees. As previously mentioned, we assume a pessimistic view, considering
the execution of the agent in a non-trusted community of hosts. In case that the
hosts can be considered trusted, no protection mechanism isneeded against ma-
nipulation attacks. Our goal is to avoid manipulation attacks by dissuading hosts,
because detection can lead to punishment. Taking into account these objectives,
this article explains two mechanisms that work together to achieve an effective
and usable protection mechanism against manipulation attacks.

In first place, we propose an infrastructure for Mobile AgentWatermarking
(MAW). MAW is a lightweight approach to detect manipulationattacks. MAW
is the first proposal in the literature that adapts software watermarks to verify the
execution integrity. It must be clarified that the primary goal of MAW is not to
develop a new software watermarking scheme but to use and adapt existing wa-
termarking techniques. The novelty of our proposal is that we use and embed the
watermarks in a different way and for a different purpose than traditional software
watermarking systems. Indeed, different types of watermarking techniques can
be used in our infrastructure, and these techniques might also be changed in the
future according to advances in the watermark research area.

The second contribution of this article is a mechanism to punish the malicious
hosts by using a Third Trusted Party (TTP), that is, a trustedentity for all the enti-
ties of the system. In our proposal, this TTP is called Host Revocation Authority
(HoRA from here on). The HoRA stores in a database the information of those
hosts that have been proven malicious in order to avoid new attacks from them.
The punishment mechanism proposed is based on the idea of host revocation,
which essentially consists in avoiding sending mobile agents to the hosts that pre-
viously attacked other agents. Both detection and punishment working together
can achieve an effective protection mechanism against manipulation attacks.

4



Preliminary versions of the previous mechanisms were presented by the au-
thors at conference papers [12] and [11]. In this article, wereview and extend
them, including guidelines about how to choose the watermarks to embed into
the agent’s code and also performance evaluation by means ofa proof-of-concept
implementation. We also think that the article introduces anew application of
watermarking that may open a new research area. Finally, it is worth to mention
that the performance results demonstrate the usability of the overall solution.

The rest of the article is organized as follows: Section 2 provides the reader a
review of the required background; Section 3 explains how todetect manipulation
attacks using MAW; Section 4 details the HoRA functionalities; Section 5 presents
some performance evaluation by means of a proof-of-conceptof the system; The
conclusions of the article can be found in Section 6.

2 Background

2.1 Malicious Hosts

The attacks performed by malicious hosts are considered themost difficult to face
within the mobile agent scenario regarding security [4]. There are two main at-
tacks of this kind: (1) eavesdropping attacks, in which the host tries to extract
information from the execution of the agent. The system mustprovide execution
privacy to face these attacks, but this security service is difficult because eaves-
dropping attacks cannot be detected, only avoided; and (2) manipulation attacks,
in which the executing host tries to modify the proper execution of the agent.
Providing execution integrity is also a quite difficult security service because the
executing hosts have complete control over the agent’s execution.

The literature about countermeasures for malicious host attacks can be divided
in two kinds of approaches: attack avoidance and attack detection approaches. Re-
garding attack avoidance approaches, they try to avoid attacks before they happen.
Some authors introduced the idea of a tamper-proof hardwaresubsystem [32, 20]
where agents can be executed in a secure way, but this forces each host to buy
this hardware. Hohl presents obfuscation [15] as a mechanism to assure the exe-
cution integrity during a period of time, but this time depends on the capacity of
analyzing the code of the malicious host. The use of encrypted programs [29] is
proposed as the only way to give execution privacy and integrity to mobile code.
The difficulty here is to find functions that can be executed inan encrypted way.
Published attack avoidance techniques are difficult to implement or computation-
ally expensive. For this reason, we consider attack detection techniques more
promising because they are usually easier to implement. Theobjective of attack
detection approaches is detecting manipulation attacks. In [21], the authors intro-

5



duce the idea of replication and voting, but this proposal can only be used as an
attack detection approach if the hosts in the same stage are independent.

In [31], Vigna introduces the idea of the cryptographic traces, which are logs
of the operations performed by the agent. The operations of the agent can be
categorized in white statements, which modify the agent’s state due to internal
variable values; and black statements, which alter the agent’s state due to external
variables. These traces contain the changes performed to internal variables as a
consequence of black statements. A re-execution of the agent can be performed
with these traces. Instead of sending the traces, the hosts must store them to save
network bandwidth. This is due to their size depends on the amount of input data,
which can be huge. If the origin host suspects that a host modified the agent and
wants to verify the execution, it asks for the traces and executes the agent again.
If the new execution does not agree with the traces, the host is cheating. The
approach not only detects manipulation attacks, but it alsoproves the malicious
behavior of the host. However, this approach has two main drawbacks: (1) verifi-
cation is only performed in case of suspicion, but the way in which a host becomes
suspicious is not explained, and (2) for an indefinite periodof time, each host must
reserve enough capacity to the storage of traces of past transactions because the
origin host can ask for them. These drawbacks can be relievedby controlling the
agent’s execution time in the hosts [10], but even with this complement, the use
of traces might be still too expensive for all the entities involved.

2.2 Software Watermarking

Digital watermarking has been traditionally used to provide copyright protection
for different kinds of digital objects. In the copyright protection scenario, a dis-
tributor embeds the watermark into the digital object, so its ownership can be
proved later. Software watermarking is the term used when the digital object is
a software application. Software watermarking has been used to detect software
piracy (i.e. the illegal copying and resale of software applications). In addition,
software watermarks have also been used in other scenarios such as tamperproof-
ing or obfuscation [9]. In fact, in this article we use software watermarks for yet
another purpose: detecting manipulation attacks in mobileagent systems.

According to [8] there are three parameters that essentially define the charac-
teristics and security of a software watermarking scheme: (1) the data rate ex-
presses the quantity of hidden data that can be embedded within the digital object;
(2) the stealth expresses how imperceptible the embedded data is to an observer;
and (3)the resilience expresses the hidden message’s degree of immunity to at-
tacks performed by an adversary. All watermarks exhibit a trade-off between these
three parameters and the related cost.

6



2.2.1 Classification of Software Watermarks

Software watermarks are usually classified in two types:

• Static watermarks. The static watermark is embedded in the executable
code of the program. The main drawback of static watermarks is that they
can be detected even without running the program and thus, they are sus-
ceptible to attack by anyone of reasonable skill in softwareanalysis. One
of the most robust static watermarking techniques is presented in [30]. In
that proposal, Venkatesanet al. treat the program as a control flow graph,
in which a watermark graph is added to form the marked program.

• Dynamic watermarks. The watermark depends on conditions during the
execution of the program. These conditions can be related with input data,
user-interaction, a packet from network, a special file, theprogram state etc.
This makes dynamic watermarks much more difficult to detect because in
general the application must be run several times to detect the watermark.
As dynamic watermarks are relatively new, there are still few published
proposals of this kind [8, 24]. In the literature we can find three types of
dynamic watermarks:

– Easter egg watermarks, in which the application performs an action
that is immediately perceptible for the user when a special input se-
quence is entered.

– Execution trace watermarks, in which the watermark is embedded
within the program trace (either instructions or addresses).

– Data structure watermarks, in which the watermark is embedded within
the state of the program (global, heap, stack data, etc.).

2.2.2 Threat Model for Copyright Protection

The objective of an illegal software redistributor is to make the watermark invalid
without changing the behavior of the program. In this sense,three main attacks
can be performed:

• Subtraction attacks: an attacker that knows the location of the watermark
can try to delete it from the code, in the hope that the programafter the
extraction will be still useful.

• Distortive attacks: an attacker without knowledge about the location of the
watermark can apply transformations that uniformly distort the code trying
to make the watermark unrecognizable.

7



• Additive attacks: an attacker adds its own mark, in the hope that it will be
impossible to detect that the real watermark precedes the new fake one.

Most distortive attacks are based on semantic preserving program transfor-
mations. These transformations only modify the program appearance. Some ex-
amples of classical semantic preserving program transformations are obfuscation,
translation and optimization (compilation, decompilation or binary translation).

Regarding the strength of both types of software watermarks, in general, static
watermarks are simpler than the dynamic ones, but also weaker against attacks
[8, 9]. Static watermarks are usually easy to distort by using any semantic pre-
serving program transformation. On the other hand, most published dynamic wa-
termarking schemes are resilient to some of these transformations when applied
individually, but not to combined attacks of some of them. For this reason, most
watermarking schemes are designed to make it difficult to locate and change the
watermark when semantic preserving program transformations are used.

However, in this article we present a mechanism that uses software water-
marking techniques not to protect the copyright of programs, but to protect the
execution of a mobile agent in an untrusted host, the Mobile Agent Watermark-
ing (MAW) infrastructure. The objective of the agent’s owner is to assure that
the agent has been properly executed by embedding a softwarewatermark in the
agent’s code. On her side, the objective of malicious hosts is also different, mod-
ifying the agent’s execution to obtain a certain profit. As wewill discuss later
in Section 3.5, attacks based on semantic preserving program transformations
against watermarked agents are useless for the attacker in this scenario. This is
because these transformations only affect the code appearance, not code behav-
ior. In this case, the modified code will be executed in the proper manner, so the
execution integrity is assured.

In this article, we also present the implementation of our proposal MAW,
which is based on a particular data structure watermark, theCollberg-Thomborson
(CT) algorithm [8], which is also known as Dynamic Graph Watermarking. There
is an implementation of this CT algorithm within the SandMark Project [7], which
we have adapted to the mobile agent scenario. Next, we summarize how the CT
algorithm works to better understand the implementation ofour proposal (the con-
crete CT-based implementation of MAW is later presented in Section 3.6).

2.2.3 Dynamic Graph Watermarking

The CT algorithm (also calledDynamic Graph Watermarking [8]) is based on em-
bedding watermarks within the topology of graphs built dynamically in memory
during the execution of a program. The structure embedded isagraph-watermark
(G). Thegraph-watermark contains in its topology a representation of a number

8



N , which is the product of two large primesp andq. A program calledrecognizer
or R can retrieve this graph from memory. Then,N can be retrieved fromG,
and finally, the author can prove that she has embedded the corresponding graph
into the code because she knowsp andq. Graphs are a suitable mechanism to
embed marks because as it is known [8], the analysis of large graphs involves sig-
nificant complexity and requires an important computational effort. Furthermore,
attacks based on semantic modifications of the source code are useless because
they do not alter the execution of the marked code, and thus, the watermark can
be recovered by means of the analysis of the memory during theexecution.

Figure 2 illustrates the steps of this mechanism. The algorithm starts selecting
two large primes (p and q) and calculatingN = p × q. Then, the algorithm
continues as follows:

1. Embedding N into the topology of a given graphG.

2. Creating the codeW which generatesG.

3. EmbeddingW in the original codeO to generate aO0, which given an input
I, the recognizerR is able to extractW (and henceN).

4. Using tamperproofing to avoidW being removed (generatingO1).

5. Using obfuscation to difficult analysis (generatingO2). In this case, the
recognizerR and the watermark codeW becomeR′ andW ′ respectively
because of obfuscation.

6. Extracting the recognizerR′ and distributing the marked codeO3.

7. After distribution, an attacker can generateO4 distorting the codeO3 to
make the watermark invalid.

8. The author of the code can prove her authorship by applyingthe recognizer
R′ toO4 using the special input I. This will generate the graphG in memory,
soN can be found. AsN is not a random number but it has been chosen
deliberately as the product of two large primes, then the author demonstrates
authorship just factoringN (publishingp andq).

One of the main difficulties of this algorithm is the embedding process of
the mark within a graph. Collberget al. mention in [8] some possible ways to
do so. From these, we summarize here the Radix-k encoding, which is the one
that we will use in our implementation of MAW. In Radix-k, the number used as
watermark is embedded by means of a circular linked list. In fact, every number
can be encoded asn =

∑k−2

i=0
aik

i. So, the base-k digit is encoded by the length
of the list and an extra pointer, which points to the first node. Every node encodes

9



Figure 2:Scheme of Dynamic Graph Watermarking:

Figure 3: Example of embedding n=4453 by means of Radix-k

an ai by pointers: if the pointer is null, thenai = 0; if the pointer points itself,
thenai = 1; if it points the next element, thenai = 2, and so on. Equation 1
and Figure 3 show an example of Radix-6 encoding, which codifies the number
n = 4453 with these coefficientsa = {a0, a1, a2, a3, a4} = {1, 4, 3, 2, 3}.

n = 1 × 60 + 4 × 61 + 3 × 62 + 2 × 63 + 3 × 64 = 4453 = 61 × 73 (1)

3 Mobile Agent Watermarking (MAW)

MAW is a lightweight approach to detect manipulation attacks. That is to say,
with MAW one can verify whether an agent was or was not properly executed by
a host. It must be stressed that our infrastructure is the first approach that adapts
software watermarks to solve the problem of the malicious hosts.

The MAW infrastructure works as follows: the original agentis modified by
introducing a dynamic software watermark. Watermarked agents generate output

10



data according to a set of rules. We name these rules “integrity rules”. Integrity
rules are secret, that is to say, they are only known by the origin host. The water-
marked agent generates output data organized in what we calla “data container”.
The organization of the data container is performed according to the integrity
rules. In this sense, we say that the watermark is transferred to the data container.
For instance, let us illustrate the process with one very simple integrity rule. Let
us assume that the agent generates an integer as a piece of output information. To
introduce the integer in the container, it is multiplied by two if a certain global
variable is even. The associated integrity rule is to check that this piece of data
in the container is even if the global variable is even. In general, integrity rules
are related with input data, internal values (heap, stack etc.), dummy data and
data from external communications. Therefore, we can say that our infrastruc-
ture is based on dynamic software watermarking (since watermarks are created at
runtime depending on the program’s state).

Finally, the origin host receives the agent, which has been executed by all
the hosts of the itinerary. Then, the origin host applies theset of integrity rules
to all the data containers (there is one container for each host in the itinerary).
These integrity rules are a set of logical properties that a container must fulfill
(if it has not been tampered). These rules are responsible for demonstrating that
the presence of the watermark is the result of deliberate actions. If a container
does not fulfill the rules, this means that the correspondingwatermark has been
modified, and hence the corresponding host is malicious.

In summary, the process has three phases: (1) watermark embedding: mod-
ify the agent to embed the watermark generation code (see Section 3.1); water-
mark transference: create the container during the agent’sexecution to transfer
the watermark and hide the results (see Section 3.2); and detecting manipulation:
watermark verification using integrity rules (see Section 3.3).

3.1 Watermark Embedding

Current software watermarking techniques must be adapted to our scenario be-
cause they were not originally designed for creating execution integrity proofs
(containers). As explained in Section 2.2, there are two main kinds of software
watermarking techniques: static and dynamic watermarks [8]. The nature of static
watermarks makes it impracticable to transfer the embeddedwatermark to the con-
tainer. As static watermarks are embedded in the executablefile itself (i.e. they
are not related to the program state), they cannot be used to build our dynamic
containers. Hence, we need to use a dynamic watermark approach to generate the
containers at runtime taking into account the program state. Among the existing
dynamic software watermarking approaches, the appropriate one for MAW is the
“data structure watermark” because it is the one that takes into account the pro-

11



gram state to generate the watermark (see Section 2.2 and references [8, 6, 25]). In
particular, in our implementation, we have used the Collberg-Thomborson (CT)
algorithm [8], which was summarized in Section 2.2.3.

Regarding the size of the MAW watermark, it is important because it deter-
mines the probability of detecting manipulation attacks. In our scheme, the size
of the marked code is determined before sending the agent. This size is limited
and it is the same for all the hosts in the agent’s itinerary. Moreover, the container
(output data) generated by each execution has also a limitedsize. The maximum
size of containers is not arbitrary, it can be decided by the programmer to con-
trol the accuracy to detect manipulation attacks. If we wantto improve detection
ability and prevent an attacker from modifying the agent’s code without being de-
tected, we must increase the size of containers. Obviously,increasing the size of
the watermark is also more costly in terms of transmission resources consump-
tion. This is because the size of the agent is increased sinceon one hand, the
marked code is bigger than the original one, and on the other hand, the containers
are also bigger because they contain more redundancy. This last effect is even
more significant since the agent carries a container for eachexecution in a host.
This implies that the agent’s size grows as it traverses morehosts, and therefore
this size depends on the length of the agent’s itinerary.

3.2 Watermark Transference

To detect manipulation attacks, the mobile agent must create at runtime the proofs,
and send them back to the origin host to assure the execution correctness. In
MAW, these proofs are stored in a logically-structured data“container“ that is
created in each host during execution. The container is created using dummy
data, input data, internal values (heap, stack etc.) and data from external commu-
nications. The agent can diffuse and confuse all this information into the container
to hide the actually desired execution results. Diffusing values means repeating
these values into several different places, and confusing values means modifying
these values to different ones, for example by adding constant values.

Obviously, all these data are not organized into the container at random. The
way this information is incorporated into the container is essential to extract the
watermark when the agent returns to the origin host. As we said previously, the
transferred watermark must be reliably located and extracted from the container
and, it must let us demonstrate that its presence into the container is the result
of deliberate actions. In short, each executing host creates a container, which is
the digital cover where the agent transfers the watermark. Then, each host must
digitally sign its container. When the agent finishes traveling its itinerary, it returns
to the origin host. All containers arrive at the origin host together with the mobile
agent. Next, the origin host uses them to verify the execution integrity and to

12



extract the desired execution results of each host.

3.3 Detecting Manipulations

The origin host must verify the execution integrity when theagent comes back
with all the containers. To do so, the origin host uses its secret set of integrity
rules related to the previously-embedded watermark. Theseintegrity rules are a
set of logical properties that a container must fulfill to demonstrate that it has not
been tampered. They are also responsible for demonstratingthat the presence of
the watermark is the result of deliberate actions. These actions are inferred from
the modifications performed over the original agent’s code during the watermark
embedding process. If a container does not fulfill the integrity rules, this means
that the watermark has been modified, and the corresponding host is malicious.
A tampered container can be used as a proof of the malicious behavior of a host.
The host cannot repudiate this situation since it digitallysigned the container.

It is worth to mention that the embedded watermark is the samefor all the
hosts, that is, all hosts execute the same marked code. In thesame sense, the in-
tegrity rules are the same for all the hosts, because they areinferred directly from
the agent’s code. This means that the origin host uses the same integrity rules to
demonstrate the presence of the watermark into the containers. However, this does
not mean that all the containers have the same data. Each container is different
because it depends on the execution in each host, and hence the data used to fill
in the container is different (input data, internal data, data from communications,
dummy data, etc.). This could lead us to think that our proposal uses fingerprint-
ing instead of watermarking, because the data structure is different for each host
(container). However, we consider that our approach uses watermarking because
the embedded mark is the same for all the hosts despite the representation of this
mark is different for each container.

Finally, our infrastructure also allows an origin host to prove, in front of an
external third party, that a certain host of the itinerary performed a modification
attack over the agent. However, the integrity rules cannot be treated as a proof
directly. Instead, the origin host must send them together with the agent’s code
and the signed container of the accused host to the third party. Then, the third party
executes the agent several times with random input data. As any honest execution
of the agent (independently of the input data) will generatevalid containers, the
new containers created during these random executions should fulfill the integrity
rules. This procedure assures that the integrity rules are valid. Then, the external
entity can verify whether the host being accused is in fact malicious by applying
the integrity rules to its container.

13



3.4 Advantages and Drawbacks of MAW

MAW is a lightweight attack detection approach if it is compared to the most
widely known proposal of the cryptographic traces [31]. These are some of its
advantages:

• Size of the proofs: in MAW, the size of the proofs to check the execution
integrity is limited. The maximum size of the containers is determined by
the programmer to control the accuracy to detect manipulation attacks. The
containers can be little enough to let the agent carry them. In the crypto-
graphic traces approach, the size of the traces depends on the amount of
input data of the mobile agent, which can be quite big.

• Proof storage: in MAW, the executing hosts do not need to store any kind
of proof. In the cryptographic traces approach, the hosts must store the
traces for an indefinite period of time.

• Hosts to verify: in MAW, the origin host can verify the execution integrity
of all the hosts of the itinerary. In the cryptographic traces approach the
verification is performed in case of suspicion.

• Verification tasks: in MAW, the origin host has to apply the integrity rules
to the containers to verify the execution integrity. In the cryptographic traces
approach, the origin host must ask for the traces to the suspicious host and
execute the agent again.

MAW has also some drawbacks, which affect mainly performance:

• Watermark embedding: the origin host must embed the watermark into
the agent’s code by using software watermarking techniquesand must infer
the integrity rules.

• Code size: there is an increase in the code size. Embedding a watermark
means that some overhead is added to the original code. This enlargement
will depend on the embedded watermark and therefore, creating, storing and
sending marked agents consume more resources.

• Execution time: the execution of marked agents consumes more CPU.

• Mobile agent size: the mobile agent in MAW must carry the containers.
This implies an additional load. This load grows up each timethe mobile
agent visits a host. The maximum size is reached when the agent returns to
the origin host.

14



3.5 Design of the Watermarks for MAW

This Section discusses the motivations of malicious hosts,the attacks that can
perform, and also the properties and requirements that the software watermarks
should have to implement the MAW infrastructure.

3.5.1 Threat Model for MAW

As we mention in Section 2.2.2, the objective of an attacker in the copyright pro-
tection scenario is to make the watermark of a program invalid to illegally redis-
tribute this program later. To do so, the main attacks against software watermarks
are subtraction, addition and distortion. On the other hand, the motivations of an
attacker in the mobile agent scenario are different. A malicious host may have sev-
eral reasons to attack a mobile agent. For instance, it can attack the mobile agent
to obtain some benefits from the execution, to damage the reputation of another
host, or just for fun. There are several kinds of attacks in this scenario (denial of
service, eavesdropping, impersonation, etc). However, wewill focus on manip-
ulation attacks because MAW has been designed to detect thisparticular kind of
attacks. Just remind that manipulation attacks are those inwhich a malicious host
tries to manipulate the proper execution of the agent to achieve a certain purpose.
So then, the objective of an attacker will be not to make the watermark invalid, but
to manipulate the execution without altering the transferred watermark, because
any change in the transferred watermark will cause the detection of the attack.

The malicious host may try to manipulate the agent’s code to obtain a certain
benefit. However, all the attacks that are used in the copyright protection scenario
to manipulate code are totally useless to attack a mobile agent protected with
the MAW infrastructure. Distortive attacks, which are usually based on semantic
preserving program transformations (translation, optimization, obfuscation, etc.),
are useless to attack MAW because these transformations only affect the code
appearance, and not the code behavior. Hence, the modified code will be executed
in the proper manner (which is precisely our objective, assuring the execution
integrity). On the other hand, if a malicious host tries to remove the embedded
watermark or to add a new one to the agent’s code, the changes in the transferred
watermark produced by these attacks will reveal that the agent has been modified.

The host can also try to attack containers. However, a host cannot manipulate
the containers of previous executing hosts because they aresigned by their cre-
ators. Thus, a malicious host can only try to manipulate its own container. In this
case, the objective of the attacker is manipulating the container to obtain a certain
profit, but without altering the transferred watermark. However, this will be hard
to achieve thanks to MAW because the host does not know which parts of the con-
tainer are part of the watermark (this would be equivalent toknow the integrity

15



rules, which are secret). Therefore, before changing any part of the container the
host should infer where the watermark is.

To infer where the watermark is, a malicious host can also tryto analyze the
inputs and outputs to extract information from the mobile agent. Unfortunately,
it is unfeasible to detect or prevent that a host changes its own input data, which
are located in its internal database. In fact, this should beconsidered an eaves-
dropping attack because the host does not alter the proper execution of the agent.
As a conclusion, MAW cannot detect this because it is not a manipulation attack.
However, MAW can avoid the attacker to extract information from the execu-
tion. Let us suppose that a malicious host introduces fake input data and executes
the mobile agent to analyze the generated container. Despite this can be done
many times obtaining different containers, this does not mean that the malicious
host can generate a container at its discretion (containersmust fulfill the integrity
rules if the agent’s execution has not been modified). For this reason, a malicious
host performing different executions cannot infer the integrity rules by compar-
ing these containers because any change in the input data will cause that most
data within the container will also change. In the same sense, colluding hosts that
share their containers cannot infer where is the watermark.Even if a malicious
host is successful obtaining some piece of information about how the containers
are constructed, it would be unfeasible to construct a validcontainer that achieves
the purposes of the attacker. This is due to the watermark being large and dis-
tributed within the whole container, and also because the attacker doesn’t know
all the integrity rules.

3.5.2 Watermark Properties

These are the most important properties of the watermarks tobe embedded into
the mobile agent: (1) thestealth. This is the most important property of the wa-
termark, because a malicious host without knowledge about where the watermark
is can only try random changes, which affect the transferredwatermark; (2) the
data rate is also quite important because it improves the security of the water-
mark. A bigger watermark makes manipulating the container without altering the
transferred watermark more difficult. However, this affects adversely the cost of
the watermark, especially in terms of transmission resources as containers are sent
back to the origin host; finally, (3) theresilience is not as important as the previ-
ous properties, because the use of semantic preserving transformations does not
affect the code behavior. As a consequence, watermarks withlittle resilience can
be used in our scenario. So, we do not require maximizing all the properties. This
allows us to use simpler and less costly watermarks.

16



3.6 Implementation of MAW using the CT Algorithm

This section describes the main guidelines about how we haveimplemented the
MAW infrastructure. In particular, our implementation is based on an adapta-
tion of the Collberg-Thomborson (CT) algorithm [8] which isavailable within
the SandMark Project [7]. We would like also to point out thatother different
software watermarking algorithms could also be used to detect manipulation at-
tacks. Obviously, the different peculiarities of each algorithm must be taken into
account.

As previously elaborated in Section 2.2.3, the CT algorithmdynamically builds
a graph in memory when the program is fed with a special input.The recognizer
program is able to find this graph in memory, and to extract from this graph (for
instance using the Radix-k encoding) a numberN , which is the product of two
large primes. As it is computationally unfeasible to factora number which is the
product of two large prime numbers, the creator demonstrates authorship by sim-
ply publishing the two factors. In our implementation of MAW, all the executions
build a graph in memory, independently on the input data thatwe use to feed the
agent. So, the agent just needs to transfer the graph which isplaced in memory to
the container. Our recognizer uses the container (instead of memory) to find the
product of primesN and thus, to assure execution correctness. The recognizer
should be also considered part of the integrity rules (in fact, the integrity rules are
more general as they also describe some more relationships among data within the
container).

For the sake of simplicity, we illustrate our implementation by means of an
example. Let us suppose that we are executing the agent in thehost n. The
agent is fed with some input data that come from the previous execution host
n − 1. Let us suppose that we have six values of this kindsn = (sn

0
, · · · , sn

5
),

which are the initial state of the agent in this host. After the execution, we will
obtain some output data. Let us suppose that we have five of these valueson =
(on

0
, · · · , on

4
), which should be included within the container together with the

transferred watermark.
Then, we have to follow the following steps to construct the container:

1. The agent must calculate a binary initial sequenceIS that will be used to
establish the starting position of the watermark, and also to obscure the con-
tainer. TheIS should reflect that a particular execution has been performed
in a certain host, that depends on a initial state, and that itis time dependent.
Following the example, we calculateIS as the hash of the concatenation of
the identifier of hostn (IDn), a subset of the initial state (some values in
clear and some hashed), and a timestampTSn:

17



IS = hash(IDn||s
n
2
||sn

3
||hash(sn

5
)||TSn) (2)

This time stampTSn should also be sent to the origin host together with the
container to make possible to re-calculateIS from these values.

2. After that, the agent fills out the cells of the container with random values.
Figure 4(a) shows the container at that moment.cj represents the random
data stored in the positionj of the container.

(a) Container with
random data

(b) Container after embed-
ding the output data

(c) Container before XOR

Figure 4: Container generation process.

3. In this step, the agent starts transferring the watermarkto the container. The
first thing is locating the initial cell,pn, of the graph into the container. In
our example, the agent calculatespn by performing a modulus operation
over the initial sequenceIS taking as base the number of cells of the con-
tainer (25 in this example):

pn = IS mod 25 = 7. (3)

In this case, the initial sequenceIS is the extra pointer which provides us
the position within the container of the first node within thecircular linked
graph (in the example, cell 7).

4. Next, we start transferring the rest of the graph from memory to the con-
tainer. In this example, we use the same watermark of Section2.2.3, i.e.
we use the Equation (1), which codifies the numberN = 4453 with the
following Radix-6 coefficients:

a = {a0, a1, a2, a3, a4} = {1, 4, 3, 2, 3} (4)

18



We denote the graph with the following set of tuples:

wn =< {xn
0
, yn

0
}, {xn

1
, yn

1
}, {xn

2
, yn

2
}, {xn

3
, yn

3
}, {xn

4
, yn

4
} > (5)

As in Figure 3, each node is formed by two elements (we map eachof these
elements in one cell, so we will need two consecutive cells for each graph
node). The first cell is used to store thexn

i value in basek, and it will be used
to obtain theai Radix-6 coefficients. In our example, asIS = 7, cell 7 is the
first cell of the first node of the graph, and hence it containsxn

0
. The second

cell storesyn
i , which is the index of the cell that corresponds to the next node

of the graph. Therefore, cell 8 containsyn
0

= 11, which is a pointer to the
second node of the graph (located in cells 11 and 12). Except the first node
(that depends on theIS), the agent can put the rest of nodes randomly in
any place of the container, because we can reconstruct the complete graph
using the pointers. In addition, the last node points to the first one (it is a
circular linked graph). Finally, the agent does not directly store the values
into the container, but it calculates them as the subtraction of the value of
the cell and the index of the cellai = xn

j − j (beingj the index of this cell).
For instance,a0 = 8 − 7 = 1, a1 = 15 − 11 = 4, a2 = 22 − 19 = 3, etc.

5. After the graph embedding, the agent must store the resultof the execution
on = (on

0
, · · · , on

4
). In our example, the agent chooses the positions to store

these output values into the container using, once again, the valuepn (7,
in this example). Basically, this value indicates the number of empty cells
between two different output values. The last node of the graph (in the
example, cell 18) is used as starting point. Thus, cell 4 stores the first output
valueon

0
because it is 8th empty cell starting from cell 18. Figure 4(b) shows

the container after transferring these values.

6. The next step is to generate an additional vector that willenhance the dif-
fusion of the output data by storing them in some extra positions. In this
example, we use a vector of 5 positionso′ n = (o′ n

0
, · · · , o′ n

4
), in which

o′ n
i = (on

i )j mod pn. These values will be stored using the same rule than
theon

i values (7 empty cells between different values), and starting from the
last value added to the container (in this caseon

4
). Figure 4(c) shows the

container after embedding theo′ n values. These relationships will also be
part of the integrity rules.

7. Finally, all the container is XOR withIS to obscure all these data. Thus,
only the entities that knowIS can know the real contents of the container.

To detect manipulations, the origin host should have the container, the initial
state valuessn = (sn

0
, · · · , sn

5
) (sent by the previous host and acknowledged by

19



hostn), and the timestampTSn. Having all these data, the origin host can calcu-
late IS. With that value, the origin host XOR the container usingIS to recover
the data within the container. Once theIS value is known, we can also know
the initial cell of the watermark. If hostn has been honest, thenIS = 7, and
applying the recognizer to the container we can obtain that the Radix-6 values are
a = {1, 4, 3, 2, 3}, soN = 4453. Just emphasize thatN is not a random number
but the product of two primes, and that the only entity capable of factoring it is the
origin host (N = 61 × 73). The origin host also verifies that the output valueson

ando′ n are properly located into the container and that the relationships among
them are correct. If so, we can consider that hostn is honest, and we can extract
the results from the output values.

The security of this implementation lies on the impossibility of knowing which
kind of data is storing each cell (watermark, output data, random data, etc). The
executing host does not know how the initial sequenceIS has been calculated,
nor how the container has been constructed, nor the relationships among cells. As
it has been shown, data within the container are very dynamic, and they change as
it changes the executing host, the time, the agent’s initialstate or any other type
of input data. The previous example illustrates the main steps that performs our
MAW implementation. However, the real implementation performs some extra
steps that have been deliberately omitted for the sake of clarity of the previous
explanation. To achieve a practical level of robustness indeed, additional steps
must be performed.

8. We have some order in the way to construct the container (first introduce
the watermark, after that introduce the results, and at the end XOR the con-
tainer). In a real scenario, all these steps should be mixed,so the attacker
cannot infer how the container has been constructed. In addition, some other
relationships among the output values could be added to enhance diffusion
and robustness,o′′ n, o′′′ n (e.g. using arithmetical operations among them).

9. We have constructed the watermark using a Radix-k encoding that needs
pointers, so all the cells that compose the graph has values in the range
[0 − 25]. This can help an attacker to locate the watermark. In a real sce-
nario these values should be obscured for instance by using any kind of
arithmetical operation.

10. A malicious host that provides the same initial state, the same host identifier,
and the same timestamp to the agent will always obtain the sameIS. Thus,
the position of the watermark will always be the same. Obviously, for a
real case,IS should change depending on other different parameters, so the
attacker cannot infer where is the starting point of the watermark.

20



4 Punishing Attacks with the HoRA

This section introduces a punishment mechanism based on a new entity: the Host
Revocation Authority (HoRA). The HoRA must be considered a Trusted Third
Party (TTP) in the mobile agent system. In this sense, the HoRA must be con-
sidered a TTP in the mobile agent system like the Certification Authority (CA) is
considered in the Public Key Infrastructure (PKI). In our opinion, attack detection
approaches should be accompanied with some punishment policies. Little atten-
tion has been paid to punishment mechanisms in mobile agent systems. In fact,
our proposal is the only punishment system that can be found in the literature.
The HoRA uses a punishment mechanism based on host revocation. The aim of
host revocation is to distinguish the malicious hosts from the honest ones. For this
purpose, the HoRA stores a database with all the informationrelated to past at-
tacks. The main job of the HoRA is providing this informationto the origin hosts
to avoid new attacks from malicious hosts. In this article, we summarize the tasks
that the HoRA has to carry out (status checking and host revocation), we present
our implementation and, we present some performance results to evaluate the cost
of the HoRA when using MAW as a detection mechanism.

4.1 Status Checking

Before sending the agent, the origin host must consult the revocation information
in order to delete malicious hosts from the agent’s itinerary. Assuming that the
HoRA works in a similar way as the Certification Authority regarding certificate
revocation, there are two possible ways of consulting the status of the hosts: on-
line or offline. The decision of which of these policies must be used depends on
multiple factors, like the available transmission resources, the number of origin
hosts that may launch requests, or the computational capacity of the entities.

4.1.1 Offline Status Checking

In offline status checking, we consider that an origin host may lose the connec-
tivity to the HoRA. If this happens, the origin host will not have any revocation
information available. The idea behind the offline system isto make accessible the
revocation information available in a given moment using a black list: the Host
Revocation List (HRL). An HRL is a list, which is signed by theHoRA and, that
contains all the identifiers of the hosts that have been revoked. The origin hosts
can download the HRL and store it for some time. Then, the HRL can be used to
remove revoked hosts from itineraries before sending agents. To take into account
new malicious hosts, the origin hosts have to update the HRL periodically. In this
sense, the HRL works in a similar way as the traditional Certificate Revocation

21



List (CRL) in the PKI [16]. The origin hosts can download the HRL directly from
the HoRA, but this may cause a bottleneck in the system. To solve this problem
the HoRA can put the HRL in repositories1. The repositories must also update the
HRL periodically. The offline status checking mechanism does not avoid attacks
completely. A host that is detected as malicious can attack agents until it is intro-
duced in the HRL and the origin hosts update their lists. The less time between
updates of the HRL, the less attacks can be performed by the new malicious hosts.
However, frequent updates affect adversely the network bandwidth.

4.1.2 Online Status Checking

In the online status checking policy, origin hosts request revocation information
directly from the HoRA. To do so, the origin hosts use the Online Host Status Pro-
tocol (OHSP). When a request arrives, the HoRA consults its internal database and
sends a signed response pointing out the state of each host. This mechanism works
in a similar way as the Online Certificate Status Protocol (OCSP) used in the PKI
[23]. There are several reasons that can lead an origin host to use the online mech-
anism. For instance, origin hosts that send agents sporadically do not need to store
and update the HRL periodically. Furthermore, the risk of suffering attacks from
malicious hosts is minimized since the status is checked online which allows im-
mediate detection and rejection of malicious hosts from itineraries. However, with
the online policy, the HoRA may become a bottleneck in the system because it re-
ceives requests from all the origin hosts, and it must answereach request with a
digitally signed response which is computationally expensive. For this reason, the
HoRA can also delegate online checking to authorized entities called responders2.

4.2 Host Revocation

The second task of the HoRA is managing the revocation information. As the
revoked hosts are not removed from the database, this task consists mainly in
adding new hosts. If the origin host has detected malicious hosts using MAW,
it starts a protocol to revoke them. The objective of any revocation protocol is
delivering in a reliable way all the proofs to the HoRA in order to demonstrate that
an executing host is malicious. A proof is a piece of evidencethat a TTP can use to
verify that an attack was performed by a malicious host. In the case of MAW, the
proofs are the containers, and the way to detect manipulation attacks are the set of
integrity rules. Hence, the HoRA can only revoke a host in case there are proofs
of its malicious behavior, that is, the HoRA needs evidencesthat demonstrate

1A repository is a non-trusted location in the network where it is possible to store contents to
make them available to download.

2A responder is a trusted location in the network that can sendsigned responses.

22



Figure 5: Working of our Proposal

unmistakably that this host was malicious. In this sense, the containers can be
used to detect manipulation attacks because they have been signed by the hosts, so
a malicious host cannot repudiate that it generated a certain container. The HoRA
must verify that the set of integrity rules matches the agent’s code. This can be
done by executing the agent several times with random input data (as explained in
Section 3.3). A revocation protocol for MAW can be found in [12].

4.3 Summarizing the Overall Process

We can divide the agent’s lifetime in four phases (see Figure5):

• Agent Creation: in this phase the origin host prepares the agent before
sending it. This includes performing the status checking tofilter the mali-
cious hosts from the agent’s itinerary, and also embedding the watermark
into the agent’s code.

• Agent Sending: in this phase the origin host sends the mobile agent to
perform its tasks. The agent will migrate from host to host executing its
code and performing the actions that the user has programmed(for instance,
arranging a meeting). During the agent’s execution in each host, the agent
must create and store the containers, which are the proofs that will assure
the execution integrity. The embedded watermark has been transferred to
these containers during the execution. Hence, all the containers (one for
each host) will return with the mobile agent to the origin host.

• Proof Checking: in this phase the origin host looks for malicious hosts.
When the agent returns to the origin host, it extracts the containers of all

23



the hosts and it verifies the signatures to detect possible errors in communi-
cations. These errors must not be considered manipulation attacks because
they could be produced by the communication channel. If the containers do
not have communication errors, the origin host applies the integrity rules
to them in order to verify the correctness of the transferredwatermarks. If
a container does not fulfill the rules, this host is maliciousand hence the
origin host can start a revocation protocol.

• Host Revocation: in this phase the origin host sends the proofs of the ex-
ecution integrity to the HoRA using a revocation protocol. The HoRA ver-
ifies the validity of these proofs, that is, it verifies that the signature of the
container is valid and that the integrity rules correspond to the agent’s code
by executing the agent again with random input data. If theseproofs are
valid, the HoRA revokes the malicious host, so this host willnot receive
agents any more.

5 Proof-of-concept and Performance Evaluation

In this section, we present some performance results of the prototype that we have
developed to show the usability of our agent watermarking mechanism. We also
present some performance results about a proof-of-conceptof the HoRA.

5.1 Mobile Agent Watermarking

We have used the Aglet Software Development Kit 2.0.1 (ASDK)[3] as mobile
agent platform to implement the agent watermarking prototype for MAW. ASDK
provides an API to create aglets (AGent-appLETS), which areJava objects that
can be used as mobile agents. ASDK provides the Tahiti server, where the aglets
can be sent, received and executed. Tahiti is supported by a Java Virtual Machine
(JVM) included in the Java Development Kit (JDK) 1.3.1 [2]. The Java Cryp-
tography Extension (JCE 3.01) [1] includes some additionalcryptographic Java
libraries that have been used to protect the mobile agent. Finally, it is worth to
mention that the results in the following sections have beentaken in a laboratory
equipped with four computers (one working as the HoRA, two asexecuting hosts,
and one to send mobile agents). The four computers are Pentium IV at 2.4 GHz,
512 MB of RAM and Linux SuSE 9.0 as Operating System.

We have tested our watermarking mechanism using some sampleagents avail-
able within ASDK, and the results show that the average size of the marked code
is increased in an 11%, and the average execution time is increased in a 19%.
These results are dependent on the environment that we have used to make the

24



test and on the watermark used (the CT algorithm in our case).However, we think
that our results are a good estimation of the cost of MAW because they are co-
herent with the ones published by previous studies about software watermarks in
[28]. In accordance to the previous values, we can conclude that our watermarking
mechanism does not introduce too much overhead in the system.

5.2 HoRA

A preliminary proof-of-concept for the HoRA has also been implemented. The
implementation has two software entities: therevoker and themanager. The
revoker is devoted to host revocation. In other words, therevoker performs re-
executions of the agent to verify the execution correctness. Thus, therevoker can
be considered the element that decides if a host is revoked ornot. On the other
hand, themanager is charge of managing the interface with users. This interface
must allow users to send their revocation requests. In addition, themanager must
also implement at least one method (HRL or OHSP) for distributing revocation
information. Remember that the distribution revocation mechanism allows a ori-
gin user to check whether a host is currently revoked or not. The goal of dividing
the implementation of the HoRA in two parts is that this division allows us to
reuse with minimal changes any generic revocationmanager. Generally speak-
ing, a revocationmanager keeps updated the currently revoked items in a central
revocation database and makes publicly available the information of this database
to end users with some status checking protocol. In particular, to implement the
manager of the HoRA, we have reused a previously developed revocation man-
ager for a PKI revocation scenario called CERVANTES (CERtificateVAlidatioN
TESt-bed)3. We present results about the two main time-and-bandwidth consum-
ing tasks for the HoRA, which are host revocation and status checking.

5.3 Host Revocation

Table 1 shows a summary of results about the time spent for theorigin host and
the HoRA to perform a host revocation. An average between 20 executions has
been calculated to every result presented. The agent’s execution time has also
been added in order to compare it with the previous times. We present the re-
sults for two revocation protocols, one that provides data privacy, and another
that does not provide it. Both protocols provide integrity and authentication of all
the exchanged data (for further information see the revocation protocol for MAW
presented in [12]).

3http://sourceforge.net/projects/cervantes

25



Times Revocation protocol
(without privacy)

Revocation protocol
(with privacy)

Agent’s execution time 120 ms 147 ms

Revocation time
at the origin host

27 ms 51 ms

Revocation time
at the HoRA

153 ms 181 ms

Table 1: Agent Execution Time versus Revocation Times

From these results we can extract that starting a revocationrequest does not
suppose a great cost for the origin host, even when privacy isrequired. In fact, the
origin host only needs to generate the revocation request, signing and encrypting
(if privacy is required) all the proofs, and finally sending them to the HoRA. How-
ever, the cost that supposes to process a revocation processfor the HoRA is a little
more expensive. In case of using the protocol without privacy, the HoRA needs
a 27% more CPU time to process a revocation request than a hostto execute the
agent, and a 23% more in case of the protocol with privacy. This is due to the fact
that the HoRA not only needs to execute the agent (at least once) to demonstrate
that the integrity rules correspond to the agent’s code, butit must also perform
extra tasks like verifying the signature of the origin host or decrypting the results.

5.4 Status Checking

To evaluate the resources consumed by status checking we consider that the com-
puter that sends mobile agents simulates the behavior ofN independent origin
hosts. These origin hosts always get the revocation information using thepull
mode, that is, the origin hosts (acting as clients) send the revocation requests, and
the HoRA (acting as server) receives them and sends responses. The elapsed time
between a request and the next one sent by an origin hosts has been generated by
using an exponential inter-arrival probability density function. We assume that
each origin host has a certificate. We also assume that there is an average of 10%
revoked hosts. This figure is also used in other revocation scenarios such as PKI
and credit cards. When using HRL, each origin host has its ownHRL stored in
cache during its validity period, and it must update it when expires.

Figure 6 shows the bandwidth utilization in case of using HRL. The tested
scenario hasN = 10000 origin hosts. The HRL validity period isV P = 6
hours and the status request rate per origin host and hourr = 2 requests/hour,
that is, each origin host sends an average of two agents per hour. Notice that the

26



 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0  100  200  300  400  500  600  700  800  900  1000

bp
s

time (in minutes)

Legend
HRL Bandwidth

Figure 6: HRL bandwidth utilization

bandwidth utilization has peaks. This is because all the clients have the same
HRL copy in their cache so the HRL expires at the same time for everybody. This
is why the bandwidth peaks are localized around the expiration dates (every 6
hours in this scenario). This is a well-known drawback that can be mitigated with
a mechanism called overissuation. Overissuation consistsin allowing multiple
HRLs to have overlapping validity periods. Put in another words, overissuing
means issuing more than just one HRL during a validity period. The result is that
the HRLs in the users’ caches will expire at different times and thus requests to
the HoRA for new HRLs will be more spread out.

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

bp
s

requests per hour

Legend
HLR transmission rate for a validity period = 2h
HLR transmission rate for a validity period = 6h

Figure 7: Effect of the HRL validity period in the bandwidth utilization

Figure 7 shows how decreasing the HRL validity period affects bandwidth.
The tested scenario has alsoN = 10000 origin hosts. Validity periods ofV P = 2
hours andV P = 6 hours are compared with regards the request rater. There
is a trade-off between risk and network bandwidth usage: in general smaller va-
lidity periods imply more bandwidth utilization. The bandwidth utilization tends
to a threshold when increasing the status requests. The existence of this thresh-
old is due to the fact that whenr grows, users start benefiting from the cached
HRLs. Then, the request rate towards the HoRA reaches a threshold, and thus

27



the bandwidth also reaches a threshold. Observe that the bandwidth threshold is
reached aroundr/V P ≈ 1. This is because when these magnitudes are simi-
lar, there is a high probability of having a cached HRL. We have used the HoRA
proof-of-concept to find these results, but the bandwidth threshold has also been
theoretically predicted for generic revocation scenarios[22].

 1000

 10000

 100000

 1e+06

 1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

bp
s

Number of hosts

Legend
  OHSP

 HRL

Revocation System Processing capacity/request

HRL negligible

OHSP 22ms

Figure 8: OHSP and HRL scalability comparative.

Figure 8 shows how scalable are HRL and OHSP when the number ofex-
ecuting hostsM is increased. In Figure 8, for simplicity, the number of origin
hostsN is equal to the number of executing hosts. Notice that the bandwidth is
presented in a logarithmic scale. It can be observed that HRLis not bandwidth-
scalable. This is because on one hand, HRLs become bigger with a bigger pop-
ulation of executing hosts, and on the other hand, HRL downloads are increased
with a bigger population of origin hosts. As a conclusion, bandwidth grows with
N × M = N2. The processing capacity requirements of HRL can be consid-
ered negligible. In OHSP, the bandwidth and the processing capacity both grow
linearly with the number of origin hostsN because the processing capacity and
the communication overhead of OHSP does not depend on the number of revoked
hosts. The bandwidth figure has a reasonable value, but the processing time might
be a bottleneck in the case of relatively large populations of origin hosts that have
a high request rate or if the HoRA is attacked by a flood of queries.

6 Conclusions

In this article the authors introduce two techniques that work together to achieve
an effective and usable protection mechanism for mobile agents against manipula-
tion attacks performed by a malicious host during execution. On one hand, MAW

28



has been presented as an effective and lightweight attack detection mechanism.
We have explained the main ideas behind MAW, and we have discussed about
which are the most appropriate software watermarks to protect mobile agents. We
have also introduced the guidelines to implement MAW using the CT algorithm.
On the other hand, the HoRA has been presented as a generic TTPwith punish-
ment capabilities. The combined use of the two security mechanisms leads to a
reliable environment for honest users and hosts, which is worth even at the ex-
pense of introducing some overhead. This article also includes some performance
results to evaluate the cost of the proposed mechanisms, andthe results show that
the cost of the overall system is low enough to make it usable in practice.

References
[1] Java Cryptography Extension (JCE). Institute for Applied Information

Processing and Communication of the Graf University of Technology.
http://jce.iaik.tugraz.at/download/evaluation/index.php.

[2] Java Development Kit. http://java.sun.com/downloads/.

[3] SourceForge projects, Aglet Software Development Kit (ASDK).
http://sourceforge.net/projects/aglets.

[4] D. Chess. Security considerations in agent-based systems. In First IEEE Conference on
Emerging Technologies and Applications in Communications (etaCOM), 1996.

[5] D. Chess. Security Issues in Mobile Code Systems. InMobile Agents and Security, volume
1419 ofLNCS. Springer-Verlag, 1998.

[6] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, and M. Stepp. Dynamic path-based
software watermarking. InConference on Programming Language Design and Implementa-
tion (SIG-PLAN’04), 2000.

[7] C. Collberg, G. Myles, and A. Huntwork. Sandmark - a tool for software protection research.
IEEE Security and Privacy, 1(4), 2003.

[8] C. Collberg and C. Thomborson. Software watermarking: Models and dynamic embeddings.
In Principles of Programming Languages (POPL), 1999.

[9] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation - tools
for software protection.IEEE Transactions on Software Engineering, 28(8):735–746, 2002.

[10] O. Esparza, J.L. Muñoz, M. Soriano, and J. Forné. Punishing Malicious Hosts with the
Cryptographic Traces Approach.New Generation Computing, 24(4):351–376, 2006.

[11] O. Esparza, M. Soriano, J.L. Muñoz, and J. Forné. Host Revocation Authority: a Way
of Protecting Mobile Agents from Malicious Hosts. InInternational Conference on Web
Engineering (ICWE 2003), volume 2722 ofLNCS. Springer-Verlag, 2003.

[12] O. Esparza, M. Soriano, J.L. Muñoz, and J. Forné. Punishing manipulation attacks in mobile
agent systems. InIEEE Global Telecommunications Conference (Globecom 2004), 2004.

[13] W.M. Farmer, J.D. Guttman, and V. Swarup. Security for mobile agents: issues and require-
ments. In19th National Information Systems Security Conference, 1996.

29



[14] W.M. Farmer, J.D. Guttmann, and V. Swarup. Security forMobile Agents: Authentication
and State Appraisal. InEuropean Symposium on Research in Computer Security (ESORICS),
volume 1146 ofLNCS. Springer-Verlag, 1996.

[15] F. Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From Malicious Hosts.
In Mobile Agents and Security, volume 1419 ofLNCS. Springer-Verlag, 1998.

[16] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509Public Key Infrastructure Certifi-
cate and CRL Profile, 1999. RFC 2459.

[17] W. Jansen. Countermeasures for Mobile Agent Security.Computer Communications, Spe-
cial Issue on Advanced Security Techniques for Network Protection, 2000.

[18] W. Jansen and T. Karygiannis. Mobile Agent Security. Special publication 800-19, National
Institute of Standards and Technology (NIST), 1999.

[19] D. Kinny. Reliable agent communication - a pragmatic perspective.New Generation Com-
puting, 19(2):139–156, 2001.

[20] A. Maña, J. Lopez, J.J. Ortega, E. Pimentel, and J.M. Troya. A framework for secure execu-
tion of software.International Journal of Information Security, 3(2):99–112, 2004.

[21] Y. Minsky, R. van Renesse, F. Schneider, and S.D. Stoller. Cryptographic Support for Fault-
Tolerant Distributed Computing. InSeventh ACM SIGOPS European Workshop, 1996.

[22] J.L. Muñoz and J. Forné. Evaluation of Certificate Revocation Policies: OCSP vs. Overis-
sued CRL. InDEXA Workshops 2002. Workshop on Trust and Privacy in Digital Business
(TrustBus02), pages 511–515. IEEE Computer Society, 2002.

[23] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP, 1999. RFC 2560.

[24] G. Myles and H. Jin. Self-validating branch-based software watermarking. InInformation
Hiding (IH05), volume 3727 ofLNCS. Springer-Verlag, 2005.

[25] J. Nagra and C. Thomborson. Threading software watermarks. In 6th International Infor-
mation Hydind Workshop, 2004.

[26] G. Necula and P. Lee. Safe, Untrusted Agents using Proof-Carrying Code. InMobile Agents
and Security, volume 1419 ofLNCS. Springer-Verlag, 1998.

[27] R. Oppliger. Security issues related to mobile code andagent-based systems.Computer
Communications, 22(12):1165–1170, 1999.

[28] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang. Experience with
software watermarking. InProceedings of the 16th Annual Computer Security Applications
Conference, pages 308–316, 2000.

[29] T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts. InMobile
Agents and Security, volume 1419 ofLNCS. Springer-Verlag, 1998.

[30] R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software watermark-
ing. In 4th International Information Hiding Workshop, 2001.

[31] G. Vigna. Cryptographic traces for mobile agents. InMobile Agents and Security, volume
1419 ofLNCS. Springer-Verlag, 1998.

[32] B.S. Yee. A sanctuary for mobile agents. InDARPA workshop on foundations for secure
mobile code, 1997.

30


