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Abstract

Mobile agents are software entities consisting of code datl state that
can migrate autonomously from host to host executing thadec In such
scenario there are some security issues that must be catsida particu-
lar, this article deals with the protection of mobile ageagginst manipula-
tion attacks performed by the host, which is one of the matuirsty issues
to solve in mobile agent systems. This article introducesnfrastructure
for Mobile Agent Watermarking (MAW). MAW is a lightweight @poach
that can efficiently detect manipulation attacks perfortmggotentially ma-
licious hosts that might seek to subvert the normal agentatipa. MAW is
the first proposal in the literature that adapts softwaremaarks to verify
the execution integrity of an agent. The second contributb this arti-
cle is a technique to punish a malicious host that performesgmipulation
attack by using a Third Trusted Party (TTP) called Host Ratioa Author-
ity (HORA). A proof-of-concept has also been developed amdpresent
some performance evaluation results that demonstratestgility of the
proposed mechanisms.

Keywords: mobile agent security, malicious hosts, software watekmgr
host revocation

1 Introduction

Mobile agents are software entities that consist of cod& dad state, and that
can migrate from host to host performing actions on behak ofser. For in-
stance, mobile agents can be used to support wireless sanimhich usually
are resource-constrained. In fact, mobile agents are rdlgacseful to perform
functions automatically in almost all electronic serviddse distributed comput-
ing, e-commerce or data mining. Figure 1 shows a possibleéleafpent scenario.
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Figure 1: Mobile Agent Scenario

In this scenario, let us imagine that the user wants to agrangieeting in
which invitees are spread all over the country in differeatl offices. The date
and place of the meeting may depend on several parametdrasuoom avail-
ability, room capacity, available commodities (projectdackboard, etc) and, of
course, on the invitees’ agendas. Then, the user uses aenagleiht that travels all
the hosts of the invitees. Finally, the mobile agent willideahe place and date
of the meeting, and it will introduce a new entry in the ageoth@ach invitee. We
consider that the user and the agent sender platform aramhe entity. We call
this entity “Origin Host” and we consider it trustworthy.

On the contrary, executing hosts cannot be considerecettuesitities. For
instance, these executing hosts might be competitors.r@stnding the agent,
the user can have information about the trustworthinesseohbsts, for instance
obtained in previous transactions, or consulted to exteepaitation servers. De-
pending on the degree of trustworthiness of these hostsjgbecan decide if
protection techniques are needed or not, or it simply cardasending the agent
to them. There are several reasons that can lead a host tmbeunalicious and
attack a mobile agent to obtain a certain profit. In the previexample, one of
the invitees could try to manipulate the agent to impose thetimg to be in her
local office because she is averse to travel, or simply todsspending money in
a flight. Even, she can try to impose a date in which an adweosanother local
office cannot assist to the meeting to damage the reputatitimiscadversary. In
this article we assume a pessimistic view, considering Xieewing hosts as non
trusted entities (they can try to attack an agent when thegiér it), so protection
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mechanisms are needed. Other principals can appear ircénaso, like entities
that provide security services, or others that provideratbevices.

Two entities must be considered to study the security wesdaseof the sce-
nario: the mobile agent and the executing host (or simply)hBsotection is nec-
essary when trustworthy relationships between theseaesntiannot be assured.
Accordingly, these are the main cases that can be found [3,737

e Host protection: the system administrator's duty is protecting the hosts
from attacks that try to exploit the weaknesses of the exatytiatform.
The attacks performed by external entities (e.g. othersh@se out of the
scope of this article because they can appear irrespedtihe aise of mo-
bile agents. However, there are new threats that must be tateeaccount.
The hosts must be protected against the attacks that an egeiperform
while it is executing its code. Continuing with the examplel® arrange-
ment of a meeting, a malicious mobile agent could try to eéedeitries that
should not have permission to access in the agenda of a ustungtely,
most of these attacks can be detected or avoided by usingpampaocess
control and sandboxing techniques, which are techniquasctintrol the
execution environment. In addition, some other proposgltotdetermine
if the agent’s code is malicious before executing it [14, 26]

e Communications security the agent can receive multiple attacks from any
external entity while it is migrating from host to host. Tgpl attacks are
eavesdropping or manipulation of data. Data eavesdromitagks can be
avoided by using encryption techniques, so any confidemtfarmation
should be encrypted. Data manipulation attacks can betdetéy using
digital signature [19]. This includes any part of the molaitgent (the code,
the itinerary, etc). In fact, before sending the agent thgimhost signs
the mobile agent to assure that it will not be modified duritsgjourney
by any host. So then, the hosts are sure that the agent’s esdeoh been
manipulated by any external entity (this includes any offtevious host in
the itinerary). In both cases, data eavesdropping and mikatipn, the use
of well-known cryptographic protocols is necessary.

e Agent protection: it is not so easy to protect the agents from the attacks of
the execution platform. This is considered the most diffisaturity prob-
lem to solve in mobile agent systems for most of the auth@s1&]. There
are many reasons that can lead a host to attack the agenis ¢txatuting.
The host can try to obtain an economical benefit or a favoret#eution, or
just it can try to damage the reputation of another principallowing the
previous example, a rival host could try to manipulate thenago impose
the meeting in another local office, but in a room without potpr, so the
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organizer of that local office will make a bad impression.sitifficult to
prevent or detect eavesdropping and manipulation attsssrmed by the
host during the execution. The host has complete contrdietkecution
and hence it can read or modify any part of the mobile ageetctile, the
execution flow, the state, the itinerary, the communicatjan even the re-
sults. This is the reason why there is not a published saidhat protects
the mobile agents completely from the attacks of an exegutost. This
kind of attacks is also known as the problem of tha&licious hosts’.

In this article, we address the detection and punishmentasfipalation at-
tacks performed by malicious hosts. A malicious host pemfoa manipulation
attack when, trying to achieve a certain purpose, modifiggpant of the mobile
agent to disrupt its proper execution. In the previous exangpossible manipu-
lation attack could be that a malicious host modifies the @ttec of the agent to
impose the date of the meeting without taking into accoumetiendas of the rest
of invitees. As previously mentioned, we assume a pessowigw, considering
the execution of the agent in a non-trusted community ofshdst case that the
hosts can be considered trusted, no protection mechaniseeted against ma-
nipulation attacks. Our goal is to avoid manipulation dtaoy dissuading hosts,
because detection can lead to punishment. Taking into attbese objectives,
this article explains two mechanisms that work togetherciuieve an effective
and usable protection mechanism against manipulatiockatta

In first place, we propose an infrastructure for Mobile Agé/dtermarking
(MAW). MAW is a lightweight approach to detect manipulatiattacks. MAW
is the first proposal in the literature that adapts softwaatewnarks to verify the
execution integrity. It must be clarified that the primaryagof MAW is not to
develop a new software watermarking scheme but to use arpl exiiating wa-
termarking techniques. The novelty of our proposal is thatuse and embed the
watermarks in a different way and for a different purpose tinaditional software
watermarking systems. Indeed, different types of watekigrtechniques can
be used in our infrastructure, and these techniques mightta changed in the
future according to advances in the watermark research area

The second contribution of this article is a mechanism taghuthe malicious
hosts by using a Third Trusted Party (TTP), that is, a trustedy for all the enti-
ties of the system. In our proposal, this TTP is called HostoRation Authority
(HoRA from here on). The HORA stores in a database the infoomaf those
hosts that have been proven malicious in order to avoid ntagla from them.
The punishment mechanism proposed is based on the idea bfdvogation,
which essentially consists in avoiding sending mobile égtnthe hosts that pre-
viously attacked other agents. Both detection and punishmerking together
can achieve an effective protection mechanism againstpukation attacks.
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Preliminary versions of the previous mechanisms were ptedeby the au-
thors at conference papers [12] and [11]. In this article,rex@ew and extend
them, including guidelines about how to choose the watétsnar embed into
the agent’s code and also performance evaluation by meanprobf-of-concept
implementation. We also think that the article introducesea application of
watermarking that may open a new research area. Finalg/wbrth to mention
that the performance results demonstrate the usabilityeobverall solution.

The rest of the article is organized as follows: Section Z/joles the reader a
review of the required background; Section 3 explains hogetect manipulation
attacks using MAW; Section 4 details the HORA functionaBtiSection 5 presents
some performance evaluation by means of a proof-of-corafepe system; The
conclusions of the article can be found in Section 6.

2 Background

2.1 Malicious Hosts

The attacks performed by malicious hosts are consideremdisé difficult to face
within the mobile agent scenario regarding security [4]efEhare two main at-
tacks of this kind: (1) eavesdropping attacks, in which thethries to extract
information from the execution of the agent. The system mustide execution
privacy to face these attacks, but this security servicefigwat because eaves-
dropping attacks cannot be detected, only avoided; and &)pulation attacks,
in which the executing host tries to modify the proper exiecubf the agent.
Providing execution integrity is also a quite difficult satyservice because the
executing hosts have complete control over the agent’suéixec

The literature about countermeasures for malicious htestka can be divided
in two kinds of approaches: attack avoidance and attacktieteapproaches. Re-
garding attack avoidance approaches, they try to avoidkattaefore they happen.
Some authors introduced the idea of a tamper-proof hardswdogystem [32, 20]
where agents can be executed in a secure way, but this foacashest to buy
this hardware. Hohl presents obfuscation [15] as a mechattisssure the exe-
cution integrity during a period of time, but this time dedsron the capacity of
analyzing the code of the malicious host. The use of encdyptegrams [29] is
proposed as the only way to give execution privacy and irtietyr mobile code.
The difficulty here is to find functions that can be executedrirencrypted way.
Published attack avoidance techniques are difficult to@mgant or computation-
ally expensive. For this reason, we consider attack deted¢échniques more
promising because they are usually easier to implement.obfextive of attack
detection approaches is detecting manipulation attaok®1l], the authors intro-



duce the idea of replication and voting, but this proposal@aly be used as an
attack detection approach if the hosts in the same stagadependent.

In [31], Vigna introduces the idea of the cryptographic ésowhich are logs
of the operations performed by the agent. The operationbefigent can be
categorized in white statements, which modify the agen#tesdue to internal
variable values; and black statements, which alter thetsggtate due to external
variables. These traces contain the changes performedetmah variables as a
consequence of black statements. A re-execution of thet @ganbe performed
with these traces. Instead of sending the traces, the hastisstore them to save
network bandwidth. This is due to their size depends on theuawtrof input data,
which can be huge. If the origin host suspects that a hostfraddhe agent and
wants to verify the execution, it asks for the traces and @escthe agent again.
If the new execution does not agree with the traces, the Bosheating. The
approach not only detects manipulation attacks, but it pisges the malicious
behavior of the host. However, this approach has two mawvioaeks: (1) verifi-
cation is only performed in case of suspicion, but the wayhirciva host becomes
suspicious is not explained, and (2) for an indefinite peoidtme, each host must
reserve enough capacity to the storage of traces of pastaraons because the
origin host can ask for them. These drawbacks can be relieyedntrolling the
agent’s execution time in the hosts [10], but even with tlsiplement, the use
of traces might be still too expensive for all the entitiegined.

2.2 Software Watermarking

Digital watermarking has been traditionally used to prevadpyright protection
for different kinds of digital objects. In the copyright peation scenario, a dis-
tributor embeds the watermark into the digital object, sooivnership can be
proved later. Software watermarking is the term used wherdigital object is
a software application. Software watermarking has beed tesdetect software
piracy (i.e. the illegal copying and resale of software aapions). In addition,
software watermarks have also been used in other scenadbss tamperproof-
ing or obfuscation [9]. In fact, in this article we use softeavatermarks for yet
another purpose: detecting manipulation attacks in meaigjent systems.
According to [8] there are three parameters that essgntlafine the charac-
teristics and security of a software watermarking scherigthe data rate ex-
presses the quantity of hidden data that can be embedded thigdigital object;
(2) the stealth expresses how imperceptible the embedded data is to arveljser
and (3)the resilience expresses the hidden message’s degree of immunity to at-
tacks performed by an adversary. All watermarks exhibéddroff between these
three parameters and the related cost.



2.2.1 Classification of Software Watermarks

Software watermarks are usually classified in two types:

e Static watermarks. The static watermark is embedded in the executable
code of the program. The main drawback of static watermarkisat they
can be detected even without running the program and theg,dite sus-
ceptible to attack by anyone of reasonable skill in softwaralysis. One
of the most robust static watermarking techniques is ptesen [30]. In
that proposal, Venkatesahal. treat the program as a control flow graph,
in which a watermark graph is added to form the marked program

e Dynamic watermarks. The watermark depends on conditions during the
execution of the program. These conditions can be relatddinput data,
user-interaction, a packet from network, a special file ptlogram state etc.
This makes dynamic watermarks much more difficult to detecthise in
general the application must be run several times to ddtecivatermark.
As dynamic watermarks are relatively new, there are stil friblished
proposals of this kind [8, 24]. In the literature we can findethtypes of
dynamic watermarks:

— Easter egg watermarks, in which the application performs an action
that is immediately perceptible for the user when a spenjalt se-
guence is entered.

— Execution trace watermarks, in which the watermark is embedded
within the program trace (either instructions or addresses

— Datastructurewatermarks, in which the watermark is embedded within
the state of the program (global, heap, stack data, etc.).

2.2.2 Threat Model for Copyright Protection

The objective of an illegal software redistributor is to raake watermark invalid
without changing the behavior of the program. In this setisee main attacks
can be performed:

e Subtraction attacks: an attacker that knows the location of the watermark
can try to delete it from the code, in the hope that the progafter the
extraction will be still useful.

¢ Distortive attacks: an attacker without knowledge about the location of the
watermark can apply transformations that uniformly distioe code trying
to make the watermark unrecognizable.
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e Additive attacks: an attacker adds its own mark, in the hope that it will be
impossible to detect that the real watermark precedes thdake one.

Most distortive attacks are based on semantic preserviogrgm transfor-
mations. These transformations only modify the prograneapmce. Some ex-
amples of classical semantic preserving program transitioms are obfuscation,
translation and optimization (compilation, decompilatar binary translation).

Regarding the strength of both types of software watermarkgeneral, static
watermarks are simpler than the dynamic ones, but also weaeanst attacks
[8, 9]. Static watermarks are usually easy to distort by gisiny semantic pre-
serving program transformation. On the other hand, modighdd dynamic wa-
termarking schemes are resilient to some of these tranatans when applied
individually, but not to combined attacks of some of themr this reason, most
watermarking schemes are designed to make it difficult tatband change the
watermark when semantic preserving program transformsaoe used.

However, in this article we present a mechanism that usdawaa water-
marking techniques not to protect the copyright of progralug to protect the
execution of a mobile agent in an untrusted host, the Mobge Watermark-
ing (MAW) infrastructure. The objective of the agent’s ow® to assure that
the agent has been properly executed by embedding a sofivedeemark in the
agent’s code. On her side, the objective of malicious hestsio different, mod-
ifying the agent's execution to obtain a certain profit. As wiél discuss later
in Section 3.5, attacks based on semantic preserving progansformations
against watermarked agents are useless for the attackaisiadenario. This is
because these transformations only affect the code apmeEaraot code behav-
ior. In this case, the modified code will be executed in thggprananner, so the
execution integrity is assured.

In this article, we also present the implementation of owppsal MAW,
which is based on a particular data structure watermarlCttieerg-Thomborson
(CT) algorithm [8], which is also known as Dynamic Graph Whatarking. There
is an implementation of this CT algorithm within the SandkBroject [7], which
we have adapted to the mobile agent scenario. Next, we suaenteow the CT
algorithm works to better understand the implementatiaruoforoposal (the con-
crete CT-based implementation of MAW is later presentedaictiSn 3.6).

2.2.3 Dynamic Graph Watermarking

The CT algorithm (also callebynamic Graph Watermarking [8]) is based on em-
bedding watermarks within the topology of graphs built dprally in memory
during the execution of a program. The structure embeddedrigph-water mark

(G). Thegraph-watermark contains in its topology a representation of a number



N, which is the product of two large prim@sandg. A program calledecognizer
or R can retrieve this graph from memory. TheM,can be retrieved frond,
and finally, the author can prove that she has embedded thesponding graph
into the code because she knowandq. Graphs are a suitable mechanism to
embed marks because as it is known [8], the analysis of laayghg involves sig-
nificant complexity and requires an important computatieffart. Furthermore,
attacks based on semantic modifications of the source cedesatess because
they do not alter the execution of the marked code, and thesyatermark can
be recovered by means of the analysis of the memory duringx&eution.

Figure 2 illustrates the steps of this mechanism. The algorstarts selecting
two large primes i and¢) and calculatingv = p x ¢. Then, the algorithm
continues as follows:

1. Embedding N into the topology of a given gra@gh
2. Creating the cod®” which generateé:.

3. EmbeddingV in the original code&) to generate &), which given an input
[, the recognizelr is able to extractV (and henceV).

4. Using tamperproofing to avoid” being removed (generating;).

5. Using obfuscation to difficult analysis (generatif®¥g). In this case, the
recognizerk and the watermark codé” becomeR’ and W' respectively
because of obfuscation.

6. Extracting the recognize®’ and distributing the marked codg.

7. After distribution, an attacker can generéle distorting the code); to
make the watermark invalid.

8. The author of the code can prove her authorship by appthmgecognizer
R’ to O4 using the special input I. This will generate the grapim memory,
so N can be found. AsV is not a random number but it has been chosen
deliberately as the product of two large primes, then the@udemonstrates
authorship just factoringy (publishingp andg).

One of the main difficulties of this algorithm is the embedgprocess of
the mark within a graph. Collberg al. mention in [8] some possible ways to
do so. From these, we summarize here the R&dexcoding, which is the one
that we will use in our implementation of MAW. In Radix-the number used as
watermark is embedded by means of a circular linked listat, fevery number
can be encoded as= Ef;oz a;k'. So, the basé-digit is encoded by the length
of the list and an extra pointer, which points to the first ndeleery node encodes
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. p=new Node();
P? prime();
g=new Node();
Q? prime(); |1 L2
addEdge(p,q);
N? P*Q;
G w
o (0, o\ (0. o7\ (o- o)
pehew Node(): p=new Node(); w p=new Node(); w’
- Node(); q=new Node(); qg=new Node();
542 I < e :,0 4 addEdge(p,q); 5 ) addedge(p,a);
J—— i (Tampered(W)) o (Tampered(W?))
Koo w die(); die();
w e = /
0, (0, )
p=new Node(); W’ p=new Node();

g=new Node();

§ Snddedgetv,a; |

If (Tampered(W’))
die();

If (Tampered(W’))

die(); v

Figure 2:Scheme of Dynamic Graph Watermarking:
I |

Figure 3: Example of embedding n=4453 by means of Radix-

2
\ qg=new Node(); “\ "
I 6 > addEdge(p,q); I 7 N
/ i
=X
R \

an a; by pointers: if the pointer is null, them, = 0; if the pointer points itself,
thena; = 1; if it points the next element, themy = 2, and so on. Equation 1
and Figure 3 show an example of Radixencoding, which codifies the number
n = 4453 with these coefficients = {ao, a1, a2, a3, a4} = {1,4, 3,2, 3}.

n=1x6"4+4x6"+3x6>+2x6>+3x6"=4453=61x73 (1)

3 Mobile Agent Watermarking (MAW)

MAW is a lightweight approach to detect manipulation ateackhat is to say,
with MAW one can verify whether an agent was or was not prgpexecuted by
a host. It must be stressed that our infrastructure is thegfmgroach that adapts
software watermarks to solve the problem of the maliciousg$o

The MAW infrastructure works as follows: the original agénhtnodified by
introducing a dynamic software watermark. Watermarkecdhesggenerate output
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data according to a set of rules. We name these ruteegtity rules’. Integrity
rules are secret, that is to say, they are only known by thggrohiost. The water-
marked agent generates output data organized in what wa ‘gta container”.
The organization of the data container is performed acogrdd the integrity
rules. In this sense, we say that the watermark is transféorthe data container.
For instance, let us illustrate the process with one venpkmmtegrity rule. Let
us assume that the agent generates an integer as a piecpufiotdrmation. To
introduce the integer in the container, it is multiplied lyotif a certain global
variable is even. The associated integrity rule is to chéek this piece of data
in the container is even if the global variable is even. Inegah integrity rules
are related with input data, internal values (heap, stack,edummy data and
data from external communications. Therefore, we can satydbr infrastruc-
ture is based on dynamic software watermarking (since wettees are created at
runtime depending on the program’s state).

Finally, the origin host receives the agent, which has beetwged by all
the hosts of the itinerary. Then, the origin host appliessiteof integrity rules
to all the data containers (there is one container for eash inahe itinerary).
These integrity rules are a set of logical properties thabraainer must fulfill
(if it has not been tampered). These rules are responsibldefoonstrating that
the presence of the watermark is the result of deliberaierest If a container
does not fulfill the rules, this means that the correspondiatermark has been
modified, and hence the corresponding host is malicious.

In summary, the process has three phases: (1) watermarkdeinge mod-
ify the agent to embed the watermark generation code (se@B8&c1); water-
mark transference: create the container during the agex¢'sution to transfer
the watermark and hide the results (see Section 3.2); aedtdej manipulation:
watermark verification using integrity rules (see Secti@).3

3.1 Watermark Embedding

Current software watermarking techniques must be adaptedrt scenario be-
cause they were not originally designed for creating exesuhtegrity proofs
(containers). As explained in Section 2.2, there are twarkaids of software
watermarking techniques: static and dynamic watermaikd & nature of static
watermarks makes it impracticable to transfer the embed@déelmark to the con-
tainer. As static watermarks are embedded in the execuiiébieself (i.e. they
are not related to the program state), they cannot be usediltbdur dynamic
containers. Hence, we need to use a dynamic watermark agppt@generate the
containers at runtime taking into account the program st#ateong the existing
dynamic software watermarking approaches, the apprepoia¢ for MAW is the
“data structure watermark” because it is the one that taM®esaccount the pro-
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gram state to generate the watermark (see Section 2.2 andmeés [8, 6, 25]). In
particular, in our implementation, we have used the CofjpEnomborson (CT)
algorithm [8], which was summarized in Section 2.2.3.

Regarding the size of the MAW watermark, it is important heseait deter-
mines the probability of detecting manipulation attacksour scheme, the size
of the marked code is determined before sending the agems. size is limited
and it is the same for all the hosts in the agent’s itinerargrédver, the container
(output data) generated by each execution has also a lisiged The maximum
size of containers is not arbitrary, it can be decided by tlog@ammer to con-
trol the accuracy to detect manipulation attacks. If we waninprove detection
ability and prevent an attacker from modifying the agentdeewithout being de-
tected, we must increase the size of containers. Obviouskgasing the size of
the watermark is also more costly in terms of transmissigousces consump-
tion. This is because the size of the agent is increased simane hand, the
marked code is bigger than the original one, and on the otlrad,lthe containers
are also bigger because they contain more redundancy. dstigffect is even
more significant since the agent carries a container for eaebution in a host.
This implies that the agent’s size grows as it traverses rhosts, and therefore
this size depends on the length of the agent’s itinerary.

3.2 Watermark Transference

To detect manipulation attacks, the mobile agent mustegatintime the proofs,
and send them back to the origin host to assure the execubiwactness. In
MAW, these proofs are stored in a logically-structured daiantainer” that is
created in each host during execution. The container igemteasing dummy
data, input data, internal values (heap, stack etc.) aradfdan external commu-
nications. The agent can diffuse and confuse all this in&diom into the container
to hide the actually desired execution results. Diffusiaiies means repeating
these values into several different places, and confusahgeg means modifying
these values to different ones, for example by adding cohstdues.

Obviously, all these data are not organized into the coataahrandom. The
way this information is incorporated into the containergsential to extract the
watermark when the agent returns to the origin host. As we [@aviously, the
transferred watermark must be reliably located and exdafitom the container
and, it must let us demonstrate that its presence into th@icen is the result
of deliberate actions. In short, each executing host csemisontainer, which is
the digital cover where the agent transfers the watermahnienTeach host must
digitally sign its container. When the agent finishes triangits itinerary, it returns
to the origin host. All containers arrive at the origin hagjether with the mobile
agent. Next, the origin host uses them to verify the exenutibegrity and to
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extract the desired execution results of each host.

3.3 Detecting Manipulations

The origin host must verify the execution integrity when #gent comes back
with all the containers. To do so, the origin host uses itseteset of integrity

rules related to the previously-embedded watermark. Thntegrity rules are a
set of logical properties that a container must fulfill to aerstrate that it has not
been tampered. They are also responsible for demonsttatmghe presence of
the watermark is the result of deliberate actions. Theseractare inferred from

the modifications performed over the original agent’s cogiénd the watermark
embedding process. If a container does not fulfill the integules, this means
that the watermark has been modified, and the correspondistgidimalicious.

A tampered container can be used as a proof of the malicicuesvii of a host.

The host cannot repudiate this situation since it digitsiggned the container.

It is worth to mention that the embedded watermark is the siamall the
hosts, that is, all hosts execute the same marked code. bathe sense, the in-
tegrity rules are the same for all the hosts, because thapfareed directly from
the agent’s code. This means that the origin host uses the issiegrity rules to
demonstrate the presence of the watermark into the consaidewever, this does
not mean that all the containers have the same data. Eachirenis different
because it depends on the execution in each host, and hendatthused to fill
in the container is different (input data, internal datdaadeom communications,
dummy data, etc.). This could lead us to think that our praposes fingerprint-
ing instead of watermarking, because the data structurdéféeseht for each host
(container). However, we consider that our approach usésrmarking because
the embedded mark is the same for all the hosts despite thesesgation of this
mark is different for each container.

Finally, our infrastructure also allows an origin host t@ye, in front of an
external third party, that a certain host of the itineraryfgened a modification
attack over the agent. However, the integrity rules canediréated as a proof
directly. Instead, the origin host must send them togethtr the agent’s code
and the signed container of the accused host to the third gdréen, the third party
executes the agent several times with random input datanyA\k@nest execution
of the agent (independently of the input data) will genexalled containers, the
new containers created during these random execution$dstudfill the integrity
rules. This procedure assures that the integrity rules aré.vlhen, the external
entity can verify whether the host being accused is in fadiawas by applying
the integrity rules to its container.
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3.4

Advantages and Drawbacks of MAW

MAW is a lightweight attack detection approach if it is comg to the most
widely known proposal of the cryptographic traces [31]. Jdare some of its
advantages:

Size of the proofs:in MAW, the size of the proofs to check the execution
integrity is limited. The maximum size of the containers é&efmined by
the programmer to control the accuracy to detect manimuniatitacks. The
containers can be little enough to let the agent carry thenthé crypto-
graphic traces approach, the size of the traces dependsamtbunt of
input data of the mobile agent, which can be quite big.

Proof storage: in MAW, the executing hosts do not need to store any kind
of proof. In the cryptographic traces approach, the hoststratore the
traces for an indefinite period of time.

Hosts to verify: in MAW, the origin host can verify the execution integrity
of all the hosts of the itinerary. In the cryptographic taeg@proach the
verification is performed in case of suspicion.

Verification tasks: in MAW, the origin host has to apply the integrity rules
to the containers to verify the execution integrity. In thgxtographic traces
approach, the origin host must ask for the traces to the cosigi host and
execute the agent again.

MAW has also some drawbacks, which affect mainly perforreanc

Watermark embedding: the origin host must embed the watermark into
the agent’s code by using software watermarking technigndsnust infer
the integrity rules.

Code size:there is an increase in the code size. Embedding a watermark
means that some overhead is added to the original code. flaigement

will depend on the embedded watermark and therefore, oggatioring and
sending marked agents consume more resources.

Execution time: the execution of marked agents consumes more CPU.

Mobile agent size: the mobile agent in MAW must carry the containers.
This implies an additional load. This load grows up each tiheemobile
agent visits a host. The maximum size is reached when thd sgjams to
the origin host.
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3.5 Design of the Watermarks for MAW

This Section discusses the motivations of malicious hdkes,attacks that can
perform, and also the properties and requirements thatafware watermarks
should have to implement the MAW infrastructure.

3.5.1 Threat Model for MAW

As we mention in Section 2.2.2, the objective of an attackeéhe copyright pro-
tection scenario is to make the watermark of a program idvalillegally redis-
tribute this program later. To do so, the main attacks agjaofswvare watermarks
are subtraction, addition and distortion. On the other h#m&motivations of an
attacker in the mobile agent scenario are different. A n@lghost may have sev-
eral reasons to attack a mobile agent. For instance, it tackahe mobile agent
to obtain some benefits from the execution, to damage theatpu of another
host, or just for fun. There are several kinds of attacks is shenario (denial of
service, eavesdropping, impersonation, etc). Howevenvildocus on manip-
ulation attacks because MAW has been designed to detegidtisular kind of
attacks. Just remind that manipulation attacks are thostiich a malicious host
tries to manipulate the proper execution of the agent toeaeta certain purpose.
So then, the objective of an attacker will be not to make thiemaark invalid, but
to manipulate the execution without altering the transf@énvatermark, because
any change in the transferred watermark will cause the tietecf the attack.
The malicious host may try to manipulate the agent’s codétain a certain
benefit. However, all the attacks that are used in the copypigptection scenario
to manipulate code are totally useless to attack a mobiletgg®tected with
the MAW infrastructure. Distortive attacks, which are ugubased on semantic
preserving program transformations (translation, opation, obfuscation, etc.),
are useless to attack MAW because these transformatiogsaffect the code
appearance, and not the code behavior. Hence, the modifiedwth be executed
in the proper manner (which is precisely our objective, aeguthe execution
integrity). On the other hand, if a malicious host tries tmoze the embedded
watermark or to add a new one to the agent’s code, the chamges fransferred
watermark produced by these attacks will reveal that thatdgges been modified.
The host can also try to attack containers. However, a hostatananipulate
the containers of previous executing hosts because thesigmed by their cre-
ators. Thus, a malicious host can only try to manipulatews oontainer. In this
case, the objective of the attacker is manipulating theaioat to obtain a certain
profit, but without altering the transferred watermark. Hweer, this will be hard
to achieve thanks to MAW because the host does not know wiaidk pf the con-
tainer are part of the watermark (this would be equivalerkrtow the integrity
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rules, which are secret). Therefore, before changing artyop#he container the
host should infer where the watermark is.

To infer where the watermark is, a malicious host can alséatignalyze the
inputs and outputs to extract information from the mobilerstg Unfortunately,
it is unfeasible to detect or prevent that a host changesiitsioput data, which
are located in its internal database. In fact, this shoulddresidered an eaves-
dropping attack because the host does not alter the propeuan of the agent.
As a conclusion, MAW cannot detect this because it is not aipodetion attack.
However, MAW can avoid the attacker to extract informatiooni the execu-
tion. Let us suppose that a malicious host introduces faiatidata and executes
the mobile agent to analyze the generated container. [@edp# can be done
many times obtaining different containers, this does natmtbat the malicious
host can generate a container at its discretion (contamass fulfill the integrity
rules if the agent’s execution has not been modified). Farrfason, a malicious
host performing different executions cannot infer thegntg rules by compar-
ing these containers because any change in the input ddteange that most
data within the container will also change. In the same sawdkeiding hosts that
share their containers cannot infer where is the watermivien if a malicious
host is successful obtaining some piece of information ahow the containers
are constructed, it would be unfeasible to construct a \@idtainer that achieves
the purposes of the attacker. This is due to the watermarglarge and dis-
tributed within the whole container, and also because ttaelkgr doesn’'t know
all the integrity rules.

3.5.2 Watermark Properties

These are the most important properties of the watermarke mbedded into
the mobile agent: (1) thegtealth. This is the most important property of the wa-
termark, because a malicious host without knowledge abbetevthe watermark
is can only try random changes, which affect the transfewatbtrmark; (2) the
data rate is also quite important because it improves the securityhefwater-
mark. A bigger watermark makes manipulating the containgroumt altering the
transferred watermark more difficult. However, this aféeatlversely the cost of
the watermark, especially in terms of transmission ressias containers are sent
back to the origin host; finally, (3) thesilience is not as important as the previ-
ous properties, because the use of semantic preservirgjdrarations does not
affect the code behavior. As a consequence, watermarkdittigtresilience can
be used in our scenario. So, we do not require maximizindgpalptoperties. This
allows us to use simpler and less costly watermarks.
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3.6 Implementation of MAW using the CT Algorithm

This section describes the main guidelines about how we imaplemented the
MAW infrastructure. In particular, our implementation iaded on an adapta-
tion of the Collberg-Thomborson (CT) algorithm [8] which asailable within
the SandMark Project [7]. We would like also to point out tb#ter different
software watermarking algorithms could also be used tocti@@nipulation at-
tacks. Obviously, the different peculiarities of each aildpon must be taken into
account.

As previously elaborated in Section 2.2.3, the CT algorittymamically builds
a graph in memory when the program is fed with a special inpoé recognizer
program is able to find this graph in memory, and to extraanfthis graph (for
instance using the Radi-encoding) a numbel, which is the product of two
large primes. As it is computationally unfeasible to faa@arumber which is the
product of two large prime numbers, the creator demonsteaithorship by sim-
ply publishing the two factors. In our implementation of MA® the executions
build a graph in memory, independently on the input dataweatse to feed the
agent. So, the agent just needs to transfer the graph whitaded in memory to
the container. Our recognizer uses the container (insteatemory) to find the
product of primesV and thus, to assure execution correctness. The recognizer
should be also considered part of the integrity rules (ih the integrity rules are
more general as they also describe some more relationshgsgedata within the
container).

For the sake of simplicity, we illustrate our implementatiny means of an
example. Let us suppose that we are executing the agent ihogte:. The
agent is fed with some input data that come from the previcesgion host
n — 1. Let us suppose that we have six values of this kifd= (s, - - -, s?),
which are the initial state of the agent in this host. Aftex #xecution, we will
obtain some output data. Let us suppose that we have five 8¢ tredues™ =
(of,---,0}), which should be included within the container togethethuvitie
transferred watermark.

Then, we have to follow the following steps to construct tbetainer:

1. The agent must calculate a binary initial sequehgehat will be used to
establish the starting position of the watermark, and alsdbscure the con-
tainer. Thel S should reflect that a particular execution has been perfdrme
in a certain host, that depends on a initial state, and tistithe dependent.
Following the example, we calculal&' as the hash of the concatenation of
the identifier of host. (/D,,), a subset of the initial state (some values in
clear and some hashed), and a timestdmp:
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1S = hash(ID,||s3 53| hash(s2)|TS,) 2)

This time stamp@’S,, should also be sent to the origin host together with the
container to make possible to re-calculatéfrom these values.

2. After that, the agent fills out the cells of the containethwandom values.
Figure 4(a) shows the container at that momentepresents the random
data stored in the positighof the container.

Co|Ci C | C|Cy Co| 3 |16 C; |0"| |03 3 |16 |0":|0"

C5 C5 C7 Cs Cg C5 0"2 8 11 CQ 0'"3 0"2 8 11 Omo

C10|C11 /C12 C13|Cis [Cy10[15 |19 |Cy3|0" | |Cyo| 15|19 (0" 0",

C15 C15 C17 C1s C19 C15 19 7 0"1 22 C15 19 7 On]_ 22

Ca0 | Ca1 | Caz [ Ca3 | Coy 1 [Cz1|Cz2|0"3 | Co4 1 [Cz1|Czz2| 0" |Caf

(a) Container with (b) Container after embed{c) Container before XOR
random data ding the output data

Figure 4: Container generation process.

3. Inthis step, the agent starts transferring the watertaeettke container. The
first thing is locating the initial cellp,,, of the graph into the container. In
our example, the agent calculates by performing a modulus operation
over the initial sequencgS taking as base the number of cells of the con-
tainer (25 in this example):

P = 1S mod25=1. (3)

In this case, the initial sequendé® is the extra pointer which provides us
the position within the container of the first node within thieeular linked
graph (in the example, cell 7).

4. Next, we start transferring the rest of the graph from mgnto the con-
tainer. In this example, we use the same watermark of Se2tds3, i.e.
we use the Equation (1), which codifies the number= 4453 with the
following Radix6 coefficients:

a = {a07a17a27a37a4} = {174737 273} (4)
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We denote the graph with the following set of tuples:

w" =< {xg,yo b, {27, v} vy, o b {25, ys b {2, vy} > (5)

As in Figure 3, each node is formed by two elements (we map efdtiese
elements in one cell, so we will need two consecutive celieéxh graph
node). The first cell is used to store ttfevalue in basé, and it will be used
to obtain the:; Radix6 coefficients. In our example, d$ = 7, cell 7 is the
first cell of the first node of the graph, and hence it contajhsThe second
cell storeg;”, which is the index of the cell that corresponds to the negeno
of the graph. Therefore, cell 8 contaigfs = 11, which is a pointer to the
second node of the graph (located in cells 11 and 12). Exhegtrst node
(that depends on theS), the agent can put the rest of nodes randomly in
any place of the container, because we can reconstruct thplete graph
using the pointers. In addition, the last node points to tts éine (it is a
circular linked graph). Finally, the agent does not dinestbre the values
into the container, but it calculates them as the subtnaafahe value of
the cell and the index of the cel] = z} — j (being; the index of this cell).
Forinstanceqo =8 —7=1,a;, = 15— 11 =4, ay = 22 — 19 = 3, etc.

5. After the graph embedding, the agent must store the rektiie execution
o" = (of,---,0}). In our example, the agent chooses the positions to store
these output values into the container using, once agagyadhluep,, (7,
in this example). Basically, this value indicates the nunmdfeempty cells
between two different output values. The last node of th@lyr@n the
example, cell 18) is used as starting point. Thus, cell Zstthre first output
valueoy because it is 8th empty cell starting from cell 18. Figure) 4{iows
the container after transferring these values.

6. The next step is to generate an additional vector thatemiflance the dif-
fusion of the output data by storing them in some extra pmsdti In this
example, we use a vector of 5 positiasis® = (o' §,---,0' %), in which
o' " = (o) mod p,. These values will be stored using the same rule than
theo? values (7 empty cells between different values), and sftom the
last value added to the container (in this cage Figure 4(c) shows the
container after embedding tle” values. These relationships will also be

part of the integrity rules.

7. Finally, all the container is XOR witlhS to obscure all these data. Thus,
only the entities that knowS can know the real contents of the container.

To detect manipulations, the origin host should have théatoer, the initial
state values™ = (sg,--- ,s¢) (sent by the previous host and acknowledged by
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hostn), and the timestamp'S,,. Having all these data, the origin host can calcu-
late 7.S. With that value, the origin host XOR the container usirigto recover
the data within the container. Once th& value is known, we can also know
the initial cell of the watermark. If host has been honest, tharb = 7, and
applying the recognizer to the container we can obtain tteRadixé values are
a={1,4,3,2,3},sSoN = 4453. Just emphasize thaf is not a random number
but the product of two primes, and that the only entity capabfactoring it is the
origin host (V = 61 x 73). The origin host also verifies that the output values
ando’ ™ are properly located into the container and that the reiatigps among
them are correct. If so, we can consider that host honest, and we can extract
the results from the output values.

The security of this implementation lies on the imposdipf knowing which
kind of data is storing each cell (watermark, output datagdcan data, etc). The
executing host does not know how the initial sequehgehas been calculated,
nor how the container has been constructed, nor the refdtipsamong cells. As
it has been shown, data within the container are very dynanttthey change as
it changes the executing host, the time, the agent’s irstetle or any other type
of input data. The previous example illustrates the maipsstkat performs our
MAW implementation. However, the real implementation peris some extra
steps that have been deliberately omitted for the sake afyclaf the previous
explanation. To achieve a practical level of robustnessadd additional steps
must be performed.

8. We have some order in the way to construct the containst {ffitroduce
the watermark, after that introduce the results, and atrideX®©R the con-
tainer). In a real scenario, all these steps should be ms@the attacker
cannotinfer how the container has been constructed. Itiadgsome other
relationships among the output values could be added tmnesldiffusion
and robustness;’ ", o’ ™ (e.g. using arithmetical operations among them).

9. We have constructed the watermark using a Radexcoding that needs
pointers, so all the cells that compose the graph has vatuéseirange
[0 — 25]. This can help an attacker to locate the watermark. In a gl s
nario these values should be obscured for instance by usiyndiad of
arithmetical operation.

10. A malicious host that provides the same initial state sime host identifier,
and the same timestamp to the agent will always obtain the §8mThus,
the position of the watermark will always be the same. Obslgguor a
real case/ S should change depending on other different parameterbeso t
attacker cannot infer where is the starting point of the vwasek.
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4 Punishing Attacks with the HORA

This section introduces a punishment mechanism based om anigty: the Host
Revocation Authority (HoORA). The HORA must be consideredrasied Third
Party (TTP) in the mobile agent system. In this sense, theAdoRst be con-
sidered a TTP in the mobile agent system like the Certificafiothority (CA) is
considered in the Public Key Infrastructure (PKI). In ouiropn, attack detection
approaches should be accompanied with some punishmeaotgsolLittle atten-
tion has been paid to punishment mechanisms in mobile agsetérss. In fact,
our proposal is the only punishment system that can be foartde literature.
The HoRA uses a punishment mechanism based on host revac@te aim of
host revocation is to distinguish the malicious hosts frbmionest ones. For this
purpose, the HORA stores a database with all the informagtated to past at-
tacks. The main job of the HORA is providing this informatitwrthe origin hosts
to avoid new attacks from malicious hosts. In this article,smmmarize the tasks
that the HORA has to carry out (status checking and host ed\oy), we present
our implementation and, we present some performance sdswdivaluate the cost
of the HORA when using MAW as a detection mechanism.

4.1 Status Checking

Before sending the agent, the origin host must consult ¥@cegion information
in order to delete malicious hosts from the agent’s itinerassuming that the
HoRA works in a similar way as the Certification Authority eeding certificate
revocation, there are two possible ways of consulting taristof the hosts: on-
line or offline. The decision of which of these policies mustused depends on
multiple factors, like the available transmission resesradhe number of origin
hosts that may launch requests, or the computational dgpEdhe entities.

4.1.1 Offline Status Checking

In offline status checking, we consider that an origin hosy foae the connec-
tivity to the HoORA. If this happens, the origin host will noave any revocation
information available. The idea behind the offline systeto imake accessible the
revocation information available in a given moment usindagk list: the Host
Revocation List (HRL). An HRL is a list, which is signed by th®RA and, that
contains all the identifiers of the hosts that have been exoR he origin hosts
can download the HRL and store it for some time. Then, the H&Lkee used to
remove revoked hosts from itineraries before sending agénttake into account
new malicious hosts, the origin hosts have to update the HRiogically. In this
sense, the HRL works in a similar way as the traditional @eatie Revocation
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List (CRL) in the PKI [16]. The origin hosts can download thRHdirectly from
the HORA, but this may cause a bottleneck in the system. Teegbis problem
the HoRA can put the HRL in repositorfesThe repositories must also update the
HRL periodically. The offline status checking mechanismslioet avoid attacks
completely. A host that is detected as malicious can attgekig until it is intro-
duced in the HRL and the origin hosts update their lists. Hss tlime between
updates of the HRL, the less attacks can be performed by thevadicious hosts.
However, frequent updates affect adversely the network\watth.

4.1.2 Online Status Checking

In the online status checking policy, origin hosts requesbcation information
directly from the HORA. To do so, the origin hosts use the @k ost Status Pro-
tocol (OHSP). When a request arrives, the HORA consulteiésmal database and
sends a signed response pointing out the state of each fstm&chanism works
in a similar way as the Online Certificate Status Protocol $8¥used in the PKI
[23]. There are several reasons that can lead an origindasetthe online mech-
anism. For instance, origin hosts that send agents spaihdio not need to store
and update the HRL periodically. Furthermore, the risk dfesing attacks from
malicious hosts is minimized since the status is checked@®mthich allows im-
mediate detection and rejection of malicious hosts froneraries. However, with
the online policy, the HORA may become a bottleneck in théesgdecause it re-
ceives requests from all the origin hosts, and it must angaeh request with a
digitally signed response which is computationally expend-or this reason, the
HoRA can also delegate online checking to authorized estialled respondeéts

4.2 Host Revocation

The second task of the HORA is managing the revocation irdtion. As the
revoked hosts are not removed from the database, this tasi{st® mainly in
adding new hosts. If the origin host has detected malicimstshusing MAW,
it starts a protocol to revoke them. The objective of any cation protocol is
delivering in a reliable way all the proofs to the HORA in artedemonstrate that
an executing host is malicious. A proof is a piece of evideéhaea TTP can use to
verify that an attack was performed by a malicious host. éndhse of MAW, the
proofs are the containers, and the way to detect manipulattacks are the set of
integrity rules. Hence, the HORA can only revoke a host iredasre are proofs
of its malicious behavior, that is, the HORA needs evidertbes demonstrate

LA repository is a non-trusted location in the network wheiie possible to store contents to
make them available to download.
2A responder is a trusted location in the network that can sened responses.
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Figure 5: Working of our Proposal

unmistakably that this host was malicious. In this sense,ctintainers can be
used to detect manipulation attacks because they have igeenl Hy the hosts, so
a malicious host cannot repudiate that it generated a nexteitainer. The HORA
must verify that the set of integrity rules matches the dgerttde. This can be
done by executing the agent several times with random irgiat @s explained in
Section 3.3). A revocation protocol for MAW can be found i2]1

4.3 Summarizing the Overall Process

We can divide the agent’s lifetime in four phases (see Fi§lire

e Agent Creation: in this phase the origin host prepares the agent before
sending it. This includes performing the status checkinfijiter the mali-
cious hosts from the agent’s itinerary, and also embeddiagMatermark
into the agent’s code.

e Agent Sending: in this phase the origin host sends the mobile agent to
perform its tasks. The agent will migrate from host to hostoeing its
code and performing the actions that the user has prograr(foredstance,
arranging a meeting). During the agent’s execution in east, hthe agent
must create and store the containers, which are the proafsvih assure
the execution integrity. The embedded watermark has beasfarred to
these containers during the execution. Hence, all the cwrt(one for
each host) will return with the mobile agent to the originthos

e Proof Checking: in this phase the origin host looks for malicious hosts.
When the agent returns to the origin host, it extracts theacoars of all
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the hosts and it verifies the signatures to detect possitesan communi-

cations. These errors must not be considered manipulatiacka because
they could be produced by the communication channel. If tmeainers do

not have communication errors, the origin host applies tiegrity rules

to them in order to verify the correctness of the transfewatermarks. If

a container does not fulfill the rules, this host is maliciansl hence the
origin host can start a revocation protocol.

e Host Revocation: in this phase the origin host sends the proofs of the ex-

ecution integrity to the HORA using a revocation protocdheTHORA ver-

ifies the validity of these proofs, that is, it verifies thag gignature of the
container is valid and that the integrity rules correspanthé agent’s code
by executing the agent again with random input data. If thsefs are

valid, the HORA revokes the malicious host, so this host wilt receive

agents any more.

5 Proof-of-concept and Performance Evaluation

In this section, we present some performance results ofrtitetype that we have
developed to show the usability of our agent watermarkinghraeism. We also
present some performance results about a proof-of-conc¢ipe HORA.

5.1 Mobile Agent Watermarking

We have used the Aglet Software Development Kit 2.0.1 (AS[¥)as mobile
agent platform to implement the agent watermarking praetpr MAW. ASDK
provides an API to create aglets (AGent-appLETS), whichJare objects that
can be used as mobile agents. ASDK provides the Tahiti sexstere the aglets
can be sent, received and executed. Tahiti is supported &ysa\drtual Machine
(JVM) included in the Java Development Kit (JDK) 1.3.1 [2]hél' Java Cryp-
tography Extension (JCE 3.01) [1] includes some additiemgbtographic Java
libraries that have been used to protect the mobile agemngallfi it is worth to
mention that the results in the following sections have la&an in a laboratory
equipped with four computers (one working as the HoRA, twexaesuting hosts,
and one to send mobile agents). The four computers are Rehiat 2.4 GHz,
512 MB of RAM and Linux SUSE 9.0 as Operating System.

We have tested our watermarking mechanism using some saggis avail-
able within ASDK, and the results show that the average dileeomarked code
Is increased in an 11%, and the average execution time isased in a 19%.
These results are dependent on the environment that we lsadeto make the
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test and on the watermark used (the CT algorithm in our cébmyever, we think
that our results are a good estimation of the cost of MAW bsedbey are co-
herent with the ones published by previous studies abotward watermarks in
[28]. In accordance to the previous values, we can conchateur watermarking
mechanism does not introduce too much overhead in the system

5.2 HoRA

A preliminary proof-of-concept for the HoRA has also beempliemented. The
implementation has two software entities: tteeoker and themanager. The
revoker is devoted to host revocation. In other words, teeoker performs re-
executions of the agent to verify the execution correctnébsas, therevoker can
be considered the element that decides if a host is revokadtorOn the other
hand, themanager is charge of managing the interface with users. This interfa
must allow users to send their revocation requests. Iniaddihemanager must
also implement at least one method (HRL or OHSP) for distirlgurevocation
information. Remember that the distribution revocatiorchaism allows a ori-
gin user to check whether a host is currently revoked or nlo¢ Joal of dividing
the implementation of the HORA in two parts is that this dimsallows us to
reuse with minimal changes any generic revocatiamager. Generally speak-
ing, a revocationmanager keeps updated the currently revoked items in a central
revocation database and makes publicly available thernmdtion of this database
to end users with some status checking protocol. In pasictd implement the
manager of the HORA, we have reused a previously developed revatatean-
ager for a PKI revocation scenario called CERVANTES (CERtificd#didatioN
TESt-bedj. We present results about the two main time-and-bandwinitisum-
ing tasks for the HORA, which are host revocation and stadtesking.

5.3 Host Revocation

Table 1 shows a summary of results about the time spent foorige host and
the HORA to perform a host revocation. An average betweenx20ugions has
been calculated to every result presented. The agent'sigaedime has also
been added in order to compare it with the previous times. Weemt the re-
sults for two revocation protocols, one that provides dateapy, and another
that does not provide it. Both protocols provide integritylauthentication of all
the exchanged data (for further information see the revamtatrotocol for MAW
presented in [12]).

3http://sourceforge.net/projects/cervantes
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Times Revocation protocol Revocation protocol

(without privacy) (with privacy)
Agent’s execution time 120 ms 147 ms
Revocation time 27 ms 51 ms
at the origin host
Revocation time 153 ms 181 ms

at the HoRA

Table 1: Agent Execution Time versus Revocation Times

From these results we can extract that starting a revocegigumest does not
suppose a great cost for the origin host, even when privaegisired. In fact, the
origin host only needs to generate the revocation requgsing and encrypting
(if privacy is required) all the proofs, and finally sendihgi to the HORA. How-
ever, the cost that supposes to process a revocation prfocéiss HoRA is a little
more expensive. In case of using the protocol without pyivdee HORA needs
a 27% more CPU time to process a revocation request than achesecute the
agent, and a 23% more in case of the protocol with privacys Ehilue to the fact
that the HORA not only needs to execute the agent (at leasf) daclemonstrate
that the integrity rules correspond to the agent’s code jtbmust also perform
extra tasks like verifying the signature of the origin hastlecrypting the results.

5.4 Status Checking

To evaluate the resources consumed by status checking weleothat the com-
puter that sends mobile agents simulates the behavidf ofdependent origin
hosts. These origin hosts always get the revocation infeomausing thepull
mode, that is, the origin hosts (acting as clients) senddgbecation requests, and
the HORA (acting as server) receives them and sends resporse elapsed time
between a request and the next one sent by an origin hosteeagbnerated by
using an exponential inter-arrival probability densityétion. We assume that
each origin host has a certificate. We also assume that thareaverage of 10%
revoked hosts. This figure is also used in other revocatienatos such as PKI
and credit cards. When using HRL, each origin host has itsldi®Rh stored in
cache during its validity period, and it must update it whepiees.

Figure 6 shows the bandwidth utilization in case of using HRhe tested
scenario hasv = 10000 origin hosts. The HRL validity period i¥ P = 6
hours and the status request rate per origin host ands/heur2 requests/hour,
that is, each origin host sends an average of two agents per Notice that the
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Figure 6: HRL bandwidth utilization

bandwidth utilization has peaks. This is because all thentdi have the same
HRL copy in their cache so the HRL expires at the same timevierydody. This
is why the bandwidth peaks are localized around the expmaliates (every 6
hours in this scenario). This is a well-known drawback tlzat lbe mitigated with
a mechanism called overissuation. Overissuation consistiowing multiple
HRLs to have overlapping validity periods. Put in anotherdsp overissuing
means issuing more than just one HRL during a validity peridte result is that
the HRLs in the users’ caches will expire at different timad #hus requests to
the HoRA for new HRLs will be more spread out.
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Figure 7: Effect of the HRL validity period in the bandwidthlization

Figure 7 shows how decreasing the HRL validity period affdmndwidth.
The tested scenario has also= 10000 origin hosts. Validity periods o P = 2
hours andl” P = 6 hours are compared with regards the requestrat€here
is a trade-off between risk and network bandwidth usageeimegal smaller va-
lidity periods imply more bandwidth utilization. The banidih utilization tends
to a threshold when increasing the status requests. Thiersesof this thresh-
old is due to the fact that whengrows, users start benefiting from the cached
HRLs. Then, the request rate towards the HORA reaches ahtticksand thus
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the bandwidth also reaches a threshold. Observe that thonwdth threshold is
reached around/V P ~ 1. This is because when these magnitudes are simi-
lar, there is a high probability of having a cached HRL. Weéhased the HORA
proof-of-concept to find these results, but the bandwidtbghold has also been
theoretically predicted for generic revocation scengi2@3.
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Figure 8: OHSP and HRL scalability comparative.

Figure 8 shows how scalable are HRL and OHSP when the numbex-of
ecuting hostsV/ is increased. In Figure 8, for simplicity, the number of arig
hostsN is equal to the number of executing hosts. Notice that thelatth is
presented in a logarithmic scale. It can be observed that idRIot bandwidth-
scalable. This is because on one hand, HRLs become bigdeavitgger pop-
ulation of executing hosts, and on the other hand, HRL doagdare increased
with a bigger population of origin hosts. As a conclusiomdbaidth grows with
N x M = N2. The processing capacity requirements of HRL can be consid-
ered negligible. In OHSP, the bandwidth and the processapaaty both grow
linearly with the number of origin host¥ because the processing capacity and
the communication overhead of OHSP does not depend on thieerwhrevoked
hosts. The bandwidth figure has a reasonable value, butdlcegsing time might
be a bottleneck in the case of relatively large populatidrgigin hosts that have
a high request rate or if the HORA is attacked by a flood of aqseri

6 Conclusions
In this article the authors introduce two techniques thatkwogether to achieve

an effective and usable protection mechanism for mobile@gegainst manipula-
tion attacks performed by a malicious host during executi@mone hand, MAW
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has been presented as an effective and lightweight attaekta®r mechanism.
We have explained the main ideas behind MAW, and we have skecabout
which are the most appropriate software watermarks to gratebile agents. We
have also introduced the guidelines to implement MAW usheg@T algorithm.
On the other hand, the HORA has been presented as a generiwiliT punish-
ment capabilities. The combined use of the two security raeisdms leads to a
reliable environment for honest users and hosts, which Bhaeven at the ex-
pense of introducing some overhead. This article also dedisome performance
results to evaluate the cost of the proposed mechanismshamesults show that
the cost of the overall system is low enough to make it usabpeactice.
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