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Compressed sensing (CS) comprises a set of relatively new techniques that
exploit the underlying structure of data sets allowing their reconstruction from
compressed versions or incomplete information. CS reconstruction algorithms are
essentially nonlinear, demanding heavy computation overhead and large storage
memory, especially in the case of multidimensional signals. Excellent review
papers discussing CS state-of-the-art theory and algorithms already exist in the
literature, which mostly consider data sets in vector forms. In this paper, we
give an overview of existing techniques with special focus on the treatment of
multidimensional signals (tensors). We discuss recent trends that exploit the
natural multidimensional structure of signals (tensors) achieving simple and
efficient CS algorithms. The Kronecker structure of dictionaries is emphasized
and its equivalence to the Tucker tensor decomposition is exploited allowing us
to use tensor tools and models for CS. Several examples based on real world
multidimensional signals are presented, illustrating common problems in signal
processing such as the recovery of signals from compressed measurements for
magnetic resonance imaging (MRI) signals or for hyper-spectral imaging, and the
tensor completion problem (multidimensional inpainting). © 2013 John Wiley & Sons,
Ltd.
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INTRODUCTION

One of the most remarkable properties of real
world signals is that they are compressible. In

fact, modern compression protocols such as JPEG,
JPEG2000, and MPEG have exhibited a great success,
providing high ratios of compression at a marginal
loss of information. This fact shows that data sets
have an internal structure which is revealed by
coding the signals using appropriate bases, also
known as ‘dictionaries’. Most popular dictionaries
are, for example, those obtained through the discrete
cosine transform (DCT), the wavelet transform (WT),
and others.1 Traditional signal acquisition systems
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are based on sampling analog signals at a high
Nyquist rate followed by a compression coding stage
keeping in memory only the essential information
about signals, i.e. storing only the most significant
coefficients. Compressed sensing (CS) theory suggests
the compelling idea that the sampling process can
be greatly simplified by taking only few informative
measurements from which full data sets can be
reconstructed almost perfectly.2,3 CS theory has
revolutionized signal processing, for instance, new
imaging sensor paradigms were developed on the
basis of CS,4–8 and some classical image processing
problems were approached using results of CS theory
as in the case of denoising,9–11 inpainting,12–16 super-
resolution,15,17–19 deblurring,20–23 and others.

Originally, CS theory was developed for
digital signals, in particular for signals that are
mapped to a one-dimensional (1D) array (vector).
Powerful reconstruction techniques were developed
for relatively small sized vectors which are measured
by using random matrices. There are excellent review
papers in the literature that cover the state-of-the-art
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of CS theory and algorithms for data sets in
vector form (see for example24–27). However, today’s
technology faces the challenge of solving CS problems
where multidimensional signals are involved and the
size of data sets increases exponentially with the
number of dimensions. In this case, the computation
time and storage memory requirements turn out
of control easily. For example, a relatively small
two-dimensional (2D) image with 512 × 512 pixels
represents a vector with 262144 entries which
would take too much time to process with the
state-of-the-arts CS vector algorithms. Models for
multidimensional data sets, also known as tensors
(multiway arrays), have a long history in mathematics
and applied sciences.28,29 While these models have
recently been applied to multidimensional signal
processing, they were developed independently of
the theory of sparse representations and CS. In
this paper, we give an overview of recent results
revealing connections among tensor decompositions
models and CS involving multidimensional signals.
We show that, by using multilinear representation
models, we are able to obtain a convenient
representation of signals that allows us to develop
efficient algorithms for multidimensional CS. By
keeping the multidimensional structure of signals
captured by tensor decomposition models, we are
able to exploit the signal structure in each mode
(dimension) simultaneously. For example, a 2D digital
image has two modes, each one composed by
vectors, i.e. columns and rows (mode-1 and mode-
2 vectors, respectively). The Tucker model (defined
below)29,30 takes into account the linear structure
of vectors in each mode allowing algorithms to
operate at mode-n level. This advantage is more
convenient when the number of dimensions increases
(N ≥ 3). Additionally, we illustrate through computer
simulations using real-world data sets, how some
CS-related problems such as: three-dimensional (3D)
magnetic resonance imaging (MRI) reconstruction,
hyper-spectral imaging, and tensor completion are
greatly benefited by using underlying tensor models.

NOMENCLATURE AND NOTATION

In this paper, tensors are denoted by underlined
boldface capital letters, e.g. Y ∈ R

I1×I2×I3 is a 3D
tensor of real numbers. For some applications, such
as in the case of MRI signals, we need to work
with tensors of complex numbers. It is noted that,
in order to simplify the notation, we present some
of the results only for the 2D or 3D cases but the
reader should notice that these results are also valid
for higher order tensors, i.e. with the a number of

dimensions N ≥ 3. Matrices (2D arrays) are denoted
by bold uppercase letters and vectors are denoted by
boldface lower-case letters, e.g. D ∈ R

M×I and y ∈ R
I

are examples of a matrix and a vector, respectively.
The i-th entry of a vector y is denoted by yi, the
element (i,j) of a matrix Y is denoted by either of
the following ways Y(i,j) = yij, and the j-th column of
matrix Y is denoted by yj. Similar notation is used
for tensors by referring to the element (i1,i2,i3) as
Y (i1, i2, i3) = y i1i2i3 . The Frobenius norm of a tensor

is defined by ||Y||F =
√∑

i1

∑
i2

∑
i3

y2
i1i2i3

.
Sub-tensors (blocks) are formed when indices

are restricted to certain subsets of values. Particularly,
a mode-n fiber is defined as a vector obtained
by fixing every index to a single value except
in mode-n, e.g. in MATLAB notation, a mode-
2 fiber is obtained as Y (i1, :, i3) (i1 and i3 are
fixed). More generally, by defining sets of restricted
indices In =

{
i(1)
n , i(2)

n , ..., i(Kn)
n

}
, the corresponding 3D

block is denoted by Y (I1, I2, I3). For example,
if I1 = [1, 5, 7, 8], I2 = [10, 11, 20] and I3 = [2, 3],
then Y (I1, I2, I3) determines a 4 × 3 × 2 block.

Mode-n unfolding (called also mode-n matri-
cization) of a tensor Y ∈ R

I1×I2×I3 yields a matrix Y(n)
whose columns are the corresponding mode-n fibers
arranged in a specific order,29 i.e. Y(1) ∈ R

I1×I2I3 ,
Y(2) ∈ R

I2×I1I3 , and Y(3) ∈ R
I3×I1I2 . Given a multidi-

mensional signal (tensor)Y ∈ R
I1×I2···×IN and a matrix

A ∈ R
J×In , the mode-n tensor by matrix product

Z = Y ×n A ∈ R
I1×I2···In−1×J×In+1···IN is defined by

zi1i2···in−1jin+1···iN =
In∑

in=1

yi1···in···iN ajin , (1)

with ik = 1, 2,..., Ik (k �= n) and j = 1, 2,..., J.
The Kronecker product of matrices is defined as

follows: given two matrices A ∈ R
I × M and B ∈ R

J × N,
their Kronecker product A ⊗ B ∈ R

IJ × MN is defined
by

A ⊗ B =

⎛
⎜⎜⎝

a11B a12B · · · a1MB
a21B a22B · · · a2MB

. . . .

aI1B aI2B · · · aIMB

⎞
⎟⎟⎠ (2)

Also, for given two matrices A ∈ R
I × M and

B ∈ R
J × M, their Khatri–Rao product A � B ∈ R

IJ × M

is defined by applying the column-wise Kronecker
product, i.e.

A � B = (
a1 ⊗ b1 a2 ⊗ b2 · · · aM ⊗ bM

)
(3)

The outer product of N vectors v(n) ∈ R
In

(n = 1, 2, . . . , N) is denoted by Y = v(1)◦ · · · ◦v(N)
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where Y ∈ R
I1×···×IN and is obtained by

yi1···iN = v(1)

i1
· · · v(N)

iN
. (4)

COMPRESSED SENSING (CS):
DISCOVERING UNIQUE SPARSE
STRUCTURES FROM MINIMAL
INFORMATION
Let us consider for the moment the space of ID signals
(vectors) y ∈ R

I. Real world signals do not cover
the space uniformly; instead, they are concentrated
around the union of subspaces determined by linear
combination of few dictionary elements.25,31 To be
more specific, given a dictionary D ∈ R

I × I, CS assumes
the following signal model

y = Dx + ey, with ||x||0 ≤ K, (5)

where K < < I, the l0-pseudo-norm ||x||0 accounts
for the number of nonzero entries of vector x ∈ R

I

and ey ∈ R
I is an error vector with a small norm,

i.e. y ≈ ŷ = Dx. This remarkable property of real
world signals made possible the development of
compression techniques based on the transformation
of a data set to some specific domain, typically a
wavelet domain, where most of the coefficients can
be set to zero allowing a reconstruction with a small
loss of information. In this paper, we consider only
complete dictionaries, i.e. where the number of atoms
in the dictionary is equal to the signal size I, but it is
important to note that also over-complete dictionaries,
i.e. with a matrix D ∈ R

I × J (J > I), can be used by
making the appropriate changes of the models.32–34

CS also assumes that a limited number of
linear measurements are available, i.e. the available
data set is z = �y ∈ R

M with � ∈ R
M × I M < I, which

combined with Eq. 5, gives us the following system of
constrained linear equations:

z = Bx + ez, with ||x||0 ≤ K, (6)

where B = �D ∈ R
M × I and the error term is

determined by ez = �ey. Thus, two main questions
need to be answered:

1. Under which conditions on matrices �, D, and
the number of nonzero coefficients K, a unique
solution x exists?

2. How can we correctly estimate ŷ from z?

During last years, many advances have been
made in order to answer these theoretical questions
and understand the applicability of the CS theory to
real world problems. Let us focus first on the ideal
noiseless case, i.e. ey = 0. The first question has to do

with the uniqueness of the solution of Eq. 6. Note
that, without the sparsity constraint, there exists an
infinite number of vectors x for which z = Dx holds
as there are more unknowns than equations. But,
if there are two different coefficient vectors x1, x2
for which the same measure vector is obtained, i.e.
z = Bx1 = Bx2, then those related signals cannot be
identified uniquely. Fortunately, if the vector of
coefficients x is sparse enough (small K compared
to the size of the signal I) and if matrices �, D are
‘good’ enough, then the solution is unique. There are
several ways of characterizing a ‘good’ matrix B, for
example, B is considered ‘good’ if at least one of the
following conditions are met:

• Large spark: spark (B)> 2K,
35 where the spark of

a given matrix is the smallest number of columns
that are linearly dependent.

• Low coherence: μ(B) < 1/(2K − 1),
35

where the coherence is defined as the
largest normalized absolute inner prod-
uct between any two columns, i.e.
μ (B) = maxi�=j

(
bT

i bj/
(||bi||2||bj||2

))
.

These results give us absolute guarantees about
the uniqueness of the solution for the case of signals
having exact sparse representations. It is important to
note that, on one hand, dictionaries D are generally
determined by the class of signals of interest and,
on the other hand, usually we have some freedom to
chose a proper sensing matrix � such that, multiplied
by matrix D would produce a good matrix B. One
remarkable result from this theory is that a random
sensing matrix � usually provides a sufficiently
incoherent matrix B.

36

The second question is related to the existence
of algorithms able to recover the signal y from the
measurement vector z. The idea is to solve Eq. 6 for x
and then to compute the approximate signal by using
ŷ = Dx. The problem of finding the sparsest solution
of an under-determined system of linear equations can
be formally formulated as follows37:

argmin
x

||x||0 subject to ||z − Bx||2 ≤ ε, (7)

where ε is a small constant determining the accuracy
of the approximation.

Equation 7 is a combinatorial problem and
would require an exhaustive search over all possible
sparse supports of x which is not practical. Instead,
several methods have been proposed to approximate
this problem by another, a more tractable one. These
methods can be basically divided into two main
groups: basis pursuit (BP) and matching pursuit (MP).
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• Basis pursuit (BP) algorithms: In BP, the
combinatorial problem is transformed to a
convex optimization problem by replacing the
l0-norm ||x||0 with its convex approximation,
basically, the �1-norm ||x||1.

35,38 Then, the new
optimization problem is formulated as follows:

argmin
x

||x||1 subject to ||z − Bx||2 ≤ ε, (8)

which is more tractable and can be solved, for
example, by using linear programming (LP)39 or
by using second-order cone programs (SOCPs).40

Both techniques are computationally expensive and
turn out to be impractical for large sized signals,
i.e., for signals with tens of thousands entries, as
in the case of multidimensional signals. A more
practical method is the spectral projected gradient l1
minimization (SPGL1) algorithm41 whose optimized
implementation in MATLAB is available in Ref 42.
SPGL1 relies only on matrix–vector operations Bx and
BTy and accepts both, explicit matrices or functions
that evaluate these products and, therefore, becomes
very useful for CS when matrices B and BT have
some kind of structure, as for example Kronecker
structure.43 A general description of SPGL1 algorithm
is included in Algorithm 1 and illustrated by an
example in Figure 1(a).41

Algorithm 1: Spectral Projected Gradi-
ent l1 (SPGL1)41

Require: Compressed signal z ∈ R
M,

matrix B ∈ R
M× I and tolerance ε

Ensure: Sparse vector of coefficients
x ∈ R

M

1: r = z, τ = 0; initial residual and
l1-norm bound

2: while ||r||2 > ε do
3: x = argminx||Bx - z||2 subject to

||x||1 ≤ τ;
4: r = z - Bx; residual update
5: τ ← Newton_Update(B, z, τ); see

details in41

6: end while
7: return x;

• Matching pursuit (MP) algorithms: MP methods,
which are also known as greedy algorithms,38,44

are faster than BP, especially with very sparse
signals (low K).45 A powerful standard greedy
algorithm is the orthogonal matching pursuit
(OMP) which was optimized and studied in
Refs 38 and 46. OMP iteratively refines a sparse
solution by successively identifying the dictionary

elements which are more correlated to the current
residual and incorporating it to the support.
This process is repeated until a desired sparsity
level K is reached or the approximation error
is below some predetermined threshold level.
A general description of OMP algorithm, for
the case of a normalized matrix B, i.e. with
unit-norm columns (||bj|| = 1 for j = 1, 2,..., I), is
shown in Algorithm 2. An efficient MATLAB
implementation of OMP can be found in Ref 47.
In Figure 1(b) the recovery of a 1D signal having
a sparse representation on a WT basis is shown
by applying the OMP algorithm.

Algorithm 2: Orthogonal Matching Pur-
suit (OMP)38,44,47

Require: Compressed signal z ∈ R
M and

matrix B ∈ R
M× I

Ensure: set of K non-zero coefficients
(sparse representation)

1: r = z; initial residual
2: for k = 1 to K do
3: ik = arg maxj|bT

j r|; select max.
correlated column

4: ẑ = ∑k
n=1αnbin; αn are such that

||ẑ − z||2 is minimized (see
details in47)

5: r = z − ẑ; residual update
6: end for
7: return {i1,i2, . . .,ik},

{α1,α2, . . .,αk};

Theoretical Aspects of Algorithms
It is known that, in the ideal noiseless case, the
condition μ(B) < 1/(2K − 1) is enough to guarantee
that BP and MP algorithms will converge to the unique
solution.38 However, in practical applications, signals
are not truly sparse and there is noise involved in the
sensing process. Thus, not only sparse signals should
be uniquely determined in the noiseless case, but also
they should be stably determined in the presence of
noise. Formally, an algorithm is said to be stable if
the error in the estimated vector of coefficients x̂ is
comparable to the model error, i.e. ||x̂ − x||p ∼ ||ez||p
for some p-norm. One way to guarantee stability is
to ask the matrix B to meet the restricted isometry
property (RIP) which was introduced by Candès and
Tao in Ref 48. A matrix B satisfies the RIP of order K
if there exists a number δK ∈ (0,1) such that

(1 − δK) ||x||22 ≤ ||Bx||22 ≤ (1 + δK) ||x||22, (9)
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(a) Basis Pursuit (BP) based sparsity recovery (SPGL1 algorithm)

SPG1 sucessive estimations of the coefficient vector X

Absolute correlation between the residual and components in OMP iterations (|bT
j r|)

component 10 detected

component 5 detected

component 3 detected

component 100 detected

component 250 detected

(b) Matching Pursuit (MP) based sparsity recovery (OMP algorithm)

...

components 3, 5, 10, 100 and 250 detected
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0 25020015010050

0 25020015010050

FIGURE 1 | One-dimensional Compressed sensing (CS) example illustrating the application of the basis pursuit (BP) and matching pursuit (MP)
sparsity recovery methods. A 1D signal y ∈ R

I is modeled by combining only K = 5 atoms (out of 256) of the Daubechies wavelet transform (WT)
basis, i.e. y = Dx + e with ||x||0 = 5. Nonzero coefficients and errors are generated by using a Gaussian distribution with standard deviation σ = 1
and σ = 0.01, respectively. The compressive measurements are obtained by z = �y, with a sensing matrix � ∈ R

64 × 256 being a random (Gaussian)
matrix determining a sampling ratio =25%. In (a), the sparsity patterns recovered by the SPGL1 algorithm in iteration k = 1, 2, . . . , 79 are shown. In
(b), the correlations between the residual and basic elements for iterations k = 1, 2, . . . , 5 of the OMP algorithm are displayed.

for every K-sparse vector. RIP is directly related with
the coherence of the matrix by δK ≤μ(B)(K − 1),

35

thus small coherence imposes a small value of δK.
There are several available theoretical results about
stability of algorithms with explicit error bounds. See
for example Refs 46 and 49 for error bounds based
on RIP in MP algorithms and36,50 for the case of BP
algorithms.

TENSOR DECOMPOSITIONS
AND MULTI-WAY ANALYSIS

Many real world problems involve multidimensional
signals, for instance, a 3D image produced by a
computed tomography (CT) system or an MRI system,
corresponds to a sampled version of a 3D function
f (x1,x2,x3). In this case, the multidimensional image
is stored in memory as a tensor Y ∈ R

I1×I2×I3 whose
elements are samples taken on a grid, i.e. yi1i2i3 =

f
(
i1h, i2h, i3h

)
(in = 1, 2,..., In, n = 1, 2, 3) with h being

the discretization step for all dimensions. Models
for tensors have a long history in mathematics and
applied sciences.28,29 Tensor decompositions allow us
to approximate tensor data sets by models depending
on few parameters, i.e. less parameters than the total
number of entries of the tensor. This reduction of
degree of freedom allows us to capture the essential
structures in multidimensional data sets.

The Tucker decomposition30,51 provides a
powerful compressed format that exploits the linear
structure of the unfolding matrices of a tensor
simultaneously. More specifically, it is defined by the
following multilinear expression:

Y = X ×1 D1 ×2 D2 · · · ×N DN, (10)

with a core tensor X ∈ R
R1×R2×···×Rn and factor

matrices Dn ∈ R
In×Rn . It is easy to see that mode-

n vectors of a tensor with a Tucker representation
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belongs to the span of the columns of matrix
Dn. A tensor Y ∈ R

I1×I2···×IN is said to have
multilinear rank-(R1, R2,..., RN) if R1, R2,..., RN is
the set of minimal values for which Eq. 10 holds
exactly.

As a particular case, when matrices Dn ∈ R
In×Rn

are defined as the left singular vectors of matrices
Y(n), this model is called the high-order singular
value decomposition (HOSVD).30 Additionally,
by truncating the number of left singular vectors
included in the factors we obtain the truncated
HOSVD which is known to provide a suboptimal
rank-(R1, R2 . . . ., R3) approximation Ŷ of the origi-
nal tensor. In contrast to the matrix truncated SVD,
which yields the best low-rank approximation, the
tensor approximation resulting from the truncated
HOSVD is usually not optimal . However, we have
the following bound ||Y − Ŷ||F ≤ √

N||Y − Yopt||F.52

This quasi-optimality condition is usually sufficient
in most applications. The HOSVD has been thor-
oughly investigated in the literature and has found
many applications in signal processing and data
mining.53–56

Another widely used tensor decomposition
method is the canonical decomposition (CANDE-
COMP) also known as parallel factor analysis
(PARAFAC)29 jointly abbreviated CPD, which can be
considered as a particular case of the Tucker model
when the core tensor X is diagonal, i.e. xi1···in···iN �= 0 if
and only if i1 = · · · in · · · = iN. An important property
of CPD model is that the restriction imposed on the
Tucker core leads to uniqueness of the representation
under mild assumptions.29 CPD model has been
applied to a variety of problems, including telecom-
munications and sensor networks applications,57

biomedical applications,58 text mining analysis of
social network and web links data sets,59 and
others.

There are only a few recent works that link
CS theory with tensor decompositions concepts. Lim
et al. have shown in Ref 60 that the uniqueness
property of the CPD model can be expressed in
terms of CS concepts such as restricted isometry and
incoherence applied to loading matrices (factors). In
Refs 61 and 62, methods to recover low-rank tensors
have been proposed based on convex optimization
techniques adopted from CS concepts developed for
matrices.16 Sidiropoulos et al. have recently shown in
Ref 63 that the identifiability properties of the CPD
model could be used to recover a low-rank tensor
from Kronecker measurements, i.e. by compressing
each mode separately. More recently, in Refs 64 and
65 it was shown that multidimensional signals can
be efficiently represented by means of the Tucker

model with large but sparse core tensors with
block structure, thus, they can be recovered from
Kronecker compressive samples by using greedy
and fast algorithms. In this paper, we consider
Tucker model and its application to solve CS-related
problems.

PRACTICAL ALGORITHMS
FOR MULTIDIMENSIONAL CS

A direct application of the CS theory to multidimen-
sional data sets consists of vectorizing tensors and use
a large dictionary for their representation. To be more
precise, given a tensor Y ∈ R

I1×I2×I3 we may convert
it to a vector y = vec

(
Y

) ∈ R
I, with I = I1I2I3, and

assume that it admits a sparse representation over a
dictionary D ∈ R

I × I. Then, from a set of linear mea-
surements given by z = �y with � ∈ R

M × I (M < I)
we can apply any of the traditional algorithms such
as MP or BP in order to recover the sparse struc-
ture and reconstruct the original multidimensional
signal. This is quite impractical because even using
the most optimized algorithms available today such
as OMP47 or SPGL1,41,66 the size of the resulting
explicit matrix B = �D ∈ R

M × I scales exponentially
with the number of dimensions N. Memory usage
is not the only problem, also the number of opera-
tions involved in the matrix by vector products are
very expensive when the size of the signal increases
becoming prohibitive for N ≥ 2. In real life applica-
tions, sometimes fast operators are available, which
allows one to avoid using explicit versions of the
dictionary D ∈ R

I × I, for instance, this is the case for
the DCT and WT which cost O

(
I log (I)

)
instead of

O
(
I2

)
. On the other side, most of existing theoretical

results related to CS performance are based on ran-
dom sensing matrices �∈ R

M × I such as Gaussian or
Bernoulli ones,37 but in practice, fast sensing opera-
tors with structured matrices need to be developed in
order to avoid explicit matrices.26,67,68 While dictio-
naries D are determined by the class of signals, sensing
matrices � are determined by the specific application.
For example, in the case of MRI signals, tomographic
imaging,3 and optical microscopy,17 measurements
are available in the Fourier transform domain, and
the sensing operator usually consists on subsampling
in this space.69 Thus the sensing matrix consists of
a deterministic matrix given by a selection of a sub-
set of rows in the Fourier transform matrix (see the
application to CS MRI section) and the fast Fourier
transform (FFT) algorithm can be used to implement
it in a fast way. In the case of the channel estima-
tion problem that arises in wireless communication
applications, the sensing matrix is random Toeplitz
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or subsampled Toeplitz/circulant matrices for which
recoverability guarantees results have been recently
reported in Refs 70 and 71. As another example,
CS single pixel cameras have been developed by
designing special-purpose acquisition hardware that
performs the projection of the scene against a binary
array which correspond to use as sensing matrix with
Walsh–Hadamard structure.4

The Sparse Tucker Tensor Representation
A natural way to exploit the multidimensional
structure in signals is to avoid the vectorization step
and take advantage of the structure contained in all
different modes (dimensions) simultaneously. To this
end, we can use the Tucker model of Eq. 10, where
each of the factors captures the linear structure of
the data set in the corresponding mode. In order to
introduce this concept, a sparse Tucker representation
of a 3D brain image is shown in Figure 2(a). The
original data seta Y ∈ R

256×256×64 is decomposed by
using matrices D1, D2 ∈ R

256 × 256 and D3 ∈ R
64 × 64 as

Tucker factors, i.e.

Y = X ×1 D1 ×2 D2 ×3 D3. (11)

When factor matrices are assumed to be
orthogonal (DT

n Dn = I), the optimal core tensor, in
the least squares sense, is obtained by

X = Y ×1 DT
1 ×2 DT

2 ×3 DT
3 . (12)

Thus, the idea is to choose proper matrices
DT

n (n = 1, 2, 3) such that the resulting core tensor
X is as sparse as possible. This is the case when
we use sparsifying transforms in each mode, e.g.
WT, DCT, or other specific operators according
to the characteristics of the mode-n vectors of
the signal under analysis. In Figure 2(b), the
corresponding sparse Tucker approximation is shown,
which is obtained by keeping the largest absolute
coefficients in the core tensor and setting the rest of
them to zero. It is remarkable that, for example,
by keeping only 5% of the coefficients we are
able to approximate the original signal almost
perfectly (with peak signal to noise ratio (PSNR) =
41 dB).b

It is straightforward to show that the Tucker
representation of Eq. 11 can be equivalently
expressed in terms of the vectorized tensors x =
vec

(
X

)
and y = vec

(
Y

)
, with vec

(
Y

) = vec
(
Y(1)

)
, as

follows65:

y = (D3 ⊗ D2 ⊗ D1) x. (13)

Additionally, as it is discussed in section Selected
Applications, in some cases the measurements can

be taken in a multilinear way, i.e. by using linear
operators in each mode separately as follows:

Z = Y ×1 �1 ×2 �2 ×3 �3, (14)
Z = X ×1 �1D1 ×2 �2D2 ×3 �3D3, (15)

which can be also written in terms of vectorized
tensors as follows:

z = (B3 ⊗ B2 ⊗ B1) x, with ||x||0 ≤ K, (16)

where z = vec
(
Z

)
and Bn = �nDn (n = 1, 2, 3) and K

is the maximum number of nonzero coefficients. In
this case, to solve the CS problem with tensor structure
data means to find the solution of a large underdeter-
mined system of equations with Kronecker structure
which can be solved by using traditional algorithms
such as MP or BP applied to the corresponding vec-
torized tensors. The formulation of Eq. 16 is called as
Kronecker CS72 and was recently exploited in the liter-
ature for the case of 2D signals (images) in Refs 43 and
73 and extended to multidimensional signals in Ref 72
In Ref 65 the Kronecker-OMP algorithm (Kron-OMP)
was introduced, which allows one to perform the
steps of the classical OMP exploiting the Kronecker
structure of matrix B = (B3 ⊗ B2 ⊗ B1) ∈ R

M × I, i.e.
by working directly on the relatively small matrices
Bn ∈ R

Mn×In (see Algorithm 3) In Figure 3(a) and (b),
a 2D example is presented, showing how a signal
having a Kronecker sparse representation can be
recovered by the Kron-OMP algorithm. It is noted
that, Kron-OMP needs K iterations to complete the
recovery (K is equal to the number of nonzero entries
in the sparse core matrix X ∈ R

I × I).

Algorithm 3: Kron-OMP Algorithm65

Require: Compressed signal Z ∈ R
M1×···×MN

and normalized matrices Bn ∈ R
Mn×In

(n = 1,2, . . ., N)
Ensure: set of K non-zero coefficients
(sparse representation)
1: R = Z; initial tensor residual
2: for k = 1 to K do
3:

(
i(

k)
1 , i(

k)
2 , . . . , i(

k)
N

)
= arg maxi1i2 ... iN |R ×N

B1 (:, i1)T ×2 · · · ×1 BN (:, iN)T |; select
max. entry of correlation tensor

4: Ẑ =
k∑

n=1
αnB1

(
:, i(n)

1

)
◦ · · · ◦BN

(
:, i(n)

N

)
; αn

are such that ||Ẑ − Z||F is
minimized (see details in65)

5: R = Z − Z; residual update
6: end for
7: return –

(
i(

k)
1 , i(

k)
2 , . . . , i(

k)
N

)
, for k =

1,2, . . . , K˝ and {α1,α2, . . .,αK};
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(a) A tucker representation of a tensor is obtained by applying orthogonal sparsifying

transforms in each mode, e.g. Wavelet Transform (WT), Disctrete Cosine Transform (DCT), etc.

(b) A sparse tucker approximation is obtained by keeping 

Un-structured
multidimensional sparsity

Structured multidimensional sparsity
(tensor block-sparsity)

Non - zero coefficients

(c) Types of tensor sparsity

(256 x 256 x 64)

FIGURE 2 | Sparse Tucker approximation of multidimensional signals. In (a), the original tensor three-[dimensional magnetic resonance imaging
(3D MRI) brain image] is represented by the Tucker model Y = X ×1 D1 ×2 D2 ×3 D3, where factors Dn ∈ R

In×In (n = 1, 2, 3) are orthogonal, thus,
the optimal core tensor is given by X = Y ×1 DT

1 ×2 DT
2 ×3 DT

3 . In (b), the tensor is reconstructed by keeping only the largest (absolute values)
entries of X. The resulting PSNR (dB), for different amount of kept coefficients, is shown for the case of using Daubechies WT dictionaries. In (c)
unstructured sparse core tensors and block core tensors are illustrated.

Exploiting Multidimensional Sparsity
Structure
For multidimensional data sets, the Kronecker
structure of the dictionary and the sensing operator
allows one to implement every iteration of the OMP
strategy in an efficient way as it involves operations
with smaller matrices.65 However, for large-scale data
sets and high number of dimensions, the number
of required iterations K increases as a power of
the number of dimensions (curse of dimensionality)

making Kron-OMP impractical. In order to reduce
complexity we can make additional assumptions
about the location of nonzero coefficients based on
some a priori knowledge about the signals of interest.
By doing so we will be able to simplify the sparse
pattern discovery algorithm and, at the same time, to
improve the quality of reconstructions or reduce the
number of compressive measurements. This brings us
with the concept of ‘structured sparsity’ for vectors
y = Dx ∈ R

I (as discussed in Ref 74 for the vector
case and references therein), in which a subset of the

© 2013 John Wiley & Sons, Ltd.
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(a) 2D signal kronecker sparse modelling

(b) KRON-OMP ALGORITHM BASED SPARSITY RECOVERY

(sparse core
matrix)

(2D signal)
(mode-1 sensing

matrix)
(mode-2 sensing

matrix)

=

(compresed measurement)

Absolute correlation between the residual and components in 
Kron-OMP iterations (

(noise)

(14,20) detected (1,1) detected (1,2) detected (25,25) detected (10,15) detected

(10,20) detected (5,3) detected (6,4) detected (20,20) detected

(mode-1 dictionary)(2D signal) (mode-2 dictionary)

)

FIGURE 3 | Illustration of a two-dimensional (2D) signal having a Kronecker sparse representation and its recovery by the Kron-OMP algorithm.
In (a), a 32 × 32 patch image is modeled as a linear combination of only K = 9 atoms (out of 1024) of the separable discrete cosine transform (DCT)
basis, i.e. Y = D1XDT

2 + E with ||X||0 = 9. Nonzero coefficients and errors are generated by using a Gaussian distribution with standard deviation
σ = 1 and σ = 0.01, respectively. Compressive measurements are taken by multiplying each mode by a random (Gaussian) sensing matrices, i.e.
Z = �1Y�T

2 with �1,2 ∈ R
16 × 32 (sampling ratio = 25%). In (b), the successive correlations of the residual with the Kronecker basis B2 ⊗ B1 are

shown for each iteration of the Kron-OMP algorithm. The sparsity pattern is correctly recovered after exactly K = 9 iterations.

sparse solutions x ∈ R
I are allowed and others are

discarded. For example, it is known that piecewise
smooth signals and images tend to live on a rooted,
connected ‘tree structure’.75 Moreover, usually large

coefficients are clustered together into blocks in the
1D vector x ∈ R

I
.
76,77

For the case of tensors having a Kronecker
sparse representation, i.e. Y = X ×1 D1 ×2 D2 ×3
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D3 ∈ R
I1×I2×I3 (X ∈ R

I1×I2×I3 , Dn ∈ R
In×In) a simple

and natural sparsity structure is to assume that
most significant coefficients are concentrated on
a sub-tensor of X.

65 More specifically, ‘tensor
block-sparsity’ assumes that xi1i2i3 = 0 if (i1, i2, i3) /∈
(I1, I2, I3) where In (n = 1, 2, 3) are subsets of indices
in each mode determining sub-tensor. Figure 2(c)
illustrates the concepts of unstructured and block-
structured sparsity of core tensors.

When the ‘tensor block-sparsity’ assumption is
approximately valid, a super fast greedy algorithm,
namely the N-way block OMP (NBOMP algorithm),
can be used requiring substantially fewer iterations
than Kron-OMP (see comparison in the following
section). In Figure 4, the NBOMP algorithm is
illustrated through an example. A 32 × 32 patch
having a block sparse representation with K = 9
atoms contained in a 3 × 3 block is recovered from
compressive measurements taken in the same way as
in the example of Figure 3. It is highlighted that
NBOMP recovers the correct sparse pattern after
exactly 3 iterations instead of 9 iterations that would
be required the OMP (unstructured) algorithm.

Algorithm 4: NBOMP Algorithm65

Require: Compressed signal Z ∈
R

M1×···×MN, normalized matrices Bn ∈
R

Mn×In (n = 1,2,,N) and threshold ε

Ensure: set of non-zero coeffi-
cients within a subtensor of size
S1 × S2 × · · · SN (block-sparse represen-
tation)

1: R = Z; initial tensor residual
2: In = [] , n = 1,2, . . . , N; initial set

of indices in each mode
3: k = 1;
4: while ||R||F > ε do

5:
(
i(

k)
1 , i(

k)
2 , . . . , i(

k)
N

)
= arg maxi1i2 ... iN |R ×N

B1 (:, i1)T ×2 · · · ×1 BN (:, iN)T |; select
max. entry of correlation tensor

6: In = In ∪ i(
k)

n , n = 1,2, . . . , N;
increase subtensor support

7: Ẑ = G ×1 B1 (:, I1) ×2 · · · ×N BN (:, IN);
G ∈ R

R1×R2···×RN is such that

||Ẑ − Z||F is minimized (see
details in Ref 65)

8: R = Z − Ẑ; residual update
9: k = k + 1;

10: end while
11: –I1, I2, . . . , IN˝ and G ∈ R

R1×R2···×RN;

MULTIDIMENSIONAL CS
ALGORITHMS COMPARISON

In this section we demonstrate the advantage of
using the Tucker model based tensor representa-
tions, i.e. by using Kronecker bases, and block
sparsity compared to the case of using classi-
cal vectorized CS algorithms for tensor data sets
regarding memory usage, complexity, and quality of
reconstructions.

Memory Usage
In Figure 5(a) the memory requirements to store the
resulting explicit matrix B for 1D, 2D, and 3D signals
(tensors) for the case of having a typical Mn = In/4 are
shown. Note that, with 16 GB of available RAM
memory, the dictionary for a 2D signal with a
size of only 420 × 420 can be stored and for the
3D case it corresponds to a tensor with size 70
× 70 × 70.

Computational Cost
A distinctive characteristic of OMP algorithm is that
it requires a number of iterations equal to the sparsity
K of the signal to converge to the desire solution,
as one coefficient is detected per iteration. On the
other hand, BP algorithms usually require much
more iterations because all coefficients are updated in
every iteration and the solution converges, sometimes
slowly, to coefficients close to zero for those which
should be exactly zero. For this reason, sometimes
OMP is preferred over BP specially when the number
of nonzero coefficients is small.38 Let us consider the
case of the recovery of N-dimensional tensors from the
measurements given by Z ∈ R

M×M···×M having a block
sparse representation Z = X ×1 B1 ×2 B2 · · · ×N BN

with factors matrices Bn ∈ R
M × I (M < I) and a

(S,S, . . . ,S) block-sparse core tensor X ∈ R
I×I···×I,

i.e. with nonzero coefficients concentrated in a
S × S × · · · S subtensor. The asymptotical complexities
of the vectorized OMP, Kronecker-OMP, and
NBOMP algorithms for large I, M, and small S
(S � M < I) are given in Table 1. The main reason for
the fast convergence of NBOMP is that it requires a
number of iterations bounded by S ≤ K ≤ NS, i.e linear
in S which is significantly lower than other OMP
algorithms that require SN iterations (polynomial
of order N). In order to illustrate the complexity
of classical BP, MP algorithms and their tensor
versions, which takes into account the Kronecker
structure (Kronecker-SPGL1 and Kronecker-OMP)
and the block-sparsity of signals (NBOMP), we
have simulated measurements Z ∈ R

M×M×M by using
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(a) 2D signal kronecker block-sparse modelling

(b) Block-sparsity recovery by using the nbomp algorithm

(2D signal)
(mode-1 sensing

matrix)
(mode-2 sensing

matrix)(compresed measurement)

Absolute correlation between the residual and components
in NBOMP iterations (

(noise)

(5,12) detected:

(2D signal) (mode-1 dictionary) (block-sparse) (mode-2 dictionary)

)

(15,20) detected:(2,1) detected:

FIGURE 4 | Illustration of a two-dimensional (2D) signal having a Kronecker block-sparse representation and their recovery by the NBOMP
algorithm. In (a), a 32 × 32 patch image is modeled as a linear combination of only K = 9 atoms (out of 1024) of the separable DCT basis , i.e.
Y = D1XDT

2 + E with the nonzero entries coefficients concentrated in a 3 × 3 block. Nonzero coefficients and errors are generated by using a
Gaussian distribution with standard deviation σ = 1 and σ = 0.01, respectively. Compressive measurements are taken by multiplying each mode by a
random (Gaussian) sensing matrices, i.e. Z = �1Y�T

2 with �1,2 ∈ R
16 × 32 (sampling ratio = 25%). In (b), the successive correlations of the residual

with the Kronecker basis B2 ⊗ B1 are shown for each iteration of the N-way block orthogonal matching pursuit (NBOMP) algorithm and detected
indices are incorporated into the block-support of the signal. The sparsity pattern is correctly recovered after exactly K = 3 iterations.

block-sparse signals with the 3D-DCT dictionary
and sampling them through Kronecker random
measurement matrices. In Figure 5(b) the computation
time versus the sampling ratio M3/I3 is shown where
the advantage of NBOMP over the rest of the methods
is clear.

Quality of Reconstructions
Another important characteristic of NBOMP is that
it is able to recover correctly block-sparse signals
with higher probability compared with the other
methods as Figure 5(c) shows. In fact, in Ref 65
it was demonstrated that a sufficient condition for

© 2013 John Wiley & Sons, Ltd.
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FIGURE 5 | (a) Memory requirements in order to storage a explicit dictionary for 1D, 2D, and 3D signals (tensors) for the case of having Mn = In/4
(N = 1, 2, 3). (b) Comparison of computation times versus sampling ratio M3/I3 for vectorized and tensor compressed sensing (CS) algorithms with
(32 × 32 × 32) signals having a (4 × 4 × 4)-block sparse representation with a Kronecker discrete cosine transform (DCT) dictionary. (c) Percentage
of correctly recovered tensors over a total of 100 simulations with (32 × 32 × 32) signals having a (4 × 4 × 4)-block sparse representation with a
Kronecker DCT dictionary.

NBOMP to recover correctly a block sparse signals is
given by

(SμT)N < 2 − (1 + (S − 1) μT)N , (17)

where μT = max{μ(B1), μ(B2),..., μ(BN)}. It is noted
that this performance guarantee is better than the
available result for OMP and BP algorithms which
is65,72,78

SN <
1
2

(
1 + 1

μT

)
. (18)

In Figure 5(c) the percentage of correctly
recovered tensors over a total of 100 simulations

with (32 × 32 × 32) signals having a (4 × 4 × 4)-block
sparse representation with a Kronecker DCT dictio-
nary is shown where the advantage of NBOMP over
the rest of the methods is clear.

ON THE PROPER CHOICE
OF A DICTIONARY

An important task in the field of CS is to choose
a proper dictionary D on which signals have as
sparse as possible representations and, at the same
time, it is incoherent with respect of the sampling
scheme given by the matrix �. To choose a proper
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TABLE 1 Complexity of OMP Algorithms Applied to an
N-Dimensional Tensor Z ∈ R

I×I×I···×I with Factor Matrices Bn ∈ R
I × M

and the Block Sparsity Parameter S (S � I < M)

Vectorized-OMP Kronecker-OMP NBOMP

Asymptotical cost
per iteration

(IM)N I(M)N I(M)N

Number of
iteration

SN SN ≤ NS

Total cost (SIM)N I(SM)N INS(M)N

dictionary we may rely on some existing specialized
bases or we can train a dictionary based on a large
set of signal examples which is known as ‘dictionary
learning’.34

Mathematical Model-Based Dictionaries
The Fourier dictionary allows to describe a signal in
terms of its global frequency content. This is efficient
for uniformly smooth signals but signal discontinuities
generate large coefficients over all frequencies. A
close related dictionary is the DCT which has found
many applications in image processing during the
1980s and 1990s. For instance, former JPEG protocol
used the separable DCT (Kronecker dictionary) to
efficiently compress small patches, typically 8 × 8 size,
in 2D images. But, DCT still has the problem of
nonlocalization and cannot represent discontinuities
efficiently. Motivated by this problem, the Gabor
transform, also known as short time Fourier transform
(STFT) became more popular for representation
of real-world signals as it gives the optimal time
and frequency localization which is limited by
the celebrated uncertainty principle (Gabor limit).
This principle states that one cannot simultaneously
localize a signal in both the time domain and frequency
domain (Fourier transform).

Modern mathematical models for signal repre-
sentations are based on dictionaries whose atoms are
translated and dilated versions of a single elementary
waveform known as ‘wavelet’.1 WTs have revolution-
ized signal processing, and they have shown to provide
effective signal representations. Very fast algorithms
were developed on the basis of the idea of multi-
resolution which states that a signal can be represented
as a series of difference signals where each one cor-
respond to a different scale. WT was incorporated
into the JPEG2000 compression standard replacing
the former DCT dictionary. There are also extensions
of WT to higher number of dimensions that efficiently
represent (sparsely) piecewise smooth images such is
the case of ‘wedgelet’ introduced by Donoho in Ref
79 for 2D signals and ‘ridgelets’ proposed by Candes

et al. in Ref 80 for higher number of dimensions.
Other mathematical models for WT of 2D images
where developed by various authors as for example:
‘curvelets’,81 ‘contourlets’,82 ‘bandelets’,83 and others.

Dictionary Learning
A more recent approach to choose a dictionary for
sparse representations is to train it based on a large
set of T sample signals y(t) (t = 1, 2, . . . , T).33,84,85

This problem can be formulated as follows:

arg min
D,X

||DX − Y||F s.t. ||x(t)||0 ≤ K; (19)

where matrix X contains in its columns the vector
coefficients for the t-th signal sample, i.e. y(t) = Dx(t)

and Y = [y(1), y(2),..., y(T)]. This optimization problem
is combinatorial and highly non-convex and thus
existing algorithms search for local minima by
alternating the minimization with respect to D and
X. This setting was first proposed as the method of
optimal directions (MOD) in86 and the same problem
was also approached and solved by the k-means
singular value decomposition (KSVD) algorithm in
a much efficient way.33

KSVD has been successfully applied to model
small patches on images,33 but it turns out
computationally expensive as the size of the patches
becomes larger and its application to higher number
of dimensions (N ≥ 3) becomes prohibitive. To reduce
the computation complexity, it is necessary to use
some structure on dictionaries in order to alleviate
the dictionary learning task. For example, in Ref 87
the ‘double sparsity’ strategy was proposed where
the dictionary is assumed to have itself a sparse
representation on a basic dictionary, for example,
the separable DCT, and therefore the learning process
is reduced to identify the coefficients of the dictionary
representation requiring much less computational
load than learning the whole dictionary. With
‘double sparsity’, KSVD can be applied to the
processing of 3D patches (8 × 8 × 8) in a fast
way.87

Here we propose a simple algorithm that allows
us to adapt Kronecker dictionaries to a given set
of tensor data samples. Suppose that we have at
our disposal a set of T tensors Y(t) ∈ R

I1×I2···×IN

(t = 1, 2, . . . , T) so we would like to build a set of
matrices Dn ∈ R

In×In such that they provide good
sparse Tucker representations of the tensor data set.
Thus, the objective is to minimize the global error, i.e.

argmin
Dn,G(t)

(
T∑

t=1

||Y(t) − G(t) ×1 D1 · · · ×N DN||2F
)

s.t. ||G(t)||0 ≤ K, (20)
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for a predefined sparsity level K. We propose here
an alternate least squares method by updating one
factor matrix Dn at a time and considering the rest
of the variables fixed. It is noted that the global
error of Eq. 20 can be written in terms of the
concatenation of tensors in a particular mode-n as
follows:

T∑
t=1

||Y(t) − G(t) ×1 D1 · · · ×N DN||2F = (21)

||
[
Y(1)

(n) · · · Y(T)
(n)

]
−

[
D(n)G

(1)
(n)C(n) · · · D(n)G

(T)
(n) C(n)

]
||2F

(22)

= ||
[
Y(1)

(n) · · · Y(T)

(n)

]
− D(n)

[
G(1)

(n)C(n) · · · G(T)

(n) C(n)

]
||2F,

(23)

where C(n) = (DN ⊗ · · · Dn + 1Dn − 1 · · · ⊗ D1)T . Then
the least squares solution for matrix Dn is given by

Dn =
[
Y(1)

(n) · · · Y(T)
(n)

] [
G(1)

(n)C(n) · · · G(T)
(n) C(n)

]†
, (24)

with † being defined as the Moore-Penrose
pseudo-inverse computed as A† = AT(AAT)− 1. The
proposed Kronecker dictionary algorithm is shown in
Algorithm 5.

In order to illustrate the algorithm behavior
we have applied it to a set of 10, 000 (8 × 8)-
patches randomly selected from two different images:
‘Barbara’ and ‘Text’ shown in Figure 6(a). A sparsity
level of K = 6 was used and initial factor matrices
D1 and D2 were generated by using independent
Gaussian numbers. The obtained dictionaries are
shown together with the classical Kronecker DCT and
WT (Daubechies) dictionaries for a visual comparison.
In Figure 6(b), the evolution of the global error per
pixel, defined by

EG =

√√√√ T∑
t=1

||Y(t) − G(t) ×1 D1 · · · ×N DN||2F

Ns × 8 × 8
, (25)

is shown for both cases. Global errors per pixel for
the case of DCT and WT (Daubechies) dictionaries
are shown for reference. It is interesting to note
that, the WT is better (lower error) than DCT for
the case of ‘Text’ while for the case of ‘Barbara’
DCT is better than WT. It is highlighted that
the obtained dictionaries improve considerably the
global errors capturing common structures of the
datasets.

Algorithm 5: Kronecker Dictionary
Learning

Require: Set of T tensors
Y(1), Y(2), . . . , Y(T), sparsity level K and
threshold ε

Ensure: matrices Dn (n = 1, 2, . . ., N)
1: Initialize factor matrices Dn ∈

RI1×···IN (n = 1, 2, . . ., N) randomly;

2: e =
T∑

t=1
||Y(t) − G(t) ×1 D1 · · · ×N DN||2F;

Compute global squared error
3: k = 1, 	 =∞;
4: while 	 > ε do
5: for n = 1 to N do

6: Dn =
[
Y(1)

(n) · · · Y(T)
(n)

] [
G(1)

(n)C(n) · · · G(T)
(n) C(n)

]†
;

Update matrix factor in mode-n
7: end for
8: Normalize matrices factors Dn

(n = 1, 2, . . ., N) (unit-norm columns)
9: Update sparse core tensors G(t) ∈

RI1×···IN (t = 1, 2, . . ., T) using
vectorized-OMP, Kronecker-
OMP or NBOMP algorithm

10: e∗ =
T∑

t=1
||Y(t) − G(t) ×1 D1 · · · ×N DN||2F;

Update global squared error
11: 	 = ||e - e*||; Compute error change
12: k = k + 1; e = e*;
13: end while
14: return Dn (n = 1, 2, . . ., N);

SELECTED APPLICATIONS

In this section, we present multiway CS models for
selected applications and illustrate through computer
simulations using real world multidimensional data
sets. All the results were performed using MATLAB
software on a Mac Book Pro notebook, equipped
with an Intel Core i7 processor (2.2 GHz) and
8 GB RAM. Selected MATLAB codes are provided
through our personal website (see Further Reading
section).

CS Magnetic Resonance Imaging (MRI)
MRI and computer tomographic (CT) technologies
have motivated the development of CS theory since
Candes et al. have demonstrated that structured
signals can be recovered from incomplete Fourier
samples.3 CS MRI has matured during last years
providing us today with a real application of CS
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(b) Evolution of global error per pixel for the kronecker dictionary learning algorithm
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FIGURE 6 | Analysis of the application of the Kronecker dictionary learning algorithm to (8 × 8)-patches taken from ‘Barbara’ and ‘Text’ images.
A total number of Ns = 10, 000 patches are selected randomly from each of these datasets. Kronecker dictionaries are obtained by applying
Algorithm 5 using Gaussian initial matrices D1 and D2. The global error per pixel is defined as EG. A sparsity level of K = 6 was used.

theory to an essential medical imaging tool allowing
to reduce the acquisition data process (see Ref 69 for
an excellent tutorial on this topic).

In MRI, the acquisition process consists on
taking samples in the k-space, which is essentially
the 3D Fourier space (complex domain).69 In classical

MRI, the k-space sampling pattern is designed to
meet the Nyquist criterion, which determines the
resolution of the image. In this case, the reconstruction
simply consists on the application of the inverse
Fourier transform of the measurements which is called
as the minimum energy (ME) reconstruction.3 The
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acquisition in 3D is usually performed by collecting
samples of different 2D slices. This multi-slice
acquisition usually takes considerable time, making
patients to be uncomfortable and increasing the cost
of health care. The idea of CS MRI is to considerably
reduce the amount of samples required in the 2D
slices of the k-space in order to decrease the scan
time without losing quality of the image. There has
been great advances in signal processing techniques
applied to 3D MRI reconstructions by developing
sophisticated trajectories in the Fourier domain (k-
space) and taking into account physical constraints
of the MRI acquisition system, see for example Refs
88–92. It is worth to mention that another close
related application of CS is dynamic MRI, where
the tensor data set consists of a sequence of 2D
slices acquired at different times. In the latter case
the reduction of k-space measurements is mandatory
in order to increase time resolution.93–95 These
techniques are usually computationally expensive and
their application to large data sets are sometimes
prohibitive. Here we show that CS MRI with multi-
slice scanning perfectly fits the Kronecker sensing
scheme allowing us to apply fast algorithms that
exploits the Kronecker structure.

Here, we assume that the 3D image Y ∈
R

I1×I2×I3 can be approximated by a sparse Tucker
representation using, for example, the WT Daubechies
dictionaries Dn (n = 1,, 2, 3) or any other transform
that efficiently sparsifies the data set (Eq. 11). Then
the MRI device will take measurements in the k-space
given by the 3D-Fourier transform (W ∈ C

I1×I2×I3):

W = Y ×1 T1 ×2 T2 ×3 T3, (26)

where Tn ∈ C
In×In (n = 1, 2, 3) are the matrices

associated to the Fourier transform (see Figure 7(a)).
In the MRI multi-slice mode the samples are taken by
selecting a unique 2D pattern for every slice. More
specifically, the sampling process will correspond to
the following:

Z = W ×1 H1 ×2 H2 ×3 H3, (27)

where H1 ∈ R
M1×I1 and H2 ∈ R

M2×I2 are subsampling
matrices obtained by keeping selected rows of the
identity matrix and H3 is just the identity matrix.
Putting Eqs 11, 26, and 27 together we obtain:

Z = X ×1 �1 ×2 �2 ×3 �3, (28)

with �n = HnTnDn.
The objective of CS MRI is to compute the sparse

core tensor X compatible with the measurements Z
and this can be performed efficiently by using a BP or
MP algorithm that exploits the Kronecker structure.

In Figure 7(b) we show the results of recovering
a real 256 × 256 × 64 MRI brain image. In order to
simulate the k-space measurements we first compute
the 3D Fourier transform according to Eq. 26. Using
H3 equal to the identity matrix implies that entire
mode-3 fibers are selected in the k-space and their
positions are determined by the selected indices in the
modes 1 and 2. In this example, we have selected the
indices in order to cover a block in the central part
(low frequency content) and have selected the rest of
the indices randomly as illustrated in Figure 7(a). By
applying the 3D tensor reconstruction based on the
Kronecker-BP (SPGL1 algorithm), with a sampling
ratio (M1M2M3)/(I1I2I3 = 70% (M1 = M2 = 214 and
M3 = 64), we obtained a PSNR = 42,7 dB (Figure
7(b)—4th column).

It is important to highlight that most of recent
methods for 3D CS are based on the idea of processing
of 2D slices one by one using classical CS algorithms
as for example the technique presented in Ref 69.
In Figure 7(b)—3rd column, we present the results
of applying a slice by slice reconstruction using
the 2D Kronecker-BP (SPGL1 algorithm) to every
subsampled frontal slice of the k-space with a sampling
ratio of 70%. The obtained reconstruction has a
PSNR = 40.8 dB which is lower than the case of using
a full 3D Kronecker-BP because the latter takes into
account the structure of the signal in mode-3 too. For
reference, the ME reconstruction is also shown, which
consists of applying the inverse 3D Fourier transform
of the k-space with the unavailable samples set to
zero, giving a PSNR = 37.5 dB (see Figure 7(b)—2nd
column). It is highlighted that the CS approach allows
us to avoid the aliasing effect that appears when the
classical Fourier reconstruction (ME) is applied with
a sampling scheme that violates the Nyquist principle.

CS Hyper-Spectral Imaging
A direct application of CS theory is the development of
new image acquisition devices such that, by exploiting
the compressibility property of signals, they can
considerably reduce the number of required samples
allowing a cheaper and faster imaging technique called
compressive sampling imaging (CSI). Real application
examples are the single-pixel cameras developed in
Refs 4 and 5, where a digital micro mirror array device
(DMD) is used whose orientations are modulated
randomly obeying to the Walsh-Hadamard or the
Noiselet patterns.96 Other CSI proposed devices are
the one-shot with random phase mask camera,6 the
random lens technique,7 the linear sensors based
method,97 and the coded aperture imaging.8 These
imaging techniques allow one to implement the
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(64 x 64)

(256 x 256)

(256 x 256)

(256 x 256 x 64)

(a) Kronecker sampling of a 3D tensor: indices  are randomly selected in mode-1
and mode-2 of the k-space (Fourier domain)

k-space (Fourier domain)
(256 x 256 x 64)

Subsampled
k-space

256

256

64

subsampling

(b) Recovery of a 3D MRI brain image from the subsampled k-space (sampling ratio = 70%). 
3D tensors (top), (100 x 100)-zoom of slice 44 (middle) and absolute error (bottom) are shown.

Original
(256 x 256 x 64)

Minimum energy
reconstruction
PSNR = 37.5dB 

Slice by slice 
reconstruction

(2D kronecker-BP)
PSNR = 40.8 dB 

Tensor reconstruction
(3D kronecker-BP)

PSNR = 42.7 dB 

Absolute errors

FIGURE 7 | (a) Illustration of Kronecker-compressed sensing (CS) applied to a three-dimensional (3D) magnetic resonance image (MRI). (b)
Reconstructions using the full 3D Kronecker-basis pursuit (BP) algorithm (PSNR = 42.7 dB), the slice by slice 2D Kronecker-BP algorithm
(PSNR = 40.8 dB) and the minimum energy method (PSNR = 37.5 dB) using compressive measurements with a sampling ratios of
(M1M2M3)/(I1I2I3) = 70% and assuming sparse representations based on the separable 3D Daubechies wavelet transform (WT) basis.

hardware that is capable to perform projections of
the incident light field (corresponding to the desire
image) against a class of sensing vectors.

However, the problem of CSI is that the random
measurements as well as the reconstruction methods
become impractical because of the large amount of
data when medium to large images are considered.
To alleviate this problem, the Kronecker structure

of the sensing operators and dictionaries could
help us significantly. Separable operators, i.e. with
Kronecker structure, arise naturally in many optical
implementations. In Ref 43 the authors proposed a
practical CS imaging based on separable imaging
operators and, in Ref 73 a CMOS-based hardware was
proposed. In Refs 72 and 78, theoretical guarantees for
CS with Kronecker structured matrices were provided,
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and optimized greedy algorithms were developed in
Refs 64 and 65 taking into account the Kronecker
structure and block-sparsity.

A specific application of CS using the Kronecker
structure is hyper-spectral compressive imaging (HCI)
which consists of the acquisition of 2D images at
several spectral bands providing a 3D signal where
each slice corresponds to a different channel.72 Here,
a 2D-separable operator is applied to the hyper-
spectral light field which means that each spectral
band’s image is multiplexed by the same sensing
operator simultaneously. The resulting multilinear
measurement Z ∈ R

M1×M2×M3 of the hyper-spectral
data-cube Y ∈ R

I1×I2×I3 is given by Eq. 14, where
matrices �1 ∈ R

M1×I1 and �2 ∈ R
M2×I2 determine the

separable sensing operator applied to each 2D slice
and matrix �3 is the identity matrix (I3 × I3).

When dealing with large data sets in many
dimensions (N ≥ 2), OMP and SPGL1 (BP) algorithms
become prohibitively expensive or intractable and a
super computer must be used. However, if the data set
can be represented by block-sparse representations
then the reconstruction can be efficiently solved
by applying the N-BOMP algorithm.64,65 Here
we show an example of hyper-spectral image
(1024 × 1024 × 32) corresponding to Scene 4 in the
Foster & Nascimento & Amano natural scenes
databasec,98 No preprocessing steps were applied
to this data set. This hyper-spectral image contains
scene reflectances measured at 32 different frequency
channels acquired by a low-noise Peltier-cooled
digital camera in the wavelength range of 400 − 720
nm (see details in Ref 98). For each channel we
apply a separable random sensing matrix given
by �× � where � ∈ R

M × 1024 (M < 1024) is a
Gaussian random matrix. We also assume that the
data set has a multiway block-sparse representation
using the separable Daubechies WT basis given
by W3 ⊗ W2 ⊗ W1, with W1 = W2 ∈ R

1024 × 1024 and
W3 ∈ R

32 × 32 (see Figure 8(a)). In Figure 8(b) the
results for sampling ratios 33% and 50% are shown.
Quantitatively, the reconstructions perform very well
with PSNR = 39.44 dB (33%) and PSNR = 42.47 dB
(50%) and they can be qualitatively verified by visual
inspection of the images.

Multidimensional Inpainting
A general problem found in many practical signal
processing applications is how to estimate missing
samples in multidimensional data sets. This problem
was extensively studied for 2D signals (images), in
such case it is commonly referred as ‘inpainting’
or ‘matrix completion’. In the recent years there

have been many new approaches to this problem
by exploiting the theory of CS since sparsity
representations can be used as prior information for
missing pixels inference.12–16 Although there are many
available algorithms for the 2D case, there are only
few very recent works about ‘tensor completion’. For
example, in Refs 61 and 62 the approach of convex
optimization proposed by Candes et al.16 for matrix
completion was generalized to tensors. This method
relies on the assumption that the matrix (tensor) to
recover is low rank so the strategy consists on the
minimization of the nuclear normd constrained to the
available measurements. However, the computational
complexity of these methods is high and its application
to large-scale tensors is limited.

Missing data problems using tensor decompo-
sitions were already approached in other kind of
applications too. For instance, in Ref 99 by assum-
ing a multilinear structure given by the CPD model,
an algorithm was proposed for optimization of the
CPD model parameters allowing one to interpolate
the missing values. The authors have applied this
algorithm to an EEG (electroencephalogram) applica-
tion, where missing data is frequently encountered,
for example, owing to disconnections of electrodes.
Recently, the same idea was extended and applied
to the problem of estimate missing values in medical
questionnaires100,101 and missing data imputation in
road traffic networks.102 In Ref 103 Tan et al. have
proposed a Tucker model-based method for miss-
ing traffic data completion where the Tucker factors
and the core tensor are optimized to fit the available
information.

In this section, we introduce a novel tensor
completion method based on the Tucker model
specially designed for multidimensional images where
Kronecker dictionaries are already known or can be
learned to provide good sparse representation of small
overlapped tensor patches. Thus, for each tensor patch
we solve a CS problem where the measurements are
the available data samples. The Kronecker structure
of the dictionary combined with a greedy technique
similar to OMP allows us to successfully recover the
missing entries achieving to very good results, better or
similar to the state-of-the-art algorithms. This simple
technique is similar to the inpainting and denoising
technique described by Elad in Ref 12, chapter 15.3,
with the main difference that here we consider the
Kronecker structure explicitly which allows us to
extend the method to larger image patches (32 × 32)
and to the tensor case too (3D signals).

We assume that only a set of L entries of
a tensor Y ∈ R

I1×I2×I3 are available and we denote
by Y(t) ∈ R

I1×I2×I3 (t = 1, 2,..., T) a set of overlapped
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Original (1024 x 1024 x 32)
RGB display

Reconstruction (RGB display)
sampling ratio = 33%

PSNR = 39.44dB)

Reconstruction (RGB display)
sampling ratio = 50%

PSNR = 42.47dB

(a) Hyperspectral CS imaging model with a kronecker dictionary and block-sparsity)

CS measurements

Multidimensional signal Block-sparse tensor

(b) Hyperspectral CS imaging simulation results

(150 x 150) Zoom(150 x 150) Zoom (150 x 150) Zoom

FIGURE 8 | Hyper-spectral compressed sensing (CS) imaging example. Block-sparsity is assumed on a separable (Kronecker) orthogonal basis
given by the Daubechies wavelet transform (WT). A random (Gaussian) separable two-dimensional (2D) operator is used for sensing every slice of the
hyper-spectral cube (1024 × 1024 × 32).The reconstruction is obtained by applying the N-way block orthogonal matching pursuit (NBOMP) algorithm
on the three-dimensional 3D compressive signal Z.

tensor patches of sizes I1 × I2 × I3, typically with
I1 = I2 = I3 = 8, 16 or 32, that cover the whole
original tensor Y (see Figure 9(a)).

In order to simplify the notation here we avoid
the explicit reference to the current patch index, i.e. for
each tensor patch P ≡ Y(t) only a set of Lt entries are
available whose indices are listed as

(
s(

l)
1 , s(

l)
2 , s(

l)
3

)
,

with l = 1, 2,..., Lt. If we arrange the available entries
in a vector z ∈ R

Lt it can be obtained by the following
operation:

z =
(
ST

3 � ST
2 � ST

1

)T
p, (29)

where ‘�’ stands for the Khatri–Rao product, z ∈
R

I1×I2×I3 is the vectorized version of the t-th tensor
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Original (512 x 512) image

(150 x 150) Zoom

Available pixels (20%)

(150 x 150) Zoom

Reconstruction
(PSNR = 27.66dB)

(150 x 150) Zoom

Original tensor
(L entries are known)

Tensor patch
(Lt entries are known)

Vectorized
tensor patch

Vector containing
known entries of the patch

= (              )T

Matrix with Khatri-Rao 
structure Sparse vector

(a) Illustration of tensor completion formulated as CS problems with Khatri-Rao
structure applied to every tensor-patch

(b) Results of applying our tensor completion algorithm
to a 2D image using the DCT dictionary.

FIGURE 9 | (a) Illustration of the tensor completion algorithm: the original tensor is divided in a set of overlapped tensor patches Y(t). For every
tensor patch P, its available entries (blue dots) are arranged in a vector z ∈ R

Lt which is shown to verify a set of linear equations with Khatri–Rao
structure and a sparsity constraint. (b) Results of applying the tensor completion algorithm with Kronecker dictionary [orthogonal discrete cosine
transform (DCT)] to 32 × 32 patches of ‘Barbara’ data set (512 × 512). A PSNR = 27.66 dB is obtained which is comparable to the state-of-the-arts
methods. For example, in Ref 15 it was reported a PSNR=27.4 dB for the same data set and the same sampling ratio, and in Ref 23 the authors have
reported a PSNR=27.65 dB, also for the same conditions.
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patch and the ‘selection matrices’ Sn ∈ R
Lt×In are

defined such that their l-th rows contain all zeros
except at entry s(

l)
n which contains a 1, i.e.

Sn
(
l, m

) =
{

1, if m = s(
l)

n

0, elsewhere
(30)

for l = 1, 2,..., Lt and m = 1, 2,..., In.
Equivalently, we can arrange the nonselected

entries in a vector z∗ ∈ R
L∗

t (L∗
t = I1I2I3 − Lt) as

follows:

z∗ =
(
S∗T

3 � S∗T

2 � S∗T

1

)T
p, (31)

where the matrices S∗
n ∈ R

L∗
t ×In are the ‘complement

selection matrices’ which allow us to extract the
nonselected entries and p ∈ R

I1I2I3 is the vectorized
version of tensor P.

By assuming that every tensor patch has a
sparse representation on a Kronecker basis, i.e.
p = (D3 ⊗ D2 ⊗ D1)x with ||x||0 ≤ K (K << I1I2I3)
and by using the following basic linear algebra result
(A ⊗ C)(B � D) = AB � CD into Eq. 29, we arrive at:

z =
(
CT

3 � CT
2 � CT

1

)T
x, with ||x||0 ≤ K, (32)

where Cn = SnDn ∈ R
Lt×In . Thus the objective is to

find the sparsest vector x ∈ R
I1I2I3 that is compatible

with the available samples (see Figure 9(a)). It is
interesting to note that Eq. 32 is similar to Eq.
16 but with a Khatri–Rao structure instead of the
Kronecker one and, therefore, the OMP algorithm
can be implemented in an efficient way avoiding to
work with large matrices.

Once the vectors of coefficients x’s are obtained
for every tensor patch (t = 1, 2,..., T) we are able
to compute a set of estimations of the missing
entries by using their sparse representation through
Eq. 31. When using overlapped tensor patches we
get several estimates for every single missing entry,
i.e. one estimate corresponding to each tensor-patch
containing that entry. Thus we may ask ourselves
which estimates should be used as final (optimal)
approximation. In Ref 12, it was shown that, for
the 2D inpainting problem, the optimal estimate, in
the least squares sense, is given as the average of all
available estimates, and the same result remains valid
for a higher number of dimensions.

Here we present some examples of multidimen-
sional signal completion for 2D and 3D data sets. In
Figure 9(b), an example of the application of our algo-
rithm to the ‘Barbara’ (512 × 512) data set is shown.
In this example, a Kronecker dictionary based on the
complete DCT (orthogonal) was used for (32 × 32)

patches and selected pixels were randomly chosen.
We have obtained a PSNR = 27.66 dB for a sampling
ratio of 20% which is comparable to the state-of-the-
art methods, for instance, in Ref 15 it was reported
a PSNR = 27.4 dB for the same data set and the same
sampling ratio, and in Ref 23 the authors reported
a PSNR = 27.65 dB using a method that operates on
12 × 12 patches for this data set. It is noted that in Ref
15 the authors used more sophisticated method based
on a sparse representation that uses a combination
of ‘curvelets’ and DCT in order to efficiently capture
edges and smooth regions, respectively, applied to
small 8 × 8 patches probably because larger patches
would make the method very time consuming.

In a second experiment, we have applied the
tensor completion technique to the 3D MRI brain data
(256 × 256 × 100) using 8 × 8 × 8 tensor patches. In
Figure 10, the results of applying this technique with
Kronecker dictionary (orthogonal DCT) are shown
for randomly chosen missing entries. The obtained
quality of reconstructions were PSNR = 39 dB and
PSNR = 36 dB for sampling ratios of 50% and 25%,
respectively.

Other Applications
There are some other signal processing applications
that involve multidimensional data sets that can
be approached by applying the methods and tools
discussed in this paper. For instance, methods based on
sparse representation of images were already proposed
in order to solve the problem of ‘super-resolution’ or
‘zooming’.15,17–19,104,105 Super-resolution intends to
obtain a high-resolved output image from several or
a single low-resolution image. These methods can be
potentially benefited from adopting the Kronecker
structure of dictionaries allowing one to alleviate
the computational burden and making possible the
processing of larger patches in data sets. In fact, it is
interesting to point out that, in this case, the sensing
operator is related to the convolution kernel which
can be modeled by a separable kernel, i.e. obeying
the Kronecker structure. Other image processing
applications related to the methods here presented
are ‘deblurring’ where the objective is to estimate
an original signal from a filtered version of it,20–23

‘denoising’ of multidimensional signals,9–11 etc.
There are also other fields of research that could

be benefit from the methods discussed in this paper,
for example, by learning the appropriate Kronecker
dictionaries, our tensor completion algorithm could
be applied to missing data problems for EEG
recordings,99 to estimate missing values in medical
questionnaires,100,101 or to missing data imputation
in road traffic networks102
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Slice 15 Slice 30

Slice 45 Slice 60

Slice 15 Slice 30

Slice 45 Slice 60

Slice 15 Slice 30

Slice 45 Slice 60

Slice 15 Slice 30

Slice 45 Slice 60

Slice 15 Slice 30

Slice 45 Slice 60

FIGURE 10 | Results of applying the tensor completion algorithm with Kronecker dictionary (orthogonal DCT) to 8 × 8 × 8 tensor patches of the
three-dimensional (3D) brain data set (256 × 256 × 100).

CONCLUSION

In this paper, recent developments on sparse
representation and compressed sensed applications
for multidimensional signals have been reviewed.
An emphasis was focused on recent trends and
techniques that allow to exploit the structure
of the multidimensional sensing operator as well

of the signal representation through the Tucker
decomposition model whose intrinsic Kronecker
structure allows one to obtain a huge improvement in
the algorithm efficiency (speed and saving of memory).
We illustrated, through numerical simulations using
real-world multidimensional data sets, how these
approaches can be successfully applied to solve
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multidimensional signal processing problems as the
case of the reconstruction of MRI images and hyper-
spectral images from compressive measurements.
Also, a new tensor completion technique that exploits
the Kronecker structure of dictionaries and the
Khatri–Rao structure of the sensing operator was
introduced and applied to real 2D and 3D data sets
achieving excellent results comparable with the state-
of-the-arts techniques. We highlight that exploiting
structure in data sets is a key factor for the
development of new CS-based technology and the
Kronecker structure is a natural assumption for the
case of multidimensional signals.

This paper provides a solid ground to develop
new signal processing algorithms and models for
multidimensional CS. Future directions of research
on the topic includes, for example, the development
of optimized learning techniques for structured
dictionary, development and evaluation of CS
algorithms for multidimensional signals with over-
complete dictionaries, exploiting Kronecker and

Khatri–Rao structures in the Cosparse Analysis
model,106 and many others.

NOTES
aThe MRI brain data set is included in the ‘University
of North Carolina Volume Rendering Test Data
Set’ archive which is available in public domain
at http://www-graphics.stanford.edu/data/voldata/. In
this data set, part of the skull was partially removed
(synthetically) in order to reveal the brain structure
(provided courtesy of Siemens Medical Systems, Inc.,
Iselin, NJ. Data edited (skull removed) by Dr. Julian
Rosenman, North Carolina Memorial Hospital).

bPeak signal-to noise ratio is defined as
PSNR

(
dB

) = 20 log 10
(
max

(
Y

)
/||Y − Y||F

)
).

cAvailable at http://personalpages.manchester.
ac.uk/staff/david.foster/.

d The nuclear norm of a matrix A ∈ R
I1×I2 is

defined as ||A||∗ = ∑min
(
I1 ,I2

)
n=1 σn where σ n are the

singular values of matrix A.
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FURTHER READING
A complete set of MATLAB codes is available at the author’s personal webpage http://web.fi.uba.ar/∼ccaiafa/Cesar/Tensor-
CS.html, which allows to reproduce the figures presented in this paper.
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