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1 Introduction

Given a definition of change and a dataset about a spatiotemporal (ST) phenomenon, ST
change footprint pattern discovery is the process of identifying the location and/or time
of such changes in the data. Discovering footprint patterns of change from large datasets
is an increasingly important activity in application domains ranging from climate science
to public health. Data science (e.g., data mining, machine learning, statistics) researchers
have developed numerous techniques to facilitate the discovery of such patterns. Address-
ing domain specific challenges, they have often worked in distinct research settings, most
notably time series analysis, image analysis, and spatial statistics. An interdisciplinary re-
view classifying and summarizing different change footprint patterns and techniques may
provide domain users valuable guidance for tool selection to solve their problems. More
importantly, a survey analyzing the current research accomplishments also helps data sci-
entists identify future research needs for data science.

Applications: Change footprint pattern discovery is an important task in a number
of applications. We list a few major applications and their respective domain questions
that ST change pattern discovery may help answer.

e Statistical quality control: Change pattern discovery techniques have long been ap-
plied in industrial process monitoring. The main goal is to detect system faults [1].
A typical question is: at what time did the signal change?

e Remote sensing: Remote sensing techniques provide images of an area at different
times (e.g., before and after a flood). By comparing two or more snapshots of the
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study area, one can answer a question like “which road or bridge has been dam-
aged?” or “which area has been flooded.” This task is referred to as “change detec-
tion.” [2, 3, 4] Decision makers can quickly assess the loss in a disaster and respond
correspondingly.

e Public Health: An important mission of public health is to monitor epidemic disease
outbreak. Specifically, it aims to find regions where the risk of infection increases [5].
This can also be viewed as a change pattern discovery problem.

e Public Safety: Similar to public health, public safety applications are interested in
finding the change pattern of crime risk. A region with an increase in number of
crime reports may indicate the need of more policing attention [6].

e Ecology and Environmental science: Ecologists and environmental scientists are in-
terested in finding spatial change patterns of ecosystems, such as the boundaries
between habitats of different species or eco-zones [7], or the shrinking or expansion
of certain land types, such as the desertification process.

e Climate Science: Climate science is obviously interested in a number of change re-
lated questions. The biggest one is to verify and quantify global climate change.
Specifically, they may ask questions such as: when did the precipitation in the Sahel
region in Africa change from normal to very limited? Is the intensity, frequency, or
duration of extreme climate events (e.g., flood) changing? [§]

We reviewed survey papers in various disciplines and found they mostly focused on a
limited types of change footprint pattern. For example, the literature on time series change
detection [2, 9, 10, 11, 12] focuses on change(s) that occur at single time points. Remote
sensing and image change detection survey papers [13, 14, 15] mainly focus on finding re-
gions (collections of pixels) of change between two imagery snapshots. A tutorial by Wong
and Neill [16] discusses the problem of “event detection” which aims to discover abnor-
mal behavior of data. The authors covered change points in time series, spatial clusters
(polygon footprint) and spatiotemporal clusters (ST volume footprint), but not changes
with other interesting footprints such as temporal intervals and spatial boundaries [17, 18].
Comprehensive reviews that compare techniques across disciplines are lacking.

Classifying ST change footprint patterns and techniques across disciplines is challeng-
ing. First of all, there is no unified definition of ST change. This makes it hard to compare
and contrast change discovery techniques across disciplines. Second, different research dis-
ciplines employ similar terminology to describe different phenomena. For example, the
term “abrupt change in time series analysis refers to a change in the statistical distribution
of data at a certain time point [9]. However, in spatial Wombling, it describes a significant
difference of value across boundaries separating different spatial areas [19]. This is referred
to as the synonym problem. Compounding the confusion, patterns exhibiting the same ST
footprint may be named differently. For example, the output of spatial Wombling, which



is a set of boundaries highlighting significant changes of value, has been called (zones of)
abrupt change [19],rapid change [20], etc, by different researchers. This is referred to as
the homonym problem. Finally, ST change patterns defy easy classification due to their
inherently complex nature. It is also hard to select the set of key features that best classi-
fies a particular pattern. Our Contributions: In this paper, we define an interdisciplinary
framework for ST change pattern discovery and make the following specific contributions.

e We propose a taxonomy that classifies spatiotemporal changes based on their ST
footprints.

e We review representative techniques in use today by data scientists for the discovery
of each change pattern.

e We analyze gaps where research is lacking in a ST change footprint pattern family,
and we suggest problems that merit more exploration by the data science community.

Change footprint Change footprint
discovery method pattern output

| |

ST Input Data ——>

Change Definition

A
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Figure 1: A flow chart showing ST change footprint pattern discovery process.

Scope: Tthis paperhis paper examines only two aspects of ST changes: where and when
a change occurs. Understanding the physical mechanism of changes (why) and modeling
of various change patterns from applications (how) are beyond the scope of this paper.
Also, this work focuses on the discovery of change footprint patterns from available data.
Prediction methods for future changes are not addressed here. Finally, this paper only
reviews representative techniques only in the context of change footprint pattern discovery.



It is not meant to provide a comprehensive survey of the large body of techniques in time
series analysis (e.g., spectral decomposition), image processing, and spatial.

Organization of the paper: Figure 1 shows the main components of a change foot-
print pattern discovery process: ST data from an application is the input of the problem.
A definition of a change pattern is given based on the underlying application. Finally,
a method (e.g., statistical, computational) that discovers the pattern from the data will
produce the ST footprints. The rest of the paper is organized according to this framework:
The “Data Input for Spatiotemporal Change Pattern Discovery” section surveys differ-
ent spatiotemporal data types and statistical data models for change pattern discovery.
The “Definitions of Spatiotemporal Change section presents four common definitions of
change pattern. We propose a taxonomy of ST change footprint patterns and classify ex-
isting change footprint pattern discovery techniques in the “A Taxonomy of Spatiotemporal
Change Footprint Patterns” section. In the “Future directions and research needs” section
we list a few patterns that we believe merit attention by researchers in future research.
Finally, we conclude the paper with future plans.

2 Data Input for Spatiotemporal Change Pattern Discovery

Data generated by various applications that are used for change footprint discovery include
temporal data, spatial data, and spatiotemporal data. Temporal data here refers to time
series. Spatial data can be categorized into two types, namely, spatial raster data, and
spatial vector data [21]. Spatiotemporal data include raster series, and spatiotemporal
vector data.

A time series is a sequence of data points, measured typically at successive time instants
spaced at uniform time intervals (e.g., second, day, year, etc). Many applications generate
time series. For example, the readings of a sensor that monitors the quality of products
form a time series. The yearly rainfall amounts in a spatial region is also a time series.
Figure 2 shows an example of a time series generated by climate science data. It represents
the annual precipitation anomaly (mean value removed from real value) from 1900 to 2010
in the Sahel region of Africa [22].

Spatial raster data represents the space as a finite grid structure (i.e., spatial frame-
work) where a number of functions representing application specific non-spatial features are
assigned to each grid. For example, the longitude-latitude system is a spatial framework;
the data representing the precipitation amount over the surface of the world is a typical
spatial raster dataset. A satellite image is also a typical spatial raster dataset. Figure 3
is an example of raster data. It represents the vegetation cover in Africa measured in nor-
malized difference vegetation index (NDVI) value where each pixel equals approximately
8km by 8km on the ground [23, 24, 25].

Relationships and interactions between different spatial raster fields are specified by field
operations [26]. Depending on their scale, operations may be local, focal, or zonal [27].
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Figure 2: An example of time series from climate science.
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Figure 3: A spatial raster dataset showing vegetation cover (in NDVI value) of Africa (best
viewed in color).



Local operations determine the output at a single location depending on attributes at
this location. For example, “find locations with a precipitation greater than 500mm is
a local operation. Focal operations determine their output based on attributes in an
assumed small neighborhood of an input location. For example, computing the gradient
of precipitation value over the worlds land surface is a focal operation. Zonal operations
usually employ aggregate operators of locations in a region. For example, determining the
average precipitation in Africa is a zonal operation.

Spatial vector data uses geometric shapes to represent spatial objects. These shapes
include points, line segments, polygons, as well as combinations of these shapes. For exam-
ple, cities in a map can be represented as points. Road segments are usually represented
as line segments. Counties, States, and countries are often modeled as polygons. Figure 7
shows an example of spatial vector data where each country in the world is represented by a
polygon object and the GDP growth in 2011 of each country is an associated attribute [28].

Legend
GDP growth in 2011
[]-0.1300 - -0.0934
1 -0.0934 - -0.0567
[ -0.0567 - -0.0201
[ -0.0201 - 0.0165
[ 0.0165 - 0.0531
I 0.0531 - 0.0898
I 0.0898 - 0.1264
I 0.1264 - 0.1630

Figure 4: A spatial vector dataset showing GDP growth in countries around the world in
2011 (best viewed in color).

Spatiotemporal data are associated with temporal information in addition to the spa-
tial data types. An ST raster series represents a spatial field at a number of successive
snapshots. For example, a sequence of satellite images showing the vegetation cover in
Africa taken every other week forms a spatial raster series dataset. From a temporal per-
spective, the data at each location/pixel of the raster field also forms a time series of the
same length [29]. Thus this type of dataset is also referred to as the spatial time series [30].

ST vector data are objects with both spatial and temporal information. For example,
the disease reports in the state of Minnesota in the past five years form a point-collection
sequence where the locations of the points may vary. The historical coverage of a birds



habitat also forms a vector series, where the habitat in each year can be represented as a
polygon.

Statistical Models of ST Data: Time series are traditionally modeled as inde-
pendent, identically distributed (i.i.d.) samples drawn from an underlying distribution.
For example, it is quite common to assume that the readings of a sensor follow a Gaus-
sian process9 where the deviation between each reading and a fixed mean value follows
a normal distribution. However, it is often the case that time-referenced attributes are
auto-correlated, meaning that the value at time ¢ is dependent on the value at time ¢ — 1.
More complicated models of time series have been applied to model temporal data, such
as the Markov chain, where the probability distribution of a value at time t depends only
on the value at ¢t — 1 [31].

Spatial data were viewed by traditional statistics as i.i.d. data samples from a dis-
tribution. In contrast, spatial statistics, a branch of statistics that studies the modeling
and analysis of spatial data, propose different models to honor the unique nature of spa-
tial data, i.e., spatial autocorrelation and spatial heterogeneity. First of all, spatial data is
highly self-correlated. This has been recognized as a fundamental observation in geography
and named as the first law of geography: “Everything is related to everything, but nearby
things are more related than distant things. [32] Spatial heterogeneity refers to the fact
that an underlying process varies from place to place.

As a result, three spatial statistical models have been developed to model spatial data,
namely, the geostatistical model, the lattice model, and the point process model [33]. The
geostatistical model deals with a continuous spatial surface with discrete sampled locations
(e.g., ground observational stations to record rainfall data). Tools such as Kriging are used
to interpolate un-sampled values. The lattice model (a.k.a. the areal model) deals with
continuous space partitioned into regular grids or irregular polygons (e.g., the counties in
Minnesota). Interactions between partitions are characterized by the spatial neighborhood
relationship (e.g., topological connectivity). Data models such as the spatial autoregressive
model (SAR) and Markov random field (MRF) can be applied on such datasets. Finally,
point process is used to model the distribution of spatial points in a spatial framework.
For example, crime locations in a city can be modeled as a point process. The distribution
of points may be completely random, clustered, or de-clustered.

3 Definitions of Spatiotemporal Change

Although the same term “change is used to name patterns in various applications, the
underlying phenomena may differ significantly. This section briefly summarizes four main
ways for defining a change in data. Since the modeling of change is not the focus of this
paper, our review of the definitions should not be considered comprehensive.
Specifically, change in data can be defined mainly in the following four different ways.
Change in Statistical Parameter: Data in some applications are assumed to be



random samples drawn from an underlying process. A change is thus defined as a shift in
the statistical distribution of the data. For example, in statistical quality control, sensor
readings are expected to follow a certain statistical distribution (e.g., Gaussian) [9]. If a
fault occurs, the mean or variance of data will change. This type of definition may make
different assumptions on the underlying data distribution. Definitions with parametric
models assume that the underlying distributions are of a certain kind (e.g., Gaussian
distribution) while definitions with non-parametric models do not. Figure 5(a) shows an
example of a “change of mean in a time series. As can be seen, the mean of the data before
and after the highlighted time points are significantly different.

Change in actual value: The second type of definition is based on the actual values of
the data. The definition of change is initially modeled (mathematically) in calculus, where
a difference between a data value and its neighborhoods in location or time is viewed as
a change. In a one-dimensional continuous function, the magnitude of change is usually
characterized by the derivative function, while on two-dimensional surfaces, a change is
usually characterized by the magnitude of the gradient. For a discrete function (e.g.,
time series), the change between two data points can be characterized by the slope of
the line connecting the two. For example, in spatial statistics, boundary analysis (a.k.a.
spatial Wombling) is done by finding the significant changes between neighboring locations.
Figure 5(b) a “change of value in a time series. The time period highlighted has a steep
slope, indicating it is a change.

Change in models fitted to data: A third type of definition focuses on the change in
the trend/behavior of the data. A number of function models are fitted to the data where a
change in one or more of the models is defined as an instance of change [34]. For example,
climate scientists studying the trend of global precipitation want to be able to detect a
turning point where the rainfall changes from increasing to decreasing. In such scenarios,
a time series can be fitted using a certain number of straight lines by minimizing the error
(e.g., least square error). Hence, a change in the data is defined as a discontinuity between
two consecutive linear functions. The models can also be non-linear (e.g., polynomial) [35].
Figure 5(c) illustrates a “change in linear models in a time series. The highlighted time
points represent “change” since they are the break points between different linear segments
fitted to the data.

Change in derived attributes: Some applications define change patterns indirectly.
First, they establish a classification or prediction model of the data. Then they run the
model and derive new attributes, such as predicted value or a categorical class label of
the data. For example, in time series change detection, a predictive model can be learnt
based on a training dataset. The future values are then predicted and compared with actual
values. A difference between the prediction and actual value is considered a change [36, 37].
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Figure 5: Three sets of results for one time series dataset using three different definitions
of change. (a) Statistical parameter change in a time series. (b) Value change in a time
series. (c) Change in model fitted on a time series.(best viewed in color).
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4 A Taxonomy of Spatiotemporal Change Footprint Pat-
terns

We are now ready to propose a taxonomy of the change footprint patterns from space-time
perspective. We also describe representative techniques used to discover these patterns.
Since the goal of this work is to identify broad gaps in the research, readers interested
in a more comprehensive discussion are invited to consult more specialized literature on
specific change patterns. Also, we restrict the discussion to the context of change footprint
pattern discovery. The larger realm of general techniques in time series analysis and image
processing (e.g., trend analysis, spectral decomposition) is not included here.

We begin by classifying change footprints along two dimensions: temporal and spatial.
Temporal footprints are of four types, namely, single snapshot (T1), set of snapshots (T2),
point in a long series (T3), and interval in a long series (T4). Single snapshot (T1) means
that the change is purely spatial without any temporal context. “Set of snapshots (T2)
indicates that the change is between two or more versions of the same spatial field, e.g.,
different satellite images of the same region. T3 refers to a single time instance in a long
series of data. T4 is a long time period in a long series of data.

Spatial footprints in our taxonomy are classified as raster-based or vector-based. Specif-
ically, raster footprints are further classified based on the scale of the pattern, namely, local,
focal, and zonal patterns. Vector-based patterns are further classified into four types, in-
cluding point(s), line(s), Polygon(s) and network footprint patterns. In each of the two
parts, we examine all the combinations of the four temporal footprints and the corre-
sponding spatial footprints. In addition, purely temporal patterns (e.g., change points in
a time series) are considered as having local spatial footprint and are discussed under the
raster-based change footprints only.

4.1 Taxonomy of Change Patterns with Raster-based Spatial Footprint

For raster spatial data, we classify the change footprints based on whether their scale is
local, focal or zonal (Table 1). A local change footprint (R1) involves only the attribute
at individual locations. A focal change footprint (R2) is between a location and a spatial
neighbourhood of it. Change patterns with a zonal footprint (R3) refer to the change that
occurs in a spatial region (collection of locations as a whole pattern).

As can be observed in Table 1, our taxonomy yields 11 types of change patterns. Among
these, we know that three groups have been well studied by the research community,
namely, purely spatial change patterns (R2T1, R3T1), time series change patterns (R1T3,
R1T4) and image (snapshot) change patterns (R1T2, R2T2, R3T2). In contrast, remaining
patterns have received little attention in the literature of change pattern discovery. We
first illustrate the known patterns and major discovery techniques and then discuss the
remaining ones in the future research needs sections.

Patterns with Purely Spatial Footprint
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Table 1: Classification of ST Raster Change Footprints with Examples of Typical Ques-
tions. Empty Cells indicate Patterns that Yet to be Studied in Depth

Temporal footprint

Time point (T1) | Between few | Points in Time | Intervals in Time
snapshots (T2) Series (T3) Series (T4)
Spatial Local R1T1 (N/A) Change  point | Change interval
footprint detection (e.g., | discovery on
CUSUM) R1T3 | time series R1T4
Focal Edge Detection | Remote sensing
(e.g., Lattice | image change
Wombling) detection (R1T2,
R2T1 R2T3, R3T2)
Zonal Interesting sub-

path  discovery
(e.g., ecotones)
R3T1

Focal Spatial Change (R2T1): A focal spatial change pattern describes a change that
occurs between a location and its spatial neighborhood. For example, given a contiguous
spatial field, a focal spatial change pattern may be defined as a collection of locations with
high gradient. This pattern can be used to characterize phenomena such as the boundaries
between different ecological zones where environmental attributes (e.g., gene frequency)
change sharply [7], or as disconnections of value between different soil types [38]. Previous
investigation of such patterns has given various names to it, including “spatial boundary,
“spatial barriers [39, 40], “spatial (zones) of abrupt change [41], “spatial rapid change [20],
etc. A common goal of such work is to find locations with “significant difference or “abrupt
change against its neighboring locations. By finding a collection of such locations, one may
draw a boundary or curve between different homogeneous regions. First addressed by
Womble [17], the spatial boundary analysis problem is also known as the spatial Wombling
problem. In ecology study, it is also referred to as “edge detection [42].

Spatial Wombling techniques for the discovery of focal spatial change footprint have
been developed. A simple approach is called lattice Wombling [7, 42]. Given a raster
spatial data field, the lattice Wombling algorithm evaluates all the grid intersections by
computing the change magnitude based on the values in the four surrounding cells. In a
regular gridded field, the magnitude can be computed as the mean gradient along the four
directions. Connecting grid intersections with the top k% will generate boundary linear
change footprint pattern. Figure 6 shows an example of a spatial raster field and two
collections of focal changes discovered by lattice Wombling.

Zonal Spatial Change (R3T1): A zonal spatial change pattern describes a spatial zone
in a raster field where a transition of data attributes occurs. This pattern may characterize
phenomena such as rapid environmental change across different ecological zones. For ex-
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Figure 6: An example of lattice Wombling results on a raster field (best viewed in color).

ample, the Sahel region in Africa is a transitional zone between the Sahara Desert and the
tropical savanna and grassland. Vegetation cover increases rapidly from north to south.
These areas are also referred to as ecotones [43]. Compared to the boundary footprint
formed by a collection of focal changes, a spatial zonal change footprint pattern has two-
dimensional footprint and exhibits more information about the spatial process within it.
This also distinguishes the zonal change footprint pattern from the boundary/line patterns
discovered by edge detection or cartography line generation [44].

Zhou et al. proposed an indirect way to approach this problem by discovering change
sub-paths along orthogonal (e.g., longitudinal and latitudinal) directions [45]. The problem
is converted to finding “interesting sub-paths in each spatial path. Given a spatial path,
an algebraic (non-monotonic) interest measure, and a Boolean test, the technique employs
a sub-path enumeration and pruning (SEP) approach to efficiently find all the dominant
interesting sub-paths. It enumerates and evaluates all the sub-paths in a top-down manner
with proper pruning. This computational framework allows the user to specify interest
measures to define the pattern. For example, a change sub-path can be modeled by a
slope or high linear regression coefficient. In the same work, the authors also proposed
an algebraic interest measure called a “sameness degree based on an aggregate function
of piecewise difference. Figure 7(a)shows the African vegetation cover dataset (a) and the
longitudinal change (north to south) sub-paths outline the footprint of the Sahel region
(marked in red), as shown in Figure 7(b).

Patterns with Purely Temporal Footprint
Time point change (R1T3): A time point change refers to a change occurring at a single
time point or in one unit time intervals in a time series. Time point change patterns

12
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Figure 7: An example of spatial zonal change footprint (best viewed in color). (a) Veg-
etation cover (in NDVI) in Africa, August, 1981. (b) Footprints of spatial zonal change
patterns with longitudinal changes in vegetation cover of Africa.

have been explored in various applications to find phenomenon such as the time instance
of system fault using sensor signal series, year of abrupt climate change in rainfall and
temperature time series, and time of land cover change in remote sensing satellite data
series at a location. As discussed previously, such changes can be defined as a shift in
statistical parameters (e.g., mean), a change in the model fitted to the data, or a change
in derived attributes (e.g., prediction results). In the literature of time series analysis,
this problem is also referred to as “change point detection”, “abrupt change detection”, or
simply “time series change detection”.

There is a large body of literature on techniques that identify time point change patterns
in time series [2, 46, 47, 48, 49, 50, 51]. Several survey papers have classified and reviewed
existing techniques on change point detection [9, 10, 11, 52, 53, 54, 55, 56, 57, 58, 59, 60]. We
introduce one of the major techniques, namely, the CUmulative SUM (CUSUM) Chart [61].
CUSUM is a sequential technique that assumes that observations are recorded at regular
intervals and estimates the point at which the change took place by detecting changes in a
parameter, 6, of the data distribution. Given a time series x1, x2, T, at time tq,to,t,, the
approach keeps a cumulative sum of a score S_i = Xis;at each time point. In an online
detection scheme, once the sum of the score S; exceeds a threshold h, a change can be
identified. In the scenario of offline detection, the change point can be identified when
the difference between current S; and the historical minimum S; is maximized. The score
s; can be defined by the mean, likelihood ratio or standard deviation of the data. For
example, the mean based score can be written as s; = (i) — po, where g is the normal
mean of the data. Figure 8 shows the output of the CUSUM with this setting on the Sahel
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rainfall index time series data, using an offline manner. The normal mean was estimated
using the mean of the entire dataset. As can be seen, the score reaches the maximum at
year 1967, marking 1967 as the change point identified by CUSUM. A number of other
techniques based on the CUSUM framework appear in the literature as well [62, 63].
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Figure 8: A time point change footprint pattern discovered by CUSUM.

Another major technique for change point detection is time series segmentation [64, 65,
66, 67]. For simplicity, we introduce linear segmentation methods. Linear Segmentation
algorithms take a time series as an input and return a piecewise linear representation of
the time series by approximating it with a number of straight lines. The problem may be
approached in several ways. The sliding window approach starts from the left-most point,
attempting to approximate points to the right with a longer segment. If the fitting error
exceeds a user specified threshold when adding a new data point to the current segment,
the current segment is finalized, and a new segment starts from the new point. This is done
repeatedly until the all the data points are examined. Figure 9 shows the output of a sliding
window approach, which finds 9 change points in a time series. The threshold for adding
a new point to the current approximate segment is set to “at most 5 degrees change in
slope of the segment”. Top-down and bottom-up are two other approaches for time series
segmentation. The top-down approach starts with the entire time series and iteratively
finds the best change point for the current segment [68, 69]. Bottom-up approaches start
with the unit segments and iteratively merge two segments with minimum cost [70].

Time interval change (R1T/): A time interval change pattern is a change in a time
series that may last for a number of consecutive time points. In contrast to the abrupt
change characterized by the point change pattern, the change interval pattern outlines the
duration of rapid or gradual change processes. The time interval change pattern is mostly

14
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Figure 9: Example of time point change identified by time series segmentation.

addressed in a specific domain context, such as climate change and land cover change. For
example, the Sahel region in Africa experienced a steady yet fast decrease in rainfall in
the late 1960s [71, 72]. Given a time series of annual precipitation in the Sahel region, this
decrease over time can be characterized as a change interval starting from 1968 to 1973
where the precipitation dropped 12% in five years.21 This pattern has also been called
“abrupt change [19] or an “interval/temporal sub-path of abrupt change [45].

The interesting sub-path discovery technique introduced previously [45] can also be
applied on temporal data to find temporal change interval footprints. For example, given
a smoothed Sahel rainfall index time series, a “sameness degree interest measure can be
applied to a few major intervals with precipitation increase or decrease. Figure 10 shows
the result of this approach on the smoothed Sahel rainfall index dataset, where a number
of time intervals with persistently rapid change are identified.

Patterns with Spatial and temporal footprint
Spatial changes between snapshots (R1T2, R2T2, R3T2):  Application domains such
as remote sensing and medical image processing are particularly interested in discovering
changes that occur between two or more snapshots (e.g., satellite images) of the same spatial
framework. For example, in remote sensing, changes between satellite images help identify
land cover change due to human activity, natural disasters, or climate change [73, 74, 75].
This problem is widely studied as the “change detection problem [76, 77, 78, 79, 80, 81, 82].

Given two geographically aligned raster images, the change detection problem aims to
find a collection of pixels that have significant changes between the two images. Formally
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Figure 10: Example of interval change on a time series found by the interesting sub-path
discovery method.

it can be written as:

B(x) 1, if there is significant change at pixel z
) =
0, otherwise

where B is the desired binary image of decisions [83]. In this definition, a change at a pixel
is assumed to be independent of changes at other pixels. We thus classify this pattern as a
local change between snapshots (R1T2). In addition, alternative definitions have assumed
that a change at a pixel is also associated with its neighborhoods [84]. For example, the
pixel values in each block may be assumed to follow a Gaussian distribution [85]. We
refer to this type of change footprint pattern as a focal spatial change between snapshots
(R2T3). Researchers in remote sensing and image processing have also tried to apply image
change detection to objects instead of pixels [86, 87, 88]. The assumption is that images are
composed of homogeneous segments (i.e., objects). A change pattern between two images
is defined as a significant difference of an object in the two snapshots. Since the change
footprint is a group of pixels (object), we classify this patterns as a zonal spatial change
between snapshots (R3T2).

A well-known technique for detecting a local change footprint is simple differencing. The
technique starts by calculating the differences between the corresponding pixels’ intensities
in the two images. A change at a pixel is flagged if the difference at the pixel exceeds a
certain threshold. Many methods for selecting this threshold have been discussed in the
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literature. A variation of this technique known as Change Vector Analysis (CVA) has been
used for multi-spectral images [89]. In this case, each pixel is represented by a feature
vector with features representing different spectral channels. The difference between the
feature vectors of corresponding pixels is used to detect a change at the pixel. Figure 13
shows an example output of simple differencing. Dots in Figure 11(c)show the locations
with changes exceeding 60% of the maximum magnitude between the two images of land
surface impervious data [90] shown in Figure 11(a) and 11(b).

(a) (b) (c)

Figure 11: An example of pixel-wise change detection outputs. (a) Impervious surface
image of an area in 1986. (b) Impervious surface image of the same area in 1991. (c)
Locations with difference exceeding 60% of the maximum magnitude between (a) and (b).

Alternative approaches have also been proposed to discover focal change footprints
between images. For example, the block-based density ratio test detects change based on
a group of pixels, known as a block [91, 92], rather than a pixel-by-pixel approach. This
technique employs hypothesis testing where the null hypothesis corresponds to no change at
a given pixel and the alternative hypothesis corresponds to a change. The likelihood ratio
is calculated at the pixel and then compared to a defined threshold. If the likelihood ratio
exceeds the threshold, the alternative hypothesis is selected; otherwise, the null hypothesis
is selected.

Object-based approaches in remote sensing [76, 88, 93] employ image segmentation
techniques to partition the image into homogeneous “objects [44]. Classification methods
(e.g., decision tree) are then used to classify object pairs in the two images into no-change
classes (e.g., water-water) or change classes (e.g., bare land to built-up).

4.2 Taxonomy of Change Patterns with Vector-based Spatial Footprint

Spatial footprints on vector data are classified as points (V1), line segments (V2), polygons
(V3), and spatial networks (V4). Table 2 shows our classification of vector-related change
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footprint patterns. As can be observed, among the 20 possible combinations, we identified
three change footprint patterns that have been explored in the literature: line changes
(V2T1), polygon changes (V3T1), and ST volumes (polygon with time interval) changes
(V3T4).

Table 2: Classification of ST Vector Change Footprints

Temporal footprint
Time point (T1) | Between few | Points in Time | Intervalsin Time
snapshots (T2) | Series (T3) Series (T4)
Spatial Point(s)
footprint | (V1)

Line Find boundary

segments | lines separating

(V2) areas with high
and low risk of
diseases (V2T1)

Polygon Find the regions Find a region

(V3) where the risks and a time in-
of disease is terval where the
higher inside risk of disease is
than others increasing  dur-
(V3T1) ing this interval

(V3T4)

Spatial

network

(V4)

Patterns with Purely Spatial Footprint
Spatial lines change (V2T1): Given a set of connected polygons, boundary line segments
can be identified such that the attributes in the two adjacent polygons are significantly dif-
ferent. As noted previously, the problem of finding spatial boundaries is commonly known
as the spatial Wombling problem. In this particular setting, the problem is known as areal
Wombling or polygon Wombling [19]. The spatial line change footprint pattern is of inter-
est to applications such as public health where disease information may be collected in an
aggregated format (e.g., total cases in each county) due to confidentiality requirement [19].
Areal Wombling helps find boundaries separating high-risk and low-risk counties.

Areal Wombling can be done in a similar way as lattice Wombling. The change magni-
tude at each boundary line can be computed as the difference of attribute values between
adjacent polygons. The changes exceeding a threshold or in the top k% form the output
footprint. Figure 12 shows an example of boundaries highlighting significant difference of
national GDP growth in 2011 [28]. It is done by selecting the boundaries with the top 20%
highest difference in GDP growth between the two neighboring countries.

Statistical approaches have been designed to evaluate the significance of these foot-
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Figure 12: Change boundary (line) footprints on the world GDP growth data (best viewed
in color).
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prints. For example, in a hierarchical Bayesian approach [19], a boundary likelihood value
(BLV) is estimated for each boundary using the Markov Chain Monte Carlo (MCMC)
method. Similar approaches have been developed on geostatistical [18] and point pro-
cess [94] data models.

Spatial polygon change (V3T1): A change with a polygon footprint delineates a region
where some attributes have significantly changed. For example, given a spatial point pro-
cess dataset representing disease cases, a spatial polygon change pattern draws a polygon in
which the density of points (disease) inside the polygon is significantly higher than outside.
Such patterns can also be identified on a set of polygons (representing geopolitical regions)
where the total disease count of each polygon is specified. This problem is referred to as
spatial cluster detection [95]. In public health/epidemiology, finding spatial clusters with
a higher density of disease is of great interest to understand the distribution and spread of
disease.

Kulldorff et al. proposed a spatial scan statistics framework [95] for disease outbreak
detection. Given a number of fixed locations (e.g., hospitals) and the number of disease
cases at each location, the early version of this work focuses on finding the most likely
spatial region where the relative risk of disease inside is higher than outside. The spatial
scan statistics employs a likelihood ratio test where the null hypothesis Hy is that the
probability of disease inside a region is the same as outside the region, and the alternative
hypothesis H; is that there is a higher probability of disease inside than outside. Assuming
that the total disease count in a region follows a Poisson model, the likelihood ratio can
nz\(nz)(PG"z\(ng—nz)

) (niﬁ;)i(z”)@ I(% > Ezgizj)’ where ng and n, are the
number of observations in the entire area and in candidate region Z respectively, and ug
and u, are the expected number of disease reports in the entire area and the region Z.
The expected numbers may be derived from a baseline population at risk or estimated
using non-parametric models according to the size of the region. All the spatial regions
represented by a circle or ellipsoids in the spatial framework are enumerated and the
one that maximizes the likelihood ratio score is identified as the candidate. Finally, the
statistical significance of the candidate cluster is tested by a Monte Carlo simulation.
Figure 13(a) shows an example of spatial point dataset where each point represents a fixed
location (numbered 1-20). The number of disease cases and population in each location are
labeled (i.e., cases/population). The most likely cluster outlined by the red circle is shown
in Figure 13(b), assuming the data follows a discrete Poisson model. As can be observed,
locations in the circle have a higher rate of disease compared to the outside (about 1/100).

Later extensions on the same ideas have explored normal [96], exponential [97], ordi-
nal [98], and non-parametric models [99]. The scan statistic has also been generalized to
handle spatiotemporal point (event report) datasets [100, 101] and irregular-shaped clus-
ters [102]. Computational efficiency of the scan statistic method was further optimized by
employing a top-down pruning of the search space [103]. A Bayesian version of scan statis-
tics uses an inference instead of the frequentist hypothesis testing [104]. SaTScan [105] is a

be formally written as:
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Figure 13: An example of pixel-wise change detection outputs. (a) Impervious surface
image of an area in 1986. (b) Impervious surface image of the same area in 1991. (c)
Locations with difference exceeding 60% of the maximum magnitude between (a) and (b).

software tool developed for discovering spatial and spatiotemporal clusters which integrates
the above models.

Patterns with Spatial and Temporal Footprint
ST volume change footprint (V3T4): The ST volume change footprint represents a change
process occurring in a spatial region (characterize by a polygon) during a time interval.
It quantifies both the spatial coverage and the temporal duration of a non-stationary ST
process. For example, an outbreak event of a disease can be defined as an increase in
disease reports in a certain region during a certain time window up to the current time.
Change patterns known to have an ST volume footprint include the ST scan statistics
(introduced above) and emerging ST clusters defined by Neill et al [106].

Given an ST point process dataset, and a baseline risk probability p, an emerging
cluster is defined as a spatial region S and a time window starting at t¢,,;, such that the
risk of each instance in S in days tin, tmin+1,, 1 18 monotonically increasing: g; X p, where
1 < gmin < gmint1 < < gr. The null and alternative hypotheses are defined as follows:
Hy: the probability that one instance is at risk in the cluster for each day are the same
and equals the expected value p, and Hy: The above probability in days tmin, tmin+1,, 1 1S
gxpwhere 1 < q; < gs < < gp. The following likelihood ratio is tested over all the spatial

C. _
. . . . MAX1<q, . <qpHg; t-e” 1Bt
regions S and start time t¢,,in pairs: —dtmin =71 , where C; and B; are the

total observations and total expected number (baseline) of disease reports respectively, in
day ¢ in S, and B is the total number of expected diseases (baseline) for the entire window
in S. The most likely pair (S, t;min) is the output pattern.
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5 Future Directions and Research Needs

An important goal of our change footprint taxonomy was to uncover gaps in the research.
In this section, we discuss the change footprint patterns that have yet to receive much,
if any, attention by researchers. Some may be interesting to data scientists and could be
explored in the future. To highlight interesting vector change footprint patterns, we show
two case studies from historical GIS applications at the end of this section. We believe

that they represent exciting examples of avenues for future research.

5.1 Raster-based Patterns

Table 1 shows that most of the raster footprint patterns have been explored. However, we
did identify four footprint patterns that may be further investigated, i.e., spatial focal and
zonal changes that occur at a time point or a time interval in time as shown in Table 3.

Hence we suggest some change phenomena that appear to exhibit such footprints.

Table 3: A full list of raster ST change footprint patterns

Temporal footprint

Time point (T1)

Between few
snapshots (T2)

Points in Time
Series (T3)

Intervals in Time
Series (T4)

Spatial
footprint

Local RIT1 (N/A)

Focal Edge Detection
(e.g., Lattice
Wombling)
R2T1

Zonal Interesting sub-

path  discovery
(e.g., ecotones)
R3T1

Remote sensing
image change
detection (R1T2,
R2T3, R3T2)

Change point
detection  (e.g.,
CUSUM) R1T3

Change interval
discovery on
time series R1T4

Find a location
where the time
series  changes
differently than
its spatial neigh-

Find a location
where the time
series  changes
differently than
its spatial neigh-

bors at a time | bors during a

point. R2T3 time interval.
R2T4

Find a region | Find a region

where the aggre- | where the aggre-

gate/summary gate time series

time series has a
change at a time
point. R3T3

has a persistent

change  during
a time interval
R3T4

Spatial focal change at a time point: A spatial focal change at a time point can be
modeled in a spatial time series dataset. One example of a spatial focal change at a time
point may be described as follows: given a spatial time series dataset, find a location s and
a time point ¢ where the time series at s starts to behave very differently from time series in
its spatial neighborhood at ¢. This pattern may be of interest to research in climate science
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and remote sensing. For example, given a spatial time series dataset representing land cover
indices, one may be interested in finding locations and the corresponding time point of an
abrupt land cover change due to forest fire or other human introduced events. Due to
spatial autocorrelation, we know that neighboring time series tend to behave similarly in
normal scenarios. A focal change in space can distinguish a time series from its neighbors
in the case of anomalous events, even if the change on the time series itself is not very
abrupt. Similarly, we can define a spatial focal change in a time interval as an event that
a time series exhibits behavior significantly different from its spatial neighbors during a
contiguous time period. Spatial zonal change at a time point/in an interval: This pattern
may be characterized as an abrupt change (point) or rapid/gradual change (interval) that
occurs on the aggregated time series of a spatial region. This pattern may be explored to
address problems such as finding regional climate change patterns, and automatic finding
of large scale of land cover change, etc.

Figure 14: An example of network footprint to summarize high activity patterns. (a)
A spatial network with activities. (b) Polygon footprint to summarize activities with
Euclidian distance (by CrimeStat) [107] (c) Polygon footprint to summarize activities with
network distance (by CrimeStat). (d) Network footprint to summarize activities.
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5.2 Vector-based Patterns

Compared to raster ST change footprint patterns, vector ST change patterns have been
much less intensively explored. The existing patterns and techniques focus mostly on
finding changes in non-ST attributes (e.g., count of disease) with vector spatial footprints.
We believe that there is also great value in understanding the change patterns of ST
attributes of vector spatial objects. For example, attention may be given to spatial change
patterns with network footprints (V4T1). Figure 14 shows primary results from exploration
on activity summarization with a network footprint [108] where the activities on spatial
networks in (a) are better summarized using the paths in (d) rather than using the ellipsoids
or circles in (b) and (c). Future extension of this work may focus on finding statistically
significant high crime risk in some path/sub-networks. Such work may help public safety
authorities better understand crime patterns and respond accordingly.

In Table 4 we list numerous examples of questions users may pose in a variety of
applications in addition to those listed in Table 2.

5.3 Change Footprint Patterns in Non-Scientific Domains

Change footprint patterns are valuable to study even in domains far removed from scientific
domains. One field where it is critical to understand how spatial relationships change over
time is the study of history [109]. Such changes can be modeled as ST change with vector
spatial footprints. Specifically, we illustrate two application examples: the China historical
jurisdiction change footprint patterns and the U.S. railroad change footprint patterns.

Case study 1: Historians studying Chinese history to trace changes in administrative
hierarchies down to the “Xian(county) level from 221 BC to 1911 AD. The county seats
(capital) in Chinese history are usually used to represent the real location of the counties.
Vector datasets representing the county seats at different times are available from the China
Historical GIS project [110, 111]. In this dataset, each historical county seat is represented
as a spatiotemporal point, where the location, valid time period, and non-ST attributes
(e.g., name) are available. For example, Figure 15 show different snapshots of the county
seat locations in 300 AD and 400 AD, and the difference between the two years in Chinese
history.

Given such a ST vector dataset, one may define a few change patterns with vector ST
footprints. For individual points, one may identify the time period with frequent change
of location. A regional pattern (e.g., polygon) summarizing a large number of location
shifts during a given time period (e.g., 300 AD to 400 AD) can be identified to indicate the
dynamic of the geo-political relationships in this area. For example, a significant change
in point locations can be found in the east of the map as shown in Figure 15(c).

Case Study 2: Railroad growth in the 19th century is another subject of interest
to historians. The expansion of the U.S. railroad network contributed significantly to
the immigration and employment in the country. The complexity and scale of railroad
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(c)

Figure 15: A comparison of county seats locations at 300 and 400 AD in China (best
viewed in color). (a) County seats of China in 300 AD. (b) County seats of China in 400
AD. (c) Change of county seat locations between 300 AD and 400 AD.
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operations and their uneven extension across the landscape created both intensive and
extensive changes in American communities [112]. Understanding the change pattern of
the railroad network helps understand U.S. social and economic development in the 19th
century [113]. A historical railroad network dataset is available for this study [114]. Figure
15 shows a few snapshots of this datasets in 1840, 1850, 1861, and 1870.

Figure 16: U.S. railroad network expansion in the 19th century (best viewed in color). (a)
U.S. railroad network in 1840. (b) U.S. railroad network in 1850. (c¢) U.S. railroad network
in 1861. (d) U.S. railroad network in 1870.

Given such a ST vector dataset, one can define change patterns with line/network
spatial footprints. One possible pattern may be a time interval during which the spatial
network grew significantly (e.g., total length, coverage) in a particular area (e.g., Mid-west).
For example, in the snapshots a significant expansion of the network can be identified
between 1840 and 1851. Another pattern that could be described is the directions in which
the spatial network expanded during a certain time period (e.g., 1840-1851). For example,
in the given dataset, the network expands towards the west (e.g., Midwest) and southwest
between 1840 and 1870.
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6 Conclusion

This paper proposes a taxonomy of spatiotemporal change footprints that may be of use
to researchers across multiple research domains. We built the taxonomy after conducting
a multi-disciplinary review of research in ST change pattern discovery. Our taxonomy
achieves two valuable goals. First, it classifies a wide variety of ST change footprints that
have already received attention in different domains. Previously, much of this research was
hidden from view, so to speak, due to the lack of common terminology across disciplines for
discussing similar phenomena. Second, our taxonomy reveals gaps in the research, that is,
change footprint patterns that have yet to be studied despite their potential applicability
to many real-world problems. We especially note the need for research on ST change
footprints on vector data.

In the future, we plan to incorporate other aspects of change patterns in our classifica-
tion. Currently, the taxonomy mainly focuses on only univariate (single non-ST attribute)
techniques. The next step will be to include multivariate definitions and approaches. Also,
we want to address issues such as computational structure and statistical modeling of
change patterns.
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Table 4: A full list of vector ST change footprint patterns.
Temporal footprint
Time point (T1) | Between few | Points in Time | Intervals in Time
snapshots (T2) | Series (T3) Series (T4)
Spatial Point(s) N/A Find significant | Which county | Find county
footprint | (V1) shift of loca- | seats abruptly | seats that
tions of a point | change their | change their
process at two | location? locations fre-
different time | When? quently  during
(V1T2) (V1T3) some time pe-
riod in Chinese
history. (V1T4)
Line Find boundary | What is the | When and | Whne & where
segments | lines separating | difference in | where did a | did the Mis-
(V2) areas with high | direction of a | person change | sissippi river
and low risk of | road/river after | his/her route | significantly
diseases (V2T1) | earthquake? to work? | change its route
(vVaT2) (V2T3) in the last cen-
tury? (V2T4)
Polygon Find the regions | Which county | Which bird | Find a region
(V3) where the risks | in China has | habitats sig- | and a time in-
of disease is | changed its | nificantly terval where the
higher inside | area signif- | shrank  their | risk of disease is
than others | icantly be- | area due to | increasing dur-
(V3T1) tween 800 AD | urban sprawl? | ing this interval
and 900 AD | When? (V3T4)
(V3T2)? (V3T3)
Spatial Find the sub- | Find the sub- | Find a | Find the expand-
network network of the | network that | time/places ing direction of
(V4) road  networks | summarizes when/where the network dur-
where the risk | the change | the railroad | ing a time period
of crime be- | between  the | network signif- | (V4T4)
comes higher | two snapshots | icantly grows
than other parts | of the network | (V4T3)
(VAT1) (VAT2)
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