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Over the last two decades, the machine learning and related communities have
conducted numerous studies to improve the performance of a single classifier by
combining several classifiers generated fromone ormore learning algorithms. Bag-
ging and Boosting are the most representative examples of algorithms for generat-
ing homogeneous ensembles of classifiers. However, Stacking has become a com-
monly used technique for generating ensembles of heterogeneous classifiers since
Wolpert presented his study entitled Stacked Generalization in 1992. Studies that
have addressed the Stacking issue demonstrated that when selecting base learn-
ing algorithms for generating classifiers that are members of the ensemble, their
learning parameters and the learning algorithm for generating the meta-classifier
were critical issues. Most studies on this topic manually select the appropriate
combination of base learning algorithms and their learning parameters. However,
some other methods use automatic methods to determine good Stacking config-
urations instead of starting from these strong initial assumptions. In this paper,
we describe Stacking and its variants and present several examples of application
domains. © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Aclassi!er is a system that takes instances from a
dataset and assigns a class or category to each

of them. To perform this task, the classi!er must have
some type of knowledge. The classi!ers can be created
by using various forms of learning (e.g., deduction,
analogy, or memorization), but the most common way
of acquiring this knowledge is to infer it from a set of
previously classi!ed instances. This form of learning is
called supervised learning.

Most research in machine learning has been
devoted to developing methods that automate the
classi!cation tasks. Despite the variety and number
of models that have been proposed, including arti!-
cial neural networks,1 decision trees,2 inductive logic
programming,3 and Bayesian learning algorithms,4
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the construction of a perfect classi!er for any given
task remains unobtainable.5 Furthermore, no single
approach can claim to be superior to any other.6 Thus,
the combination of different classi!cation models is
considered a viable alternative for obtaining more
accurate classi!cation systems. The strategy in ensem-
ble systems is to create a set of classi!ers and combine
their outputs such that the combination outperforms
all of the single classi!ers. To achieve this goal, it is
necessary to guarantee that (1) the individual classi-
!ers are both accurate and diverse and (2) the output
combination ampli!es the correct decisions and can-
cels out the incorrect decisions.7

Studies in the ensemble !eld have typically
focused on generating the ensemble members by
applying a single learning algorithm and combining
their outputs using a mathematical function. In con-
trast, Stacking generates the members of the Stacking
ensemble using several learning algorithms and subse-
quently uses another algorithm to learn how to com-
bine their outputs.
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FIGURE 1 ߀ Influence of diversity on the ensemble decision.

The remainder of this paper is organized as fol-
lows. First, some background on ensemble classi!ers
is given. Then, we present the main features of and a
review of some of its variants, related approaches and
recent applications. Finally, we draw some conclusions
and discuss important topics about Stacking.

ENSEMBLES OF CLASSIFIERS
An ensemble of classi!ers is a set of classi!ers whose
individual decisions are combined to obtain a system
that hopefully outperforms all of its members.8

_ENREF_2Similar to what occurs with other
systems in the !eld of arti!cial intelligence, the ensem-
bles of classi!ers respond to an attempt to emulate
human behavior. Speci!cally, these systems try to repli-
cate the performance of a human being when it faces
an important decision. For example, it is common to
ask the opinion of different doctors before having a
surgery, performed or read reviews before buying a
product. In other words, a decision is considered more
reliable if it is made based on the opinion of different
experts. Extrapolation of this proposition to the !eld
of machine learning leads to the development of sys-
tems composed of several classi!ers, in which the !nal
decision is made collectively. This line of research in
the machine learning !eld is known as the study of
ensembles of classi!ers.9

The strategy in ensemble systems is to create a
set of accurate and diverse classi!ers and combine
their outputs such that the combination outperforms

all the single classi!ers. Therefore, classi!er ensembles
are built in two phases: generation and combination.
In the generation phase, the individual components of
the ensemble, known as base classi!ers, are generated.
In the combination phase, the decisions made by the
members of the ensemble are combined to obtain
one decision. A detailed description of these phases is
provided in the following subsection.

Generating Base Classi!ers
To obtain an ensemble of classi!ers that outperforms
all its members, the base learners must be both
accurate and diverse. A classi!er is accurate when its
classi!cation error is lower than that obtained when
the classes are randomly assigned. Two classi!ers are
diverse if they make errors at different instances.

Demanding accurate classi!ers appears to be
a logical requirement; the combination of a set of
incorrect decisions cannot easily generate a correct
hypothesis. To illustrate why diversity is a necessary
condition, consider, in a two classes domain, an
ensemble of three classi!ers, h1, h2, and h3, and a
new example x that must be classi!ed. If the three
classi!ers are not diverse, then when the decision given
by h1 is wrong, the decisions given by h2 and h3 will
also be wrong. Therefore, the !nal ensemble decision
will be wrong. However, if the base classi!ers are
diverse, the decisions given by both h2 and h3 will be
correct even when the decision given by h1 is wrong.
Therefore, the ensemble decision will be correct if
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TABLE 1 Summary of Diversity Measures

Name Symbol Definition ↑/↓1 Pairwise

Q statistic Q N11N00−N01N10

N11N00+N01N10 ↓ Y

Correlation coefficient �휌 N11N00−N01N10√
(N11+N10)(N01+N00)(N11+N01)(N10+N00)

↓ Y

Fail/non-fail disagreement measure dis N01+N10

N11+N10+N01+N00 ↑ Y

Double-fault measure DF N00

N11+N10+N01+N00 ↓ Y

Kappa degree-of- agreement statistic �휅

K∑
i=1

Nii

N −

K∑
i=1

( Ni∗
N

N∗i
N

)

1−

K∑
i=1

( Ni∗
N

N∗i
N

)
↓ Y

Plain disagreement measure Div_plain 1
N

N∑
k=1

Is
(
Ci
(
xk
)
,= Cj

(
xk
) )

↑ Y

Ambiguity Amb 1
LKN

L∑
l=1

N∑
n=1

K∑
k=1

(
Is
(
Cl
(
xk
)
= k

)
− Nn

k
L

)
↑ N

Entropy E 1
N

N∑
n=1

1(
L− L

2

) min
(
l
(
xk
)
, L − l

(
xk
))

↑ N

N, cardinality of the test set; K, number of classes; L, the number of base classi!ers; Nab is the number of instances in the dataset, classi!ed correctly (a= 1) or
incorrectly (a= 0) by the classi!er i, and correctly (b= 1) or incorrectly (b= 0) by the classi!er j; Nij, number of instances in the dataset, labeled as class i by the
!rst classi!er and as class j by the second classi!er; Ci(xk), class assigned by classi!er i to instance k; Is(c), a Boolean function. Its value is 1 if c is true and 0 if c
is false; Nn

k , number of base classi!ers that assign instance n to class k; and l(xk), number of classi!ers that correctly classi!ed instance k.
1Monotonically increasing/decreasing measures are identi!ed with an ascending/descending arrow, respectively.

all the decisions have the same relevance. Figure 1
illustrates this example graphically.

Diversity is a necessary condition for obtaining
a good ensemble. However, measuring diversity is not
straightforward because there is no formal de!nition
of diversity and no consensus on how to quantify
this magnitude.10 Some of the more common ways to
quantify ensemble diversity are shown in Table 1.

We have analyzed the relevancy of diversity
among the base classi!ers and how to quantify it.
It is now necessary to review the most well-known
techniques for generating diverse classi!ers.

The techniques used to generate diverse classi-
!ers are based on the idea that the hypothesis of a
classi!er depends on both the learning algorithm and
the subset used to generate these classi!ers. Therefore,
it is possible to generate classi!ers whose decisions are
dissimilar from each other by varying the training set
and/or learning algorithm.

Three different approaches can be used to gener-
ate an ensemble of classi!ers9:

• Resampling the training examples: This
approach includes two of the most widely known
methods for constructing classi!er ensembles:
Bagging11 and Boosting.12 Bagging builds dif-
ferent versions of the training set by sampling

with replacement. In contrast, •Boosting obtains

AQ3

the different training sets by focusing on the
instances that are misclassi!ed by the previously
trained classi!ers.

• Manipulating the input features. Another way
to achieve diversity between classi!ers is by
modifying the set of attributes used to describe
the instances.13–17

• Manipulating the output target: Another
approach for generating a pool of diverse
classi!ers is having each classi!er solve a dif-
ferent classi!cation problem. This category
includes methods that solve multiclass problems
by converting them into several binary subprob-
lems. Among the strategies for decomposing
a multi-class problem into two-class problems
are one-against-one (OAO),18 one-against-all
(OAA),19 one-against-higher-order (OAHO)20

and error correcting output codes (ECOC).21

Other systems that decompose the multiclass
problem into several pairwise subproblems, such
as binary-complementary-ensemble (BCE)22,23

and complementary-complementary ensemble
(CCE)24 can be grouped into this approach.

Methods that vary the learning algorithm can be
subdivided in two groups:
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• Approaches that use different versions of the
same learning algorithm. Kolen and Pollak25

demonstrated that a pool of arti!cial neural
networks starting from different initial weights
can be trained to generate diverse classi!ers and
thus a good ensemble. Alternatively, a pool of
diverse decision trees can be obtained by varying
the criterion used to expand a C4.5. node.26

• Approaches where diversity is obtained using
different learning algorithms. According to
Wolpert,27 ensembles with base classi!ers trained
from different learning algorithms (heteroge-
neous ensembles) exploit the different biases of
each learning algorithm. Therefore, most studies
in the !eld of ensembles have focused on the
combination of different inducers, such as arti-
!cial neural networks, decision trees, Bayesian
models, nearest neighbor, and support vector
machines. As will be shown below, Stacking27

and most of its variants achieve diversity by
applying this approach.

Integrating Decisions
Once the base classi!ers that comprise the ensem-
ble have been built, the next step is to establish a
procedure through which the individual decisions are
combined to obtain a !nal hypothesis. There are two
main strategies for combining classi!ers: fusion and
selection.6,28 Classi!er selection presupposes that each
classi!er is an expert in some local region of the space.
Therefore, when an instance is submitted for classi!-
cation, the ensemble decision coincides with the deci-
sion given by the classi!er responsible for the region of
the space to which the instance belongs.29 In classi!er
fusion, the decisions from all members of the ensemble
are combined in some manner to make the ensemble
decision. Classi!er fusion algorithms include combin-
ing rules, such as the average, majority vote, weighted
majority vote, and the Borda Count, and more com-
plex integration models, such as meta-classi!ers. A
meta-classi!er is a second-level classi!er generated
from the outputs given by the base learners. According
to Rokach,30 Stacking, arbiter tree,31 combiner tree32

and the Grading approaches33 are considered integra-
tion methods based on meta-learning.

STACKED GENERALIZATION
Stacking is short for Stacked Generalization.27 As
noted above, unlike other ensemble generation algo-
rithms, such as Bagging or Boosting, which generate
an ensemble of classi!ers using the same learning algo-
rithm (homogeneous ensembles), Stacking generates

an ensemble composed of heterogeneous classi!ers.
Because each learning algorithm uses different meth-
ods to represent the knowledge and different learning
biases, the hypothesis space will be explored from dif-
ferent perspectives with the aim of generating a pool
of diverse classi!ers. Therefore, when their predictions
are combined, the resultant model is expected to be
more accurate than each individual member.

To combine the individual predictions of the
ensemble members, Stacking uses the concept of
meta-classi!ers or meta-learners. The meta-classi!er
or level-1 model is generated using a learning algo-
rithm following a cross-validation-like process. This
classi!er attempts to model how the outputs of the
base classi!ers or level-0 models should be combined
to generate the !nal output. Figure 2 provides a gen-
eral overview of the Stacking process.

Stacking is an ensemble of classi!ers in which (1)
the base learners are trained using different training
parameters (generally different learning algorithms)
and (2) the outputs of the base learners are combined
by using a meta-classi!er. One of the issues in Stacking
is obtaining the appropriate combination of base-level
classi!ers and the meta-classi!er, especially in relation
to each speci!c dataset. If only a small number of
classi!ers and algorithms will be used, this problem
can be solved by a simple method, namely, exhaustive
search, in a reasonable amount of time. However, it is
dif!cult to determine the best Stacking con!guration
when the search space is large.

Formal De!nition
Given a dataset S, Stacking !rst generates randomly
a subset of equal size datasets S1, … , ST and
subsequently follows a process similar to a J-fold
cross-validation process: it omits one of the subsets
(e.g., Sj) to be used later. The remaining instances
S(−j) = S− Sj are used to generate the level-0 classi!ers
by applying K learning algorithms, k= 1, . . ., K, to
obtainK classi!ers. S(−j) and Sj are the training and test
sets respectively of the j-th fold in the cross-validation.
After the level-0 models have been generated, the Sj set
will be used to generate the level-1 instances. Level-1
training data are generated from the predictions of the
level-0 models over the instances in Sj, which were
omitted for this purpose (Figure 3a). Level-1 data have
K attributes, whose values are the predictions of each
one of the K level-0 classi!ers for every instance in Sj.
At the end of the cross-validation process, each level-1
training example will be composed for K attributes
(the K predictions) and the target class, which is the
real class value for every instance in S. Once the level-1
data have been built from all instances in S, any learn-
ing algorithm can be used to generate the level-1 model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

4 © 2015 John Wiley & Sons, Ltd. Volume 0, 2015



WIREs Data Mining and Knowledge Discovery Generating ensembles of heterogeneous classifiers

Algorithm

Algorithm
3

Algorithm
2

Algorithm
n

Data

Algorithms
for generates
Level−0 classifiers

Algorithm
1

Ensemble

CmC1 ...

M

Algorithm
for generate
Level−1 classifier

Unlabeled example

Stacked
generalization

Labeled example

C2

FIGURE 2 ߀ Overview of the stacking procedure.

(Figure 3b). To complete the process, the level-0 mod-
els are re-generated from the entire dataset S (it is
expected that this process improves the accuracy of the
classi!ers slightly) (Figure 3c). In Figure 3d the !nal
ensemble structure generated by Stacking is shown. To
classify a new instance, the level-0 models produce a
vector of predictions that is the input to the level-1
model, which in turn predicts the class.

STACKING VARIANTS AND RELATED
APPROACHES
Since Wolpert !rst proposed Stacking in 1992, several
related studies have been published. In general terms,
these studies can be grouped into two categories: those
that address the Stacking parameter selection and
those that present approaches similar to Stacking. We
provide a brief review of these two types of studies in
the following subsections.

Stacking Variants
As initially noted by Wolpert,27 some issues of Stack-
ing are considered black art, such as the selection of
base classi!ers, the type of meta-data and the classi-
!er to be used in level-1. Some studies that address
these issues and other related topics are presented
below.

Skalak34 proposed the use of instance-based
learning classi!ers that store a few prototypes per
class as level-0 classi!ers. They also proposed to use
a decision tree as a meta-classi!er or level-1 classi-
!er. Fan et al.35 proposed to determine the overall
accuracy of the ensemble generated by Stacking using
con"ict-based accuracy estimates. The authors use two
tree-based classi!ers and one rule-based classi!er as
base-level classi!ers. In contrast, for the meta-level,
they use a rote table that behaves as a decision tree
without pruning in this case. This Stacking con!gu-
ration is evaluated using four datasets (including two
arti!cial datasets). Although the authors claim that
the proposed measure is superior to all existing mea-
sures, their results do not clearly demonstrate that this
estimate can be generalized to more datasets or other
meta-classi!ers.

Merz36 proposed a variant of Stacking that
uses correspondence analysis to detect correlations
between base-level classi!ers. Once dependencies have
been removed from the original meta-level space, a
nearest neighbor method (meta-level algorithm) is
applied over the resulting feature space. This approach
is called SCANN.

Ting and Witten37 address two Stacking con-
!guration issues: level-1 classi!er types and the data
types of the meta-level. They propose the use of class
probabilities rather than a single class prediction as
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FIGURE 3 ߀ Generating an ensemble of classifiers using Stacking.

outputs of the level-0 classi!ers. Thus, each instance
of the meta-level is composed of the class probabilities
given for each level-0 classi!er, followed by the actual
class of the instance. The authors argue that by using
the class probabilities as meta-data, Stacking uses
both the prediction and con!dence of the base-level
classi!ers. Regarding the type of meta-level classi!er

to be used, the authors conclude that multi-response
linear regression (MLR) is the most appropriate algo-
rithm for generating the meta-level model, at least
when using class probabilities as meta-level data.
Moreover, Ting and Witten studied the necessity of
non-negative constraints for the attribute weights in
linear models because both Breiman38 and LeBlanc
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and Tibshirani39 report the need to use nonnegative
constraints when using Stacking in a regression task.
They concluded that non-negative restrictions are not
necessary in Stacking to improve the overall accuracy
of the ensemble when performing a classi!cation task.
However, these restrictions are useful for improving
the interpretability of the level-1 model.

Based on work of Ting and Witten,37 Seewald40

used MLR as the level-1 classi!er but with a differ-
ent set of attributes in the meta-level to overcome a
weakness of Stacking with MLR (SMLR) in domains
with more than two classes. This weakness was not
present in the original version of Stacking, and See-
wald argues that this new weakness may be due to
the dimensionality of the meta-data. When MLR is
used as the meta-classi!er, a linear equation for each
class is constructed using the class probability distribu-
tions given by the base classi!ers. StackingC, as this
variant is known, is proposed to use only the class
probabilities associated with the class to which the lin-
ear model is built, thus reducing the dimensionality
of the attributes of the meta-level by a factor equal
to the number of classes. The results of this research
indicate an improvement over SMLR when used with
the full set of probability distributions. Furthermore,
Seewald argues that the observed improvement is due
to not only the reduction of the dimensionality of the
meta-data but also the high diversity of class models
generated at the meta-level.

Todorovski and Džeroski41 proposed a variant
of Stacking that uses a decision tree approach as the
learning method in the meta-level. This method, called
meta decision trees (MDTs), replaces class-value pre-
dictions in its leaf nodes by the name of the base-level
classi!er that should be used to obtain the class for
a speci!c example. The meta-level data are com-
posed of properties of the probability distributions
that re"ect the con!dence of the base-level classi!ers
(e.g., entropy and maximum probability) rather than
the distributions themselves. These properties are used
to generate small MDTs.

Džeroski and Ženko42 proposed two additional
variants of Stacking. The !rst variant addresses the
issue of the type of meta-data based on SMLR pro-
posed by Ting and Witten.37 The authors propose an
extension of meta-data, adding two additional sets
of attributes: the probability distributions multiplied
by the maximum probability and the entropies of
the probability distributions. Moreover, Džeroski and
Ženko proposed another extension of SMLR in which
they replace the linear regression approach by a tree
induction approach as the meta-level model. They
called this method Stackingwithmulti-responsemodel

trees (SMRMT). According to the authors, compar-
ing different Stacking approaches, SCANN, SMDTs,
SMLR, and the SelectBest scheme (selecting the best
classi!er with cross-validation) appear to perform at
approximately the same level.Moreover, Džeroski and
Ženko concluded that SMRMT outperforms previous
Stacking variants, including StackingC, and selects the
best classi!er from the ensemble by cross-validation.

Menahem et al.43 proposed a new variant of
Stacking called Troika, whose main feature is that
the meta-level is composed of three layers. In the !rst
layer, the outputs of the base classi!ers are combined
using a OAO ensemble, whose members are called
specialist classi!ers. The goal of each specialist is to
predict the probability that an instance belongs to one
of the two classes that it distinguishes. In the second
stage, the outputs of the specialists are combined again
using aOAA schema. The task of the level-2 classi!ers
is to learn the behavior patterns of the specialist
classi!ers and to predict whether the output given by a
specialist is correct. The third layer contains a classi!er
and produces the ensemble !nal decision. Moreover,
the authors analyze three arrangements to train the
base classi!ers (OAO, OAA, and all-against-all) and
determine that Troika is more accurate than Stacking
and StackingC in all cases. Regarding the runtime, the
authors conclude than Troika outperforms Stacking
and StackingC only when the base classi!ers are
trained using the OAO architecture.

Ledezma et al.44 proposed an approach to deter-
mine good Stacking con!gurations by a genetic search.
Their approach, called GA-Stacking, not only deter-
mines which meta-level and which (and how many)
base classi!ers must be present but also their learning
parameters. Moreover, GA-Stacking provides "exibil-
ity and extensibility compared to previous Stacking
variants because it can easily incorporate new learning
algorithms and is not restricted by ‘a priori’ assump-
tions. Moreover, GA-Stacking adapts the Stacking
con!guration to the domain biases and characteris-
tics so that the Stacking con!gurations determined
by GA-Stacking are domain dependent. However,
GA-Stacking requires a longer execution time than the
other approaches to obtain a speci!c Stacking con!g-
uration.

Following a similar approach to the work of
Ledezma et al.44 and posing the Stacking con!gura-
tion as an optimization problem, Chen and Wong45

proposed the use of ant colony optimization (ACO)
to determine domain-dependent Stacking con!gura-
tions. They use the meta-heuristic ACO to determine
the level-0 Stacking classi!ers with a prede!ned level-1
classi!er45 as well as the entire Stacking system con!g-
uration (level-0 and level-1).46
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Recently, Shunmugapriya and Kanmani47 pro-
posed the use of another meta-heuristic search
algorithm to determine which and how many base
classi!ers to use and what meta-classi!er to use based
on the domain. Therefore, they have proposed to use
an arti!cial bee colony (ABC) method. The authors
compared their results with the studies of Ledezma
et al.44 and Chen and Wong,45 and they conclude that
the results of the Stacking con!gurations determined
by ABC are comparable to those obtained in the
previous study.

The approaches introduced above are compared
in Table 2 with regard to the focus area, number of
base classi!ers, algorithms for base-classi!er genera-
tion, type of meta-data, and meta-level classi!er. In
addition, some observations are included.

Related Approaches
In addition to the Stacking variants already discussed,
there are studies that can be viewed as either Stack-
ing-based implementations or studies that hold many
similarities with Stacking.

Chan and Stolfo48 proposed a strategy similar
to Stacking, which they called Combiner. The main
idea behind the Combiner, as the authors claim, is to
merge the predictions of base classi!ers by learning
the relation between the predictions of base classi!ers
and the correct prediction. Moreover, they propose
a variant of the combiner strategy called attributes
combiner, in which the attributes of the meta-level
are composed of not only the predictions of a class
but also the original attributes of the instance. As
shown in Schaffer’s study of Stacking bi-level,49 this
approach can reduce the performance of the ensemble.
In contrast, Chan and Stolfo48 proposed an approach
that uses what they call an Arbiter, which is a classi!er
independent from the remaining base classi!ers that
is trained on a subset of the original dataset. This
subset of the data consists of the instances in which
the base classi!ers present diverse predictions. The
purpose of an arbiter is to provide an alternative
and more elaborate prediction when base classi!ers
present contradictions. In addition, Chan and Stolfo
proposed what they call an arbiter tree, in which
arbiters that specialize in resolving con"icts between
pairs of classi!ers are arranged in a binary decision
tree. To carry out the classi!cation of an instance,
the method starts from the leaf nodes formed by base
classi!ers and goes up through the tree to the root
node that provides the !nal classi!cation.

Ting50 proposed a composite learner framework
that selects the classi!cation that is estimated to have
the higher accuracy as the !nal prediction of the

ensemble. This framework uses the predictions of the
base classi!ers to learn a function that re"ects the
inner measure of con!dence of the algorithm on an
estimate of their accuracy on the output. This function
can be used to combine the expertise of the classi!er.

Gama and Brazdil51 proposed a method closely
related to Stacking that they called Cascade Gener-
alization. In this method, the classi!ers are applied
sequentially, and there is no meta-classi!er. When each
base classi!er is applied to the data, it increases the
number of attributes of the dataset by adding the class
probability distribution. The following classi!er then
uses this new dataset so that the order in which clas-
si!ers are used becomes an important factor.

Seewald and Fürnkranz33 proposed a scheme
known as Grading. This scheme creates a meta-level
classi!er for each level-0 classi!er. The learning
task for each level-1 classi!er is to predict whether
the level-0 classi!er prediction will be correct. The
meta-level data are composed of base-level attributes,
and the class values are correct or incorrect. The !nal
prediction of the ensemble is calculated through a
weighted voting mechanism over the predictions of
the base classi!ers. The weight assigned to the vote of
each base classi!er is the con!dence that his predic-
tion will be correct. This weight is estimated by the
meta-classi!er associated with the base classi!er. This
work has some similarities with the work performed
by Ting.50

Torres-Sospedra et al.52 proposed a combination
strategy based on ANN in which the predictions
of the level-0 classi!ers for the entire training set
are used to train the meta-classi!er. Based on this
idea, they propose two different combination schemes:
Stacked and Stacked+. In both schemes, the outputs
provided by the base learners are used as inputs to the
meta-level, but in Stacked+, the original input data are
also used as inputs to the meta-classi!er.

Inspired by the work of Wolpert27, Cohen
and Carvalho53 proposed a stacked of classi!ers
to be applied in sequential partitioning tasks. This
meta-learning method, called stacked sequential
learning, SSL, that seeks to augment an arbitrary
base learner in sequential learning problems.54

In this approach, during the training phase, a
cross-validation process is carried out in order to
obtain the predicted labels, which are joined with the
original input features vector, taking into account a
neighborhood around the examples. With this train-
ing dataset—that they called extended dataset—a
metalearner is built and a base learner is obtained
from the original dataset. Then, in the inference phase,
when a new instance arrives, the base learner is used
to generate the prediction label for the instance. After
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this label generation, the extended instance is created
so that the metalearner can use it to produce the !nal
prediction.

Based on GA-Stacking44,55_ENREF_55,
Ordoñez et al.56 proposed an approach that uses
genetic algorithms to determine which base classi!ers
must be present in the ensemble as well as the method
used to combine these classi!ers. Although the !nal
ensemble uses a meta-classi!er as the decision com-
bination method in some cases, in other cases, it uses
other methods of combining base classi!er decisions.
Hence, it is considered a related work and not a
Stacking variant.

Based on work of Cohen and Carvalho,53 Gatta
et al.57 proposed a new framework whose goal is to
capture the data interactions using a neighborhood
function. In this way, the meta-classi!er is trained
using an extended training set that is composed by
the original data set and the output given by this
neighborhood function. To evaluate the performance
of this general framework, called MS-SSL, two imple-
mentations of the neighborhood function were pro-
posed. These implementations were based on the
combination of two different Multi-Scale Decompo-
sition schemes (a pyramidal decomposition and a
multi-resolution decomposition) and a sampling pat-
tern. Both models (Pyr-SSL and MR-SSL) were built
using AdaBoost, with a maximum of 100 decision
stumps, as classi!cation algorithm. The proposed sys-
tems were evaluated in two domains: a text categoriza-
tion task and an image pixel classi!cation problem.
According to the authors, experimental results proved
that, in both domains, MS-SSL outperforms classical
SSL, CRF58 and AdaBoost. A drawback presents in
MS-SSL is the impossibility of dealing with multiclass
problems. One way to address this dif!culty is mod-
ifying the neighborhood function and replacing the
base classi!ers used in the original MS-SSL scheme by
others capable of dealing with data belonging to N
classes. This adaptation, called MMSSL, is presented
and applied for the resolution of several multi-class
sequential learning problems in.59 In this study, the
authors concluded that MMSSL shows signi!cant
performance improvement compared with classical
approaches. Moreover, authors note that MMSSL is
able to keep the relationship among classes at differ-
ent scales. Therefore, from a qualitative point of view,
it is possible to state that the results ofMMSSL are bet-
ter than those obtained with the rest of the evaluated
models.

Trivedi and Kapadia60 suggested improving the
ensemble accuracy by combining the philosophies of
both Stacking and Boosting. The proposed algorithm,
named ‘sequential stacking’, trains the base classi!er

sequentially, giving more importance to instances that
were misclassi!ed by the previous classi!ers. After the
training, the outputs of the level-0 classi!ers are used
to train the meta-classi!er. Therefore, the diversity
among the base classi!ers is achieved using a version
of Boosting instead of cross-validation.

Applying Stacking
Most works related to Stacking have focused on
determining an answer to what Wolpert called black
art. However, there is a series of studies focused on the
application of Stacking in real domains. We present
some of the most representative examples below.

Doumpos and Zopounidis61 used Stacking to
distinguish potential defaulters from non-defaulters.
Their work is focused on the combination of seven
classi!cation algorithms (linear discriminant func-
tions, quadratic discriminant functions, logistic
functions, probabilistic neural networks, near-
est neighbors, decision trees, and support vector
machines), which have been successfully used in pre-
vious studies on credit risk assessment. The outputs
of the level-0 classi!ers are transformed by applying
a principal component analysis and are subsequently
sent to the meta-classi!er. To complete the study,
seven different meta-classi!ers were implemented
(each using one of the seven above-mentioned clas-
si!cation algorithms) and 54 different scenarios
(different combinations of the characteristic parame-
ters of each classi!cation algorithms) on three datasets
were analyzed. According to the authors, although the
experimental results are affected by the value of the
classi!cation algorithm parameters, the models based
on Stacking are more ef!cient than the single-method
models. Moreover, they observed that the exclusion
of a level-0 classi!er does not necessarily reduce the
Stacking performance.

Hu and Tsoukas62 applied a method based on
the Stacking methodology to identify the factors that
affect consumer choices. The main goal of this study
was to investigate the role of demographic and situ-
ational factors on consumer choices. In their investi-
gation, they use classi!er ensembles composed only
of ANNs. According to the authors, all implemented
models bene!ted from stacked generalization, and the
best models are those that contain exclusively situa-
tional variables.

Qian and Rasheed analyzed Stacking and Voting
as tools to predict the trend of the Dow Jones index63

and the trend of the exchange spot rate of the US dol-
lar against the British pound trend.64 In their investi-
gation, they used arti!cial neural networks, decision
trees and k-nearest neighbors as level-0 classi!ers but
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provided no information about the meta-classi!er. In
both studies, they conclude that Stacking and Voting
have a similar performance, and in both cases, their
gain in relation to the best level-0 classi!er is null. The
authors argue that this result is due to the lack of diver-
sity among the level-0 classi!ers.

The application of the main idea behind the
Stacked Generalization is known as blending of clas-
si!ers in some domains.65 Such is the case of the work
of Sill et.al66 in which the authors present the applica-
tion of Stacking as a key facet of the second place team
solution to the Net"ix Prize Competition.67 In this
work, the authors presented a meta-level linear tech-
nique, known as Feature-Weighted Linear Stacking.
This technique combines the base classi!ers predic-
tions linearly through coef!cients that are themselves
linear functions of some additional inputs known as
meta-features. This approach demonstrates an accu-
racy improvement over the standard linear stacking.
However, as authors claim, the creation of useful
meta-features is an art, so it depends on the applica-
tion domain.

Escalera et al.,68 applied Stacked Sequential
Learning53(SSL)to a problem related with laughter
detection. In their study, they proposed the fusion of
both audio and video cues to deal with the laugh-
ter recognition in face-to-face conversations. Once
the audio and the visual cues have been identi!ed,
processed, and merged to obtain a unique feature
vector, a level-0 classi!er is trained. Then, according
to the SSL scheme, an extended data set is created
which joins the original training data features with
the predicted labels produced by the level-0 classi!er.
Finally, this extended data set is used as input to a sec-
ond classi!er. The experimental results demonstrated
that the proposed model outperforms AdaBoost.
Nevertheless, the use of both audio and visual cues
does not seem to improve the results obtained when
only audio features are used.

A study developed using work from computer
science, psychiatry, and nuclear medicine69 analyzed
the use of Stacking to differentiate Alzheimer’s dis-
ease and mild cognitive impairment. Because medicine
offers a host of tools designed to help the physician
in his diagnostic process, in this study, Stacking is
viewed as not only a method for building hetero-
gonous ensembles but also a method for integrating
the decisions from different diagnostic tools, includ-
ing PET scans, Consortium to Establish a Registry
of Alzheimer’s Disease, mini-mental state examination
and clock drawing tests. Therefore, each level-0 classi-
!er is k-NN trained from data from one of the sources.
The experimental results demonstrated that the mean
accuracy of a simple k-NN including all of the features

was 76%, whereas the mean accuracy of Stacking was
83%. Thus, Stacking achieved an accuracy gain of
7%.

StackTIS70 is a Stacking-based methodology
whose objective is the detection of potential trans-
lation initiation sites (TISs). The proposed model is
based on the combination of three different classi!ers,
where each classi!er learns from data described by dif-
ferent attributes. The !rst classi!er is an SVM that
is trained to identify the coding potential of a cDNA
sequence. This classi!er uses the 64 codon frequencies
as input. The second classi!er is a !rst-order homoge-
neous Markov chain, whose inputs are the segment of
cDNA that enclose an ATG codon (starting from posi-
tion −7 and ending at position +5). The third classi!er
is a heuristic model that calculates the probabilities
of an ATG to be the TIS based on its distance from
the 5’. Finally, the predictions given by these three
components are used as input to the meta-classi!er. In
this work, two different learning algorithms were con-
sidered as meta-classi!ers, namely, MLR and M5’,71

but the experimental results indicate than M5’ out-
performs MLR slightly. StackTIS was tested on two
human datasets and one rice dataset. According to
the authors, for the three evaluated domains, StackTIS
outperforms other popular approaches that are com-
mon in the TIS prediction literature.

Razmara and Sarkar (•Razmara & Sarkar, AQ4
2013) applied an Stacking variant to the !eld of the
Statistical Machine Translation. In their investiga-
tion, the authors adopted the approach suggested by
Wolpert under which cross-validation can be used
to construct different weak classi!ers. So, Razmara
and Sarkar propose building an homogeneous ensem-
ble in which each base classi!er–translation model
implemented using a statistical machine translation
system called Kriya (Sankaran, Razmara, & Sarkar,
2012)− is training using k-1 partitions of the data.
Then, the remaining data partition is used to tune the
base learner parameters. The hypothesis from these
base classi!ers are combined in a secondmodule called
Ensemble Decoding. To provide a greater "exibility in
its answer− scores−, the Ensemble Decoding module
is prepared to handle different mixture operations:
weighted sum, weighted max, model switching, and
product. Experimental evaluation on two language
pairs showed that the proposed model outperforms
Bayesian Model Averaging and, in most cases the
ensemble outperforms every one of its base translator.

CONCLUSION
Today, it is common to use algorithms, such as Bag-
ging and Boosting, to generate ensembles of classi!ers
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as a standard method in classi!cation tasks. Such tech-
niques are implemented in a large number of data
mining tools, which facilitates their use and evalua-
tion. Thus, many studies have focused on the appli-
cation of these techniques in a variety of domains.
However, after more than two decades since the pub-
lication of Wolpert’s paper, the use of Stacking in real
applications remains relatively rare, possibly due to
what Wolpert called black art. In other words, there
are several issues that could be considered when using
Stacking, such as the following:

• The algorithms that are used to create the
base-level classi!ers and their learning parame-
ters,

• The number of base classi!ers,
• The algorithm used to generate the

meta-classi!er and its learning parameters,
and

• The type of attributes that should be used to
create the meta-data.

One of the conclusions of this study is that
there are many contradictory results and that there
is no consensus on which Stacking con!guration

is optimal. This conclusion corroborates Wolpert’s
statement regarding the need for prior knowledge to
con!gure these parameters.

Nevertheless, in recent years, there has been a
trend in the literature toward Stacked Generalization,
which is the use of meta-heuristics, such as genetic
algorithms, ant colonies or arti!cial bee colonies, to
automatically con!gure the Stacking system param-
eters. Thus, the Stacking system that is generated is
domain dependent. However, this type of approach
has a higher computational cost than other Stack-
ing approaches because several generations of indi-
viduals must be evaluated to obtain the !nal system.
Even if this task is not crucial for a large number of
domains, given that most classi!cation tasks do not
require real-time operation, it could be a relevant issue
in the era of big data. However, it would be interesting
to explore adding incremental capabilities to Stacking
in future research.

Although Stacking is applied to real-world prob-
lems less frequently than other ensemble methods,
such as Bagging or Boosting, the exponential growth
of data as well as the diversity of these data continues
to make Stacking an interesting alternative for gener-
ating ensembles.
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