
An Empirical Study of Smoothing Techniques for
Language Modeling

Citation
Chen, Stanley F. and Joshua Goodman. 1998. An Empirical Study of Smoothing Techniques for
Language Modeling. Harvard Computer Science Group Technical Report TR-10-98.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104739
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Empirical%20Study%20of%20Smoothing%20Techniques%20for%20Language%20Modeling&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

An Empirical Study of Smoothing Techniques for

Language Modeling

Stanley F. Chen

and

Joshua Goodman

TR-10-98

August 1998

Computer Science Group

Harvard University

Cambridge, Massachusetts

An Empirical Study of Smoothing Techniques for Language

Modeling

Stanley F. Chen

School of Computer Science

Carnegie Mellon University

5000 Forbes Ave.

Pittsburgh, PA 15213

sfc@cs.cmu.edu

Joshua Goodman

Engineering Sciences Laboratory

Harvard University

40 Oxford St.

Cambridge, MA 02138

goodman@eecs.harvard.edu

July 24, 1998

Abstract

We present a tutorial introduction to n-gram models for language modeling and survey

the most widely-used smoothing algorithms for such models. We then present an extensive

empirical comparison of several of these smoothing techniques, including those described by

Jelinek and Mercer (1980), Katz (1987), Bell, Cleary, and Witten (1990), Ney, Essen, and

Kneser (1994), and Kneser and Ney (1995). We investigate how factors such as training data

size, training corpus (e.g., Brown versus Wall Street Journal), count cuto�s, and n-gram order

(bigram versus trigram) a�ect the relative performance of these methods, which is measured

through the cross-entropy of test data. Our results show that previous comparisons have not

been complete enough to fully characterize smoothing algorithm performance. We introduce

methodologies for analyzing smoothing algorithm e�cacy in detail, and using these techniques

we motivate a novel variation of Kneser-Ney smoothing that consistently outperforms all other

algorithms evaluated. Finally, results showing that improved language model smoothing leads

to improved speech recognition performance are presented.

1 Introduction

Language models are a staple in many domains including speech recognition, optical character

recognition, handwriting recognition, machine translation, and spelling correction (Church, 1988;

Brown et al., 1990; Hull, 1992; Kernighan, Church, and Gale, 1990; Srihari and Baltus, 1992).

The dominant technology in language modeling is n-gram models, which are straightforward to

construct except for the issue of smoothing, a technique used to better estimate probabilities when

there is insu�cient data to estimate probabilities accurately. An enormous number of techniques

have been proposed for smoothing n-gram models, many more than we could possibly describe

here; however, there has been a conspicuous absence of studies that systematically compare the

relative performance of more than just a few of these algorithms on multiple data sets. As a result,

from the literature it is impossible to gauge the relative performance of existing algorithms in all

but a handful of situations.

In this work, we attempt to dispel some of the mystery surrounding smoothing by determining

which algorithms work well in which situations, and why. We begin by giving a tutorial introduction

2

to n-gram models and smoothing, and survey the most widely-used smoothing techniques. We then

present an extensive empirical comparison of several of these smoothing techniques, including those

described by Jelinek and Mercer (1980), Katz (1987), Bell, Cleary, and Witten (1990), Ney, Essen,

and Kneser (1994), and Kneser and Ney (1995). We describe experiments that systematically vary

a wide range of variables, including training data size, corpus, count cuto�s, and n-gram order, and

show that most of these variables signi�cantly a�ect the relative performance of algorithms. We

introduce methodologies for analyzing smoothing algorithm performance in detail, and using these

techniques we motivate a novel variation of Kneser-Ney smoothing that consistently outperforms all

other algorithms evaluated. Finally, we present results showing that better smoothing algorithms

lead to better speech recognition performance, yielding up to a 1% absolute di�erence in word-error

rate. This work is an extension of our previously reported research (Chen and Goodman, 1996;

Chen, 1996).

This paper is structured as follows: In the remainder of this section, we present an introduction

to language modeling, n-gram models, and smoothing. In Section 2, we survey previous work on

smoothing n-gram models. In Section 3, we describe our novel variation of Kneser-Ney smoothing.

In Section 4, we discuss various aspects of our experimental methodology, including the details of

our implementations of various smoothing algorithms, parameter optimization, and data sets. In

Section 5, we present the results of all of our experiments. Finally, in Section 6 we summarize the

most important conclusions of this work.

1.1 Language Modeling and n-Gram Models

A language model is usually formulated as a probability distribution p(s) over strings s that

attempts to re
ect how frequently a string s occurs as a sentence. For example, for a lan-

guage model describing spoken language, we might have p(hello) � 0:01 since perhaps one

out of every hundred sentences a person speaks is hello. On the other hand, we would have

p(chicken funky overload ketchup) � 0 and p(asbestos gallops gallantly) � 0 since

it is extremely unlikely anyone would utter either string. Notice that unlike in linguistics, grammat-

icality is irrelevant in language modeling; even though the string asbestos gallops gallantly

is grammatical, we still assign it a near-zero probability.

The most widely-used language models, by far, are n-gram language models. We introduce

these models by considering the case n = 2; these models are called bigram models. First, we

notice that for a sentence s composed of the words w

1

� � �w

l

, without loss of generality we can

express p(s) as

p(s) = p(w

1

)p(w

2

jw

1

)p(w

3

jw

1

w

2

) � � � p(w

l

jw

1

� � �w

l�1

) =

l

Y

i=1

p(w

i

jw

1

� � �w

i�1

)

In bigram models, we make the approximation that the probability of a word depends only on the

identity of the immediately preceding word, giving us

p(s) =

l

Y

i=1

p(w

i

jw

1

� � �w

i�1

) �

l

Y

i=1

p(w

i

jw

i�1

) (1)

To make p(w

i

jw

i�1

) meaningful for i = 1, we can pad the beginning of the sentence with a

distinguished token <bos>; that is, we pretend w

0

is <bos>. In addition, to make the sum

of the probabilities of all strings

P

s

p(s) equal 1, it is necessary to place a distinguished token

3

<eos> at the end of sentences and to include this in the product in equation (1).

1

For example,

to calculate p(John read a book) we would take

p(John read a book) = p(Johnj<bos>)p(readjJohn)p(ajread)p(bookja)p(<eos>jbook)

To estimate p(w

i

jw

i�1

), the frequency with which the word w

i

occurs given that the last word

is w

i�1

, we can simply count how often the bigram w

i�1

w

i

occurs in some text and normalize. Let

c(w

i�1

w

i

) denote the number of times the bigram w

i�1

w

i

occurs in the given text. Then, we can

take

p(w

i

jw

i�1

) =

c(w

i�1

w

i

)

P

w

i

c(w

i�1

w

i

)

(2)

The text available for building a model is called training data. For n-gram models, the amount

of training data used is typically many millions of words. The estimate for p(w

i

jw

i�1

) given in

equation (2) is called themaximum likelihood (ML) estimate of p(w

i

jw

i�1

), because this assignment

of probabilities yields the bigram model that assigns the highest probability to the training data

of all possible bigram models.

For n-gram models where n > 2, instead of conditioning the probability of a word on the

identity of just the preceding word, we condition this probability on the identity of the last n� 1

words. Generalizing equation (1) to n > 2, we get

p(s) =

l+1

Y

i=1

p(w

i

jw

i�1

i�n+1

) (3)

where w

j

i

denotes the words w

i

� � �w

j

and where we take w

�n+2

through w

0

to be <bos> and w

l+1

to be <eos>. To estimate the probabilities p(w

i

jw

i�1

i�n+1

), the analogous equation to equation (2)

is

p(w

i

jw

i�1

i�n+1

) =

c(w

i

i�n+1

)

P

w

i

c(w

i

i�n+1

)

(4)

In practice, the largest n in wide use is n = 3; this model is referred to as a trigram model. The

words w

i�1

i�n+1

preceding the current word w

i

are sometimes called the history. Notice that the

sum

P

w

i

c(w

i

i�n+1

) is equal to the count of the history c(w

i�1

i�n+1

); both forms are used in this

text.

We sometimes refer to the value n of an n-gram model as its order. This terminology comes

from the area of Markov models (Markov, 1913), of which n-gram models are an instance. In

particular, an n-gram model can be interpreted as a Markov model of order n� 1.

Let us consider a small example. Let our training data S be composed of the three sentences

(\John read Moby Dick"; \Mary read a different book"; \She read a book by Cher")

and let us calculate p(John read a book) for the maximum likelihood bigram model. We have

p(Johnj<bos>) =

c(<bos> John)

P

w

c(<bos>w)

=

1

3

p(readjJohn) =

c(John read)

P

w

c(John w)

=

1

1

1

Without this, the sum of the probabilities of all strings of a given length is 1, and the sum of the probabilities

of all strings is then in�nite.

4

p(ajread) =

c(read a)

P

w

c(read w)

=

2

3

p(bookja) =

c(a book)

P

w

c(a w)

=

1

2

p(<eos>jbook) =

c(book <eos>)

P

w

c(book w)

=

1

2

giving us

p(John read a book) = p(Johnj<bos>)p(readjJohn)p(ajread)p(bookja)p(<eos>jbook)

=

1

3

� 1�

2

3

�

1

2

�

1

2

� 0:06

1.2 Smoothing

Now, consider the sentence Cher read a book. We have

p(readjCher) =

c(Cher read)

P

w

c(Cher w)

=

0

1

giving us p(Cher read a book) = 0. Obviously, this is an underestimate for the probability of

Cher read a book as there is some probability that the sentence occurs. To show why it is

important that this probability should be given a nonzero value, we turn to the primary application

for language models, speech recognition. In speech recognition, one attempts to �nd the sentence s

that maximizes p(sjA) =

p(Ajs)p(s)

p(A)

for a given acoustic signal A. If p(s) is zero, then p(sjA) will be

zero and the string s will never be considered as a transcription, regardless of how unambiguous the

acoustic signal is. Thus, whenever a string s such that p(s) = 0 occurs during a speech recognition

task, an error will be made. Assigning all strings a nonzero probability helps prevent errors in

speech recognition.

Smoothing is used to address this problem. The term smoothing describes techniques for

adjusting the maximum likelihood estimate of probabilities (as in equations (2) and (4)) to produce

more accurate probabilities. The name smoothing comes from the fact that these techniques

tend to make distributions more uniform, by adjusting low probabilities such as zero probabilities

upward, and high probabilities downward. Not only do smoothing methods generally prevent zero

probabilities, but they also attempt to improve the accuracy of the model as a whole. Whenever

a probability is estimated from few counts, smoothing has the potential to signi�cantly improve

estimation.

To give an example, one simple smoothing technique is to pretend each bigram occurs once

more than it actually does (Lidstone, 1920; Johnson, 1932; Je�reys, 1948), yielding

p(w

i

jw

i�1

) =

1 + c(w

i�1

w

i

)

P

w

i

[1 + c(w

i�1

w

i

)]

=

1 + c(w

i�1

w

i

)

jV j+

P

w

i

c(w

i�1

w

i

)

(5)

where V is the vocabulary, the set of all words being considered.

2

Let us reconsider the previous

example using this new distribution, and let us take our vocabulary V to be the set of all words

occurring in the training data S, so that we have jV j = 11.

2

Notice that if V is taken to be in�nite, the denominator is in�nite and all probabilities are set to zero. In

practice, vocabularies are typically �xed to be tens of thousands of words or less. All words not in the vocabulary

are mapped to a single distinguished word, usually called the unknown word.

5

Jelinek-Mercer N�adas Katz

bigram 118 119 117

trigram 89 91 88

Table 1: Perplexities reported by Katz and N�adas on 100-sentence test set for three di�erent

smoothing algorithms

For the sentence John read a book, we now have

p(John read a book) = p(Johnj<bos>)p(readjJohn)p(ajread)p(bookja)p(<eos>jbook)

=

2

14

�

2

12

�

3

14

�

2

13

�

2

13

� 0:0001

In other words, we estimate that the sentence John read a book occurs about once every ten

thousand sentences. This is much more reasonable than the maximum likelihood estimate of 0.06,

or about once every seventeen sentences. For the sentence Cher read a book, we have

p(Cher read a book) = p(Cherj<bos>)p(readjCher)p(ajread)p(bookja)p(<eos>jbook)

=

1

14

�

1

12

�

3

14

�

2

13

�

2

13

� 0:00003

Again, this is more reasonable than the zero probability assigned by the maximum likelihood

model.

While smoothing is a central issue in language modeling, the literature lacks a de�nitive com-

parison between the many existing techniques. Previous studies (Nadas, 1984; Katz, 1987; Church

and Gale, 1991; MacKay and Peto, 1995; Kneser and Ney, 1995) only compare a small number of

methods (typically two) on one or two corpora and using a single training set size. As a result, it

is currently di�cult for a researcher to intelligently choose among smoothing schemes.

In this work, we carry out an extensive empirical comparison of the most widely-used smoothing

techniques, including those described by Jelinek and Mercer (1980), Katz (1987), Bell, Cleary,

and Witten (1990), Ney, Essen, and Kneser (1994), and Kneser and Ney (1995). We carry out

experiments over many training set sizes on varied corpora using n-grams of various order, and show

how these factors a�ect the relative performance of smoothing techniques. For the methods with

parameters that can be tuned to improve performance, we perform an automated search for optimal

values and show that sub-optimal parameter selection can signi�cantly decrease performance. To

our knowledge, this is the �rst smoothing work that systematically investigates any of these issues.

Our results make it apparent that previous evaluations of smoothing techniques have not been

thorough enough to provide an adequate characterization of the relative performance of di�erent

algorithms. For instance, Katz (1987) compares his algorithm with an unspeci�ed version of

Jelinek-Mercer deleted estimation and with N�adas smoothing (Nadas, 1984) using a single training

corpus and a single test set of 100 sentences. The perplexities reported are displayed in Table 1.

Katz concludes that his algorithm performs at least as well as Jelinek-Mercer smoothing and N�adas

smoothing. In Section 5.1.1, we will show that, in fact, the relative performance of Katz and

Jelinek-Mercer smoothing depends on training set size, with Jelinek-Mercer smoothing performing

better on smaller training sets, and Katz smoothing performing better on larger sets.

In addition to evaluating the overall performance of various smoothing techniques, we provide

more detailed analyses of performance. We examine the performance of di�erent algorithms on

n-grams with particular numbers of counts in the training data; we �nd that Katz smoothing

6

performs well on n-grams with large counts, while Kneser-Ney smoothing is best for small counts.

We calculate the relative impact on performance of small counts and large counts for di�erent

training set sizes and n-gram orders, and use this data to explain the variation in performance

of di�erent algorithms in di�erent situations. Finally, we use this detailed analysis to motivate a

modi�cation to Kneser-Ney smoothing; the resulting algorithm consistently outperforms all other

algorithms evaluated.

While smoothing is one technique for addressing sparse data issues, there are numerous other

techniques that can be applied, such as word classing (Brown et al., 1992b) or decision-tree models

(Bahl et al., 1989). However, these other techniques involve the use of models other than n-gram

models. We constrain our discussion of smoothing to techniques where the structure of a model

is unchanged but where the method used to estimate the probabilities of the model is modi�ed.

Smoothing can be applied to these alternative models as well, and it remains to be seen whether

improved smoothing for n-gram models will lead to improved performance for these other models.

1.3 Performance Evaluation

The most common metric for evaluating a language model is the probability that the model assigns

to test data, or the derivative measures of cross-entropy and perplexity. For a smoothed n-gram

model that has probabilities p(w

i

jw

i�1

i�n+1

), we can calculate the probability of a sentence p(s) using

equation (3). Then, for a test set T composed of the sentences (t

1

; : : : ; t

l

T

) we can calculate the

probability of the test set p(T) as the product of the probabilities of all sentences in the set:

p(T) =

l

T

Y

i=1

p(t

i

)

The measure of cross-entropy can be motivated using the well-known relation between predic-

tion and compression (Bell, Cleary, and Witten, 1990; Cover and Thomas, 1991). In particular,

given a language model that assigns probability p(T) to a text T , we can derive a compression

algorithm that encodes the text T using � log

2

p(T) bits. The cross-entropy H

p

(T) of a model

p(w

i

jw

i�1

i�n+1

) on data T is de�ned as

H

p

(T) = �

1

W

T

log

2

p(T) (6)

where W

T

is the length of the text T measured in words.

3

This value can be interpreted as

the average number of bits needed to encode each of the W

T

words in the test data using the

compression algorithm associated with model p(w

i

jw

i�1

i�n+1

). We sometimes refer to cross-entropy

as just entropy.

The perplexity PP

p

(T) of a model p is the reciprocal of the (geometric) average probability

assigned by the model to each word in the test set T , and is related to cross-entropy by the equation

PP

p

(T) = 2

H

p

(T)

Clearly, lower cross-entropies and perplexities are better. Typical perplexities yielded by n-gram

models on English text range from about 50 to almost 1000 (corresponding to cross-entropies from

about 6 to 10 bits/word), depending on the type of text.

3

In this work, we include the end-of-sentence token <eos> when computing W

T

, but not the beginning-of-

sentence tokens.

7

In this work, we take the performance of an algorithm to be its cross-entropy on test data. As

the cross-entropy of a model on test data gives the number of bits required to encode that data,

cross-entropy is a direct measure of application performance for the task of text compression. For

other applications, it is generally assumed that lower entropy correlates with better performance.

For speech recognition, it has been shown that this correlation is reasonably strong (Chen, Beefer-

man, and Rosenfeld, 1998). In Section 5.3.3, we present results that indicate that this correlation

is especially strong when considering only n-gram models that di�er in the smoothing technique

used.

2 Previous Work

In this section, we survey a number of smoothing algorithms for n-gram models. This list is by no

means exhaustive, but includes the algorithms used in the majority of language modeling work.

The algorithms (except for those described in Section 2.9) are presented in chronological order of

introduction.

We �rst describe additive smoothing, a very simple technique that performs rather poorly.

Next, we describe the Good-Turing estimate; this technique is not used alone, but is the basis for

later techniques such as Katz smoothing. We then discuss Jelinek-Mercer and Katz smoothing,

two techniques that generally work well. After that, we describe Witten-Bell smoothing; while

Witten-Bell smoothing is well-known in the compression community, we will later show that it

has mediocre performance compared to some of the other techniques we describe. We go on to

discuss absolute discounting, a simple technique with modest performance that forms the basis for

the last technique we describe, Kneser-Ney smoothing. Kneser-Ney smoothing works very well,

and variations we describe in Section 3 outperform all other tested techniques. In Section 2.8, we

describe a simple framework that can be used to express most popular smoothing methods, and

recap the surveyed algorithms in terms of this framework.

This section summarizes the original descriptions of previous algorithms, but does not include

the details of our implementations of these algorithms; this information is presented instead in

Section 4.1. As many of the original texts omit important details, our implementations sometimes

di�er signi�cantly from the original algorithm description.

2.1 Additive Smoothing

One of the simplest types of smoothing used in practice is additive smoothing (Lidstone, 1920;

Johnson, 1932; Je�reys, 1948), which is just a generalization of the method given in equation (5).

Instead of pretending each n-gram occurs once more than it does, we pretend it occurs � times

more than it does, where typically 0 < � � 1, i.e.,

p

add

(w

i

jw

i�1

i�n+1

) =

� + c(w

i

i�n+1

)

�jV j+

P

w

i

c(w

i

i�n+1

)

(7)

Lidstone and Je�reys advocate taking � = 1. Gale and Church (1990; 1994) have argued that this

method generally performs poorly.

2.2 Good-Turing Estimate

The Good-Turing estimate (Good, 1953) is central to many smoothing techniques. The Good-

Turing estimate states that for any n-gram that occurs r times, we should pretend that it occurs

8

r

�

times where

r

�

= (r + 1)

n

r+1

n

r

(8)

and where n

r

is the number of n-grams that occur exactly r times in the training data. To convert

this count to a probability, we just normalize: for an n-gram � with r counts, we take

p

GT

(�) =

r

�

N

(9)

where N =

P

1

r=0

n

r

r

�

. Notice that

N =

1

X

r=0

n

r

r

�

=

1

X

r=0

(r + 1)n

r+1

=

1

X

r=1

rn

r

i.e., N is equal to the original number of counts in the distribution.

To derive this estimate, assume that there are a total of s di�erent n-grams �

1

; : : : ; �

s

and

that their true probabilities or frequencies are p

1

; : : : ; p

s

, respectively. Now, let us estimate the

true probability of an n-gram �

i

that occurs r times in some data, given that we don't know the

identity of the n-gram �

i

but that we do know the candidate probabilities p

1

; : : : ; p

s

. We can

interpret this as calculating the value E(p

i

jc(�

i

) = r), where E denotes expected value and where

c(�

i

) denotes the number of times the n-gram �

i

occurs in the given data. This can be expanded

as

E(p

i

jc(�

i

) = r) =

s

X

j=1

p(i = jjc(�

i

) = r)p

j

(10)

The probability p(i = jjc(�

i

) = r) is the probability that an unknown n-gram �

i

with r counts is

actually the jth n-gram �

j

(with corresponding frequency p

j

). We can rewrite this as

p(i = jjc(�

i

) = r) =

p(c(�

j

) = r)

P

s

j=1

p(c(�

j

) = r)

=

�

N

r

�

p

r

j

(1� p

j

)

N�r

P

s

j=1

�

N

r

�

p

r

j

(1� p

j

)

N�r

=

p

r

j

(1� p

j

)

N�r

P

s

j=1

p

r

j

(1� p

j

)

N�r

where N =

P

s

j=1

c(�

j

), the total number of counts. Substituting this into equation (10), we get

E(p

i

jc(�

i

) = r) =

P

s

j=1

p

r+1

j

(1� p

j

)

N�r

P

s

j=1

p

r

j

(1� p

j

)

N�r

(11)

Now, consider E

N

(n

r

), the expected number of n-grams with exactly r counts given that there

are a total of N counts. This is equal to the sum of the probability that each n-gram has exactly

r counts:

E

N

(n

r

) =

s

X

j=1

p(c(�

j

) = r) =

s

X

j=1

�

N

r

�

p

r

j

(1� p

j

)

N�r

We can substitute this expression into equation (11) to yield

E(p

i

jc(�

i

) = r) =

r + 1

N + 1

E

N+1

(n

r+1

)

E

N

(n

r

)

This is an estimate for the expected probability of an n-gram �

i

with r counts; to express this in

terms of a corrected count r

�

we use equation (9) to get

r

�

= Np(�

i

) = N

r + 1

N + 1

E

N+1

(n

r+1

)

E

N

(n

r

)

� (r + 1)

n

r+1

n

r

9

Notice that the approximations E

N

(n

r

) � n

r

and E

N+1

(n

r+1

) � n

r+1

are used in the above

equation. In other words, we use the empirical values of n

r

to estimate what their expected values

are.

The Good-Turing estimate cannot be used when n

r

= 0; it is generally necessary to \smooth"

the n

r

, e.g., to adjust the n

r

so that they are all above zero. Recently, Gale and Sampson (1995)

have proposed a simple and e�ective algorithm for smoothing these values.

In practice, the Good-Turing estimate is not used by itself for n-gram smoothing, because it

does not include the combination of higher-order models with lower-order models necessary for

good performance, as discussed in the following sections. However, it is used as a tool in several

smoothing techniques.

4

2.3 Jelinek-Mercer Smoothing

Consider the case of constructing a bigrammodel on training data where we have that c(burnish the) =

0 and c(burnish thou) = 0. Then, according to both additive smoothing and the Good-Turing

estimate, we will have

p(thejburnish) = p(thoujburnish)

However, intuitively we should have

p(thejburnish) > p(thoujburnish)

because the word the is much more common than the word thou. To capture this behavior, we

can interpolate the bigram model with a unigram model. A unigram model (or 1-gram model)

conditions the probability of a word on no other words, and just re
ects the frequency of words in

text. For example, the maximum likelihood unigram model is

p

ML

(w

i

) =

c(w

i

)

P

w

i

c(w

i

)

We can linearly interpolate a bigram model and unigram model as follows:

p

interp

(w

i

jw

i�1

) = � p

ML

(w

i

jw

i�1

) + (1� �) p

ML

(w

i

)

where 0 � � � 1. Because p

ML

(thejburnish) = p

ML

(thoujburnish) = 0 while presumably

p

ML

(the)� p

ML

(thou), we will have that

p

interp

(thejburnish) > p

interp

(thoujburnish)

as desired.

In general, it is useful to interpolate higher-order n-gram models with lower-order n-gram

models, because when there is insu�cient data to estimate a probability in the higher-order model,

the lower-order model can often provide useful information. A general class of interpolated models

4

One issue in applying the Good-Turing estimate is deciding which distribution to apply it to. That is, we can

apply it to a joint distribution on n-grams, e.g., the joint distribution on bigrams p(w

i�1

w

i

). We can then convert

the corrected counts r

�

into conditional probabilities p(w

i

jw

i�1

). Another choice, however, is to apply it to each

conditional distribution separately, e.g., to the distribution p(w

i

jw

i�1

) for each w

i�1

. With the former strategy,

there is plenty of data to estimate the r

�

accurately; however, r

�

will only represent a good average value over all

conditional distributions. The ideal adjustment of a count changes between conditional distributions. While taking

the latter strategy can exhibit this behavior, data sparsity is a problem in estimating the r

�

. In the smoothing

algorithms to be described, Katz smoothing uses the former strategy, while the latter perspective can be viewed as

motivating Witten-Bell smoothing and absolute discounting.

10

is described by Jelinek and Mercer (1980). An elegant way of performing this interpolation is given

by Brown et al. (1992a) as follows

p

interp

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + (1� �

w

i�1

i�n+1

) p

interp

(w

i

jw

i�1

i�n+2

) (12)

That is, the nth-order smoothed model is de�ned recursively as a linear interpolation between

the nth-order maximum likelihood model and the (n � 1)th-order smoothed model. To end the

recursion, we can take the smoothed 1st-order model to be the maximum likelihood distribution,

or we can take the smoothed 0th-order model to be the uniform distribution

p

unif

(w

i

) =

1

jV j

Given �xed p

ML

, it is possible to search e�ciently for the �

w

i�1

i�n+1

that maximize the probability

of some data using the Baum-Welch algorithm (Baum, 1972). To yield meaningful results, the data

used to estimate the �

w

i�1

i�n+1

need to be di�erent from the data used to calculate the p

ML

.

5

In

held-out interpolation, one reserves a section of the training data for this purpose, where this held-

out data is not used in calculating the p

ML

. Alternatively, Jelinek and Mercer describe a technique

known as deleted interpolation or deleted estimation where di�erent parts of the training data

rotate in training either the p

ML

or the �

w

i�1

i�n+1

; the results are then averaged.

Notice that the optimal �

w

i�1

i�n+1

will be di�erent for di�erent histories w

i�1

i�n+1

. For example,

for a context we have seen thousands of times, a high � will be suitable since the higher-order

distribution will be very reliable; for a history that has occurred only once, a lower � will be

appropriate. Training each parameter �

w

i�1

i�n+1

independently is not generally felicitous; we would

need an enormous amount of data to train so many independent parameters accurately. Instead,

Jelinek and Mercer suggest dividing the �

w

i�1

i�n+1

into a moderate number of partitions or buckets,

and constraining all �

w

i�1

i�n+1

in the same bucket to have the same value, thereby reducing the

number of independent parameters to be estimated. Ideally, we should tie together those �

w

i�1

i�n+1

that we have an a priori reason to believe should have similar values. Bahl, Jelinek, and Mercer

(1983) suggest choosing these sets of �

w

i�1

i�n+1

according to

P

w

i

c(w

i

i�n+1

), the total number of

counts in the higher-order distribution being interpolated (which is equal to the number of counts

of the corresponding history). As touched on above, this total count should correlate with how

strongly the higher-order distribution should be weighted; the higher this count, the higher �

w

i�1

i�n+1

should be. More speci�cally, Bahl et al. suggest partitioning the range of possible total count

values and taking all �

w

i�1

i�n+1

associated with the same partition to be in the same bucket. In

previous work (Chen, 1996), we show that bucketing according to the average number of counts

per nonzero element in a distribution

P

w

i

c(w

i

i�n+1

)

jw

i

:c(w

i

i�n+1

)>0j

yields better performance than using the

value

P

w

i

c(w

i

i�n+1

).

2.4 Katz Smoothing

Katz smoothing (1987) extends the intuitions of the Good-Turing estimate by adding the com-

bination of higher-order models with lower-order models. We �rst describe Katz smoothing for

5

When the same data is used to estimate both, setting all �

w

i�1

i�n+1

to one yields the optimal result.

11

bigram models. For a bigram w

i

i�1

with count r = c(w

i

i�1

), we calculate its corrected count using

the equation

c

katz

(w

i

i�1

) =

�

d

r

r if r > 0

�(w

i�1

) p

ML

(w

i

) if r = 0

(13)

That is, all bigrams with a nonzero count r are discounted according to a discount ratio d

r

.

The discount ratio d

r

is approximately

r

�

r

, the discount predicted by the Good-Turing estimate,

and will be speci�ed exactly later. The counts subtracted from the nonzero counts are then

distributed among the zero-count bigrams according to the next lower-order distribution, i.e., the

unigram model. The value �(w

i�1

) is chosen so that the total number of counts in the distribution

P

w

i

c

katz

(w

i

i�1

) is unchanged, i.e.,

P

w

i

c

katz

(w

i

i�1

) =

P

w

i

c(w

i

i�1

). The appropriate value for

�(w

i�1

) is

�(w

i�1

) =

1�

P

w

i

:c(w

i

i�1

)>0

p

katz

(w

i

jw

i�1

)

P

w

i

:c(w

i

i�1

)=0

p

ML

(w

i

)

=

1�

P

w

i

:c(w

i

i�1

)>0

p

katz

(w

i

jw

i�1

)

1�

P

w

i

:c(w

i

i�1

)>0

p

ML

(w

i

)

To calculate p

katz

(w

i

jw

i�1

) from the corrected count, we just normalize:

p

katz

(w

i

jw

i�1

) =

c

katz

(w

i

i�1

)

P

w

i

c

katz

(w

i

i�1

)

The d

r

are calculated as follows: large counts are taken to be reliable, so they are not discounted.

In particular, Katz takes d

r

= 1 for all r > k for some k, where Katz suggests k = 5. The discount

ratios for the lower counts r � k are derived from the Good-Turing estimate applied to the global

bigram distribution; that is, the n

r

in equation (8) denote the total numbers of bigrams that

occur exactly r times in the training data. These d

r

are chosen such that the resulting discounts

are proportional to the discounts predicted by the Good-Turing estimate, and such that the total

number of counts discounted in the global bigram distribution is equal to the total number of counts

that should be assigned to bigrams with zero counts according to the Good-Turing estimate.

6

The

former constraint corresponds to the equations

1� d

r

= �(1�

r

�

r

)

for r 2 f1; : : : ; kg for some constant �. The Good-Turing estimate predicts that the total number

of counts that should be assigned to bigrams with zero counts is n

0

0

�

= n

0

n

1

n

0

= n

1

, so the second

constraint corresponds to the equation

k

X

r=1

n

r

(1� d

r

)r = n

1

The unique solution to these equations is given by

d

r

=

r

�

r

�

(k+1)n

k+1

n

1

1�

(k+1)n

k+1

n

1

6

In the normal Good-Turing estimate, the total number of counts discounted from n-grams with nonzero counts

happens to be equal to the total number of counts assigned to n-grams with zero counts. Thus, the normalization

constant for a smoothed distribution is identical to that of the original distribution. In Katz smoothing, Katz tries

to achieve a similar e�ect except through discounting only counts r � k.

12

Katz smoothing for higher-order n-gram models is de�ned analogously. As we can see in

equation (13), the bigram model is de�ned in terms of the unigram model; in general, the Katz

n-gram model is de�ned in terms of the Katz (n � 1)-gram model, similar to Jelinek-Mercer

smoothing. To end the recursion, the Katz unigram model is taken to be the maximum likelihood

unigram model.

Recall that we mentioned in Section 2.2 that it is usually necessary to smooth n

r

when using

the Good-Turing estimate, e.g., for those n

r

that are very low. However, in Katz smoothing this

is not essential because the Good-Turing estimate is only used for small counts r � k, and n

r

is

generally fairly high for these values of r.

2.5 Witten-Bell Smoothing

Witten-Bell smoothing (Bell, Cleary, and Witten, 1990; Witten and Bell, 1991)

7

was developed for

the task of text compression, and can be considered to be an instance of Jelinek-Mercer smooth-

ing. In particular, the nth-order smoothed model is de�ned recursively as a linear interpolation

between the nth-order maximum likelihood model and the (n � 1)th-order smoothed model as in

equation (12):

p

WB

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + (1� �

w

i�1

i�n+1

) p

WB

(w

i

jw

i�1

i�n+2

) (14)

To compute the parameters �

w

i�1

i�n+1

for Witten-Bell smoothing, we will need to use the number of

unique words that follow the history w

i�1

i�n+1

. We will write this value as N

1+

(w

i�1

i�n+1

�), formally

de�ned as

N

1+

(w

i�1

i�n+1

�) = jfw

i

: c(w

i�1

i�n+1

w

i

) > 0gj (15)

The notation N

1+

is meant to evoke the number of words that have one or more counts, and the �

is meant to evoke a free variable that is summed over. We can then assign the parameters �

w

i�1

i�n+1

for Witten-Bell smoothing such that

8

1� �

w

i�1

i�n+1

=

N

1+

(w

i�1

i�n+1

�)

N

1+

(w

i�1

i�n+1

�) +

P

w

i

c(w

i

i�n+1

)

(16)

Substituting, we can rewrite equation (14) as

p

WB

(w

i

jw

i�1

i�n+1

) =

c(w

i

i�n+1

) +N

1+

(w

i�1

i�n+1

�)p

WB

(w

i

jw

i�1

i�n+2

)

P

w

i

c(w

i

i�n+1

) +N

1+

(w

i�1

i�n+1

�)

(17)

To motivate Witten-Bell smoothing, we can interpret equation (12) as saying: with probability

�

w

i�1

i�n+1

we should use the higher-order model, and with probability 1 � �

w

i�1

i�n+1

we should use

the lower-order model. It seems reasonable that we should use the higher-order model if the

corresponding n-gram occurs in the training data, and back o� to the lower-order model otherwise.

Then, we should take the term 1��

w

i�1

i�n+1

to be the probability that a word not observed after the

history w

i�1

i�n+1

in the training data occurs after that history. To estimate the frequency of these

7

Witten-Bell smoothing refers to method C in these references.

8

Di�erent notation is used in the original text (Bell, Cleary, and Witten, 1990). The order o in the original text

corresponds to our n� 1, the escape probability e

o

corresponds to 1� �

w

i�1

i�n+1

, q

o

corresponds to N

1+

(w

i�1

i�n+1

�),

and C

o

corresponds to

P

w

i

c(w

i

i�n+1

).

13

novel words, imagine traversing the training data in order and counting how many times the word

following the history w

i�1

i�n+1

di�ers from the words in all such previous events. The number of

such events is simply N

1+

(w

i�1

i�n+1

�), the number of unique words that follow the history w

i�1

i�n+1

.

Equation (16) can be viewed as an approximation of this intuition.

The Good-Turing estimate provides another perspective on the estimation of the probability

of novel words following a history. The Good-Turing estimate predicts that the probability of an

event not seen in the training data (using the notation from Section 2.2) is

n

1

N

, the fraction of

counts devoted to items that occur exactly once. Translating this value into the previous notation,

we get

N

1

(w

i�1

i�n+1

�)

P

w

i

c(w

i

i�n+1

)

where

N

1

(w

i�1

i�n+1

�) = jfw

i

: c(w

i�1

i�n+1

w

i

) = 1gj

Equation (16) can be seen as an approximation to the Good-Turing estimate, where the number

of words with at least one count is used in place of the number of words with exactly one count.

Extensive comparisons between Witten-Bell smoothing and other smoothing techniques for

text compression are presented in (Bell, Cleary, and Witten, 1990) and (Witten and Bell, 1991);

however, comparisons with smoothing techniques used in language modeling are not reported. Text

compression applications have requirements, such as the ability to build models very e�ciently and

incrementally, that we do not consider in this work.

2.6 Absolute Discounting

Absolute discounting (Ney, Essen, and Kneser, 1994), like Jelinek-Mercer smoothing, involves the

interpolation of higher- and lower-order models. However, instead of multiplying the higher-order

maximum-likelihood distribution by a factor �

w

i�1

i�n+1

, the higher-order distribution is created by

subtracting a �xed discount D � 1 from each nonzero count. That is, instead of equation (12):

p

interp

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + (1� �

w

i�1

i�n+1

) p

interp

(w

i

jw

i�1

i�n+2

)

we have

p

abs

(w

i

jw

i�1

i�n+1

) =

maxfc(w

i

i�n+1

)�D; 0g

P

w

i

c(w

i

i�n+1

)

+ (1� �

w

i�1

i�n+1

) p

abs

(w

i

jw

i�1

i�n+2

) (18)

To make this distribution sum to 1, we take

1� �

w

i�1

i�n+1

=

D

P

w

i

c(w

i

i�n+1

)

N

1+

(w

i�1

i�n+1

�) (19)

where N

1+

(w

i�1

i�n+1

�) is de�ned as in equation (15) and where we assume 0 � D � 1. Ney, Essen,

and Kneser (1994) suggest setting D through deleted estimation on the training data. They arrive

at the estimate

D =

n

1

n

1

+ 2n

2

(20)

where n

1

and n

2

are the total number of n-grams with exactly one and two counts, respectively,

in the training data, where n is the order of the higher-order model being interpolated.

14

We can motivate absolute discounting using the Good-Turing estimate. Church and Gale

(1991) show empirically that the average Good-Turing discount (r � r

�

) associated with n-grams

with larger counts (r � 3) is largely constant over r. Further supporting evidence is presented in

Section 5.2.1. Furthermore, the scaling factor in equation (19) is similar to the analogous factor

for Witten-Bell smoothing given in equation (16) as described in Section 2.5, and can be viewed

as approximating the same value, the probability of a novel word following a history.

2.7 Kneser-Ney Smoothing

Kneser and Ney (1995) have introduced an extension of absolute discounting where the lower-

order distribution that one combines with a higher-order distribution is built in a novel manner.

In previous algorithms, the lower-order distribution is generally taken to be a smoothed version

of the lower-order maximum likelihood distribution. However, a lower-order distribution is a

signi�cant factor in the combined model only when few or no counts are present in the higher-

order distribution. Consequently, they should be optimized to perform well in these situations.

To give a concrete example, consider building a bigram model on data where there exists a

word that is very common, say Francisco, that occurs only after a single word, say San. Since

c(Francisco) is high, the unigram probability p(Francisco) will be high and an algorithm such

as absolute discounting will assign a relatively high probability to the word Francisco occurring

after novel bigram histories. However, intuitively this probability should not be high since in

the training data the word Francisco follows only a single history. That is, perhaps the word

Francisco should receive a low unigram probability because the only time the word occurs is

when the last word is San, in which case the bigram probability models its probability well.

Extending this line of reasoning, perhaps the unigram probability used should not be propor-

tional to the number of occurrences of a word, but instead to the number of di�erent words that it

follows. To give an intuitive argument, imagine traversing the training data in order and building

a bigram model on the preceding data to predict the current word. Then, whenever the current

bigram does not occur in the preceding data, the unigram probability will be a large factor in

the current bigram probability. If we assign a count to the corresponding unigram whenever such

an event occurs, then the number of counts assigned to each unigram will simply be the number

of di�erent words that it follows. In fact, in Kneser-Ney smoothing the unigram probability in a

bigram model is calculated in this manner; however, this calculation is motivated in an entirely

di�erent manner in the original paper.

The motivation given in the original text is that we should select the lower-order distribution

such that the marginals of the higher-order smoothed distribution should match the marginals of

the training data. For example, for a bigram model we would like to select a smoothed distribution

p

KN

that satis�es the following constraint on unigram marginals for all w

i

:

X

w

i�1

p

KN

(w

i�1

w

i

) =

c(w

i

)

P

w

i

c(w

i

)

(21)

The left-hand side of this equation is the unigram marginal for w

i

of the smoothed bigram distri-

bution p

KN

, and the right-hand side is the unigram frequency of w

i

found in the training data.

Here, we present a di�erent derivation of the resulting distribution than is presented by Kneser

and Ney (1995). We assume that the model has the form given in equation (18)

p

KN

(w

i

jw

i�1

i�n+1

) =

maxfc(w

i

i�n+1

)�D; 0g

P

w

i

c(w

i

i�n+1

)

+

D

P

w

i

c(w

i

i�n+1

)

N

1+

(w

i�1

i�n+1

�) p

KN

(w

i

jw

i�1

i�n+2

)

(22)

15

as opposed to the form used in the original paper

p

KN

(w

i

jw

i�1

i�n+1

) =

8

<

:

maxfc(w

i

i�n+1

)�D;0g

P

w

i

c(w

i

i�n+1

)

if c(w

i

i�n+1

) > 0

(w

i�1

i�n+1

)p

KN

(w

i

jw

i�1

i�n+2

) if c(w

i

i�n+1

) = 0

where
(w

i�1

i�n+1

) is chosen to make the distribution sum to 1. That is, we interpolate the lower-

order distribution with all words, not just with words that have zero counts in the higher-order

distribution. (Using the terminology to be de�ned in Section 2.8, we use an interpolated model

instead of a backo� model.) We use this formulation because it leads to a cleaner derivation

of essentially the same formula; no approximations are required as in the original derivation.

In addition, as will be shown later in this paper, the former formulation generally yields better

performance.

Now, our aim is to �nd a unigram distribution p

KN

(w

i

) such that the constraints given by

equation (21) are satis�ed. Expanding equation (21), we get

c(w

i

)

P

w

i

c(w

i

)

=

X

w

i�1

p

KN

(w

i

jw

i�1

)p(w

i�1

)

For p(w

i�1

), we simply take the distribution found in the training data

p(w

i�1

) =

c(w

i�1

)

P

w

i�1

c(w

i�1

)

Substituting and simplifying, we have

c(w

i

) =

X

w

i�1

c(w

i�1

)p

KN

(w

i

jw

i�1

)

Substituting in equation (22), we have

c(w

i

) =

X

w

i�1

c(w

i�1

)

"

maxfc(w

i�1

w

i

)�D; 0g

P

w

i

c(w

i�1

w

i

)

+

D

P

w

i

c(w

i�1

w

i

)

N

1+

(w

i�1

�) p

KN

(w

i

)

#

=

X

w

i�1

:c(w

i�1

w

i

)>0

c(w

i�1

)

c(w

i�1

w

i

)�D

c(w

i�1

)

+

X

w

i�1

c(w

i�1

)

D

c(w

i�1

)

N

1+

(w

i�1

�) p

KN

(w

i

)

= c(w

i

)�N

1+

(�w

i

)D +D p

KN

(w

i

)

X

w

i�1

N

1+

(w

i�1

�)

= c(w

i

)�N

1+

(�w

i

)D +D p

KN

(w

i

)N

1+

(��)

where

N

1+

(�w

i

) = jfw

i�1

: c(w

i�1

w

i

) > 0gj

is the number of di�erent words w

i�1

that precede w

i

in the training data and where

N

1+

(��) =

X

w

i�1

N

1+

(w

i�1

�) = jf(w

i�1

; w

i

) : c(w

i�1

w

i

) > 0gj =

X

w

i

N

1+

(�w

i

)

Solving for p

KN

(w

i

), we get

p

KN

(w

i

) =

N

1+

(�w

i

)

N

1+

(��)

16

algorithm �(w

i

jw

i�1

i�n+1

)
(w

i�1

i�n+1

) p

smooth

(w

i

jw

i�1

i�n+2

)

additive

c(w

i

i�n+1

)+�

P

w

i

c(w

i

i�n+1

)+�jV j

0 n.a.

Jelinek-Mercer �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + : : : (1� �

w

i�1

i�n+1

) p

interp

(w

i

jw

i�1

i�n+2

)

Katz

d

r

r

P

w

i

c(w

i

i�n+1

)

1�

P

w

i

:c(w

i

i�n+1

)>0

p

katz

(w

i

jw

i�1

i�n+1

)

P

w

i

:c(w

i

i�n+1

)=0

p

katz

(w

i

jw

i�1

i�n+2

)

p

katz

(w

i

jw

i�1

i�n+2

)

Witten-Bell (1�
(w

i�1

i�n+1

))p

ML

(w

i

jw

i�1

i�n+1

) + : : :

N

1+

(w

i�1

i�n+1

�)

N

1+

(w

i�1

i�n+1

�)+

P

w

i

c(w

i

i�n+1

)

p

WB

(w

i

jw

i�1

i�n+2

)

absolute disc.

maxfc(w

i

i�n+1

)�D;0g

P

w

i

c(w

i

i�n+1

)

+ : : :

D

P

w

i

c(w

i

i�n+1

)

N

1+

(w

i�1

i�n+1

�) p

abs

(w

i

jw

i�1

i�n+2

)

Kneser-Ney

(interpolated)

maxfc(w

i

i�n+1

)�D;0g

P

w

i

c(w

i

i�n+1

)

+ : : :

D

P

w

i

c(w

i

i�n+1

)

N

1+

(w

i�1

i�n+1

�)

N

1+

(�w

i

i�n+2

)

N

1+

(�w

i�1

i�n+2

�)

Table 2: Summary of smoothing algorithms using notation from equation (24); the token \: : : "

represents the term
(w

i�1

i�n+1

)p

smooth

(w

i

jw

i�1

i�n+2

) corresponding to interpolation with a lower-

order distribution

Generalizing to higher-order models, we have that

p

KN

(w

i

jw

i�1

i�n+2

) =

N

1+

(�w

i

i�n+2

)

N

1+

(�w

i�1

i�n+2

�)

(23)

where

N

1+

(�w

i

i�n+2

) = jfw

i�n+1

: c(w

i

i�n+1

) > 0gj

N

1+

(�w

i�1

i�n+2

�) = jf(w

i�n+1

; w

i

) : c(w

i

i�n+1

) > 0gj =

X

w

i

N

1+

(�w

i

i�n+2

)

2.8 Algorithm Summary

As noted by Kneser and Ney (1995), most existing smoothing algorithms can be described with

the following equation

p

smooth

(w

i

jw

i�1

i�n+1

) =

�

�(w

i

jw

i�1

i�n+1

) if c(w

i

i�n+1

) > 0

(w

i�1

i�n+1

)p

smooth

(w

i

jw

i�1

i�n+2

) if c(w

i

i�n+1

) = 0

(24)

That is, if an n-gram has a nonzero count then we use the distribution �(w

i

jw

i�1

i�n+1

). Otherwise, we

backo� to the lower-order distribution p

smooth

(w

i

jw

i�1

i�n+2

), where the scaling factor
(w

i�1

i�n+1

) is

chosen to make the conditional distribution sum to one. We refer to algorithms that fall directly in

this framework as backo� models. Katz smoothing is the canonical example of backo� smoothing.

Several smoothing algorithms are expressed as the linear interpolation of higher- and lower-

order n-gram models as in equation (12)

p

smooth

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + (1� �

w

i�1

i�n+1

) p

smooth

(w

i

jw

i�1

i�n+2

)

17

We can rewrite this as

p

smooth

(w

i

jw

i�1

i�n+1

) = �

0

(w

i

jw

i�1

i�n+1

) +
(w

i�1

i�n+1

)p

smooth

(w

i

jw

i�1

i�n+2

)

where

�

0

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

)

and
(w

i�1

i�n+1

) = 1� �

w

i�1

i�n+1

. Then, by taking

�(w

i

jw

i�1

i�n+1

) = �

0

(w

i

jw

i�1

i�n+1

) +
(w

i�1

i�n+1

)p

smooth

(w

i

jw

i�1

i�n+2

) (25)

we see that these models can be placed in the form of equation (24). We refer to models of this

form as interpolated models,

The key di�erence between backo� and interpolated models is that in determining the prob-

ability of n-grams with nonzero counts, interpolated models use information from lower-order

distributions while backo� models do not. In both backo� and interpolated models, lower-order

distributions are used in determining the probability of n-grams with zero counts.

In Table 2, we summarize all of the smoothing algorithms described earlier in terms of equa-

tion (24). For interpolated models, we use the notation \..." as shorthand for the last term in

equation (25).

We note that it is easy to create a backo� version of an interpolated algorithm. Instead of

using equation (25), we can just take

�(w

i

jw

i�1

i�n+1

) = �

0

(w

i

jw

i�1

i�n+1

)

and then adjust
(w

i�1

i�n+1

) appropriately so that probabilities sum to one. As described later, we

have implemented the interpolated and backo� versions of several algorithms.

2.9 Other Smoothing Techniques

In this section, we brie
y describe several smoothing algorithms that are not widely used, but

which are interesting from a theoretical perspective. The algorithms in this section were not

re-implemented in this research, while all preceding algorithms were.

2.9.1 Church-Gale Smoothing

Church and Gale (1991) describe a smoothing method that like Katz's, combines the Good-Turing

estimate with a method for merging the information from lower- and higher-order models.

We describe this method for bigram models. To motivate this method, consider using the

Good-Turing estimate directly to build a bigram distribution. For each bigram with count r, we

would assign a corrected count of r

�

= (r+1)

n

r+1

n

r

. As noted in Section 2.3, this has the undesirable

e�ect of giving all bigrams with zero count the same corrected count; instead, unigram frequencies

should be taken into account. Consider the corrected count assigned by an interpolative model to

a bigram w

i

i�1

with zero counts. In such a model, we would have

p(w

i

jw

i�1

) / p(w

i

)

for a bigram with zero counts. To convert this probability to a count, we multiply by the total

number of counts in the distribution to get

p(w

i

jw

i�1

)

X

w

i

c(w

i

i�1

) / p(w

i

)

X

w

i

c(w

i

i�1

) = p(w

i

)c(w

i�1

) / p(w

i

)p(w

i�1

)

18

Thus, p(w

i�1

)p(w

i

) may be a good indicator of the corrected count of a bigram w

i

i�1

with zero

counts.

In Church-Gale smoothing, bigramsw

i

i�1

are partitioned or bucketed by their p

ML

(w

i�1

)p

ML

(w

i

)

value. That is, they divide the range of possible p

ML

(w

i�1

)p

ML

(w

i

) values into a number of parti-

tions, and all bigrams associated with the same subrange are considered to be in the same bucket.

Then, each bucket is treated as a distinct probability distribution and Good-Turing estimation is

performed within each. For a bigram in bucket b with r

b

counts, we calculate its corrected count

r

�

b

as

r

�

b

= (r

b

+ 1)

n

b;r+1

n

b;r

where the counts n

b;r

include only those bigrams within bucket b.

Church and Gale partition the range of possible p

ML

(w

i�1

)p

ML

(w

i

) values into about 35 buckets,

with three buckets in each factor of 10. To smooth the n

b;r

for the Good-Turing estimate, they

use a smoother by Shirey and Hastie (1988).

While extensive empirical analysis is reported, they present only a single entropy result, com-

paring the above smoothing technique with another smoothing method introduced in their paper,

extended deleted estimation. In our previous work (Chen, 1996), we present further results, indi-

cating that this smoothing works well for bigram language models. When extending this method

to trigram models, there are two options for implementation. Unfortunately, one of these methods

is computationally intractable, and we have demonstrated that the other performs poorly.

2.9.2 Bayesian Smoothing

Several smoothing techniques are motivated within a Bayesian framework. A prior distribution

over smoothed distributions is selected, and this prior is used to somehow arrive at a �nal smoothed

distribution. For example, Nadas (1984) selects smoothed probabilities to be their mean a poste-

riori value given the prior distribution.

Nadas (1984) hypothesizes a prior distribution from the family of beta functions. N�adas reports

results on a single training set indicating that N�adas smoothing performs slightly worse than Katz

and Jelinek-Mercer smoothing.

MacKay and Peto (1995) use Dirichlet priors in an attempt to motivate the linear interpolation

used in Jelinek-Mercer smoothing. They compare their method with Jelinek-Mercer smoothing on

a single training set of about two million words; their results indicate that MacKay-Peto smoothing

performs slightly worse than Jelinek-Mercer smoothing.

3 Modi�ed Kneser-Ney Smoothing

In this section, we introduce a novel variation of Kneser-Ney smoothing, which we refer to as

modi�ed Kneser-Ney smoothing, that we have found has excellent performance. Instead of using

a single discount D for all nonzero counts as in Kneser-Ney smoothing, we have three di�erent

parameters, D

1

, D

2

, and D

3+

, that are applied to n-grams with one, two, and three or more

counts, respectively. In other words, instead of using equation (22) from Section 2.7, we take

p

KN

(w

i

jw

i�1

i�n+1

) =

c(w

i

i�n+1

)�D(c(w

i

i�n+1

))

P

w

i

c(w

i

i�n+1

)

+
(w

i�1

i�n+1

)p

KN

(w

i

jw

i�1

i�n+2

)

19

where

D(c) =

8

>

>

<

>

>

:

0 if c = 0

D

1

if c = 1

D

2

if c = 2

D

3+

if c � 3

To make the distribution sum to 1, we take

(w

i�1

i�n+1

) =

D

1

N

1

(w

i�1

i�n+1

�) +D

2

N

2

(w

i�1

i�n+1

�) +D

3+

N

3+

(w

i�1

i�n+1

�)

P

w

i

c(w

i

i�n+1

)

where N

2

(w

i�1

i�n+1

�) and N

3+

(w

i�1

i�n+1

�) are de�ned analogously to N

1

(w

i�1

i�n+1

�).

This modi�cation is motivated by evidence to be presented in Section 5.2.1 that the ideal

average discount for n-grams with one or two counts is substantially di�erent from the ideal

average discount for n-grams with higher counts. Indeed, we will see later that modi�ed Kneser-

Ney smoothing signi�cantly outperforms regular Kneser-Ney smoothing.

Just as Ney, Essen, and Kneser (1994) have developed an estimate for the optimal D for

absolute discounting and Kneser-Ney smoothing as a function of training data counts (as given in

equation (20)), it is possible to create analogous equations to estimate the optimal values for D

1

,

D

2

, and D

3

(Ries, 1997). The analogous relations for modi�ed Kneser-Ney smoothing are

Y =

n

1

n

1

+ 2n

2

D

1

= 1� 2Y

n

2

n

1

D

2

= 2� 3Y

n

3

n

2

D

3+

= 3� 4Y

n

4

n

3

(26)

4 Experimental Methodology

In this section, we describe the details of our smoothing algorithm implementations, how we

chose parameter values for algorithms with parameters, the data sets we used, and other aspects

of our experimental methodology. Brie
y, we implemented all of the most widely-used smoothing

algorithms for language modeling: additive smoothing, Jelinek-Mercer smoothing, Katz smoothing,

Witten-Bell smoothing, absolute discounting, and Kneser-Ney smoothing. In addition, we selected

a simple instance of Jelinek-Mercer smoothing to serve as a baseline, and we implemented our

modi�ed version of Kneser-Ney smoothing. We compared these smoothing algorithms using text

from the Brown corpus, the North American Business news corpus, the Switchboard corpus, and

the Broadcast News corpus.

It should be noted that there exist language modeling toolkits (Rosenfeld, 1995; Clarkson

and Rosenfeld, 1997) which can be used to build smoothed n-gram models using a variety of

smoothing algorithms, including Katz smoothing, Jelinek-Mercer smoothing, absolute discounting,

and Witten-Bell smoothing. These toolkits have found wide use, most notably in the area of speech

recognition. However, they cannot perform parameter optimization and they do not support all of

the algorithms we wanted to evaluate; thus, they were not suitable for our experiments.

20

4.1 Smoothing Implementations

In this section, we discuss the details of our implementations of various smoothing techniques;

often, the original description of an algorithm is not entirely complete and unambiguous. In

several cases, we implemented multiple variations of an algorithm when an ambiguity was present,

and chose the version that performed best.

The titles of the following sections include the mnemonic we use to refer to the implementations

in later sections. We use the mnemonic when we are referring to our speci�c implementation of

a smoothing method, as opposed to the algorithm in general. For each method, we mention the

parameters that can be tuned to optimize performance; in general, any variable mentioned is a

tunable parameter. Typically, we set parameter values to optimize the perplexity of held-out data;

for more details, refer to Section 4.2.

More details about our complete implementation, including techniques for limiting memory us-

age for large data sets, are given elsewhere (Chen, 1996). One observation that we take advantage

of is that for some algorithms, when optimizing the values of parameters on a held-out set, it is

su�cient to only consider a small portion of the entire n-gram model. That is, when parameter

values change, we need only recompute the portion of the n-gram model relevant to the held-out

set. Thus, for these algorithms it is possible to perform parameter optimization e�ciently, while

for algorithms not falling into this category it is generally necessary to traverse the entire training

set whenever parameters are adjusted. The implementations for which parameter optimization is

expensive include all backo� algorithms and the algorithm jelinek-mercer-delest; this compu-

tational cost is the reason we did not use these algorithms in some of the experiments with very

large data sets.

4.1.1 Additive Smoothing (plus-one, plus-delta)

We consider two versions of additive smoothing. Referring to equation (7) in Section 2.1, we �x

� = 1 in plus-one smoothing. In plus-delta, we consider any �. (The values of parameters such

as � are determined through training on held-out data.)

To improve performance, we perform backo� when a history has no counts. That is, when

c(w

i�1

i�n+1

) = 0 we take

p

add

(w

i

jw

i�1

i�n+1

) = p

add

(w

i

jw

i�1

i�n+2

)

instead of using equation (7). Furthermore, for method plus-delta, instead of a single � we have

a separate �

n

for each level of the n-gram model.

4.1.2 Jelinek-Mercer Smoothing (jelinek-mercer, jelinek-mercer-delest)

Recall that higher-order models are de�ned recursively in terms of lower-order models. We end the

recursion by taking the 0th-order distribution to be the uniform distribution p

unif

(w

i

) = 1=jV j.

We bucket the �

w

i�1

i�n+1

according to

P

w

i

c(w

i

i�n+1

) as suggested by Bahl et al. Intuitively,

each bucket should be made as small as possible, to only group together the most similar n-grams,

while remaining large enough to accurately estimate the associated parameters. We make the

assumption that whether a bucket is large enough for accurate parameter estimation depends only

on the number of n-grams that fall in that bucket in the data used to train the �'s. We assign

buckets so that a minimum of c

min

n-grams fall in each bucket. We start from the lowest possible

value of

P

w

i

c(w

i

i�n+1

) (i.e., zero) and put increasing values of

P

w

i

c(w

i

i�n+1

) into the same

bucket until this minimum count is reached. We repeat this process until all possible values of

21

P

w

i

c(w

i

i�n+1

) are bucketed. If the last bucket has fewer than c

min

counts, we merge it with the

preceding bucket. We use separate buckets for each n-gram model being interpolated.

In performing this bucketing, we create an array containing the number of n-grams that occur

for each value of

P

w

i

c(w

i

i�n+1

) up to some maximum value, which we call c

top

. For n-grams

w

i�1

i�n+1

with

P

w

i

c(w

i

i�n+1

) > c

top

, we pretend

P

w

i

c(w

i

i�n+1

) = c

top

for bucketing purposes.

As mentioned in Section 2.3, the �'s can be trained e�ciently using the Baum-Welch algorithm.

Given initial values for the �'s, the Baum-Welch algorithm adjusts these parameters iteratively

to minimize the entropy of some data. The algorithm generally decreases the entropy with each

iteration, and guarantees not to increase it. We set all �'s initially to the value �

0

. We terminate

the algorithm when the entropy per word changes less than �

stop

bits between iterations. (Note

that the parameters c

min

, c

top

, �

0

, and �

stop

are all considered for optimization, as are all variables

in later sections.)

We implemented two versions of Jelinek-Mercer smoothing, one using held-out interpolation

and one using deleted interpolation. In jelinek-mercer, the �'s are trained using held-out in-

terpolation on a held-out set. In jelinek-mercer-delest, the �'s are trained using the relaxed

deleted interpolation technique described by Jelinek and Mercer, where one word is deleted at a

time. (This is also known as the leave-one-out method.) In jelinek-mercer-delest, we bucket

an n-gram according to its count before deletion, as this turned out to signi�cantly improve per-

formance. We hypothesize that this is because an n-gram is then placed in the same bucket during

training as in evaluation, allowing the �'s to be meaningfully geared toward individual n-grams.

4.1.3 Katz Smoothing (katz)

Referring to Section 2.4, instead of a single k we allow a di�erent k

n

for each n-gram model being

combined.

Recall that higher-order models are de�ned recursively in terms of lower-order models, and

that the recursion is ended by taking the unigram distribution to be the maximum likelihood dis-

tribution. While using the maximum likelihood unigram distribution often works well in practice,

this choice is not well-suited to our work. In practice, the vocabulary V is usually chosen to in-

clude only those words that occur in the training data, so that p

ML

(w

i

) > 0 for all w

i

2 V . This

assures that the probabilities of all n-grams are nonzero. However, in this work not all words in

the vocabulary always occur in the training data. We run experiments using many training set

sizes, and we use a �xed vocabulary across all runs so that results between sizes are comparable.

Not all words in the vocabulary will occur in the smaller training sets. Thus, unless we smooth

the unigram distribution we may have n-gram probabilities that are zero, which could lead to an

in�nite cross-entropy on test data. To address this issue, we smooth the unigram distribution in

Katz smoothing using additive smoothing; we call the additive constant �.

9

In the algorithm as described in the original paper, no probability is assigned to n-grams

with zero counts in a conditional distribution p(w

i

jw

i�1

i�n+1

) if there are no n-grams w

i

i�n+1

that

occur between 1 and k

n

times in that distribution. This can lead to an in�nite cross-entropy

on test data. To address this, whenever there are no counts between 1 and k

n

in a conditional

distribution, we give the zero-count n-grams a total of � counts, and increase the normalization

constant appropriately.

9

In Jelinek-Mercer smoothing, we address this issue by ending the model recursion with a 0th-order model instead

of a unigram model, and taking the 0th-order model to be a uniform distribution. We tried a similar tack with

Katz smoothing, but applying the natural extension of the Katz algorithm to combining a unigram and uniform

model led to poor results. We tried additive smoothing instead, which is equivalent to interpolating with a uniform

distribution using the Jelinek-Mercer paradigm, and this worked well.

22

4.1.4 Witten-Bell Smoothing (witten-bell-interp, witten-bell-backoff)

The implementation witten-bell-interp is a faithful implementation of the original algorithm,

where we end the model recursion by taking the 0th-order distribution to be the uniform distri-

bution. The implementation witten-bell-backoff is a backo� version of the original algorithm

(see Section 2.8).

4.1.5 Absolute Discounting (abs-disc-interp, abs-disc-backoff)

Referring to Section 2.6, instead of a single D over the whole model we use a separate D

n

for

each n-gram level. As usual, we terminate the model recursion with the uniform distribution.

Also, instead of using equation (20) to calculate D

n

, we �nd the values of D

n

by optimizing the

perplexity of held-out data. The implementation abs-disc-backoff is a backo� version of abs-

disc-interp(see Section 2.8).

4.1.6 Kneser-Ney Smoothing (kneser-ney, kneser-ney-fix)

Referring to Section 2.7, instead of taking equation (23) as is, we smooth lower-order distributions

in a similar fashion as the highest-order distribution. That is, for all n-gram models below the

highest level we take

p

KN

(w

i

jw

i�1

i�n+1

) =

maxfN

1+

(w

i

i�n+1

)�D; 0g

P

w

i

N

1+

(w

i

i�n+1

)

+

D

P

w

i

N

1+

(w

i

i�n+1

)

N

1+

(w

i�1

i�n+1

�) p

KN

(w

i

jw

i�1

i�n+2

)

We end the model recursion by taking the 0th-order distribution to be the uniform distribution.

Also, instead of a single D over the whole model we use a separate D

n

for each n-gram level. The

algorithm kneser-ney sets the D

n

parameters by optimizing the perplexity of held-out data. The

method kneser-ney-fix sets the D

n

parameters using equation (20) as suggested in the original

paper.

4.1.7 Modi�ed Kneser-Ney Smoothing (kneser-ney-mod, kneser-ney-mod-fix, kneser-

ney-mod-backoff)

The implementation kneser-ney-mod of modi�ed Kneser-Ney smoothing (Section 3) is identical to

the implementation kneser-ney, with the exception that three discount parameters, D

n;1

, D

n;2

,

and D

n;3+

, are used at each n-gram level instead of just a single discount D

n

.

The algorithm kneser-ney-mod-fix is identical to kneser-ney-mod, except that the discount

parameters are set using equation (26) instead of by being optimized on held-out data. The

implementation kneser-ney-mod-backoff is the backo� version of the interpolated algorithm

kneser-ney-mod.

4.1.8 Baseline Smoothing (jelinek-mercer-baseline)

For our baseline smoothing method, we use a version of Jelinek-Mercer smoothing with held-out

interpolation. Speci�cally, for each n-gram model being interpolated we constrain all �

w

i�1

i�n+1

in

equation (12) to be equal to a single value �

n

. We make an exception when the history w

i�1

i�n+1

has never occurred in the training data, in which case we take �

w

i�1

i�n+1

to be zero as there is no

23

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 0.01 0.1 1 10 100

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

delta

performance of katz with respect to delta

100 sent

1000 sent

45000 sent
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

1 10 100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

minimum number of counts per bucket

performance of jelinek-mercer with respect to c-min

10000 sent

1000000 sent

10000000 sent

Figure 1: Performance relative to baseline algorithm jelinek-mercer-baseline of algorithms

katz and jelinek-mercerwith respect to parameters � and c

min

, respectively, over several training

set sizes

information in the higher-order distribution. This is identical to jelinek-mercer where c

min

is

set to 1, so that there is only a single bucket (for nonzero counts) for each n-gram level.

10

4.2 Parameter Setting

In this section, we discuss how the setting of smoothing parameters a�ects performance, and

examine which parameters a�ect overall performance signi�cantly. In Figure 1, we give a couple

of examples of the sensitivity of smoothing algorithms to parameter values: we show how the

value of the parameter � (which controls unigram smoothing) a�ects the performance of the katz

algorithm, and how the value of the parameter c

min

(which determines bucket size) a�ects the

performance of jelinek-mercer. Notice that poor parameter setting can lead to very signi�cant

losses in performance. In Figure 1, we see di�erences in entropy from several hundredths of a bit to

over a bit. Also, we see that the optimal value of a parameter varies with training set size. Thus,

it is important to optimize parameter values to meaningfully compare smoothing techniques, and

this optimization should be speci�c to the given training set.

In each of our experiments, optimal values for the parameters of each method were searched

for using Powell's search algorithm (Press et al., 1988). Parameters were chosen to optimize the

cross-entropy of a held-out set associated with each training set. More speci�cally, as described

in Section 4.3 there are three held-out sets associated with each training set, and parameter

optimization was performed using the �rst of the three.

For instances of Jelinek-Mercer smoothing, the �'s were trained using the Baum-Welch algo-

rithm on the second of the three held-out sets; all other parameters were optimized using Powell's

algorithm on the �rst set. In particular, to evaluate the entropy associated with a given set of

(non-�) parameters in Powell's search, we �rst optimize the �'s on the second held-out set.

10

This description di�ers from the description of the baseline algorithm given in our previous work (Chen and

Goodman, 1996; Chen, 1996). In the other texts, we do not describe an exception for the case where the history

has never occurred and always set �

w

i�1

i�n+1

to �

n

. However, the other descriptions are inaccurate: the description

presented here applies to all of the work.

24

algorithm signi�cant parameters insigni�cant parameters

plus-one none none

plus-delta �

n

none

jelinek-mercer �

w

i�1

i�n+1

, c

min

�

0

= 0:5, �

stop

= 0:001, c

top

= 100; 000

jelinek-mercer-delest �

w

i�1

i�n+1

, c

min

�

0

= 0:5, �

stop

= 0:001, c

top

= 100; 000

katz

11

� k

n

= k

max

n

, � = 1

witten-bell-interp none none

witten-bell-backoff none none

abs-disc-interp D

n

none

abs-disc-backoff D

n

none

kneser-ney D

n

none

kneser-ney-fix none none

kneser-ney-mod D

n;1

, D

n;2

, D

n;3+

none

kneser-ney-mod-backoff D

n;1

, D

n;2

, D

n;3+

none

kneser-ney-mod-fix none none

jelinek-mercer-baseline �

n

�

0

= 0:5, �

stop

= 0:001

Table 3: Parameters that signi�cantly a�ect perplexity for each smoothing algorithm, and insignif-

icant parameters and their default values

To constrain the parameter search in our main experiments, we searched only those parameters

that were found to a�ect performance signi�cantly, as indicated through preliminary experiments

over several data sizes. In each run of these preliminary experiments, we �xed all (non-�) param-

eters but one to some reasonable value, and used Powell's algorithm to search on the single free

parameter. If the range of test data entropies over all parameter values considered by Powell's

algorithm was much smaller than the typical di�erence in entropies between di�erent algorithms

(i.e., 0.005 bits), we chose not to perform the search over this parameter in the later experiments,

and simply assign an arbitrary reasonable value to the parameter. For each parameter, we tried

three di�erent training sets: 20,000 words from the WSJ corpus, one million words from the Brown

corpus, and three million words from the WSJ corpus.

We summarize the results of these experiments in Table 3; Chen (1996) gives more details. For

each algorithm, we list the parameters we found to be signi�cant (and thus search over in each

later experiment); we also list the insigni�cant parameters and the value we set them to.

4.3 Data

We used data from the Brown corpus, the North American Business news corpus, the Switchboard

corpus, and the Broadcast News corpus.

12

The text of the Brown corpus (Kucera and Francis, 1967) was extracted from the tagged text

in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) and amounted to about one

million words. The vocabulary we used with the Brown corpus experiments is the set of all 53,850

11

We found that the larger the value of each k

n

, the better the performance. However, for large k

n

there will be

counts r such that the associated discount ratio d

r

takes on an unreasonable value, such as a nonpositive value or

a value above one. We take k

n

to be as large as possible such that all d

r

take on reasonable values.

12

All of this data is available from the Linguistic Data Consortium.

25

words occurring in the corpus. The average sentence length is about 21 words.

The North American Business news text was taken from the language modeling data distributed

for the 1995 ARPA continuous speech recognition evaluation (Stern, 1996). The data included 110

million words of Associated Press (AP) text, 98 million words of Wall Street Journal (WSJ) text,

and 35 million words of San Jose Mercury News (SJM) text. For these experiments, we used the

20,000 word vocabulary supplied for the evaluation. We primarily used the Wall Street Journal

text, and only used the other text if more than 98 million words of data was required. We refer

to this data as the WSJ/NAB corpus. The average sentence lengths for the Wall Street Journal,

Associated Press, and San Jose Mercury News texts are about 23, 22, and 20 words, respectively.

The Switchboard data is three million words of telephone conversation transcriptions (Godfrey,

Holliman, and McDaniel, 1992). The version of the data we used was processed by the Janus

speech recognition group (Rogina and Waibel, 1995), and in our experiments we used their 9,800

word vocabulary. The average sentence length is about 16 words.

The Broadcast News text was taken from the language modeling data distributed for the 1996

DARPA Hub 4 continuous speech recognition evaluation (Rudnicky, 1996). The data consists of

130 million words of transcriptions of television and radio news shows. For these experiments, we

used the 50,000 word vocabulary developed by the Sphinx speech recognition group (Placeway et

al., 1997) for the evaluation. The average sentence length is about 15 words.

For each experiment, we selected three segments of held-out data along with the segment of

training data. These four segments were chosen to be adjacent in the original corpus and disjoint,

the held-out segments following the training. The �rst two held-out segments were used to select

the parameters of each smoothing algorithm, and the last held-out segment was used as the test

data for performance evaluation. The reason that two segments were reserved for parameter

selection instead of one is described in Section 4.2. For experiments over multiple training set

sizes, the di�erent training sets share the same held-out sets. In experiments with multiple runs

on the same training set size, the data segments of each run are completely disjoint.

Each piece of held-out data was chosen to be 2,500 sentences, or roughly 50,000 words. This

decision does not necessarily re
ect practice well. For example, if the training set size is less than

50,000 words then it is not realistic to have this much held-out data available. However, we made

this choice to avoid considering the training versus held-out data tradeo� for each data size. In

addition, the held-out data is used to optimize typically very few parameters, so in practice small

held-out sets are generally adequate, and perhaps can be avoided altogether with techniques such

as deleted estimation. Another technique is to use some held-out data to �nd smoothing parameter

values, and then to fold that held-out data back into the training data and to rebuild the models.

To give some
avor about how the strategy used to select a held-out set a�ects performance,

we ran two small sets of experiments investigating how held-out set size and how folding back the

held-out set into the training set a�ects cross-entropy. In Figure 2, we display the e�ect of held-out

set size on the performance of two smoothing algorithms, jelinek-mercer and kneser-ney-mod,

over three training set sizes on the Broadcast News corpus. Performance is calculated relative

to the cross-entropy yielded by using a 2,500 sentence (about 50,000 word) held-out set for that

training set size. For jelinek-mercer smoothing, which can have hundreds of � parameters or

more, the size of the held-out set can have a moderate e�ect. For held-out sets much smaller than

the baseline size, test cross-entropy can be up to 0.03 bits/word higher, which is approximately

equivalent to a 2% perplexity di�erence. However, even when the held-out set is a factor of four

larger than the baseline size of 2,500 sentences, we see an improvement of at most 0.01 bits/word.

As we will see later, these di�erences are much smaller than the typical di�erence in performance

between smoothing algorithms. For kneser-ney-mod smoothing which has about 10 parameters,

held-out set size has little e�ect, typically less than 0.005 bits/word.

26

-0.01

0

0.01

0.02

0.03

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

held-out set size (sentences)

performance of jelinek-mercer over varying held-out set sizes

5000 train sent

50000 train sent

500000 train sent

-0.002

0

0.002

0.004

0.006

0.008

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

held-out set size (sentences)

performance of kneser-ney-mod over varying held-out set sizes

5000 train sent

50000 sent

500000 train sent

Figure 2: Performance relative to baseline held-out set size (2,500 sentences) of jelinek-mercer

and kneser-ney-mod over several held-out set sizes; held-out set is used to optimize smoothing

algorithm parameters

-1

-0.8

-0.6

-0.4

-0.2

0

1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training data (sentences)

performance of jelinek-mercer over varying held-out set strategies

fold-back

extra -1

-0.8

-0.6

-0.4

-0.2

0

1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training data (sentences)

performance of kneser-ney-mod over varying held-out set strategies

fold-back
extra

Figure 3: Performance relative to baseline held-out methodology of jelinek-mercer and

kneser-ney-mod; fold-back corresponds to case where held-out set used to optimize parameters is

later folded back into training set; extra corresponds to case where training set is augmented by

original held-out set, but additional held-out set is used to optimize parameters

27

In Figure 3, we display how folding back the held-out set into the training set after smoothing

parameter optimization a�ects performance over di�erent training set sizes for jelinek-mercer

and kneser-ney-mod. Performance is calculated relative to the cross-entropy of our default

methodology of not folding the held-out set back into the training set after parameter optimiza-

tion. The fold-back line corresponds to the case where we fold the held-out data back into the

training, and the extra line corresponds to the case where after folding the held-out data back into

the training, we use an additional held-out set to re-optimize the smoothing parameters. As would

be expected, for small training set sizes performance is augmented signi�cantly when the held-out

data is folded back in, as this increases the training set size noticeably. However, for training set

sizes of 100,000 sentences or more, this improvement becomes negligible. The di�erence between

the fold-back and extra lines represents the bene�t of using a held-out set disjoint from the train-

ing set to optimize parameters. This bene�t is insigni�cant for kneser-ney-mod, but is larger for

jelinek-mercer, especially for smaller training sets.

5 Results

In this section, we present the results of our main experiments. In Section 5.1, we present the

performance of various algorithms for di�erent training set sizes on di�erent corpora for both

bigram and trigram models. We demonstrate that the relative performance of di�erent smoothing

methods can vary signi�cantly as conditions vary; however, Kneser-Ney smoothing and variations

consistently outperform all other methods.

In Section 5.2, we present a more detailed analysis of performance, rating di�erent techniques

on how well they perform on n-grams with a particular count in the training data, e.g., n-grams

that have occurred exactly once in the training data. We �nd that katz most accurately smooths

n-grams with large counts, while kneser-ney-mod is best for small counts. We then show the

relative impact on performance of small counts and large counts for di�erent training set sizes and

n-gram orders, and use this data to explain the variation in performance of di�erent algorithms in

di�erent situations.

In Section 5.3, we present experiments with 4-gram and 5-gram models, with n-gram models

with count cuto�s (i.e., models that ignore n-grams with fewer than some number of counts in the

training data), and experiments that examine how cross-entropy is related to word-error rate in

speech recognition.

5.1 Overall Results

As mentioned earlier, we evaluate smoothing methods through their cross-entropy on test data, as

given in equation (6). In Figures 4 and 5, we display the cross-entropy of our baseline smoothing

method, jelinek-mercer-baseline, over a variety of training set sizes for both bigram and

trigram models on all four corpora described in Section 4.3. We see that cross-entropy decreases

steadily as the training set used grows in size; this decrease is somewhat slower than linear in the

logarithm of the training set size. Furthermore, we see that the entropies of di�erent corpora can

be very di�erent, and that trigram models perform signi�cantly better than bigram models only

for larger training sets.

In the following discussion, we will primarily report the performance of a smoothing algorithm

as the di�erence of its cross-entropy on a test set from the cross-entropy of jelinek-mercer-

baseline with the same training set. To see how these cross-entropy di�erences translate to

28

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

100 1000 10000 100000 1e+06 1e+07

cr
os

s-
en

tr
op

y
of

 te
st

 d
at

a
(b

its
/to

ke
n)

training set size (sentences)

cross-entropy of baseline for WSJ/NAB corpus

NAB 2-gram

NAB 3-gram 7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

100 1000 10000 100000 1e+06
cr

os
s-

en
tr

op
y

of
 te

st
 d

at
a

(b
its

/to
ke

n)
training set size (sentences)

cross-entropy of baseline for Broadcast News corpus

BN 2-gram

BN 3-gram

Figure 4: Cross-entropy of baseline algorithm jelinek-mercer-baseline on test set over various

training set sizes on WSJ/NAB and Broadcast News corpora

6.5

7

7.5

8

8.5

9

9.5

10

100 1000 10000 100000

cr
os

s-
en

tr
op

y
of

 te
st

 d
at

a
(b

its
/to

ke
n)

training set size (sentences)

cross-entropy of baseline for Brown and Switchboard corpora

Brown 2-gram

Brown 3-gram

SWB 2-gram

SWB 3-gram

Figure 5: Cross-entropy of baseline algorithm jelinek-mercer-baseline on test set over various

training set sizes on Brown and Switchboard corpora

29

perplexity, recall that perplexity PP

m

(T) is related to cross-entropy H

m

(T) as

PP

m

(T) = 2

H

m

(T)

Hence, �xed di�erences in cross-entropy are equivalent to �xed ratios in perplexity. For example, a

1% decrease in perplexity is equivalent to a � log

2

(1�0:01) � 0:014 bits/word decrease in entropy,

and a 10% decrease in perplexity is equivalent to a � log

2

(1� 0:1) � 0:152 bits/word decrease in

entropy.

Unless noted, all of the points in each graph represent a single run on a single training and test

set. To give some idea about the magnitude of the error in our results, we ran a set of experiments

where for each training set size, we ran ten experiments on completely disjoint data sets (training

and test). We calculated the empirical mean and the standard deviation (of the mean) over these

ten runs; these values are displayed in Figures 6 and 7. In Figure 6, we display the absolute cross-

entropy of the baseline algorithm, jelinek-mercer-baseline, on the Switchboard and Broadcast

News corpora for bigram and trigram models over a range of training set sizes. The standard

deviation on the Switchboard runs was very small; on Broadcast News, the variation was relatively

large, comparable to the di�erences in performance between smoothing algorithms. In Figure 7,

we display the performance of a number of smoothing algorithms relative to the baseline algorithm

on the Broadcast News and Switchboard corpora for trigram models on a range of training set

sizes. We see that the variation in cross-entropy relative to the baseline is generally fairly small,

much smaller than the di�erence in performance between algorithms. Hence, while the variation

in absolute cross-entropies is large, the variation in relative cross-entropies is small and we can

make meaningful statements about the relative performance of algorithms in this domain.

However, in later graphs each point will represent a single run instead of an average over ten

runs, and the standard deviation for a single run will be a factor of about

p

10 larger than the values

plotted in Figure 7. With these larger deviations, the relative performance of two algorithms with

similar performance may be di�cult to determine from a single pair of points. However, we believe

that an accurate and precise picture of relative performance can be gleaned from the graphs to be

presented later due to the vast overall number of experiments performed: most experiments are

carried out over a variety of training set sizes and on each of four independent corpora. Relative

performance trends are largely consistent over these runs. Nevertheless, there is one phenomenon

that seems to adversely and signi�cantly a�ect the performance of a certain group of algorithms

on a small number of data sets, e.g., see the points corresponding to a training set size of 30,000

sentences in the graphs in Figure 10. We present an analysis of this anomaly in Section 5.1.1; the

algorithms that this phenomenon a�ects correspond to the algorithms with the largest variance in

Figure 7.

5.1.1 Overall Performance Di�erences

In Figures 8{11, we display the performance of various algorithms relative to the baseline algorithm

jelinek-mercer-baseline over a variety of training set sizes, for bigram and trigram models,

and for each of the four corpora described in Section 4.3. These graphs do not display all of

the algorithms we implemented, as placing all of the algorithms on a single graph would lead

to too much clutter; instead, the algorithms chosen are meant to give an overall picture of the

relative performance of di�erent algorithms. Comparisons between the displayed algorithms and

the algorithms omitted from the graphs are provided in following sections.

From these graphs, we see that the methods kneser-ney and kneser-ney-mod consistently

outperform all other algorithms, over all training set sizes and corpora, and for both bigram and

trigram models. These methods also outperform all algorithms not shown in the graphs, except

30

7

7.5

8

8.5

9

9.5

10

10.5

11

100 1000 10000 100000

cr
os

s-
en

tr
op

y
of

 te
st

 d
at

a
(b

its
/to

ke
n)

training set size (sentences)

cross-entropy of baseline for Switchboard and Broadcast News corpora

SWB 2-gram

SWB 3-gram

BN 2-gram

BN 3-gram

Figure 6: Cross-entropy of baseline algorithm jelinek-mercer-baseline on test set over various

training set sizes on Switchboard and Broadcast News corpora; each point displays mean and

standard deviation over ten runs on disjoint data sets

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

er
en

ce
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, trigram

baseline

katz

kneser-ney-fix

kneser-ney-mod

abs-disc-interp

jelinek-mercer

-0.2

-0.15

-0.1

-0.05

0

0.05

100 1000 10000

di
ff

er
en

ce
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, trigram

jelinek-mercer-baseline

katz
kneser-ney-fix

kneser-ney-mod

abs-disc-interp

jelinek-mercer

Figure 7: Performance relative to baseline of various algorithms on Broadcast News and Switch-

board corpora, trigram model; each point displays mean and standard deviation over ten runs on

disjoint data sets

31

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

katz

k-n
kneser-ney-mod

abs-disc-int

j-m

witten-bell-backoff

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06 1e+07
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

katzkneser-ney

kneser-ney-mod

abs-disc-interp

j-m

witten-bell-backoff

Figure 8: Performance relative to baseline of various algorithms on WSJ/NAB corpus over various

training set sizes, bigram and trigram models

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 2-gram

jelinek-mercer-baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

j-m

witten-bell-backoff

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 3-gram

baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

Figure 9: Performance relative to baseline of various algorithms on Broadcast News corpus over

various training set sizes, bigram and trigram models

32

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 2-gram

jelinek-mercer-baseline

katzkneser-ney

kneser-ney-mod

abs-disc-interp

j-m

witten-bell-backoff

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 3-gram

baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

Figure 10: Performance relative to baseline of various algorithms on Switchboard corpus over

various training set sizes, bigram and trigram models

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Brown corpus, 2-gram

jelinek-mercer-baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Brown corpus, 3-gram

jelinek-mercer-baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

Figure 11: Performance relative to baseline of various algorithms on Brown corpus over various

training set sizes, bigram and trigram models

33

for other variations of Kneser-Ney smoothing. In Section 5.2, we will show that this excellent

performance is due to the modi�ed backo� distributions that Kneser-Ney smoothing employs, as

described in Section 2.7.

The algorithms katz and jelinek-mercer generally yield the next best performance. Both

perform signi�cantly better than the baseline method in almost all situations, except for cases with

very little training data. The algorithm jelinek-mercer performs better than katz in sparse

data situations, and the reverse is true when there is much data. For example, katz performs

better on Broadcast News and WSJ/NAB trigram models for training sets larger than 50,000{

100,000 sentences; for bigram models the cross-over point is generally lower. In Section 5.2, we

will explain this variation in performance relative to training set size by showing that katz is better

at smoothing larger counts; these counts are more prevalent in larger data sets.

The worst of the displayed algorithms (not including the baseline) are the algorithms abs-

disc-interpand witten-bell-backoff. The method abs-disc-interpgenerally outperforms

the baseline algorithm, though not for very small data sets. The method witten-bell-backoff

performs poorly, much worse than the baseline, for smaller data sets. Both of these algorithms

are signi�cantly superior to the baseline for very large data sets; in these situations, they are

competitive with the algorithms katz and jelinek-mercer.

These graphs make it apparent that the relative performance of smoothing techniques can vary

dramatically over training set size, n-gram order, and training corpus. For example, the method

witten-bell-backoff performs atrociously for small training sets but competitively on very large

training sets. There are numerous instances where the relative performance of two methods reverse

over di�erent training set sizes, and this cross-over point will vary widely over n-gram order or

corpus. Thus, it is not su�cient to run experiments on one or two data sets for a single training

set size to reasonably characterize the performance of a smoothing algorithm, as is the typical

methodology in previous work.

Analysis of Performance Anomaly In the graphs in Figure 10, we see that several algorithms

behave anomalously on the training set of 30,000 sentences. The algorithms abs-disc-interp,

katz, and kneser-ney all perform substantially worse than would be expected given their perfor-

mance on other training sets for both bigram and trigram models, while the remaining algorithms

seem to be una�ected. As can be seen later in Figures 19 and 21, the algorithms kneser-ney-fix

and kneser-ney-mod-fix are also adversely a�ected. In this section, we analyze this phenomenon

and show that this particular training set is indeed unusual, and explain why only the listed

algorithms are a�ected.

After investigation, we found that the 30,000-sentence training set had an unusual distribution

of counts; there were abnormally few trigrams with one count as compared to trigrams with higher

counts.

13

In Figure 12, we plot the ratio of the number of trigrams with various counts to the

number of trigrams with exactly one count over various training set sizes on the Switchboard

corpus. This graph makes apparent the unusual count distribution present in the given training

set.

This observation can be used to explain why the algorithms katz, kneser-ney-fix, and

kneser-ney-mod-fix all perform unusually poorly. These algorithms share the property that

discounts are calculated based on the counts of n-grams with a particular count in the training

data. Since the training set has an unusual distribution of these counts and presumably the test

set has a more typical distribution, we have a mismatch between the training and test set, and

discounts are not set suitably for the test set. Indeed, in Figures 19 and 21 we see that the

13

Further examination revealed that this paucity of one counts was present because a long segment of text was

duplicated in the training set.

34

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 1000 10000 100000
training set size (sentences)

n2/n1

n3/n1

n4/n1

Figure 12: Ratio of the number of trigrams with various counts to the number of trigrams with

exactly one count over various training set sizes on the Switchboard corpus

algorithms kneser-ney and kneser-ney-mod perform substantially better than kneser-ney-fix

and kneser-ney-mod-fix, respectively, on this training set. For kneser-ney and kneser-ney-

mod, discount parameters are set through optimization on held-out data, so the mismatch between

training and test data has little e�ect. This example highlights the additional robustness possible

when using held-out data to set parameters instead of setting them deterministically from training

data.

To explain why the algorithms abs-disc-interpand kneser-ney perform poorly on this train-

ing set, we refer to the optimal discounts calculated on the held-out set for kneser-ney-mod

smoothing for a trigram model. We �nd that these discounts are spread unusually far apart for

the 30,000-sentence training set: we �nd (D

1

; D

2

; D

3+

) values of about (0.9, 1.8, 2.4) when values

of about (0.9, 1.5, 2.1) is what would be expected from interpolating the values found on training

sets of nearby size. This indicates that the ideal average discount for di�erent counts on this train-

ing set are unusually spread apart, and so using a single discount D for all counts as is done by

abs-disc-interpand kneser-ney is an unusually poor approximation on this training set. Thus,

we can see how the atypical nature of the training set leads to poor performance for abs-disc-

interpand kneser-ney.

It is interesting to note why the algorithms jelinek-mercer, jelinek-mercer-baseline, and

kneser-ney-mod do not exhibit anomalous behavior on the 30,000-sentence training set. Because

the algorithms jelinek-mercer and jelinek-mercer-baseline do not utilize the counts of n-

grams with certain counts in the training data, they are una�ected by the unusual distribution of

these counts. The algorithm kneser-ney-mod retains its performance because of a combination of

two reasons: parameters are optimized on held-out data so that the mismatch between the training

and test data can be compensated for, and it has enough discount parameters to adequately

compensate for the mismatch.

5.1.2 Additive Smoothing

In Figure 13, we display the performance of the plus-one and plus-delta algorithms rela-

tive to the baseline algorithm jelinek-mercer-baseline for bigram and trigram models on the

WSJ/NAB corpus over a range of training set sizes. In general, these algorithms perform much

worse than the baseline algorithm, except for situations with a wealth of data. For example,

35

0

0.5

1

1.5

2

2.5

3

3.5

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

plus-one

plus-delta

0

1

2

3

4

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

plus-one

plus-delta

Figure 13: Performance relative to baseline of plus-one and plus-delta algorithms on WSJ/NAB

corpus, bigram and trigram models

plus-delta is competitive with the baseline method when using a training set of 10,000,000 sen-

tences for a bigram model on WSJ/NAB data. Though not shown, these algorithms have similar

performance on the other three corpora. Gale and Church (1990; 1994) further discuss the perfor-

mance of these algorithms.

5.1.3 Backo� vs. Interpolation

In this section, we compare the performance between the backo� and interpolated versions of several

smoothing algorithms. (For the de�nitions of these types of models, refer to Section 2.8.) We imple-

mented three pairs of algorithms that di�er only in the backo� strategy used: witten-bell-interp

and witten-bell-backoff, abs-disc-interpand abs-disc-backoff, and kneser-ney-mod and

kneser-ney-mod-backoff.

In Figure 14, we display the performance of witten-bell-interp and witten-bell-backoff

relative to the baseline algorithm jelinek-mercer-baseline for bigram and trigram models on

the WSJ/NAB corpus over a range of training set sizes. We see that witten-bell-backoff

consistently outperforms witten-bell-interp over all training set sizes and for both bigram and

trigram models. While not shown, these algorithms have similar performance on the other three

corpora.

In Figures 15 and 16, we display the performance of the backo� and interpolated versions

of absolute discounting and modi�ed Kneser-Ney smoothing for bigram and trigram models on

the WSJ/NAB and Broadcast News corpora over a range of training set sizes. We see that

kneser-ney-mod consistently outperforms kneser-ney-mod-backoff. On small data sets, abs-

disc-interpoutperforms abs-disc-backoff, and the reverse holds for large data sets. We see

that the cross-over point varies with corpus and n-gram order. While not shown, these algorithms

have similar performance on the other two corpora. In Section 5.2, we present an analysis that

partially explains the relative performance of backo� and interpolated algorithms.

36

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

witten-bell-backoff

witten-bell-interp

-0.1

0

0.1

0.2

0.3

0.4

0.5

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

witten-bell-backoff

witten-bell-interp

Figure 14: Performance relative to baseline of witten-bell-backoff and witten-bell-interp

algorithms on WSJ/NAB corpus, bigram and trigram models

5.1.4 Kneser-Ney Smoothing and Variations

In this section, we compare the performance of the di�erent variations of Kneser-Ney smoothing

that we implemented: kneser-ney, kneser-ney-mod, kneser-ney-fix, and kneser-ney-mod-

fix. We do not discuss the performance of method kneser-ney-mod-backoff here, as this was

presented in Section 5.1.3.

In Figure 17, we display the performance of kneser-ney and kneser-ney-mod relative to the

baseline algorithm jelinek-mercer-baseline for bigram and trigram models on the WSJ/NAB

corpus over a range of training set sizes. Recall that these algorithms di�er in that for each n-

gram level, kneser-ney has a single discount D

n

for each count while kneser-ney-mod has three

discounts D

n;1

, D

n;2

, and D

n;3+

for n-grams with one count, two counts, and three or more counts,

respectively, as described in Section 4.1. We see that kneser-ney-mod consistently outperforms

kneser-ney over all training set sizes and for both bigram and trigram models. While not shown,

these algorithms have similar behavior on the other three corpora. Their di�erence in performance

is generally signi�cant, though is smaller for very large data sets. In Section 5.2, we explain this

di�erence by showing that the correct average discount for n-grams with one count or two counts

deviates signi�cantly from the correct average discount for larger counts.

In Figures 18 and 19, we display the performance of kneser-ney and kneser-ney-fix for

bigram and trigram models on the WSJ/NAB and Switchboard corpora over a range of training

set sizes. Recall that these algorithms di�er in that for kneser-ney we set the parameters D

n

by

optimizing the cross-entropy of held-out data, while for kneser-ney-fix these parameters are set

using the formula suggested by Kneser and Ney (1995), as described in Section 4.1. While their

performances are sometimes very close, especially for large data sets, we see that kneser-ney con-

sistently outperforms kneser-ney-fix. While not shown, these algorithms have similar behavior

on the other two corpora. (For a discussion of the anomalous points in Figures 19 and 21 for the

30,000-sentence training set, refer to Section 5.1.1.)

In Figures 20 and 21, we display the performance of kneser-ney-mod and kneser-ney-mod-

fix for bigram and trigram models on the WSJ/NAB and Switchboard corpora over a range of

training set sizes. As with kneser-ney and kneser-ney-fix, these algorithms di�er in whether the

discounts are set using held-out data or using a formula based on training set counts. We see similar

37

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

abs-disc-backoff

abs-disc-interp

kneser-ney-mod

kneser-ney-mod-backoff

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)
training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

abs-disc-backoff

abs-disc-interp

kneser-ney-mod

kneser-ney-mod-backoff

Figure 15: Performance relative to baseline of backo� and interpolated versions of absolute dis-

counting and modi�ed Kneser-Ney smoothing on WSJ/NAB corpus, bigram and trigram models

-0.2

-0.15

-0.1

-0.05

0

0.05

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 2-gram

jelinek-mercer-baseline

abs-disc-backoff

abs-disc-interp

kneser-ney-mod

kneser-ney-mod-backoff

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Broadcast News corpus, 3-gram

jelinek-mercer-baseline

abs-disc-backoff

abs-disc-interp

kneser-ney-mod

kneser-ney-mod-backoff

Figure 16: Performance relative to baseline of backo� and interpolated versions of absolute dis-

counting and modi�ed Kneser-Ney smoothing on Broadcast News corpus, bigram and trigram

models

38

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-mod
-0.25

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-mod

Figure 17: Performance relative to baseline of kneser-ney and kneser-ney-mod algorithms on

WSJ/NAB corpus, bigram and trigram models

behavior as before: while their performance is often close, especially for large data sets, kneser-

ney-mod consistently outperforms kneser-ney-mod-fix. While not shown, these algorithms have

similar performance on the other two corpora. While the -fix variations have the advantage of

not having any external parameters that need to be optimized, we see that we can generally do a

little better by optimizing parameters on held-out data. In addition, in situations where we have

held-out data known to be similar to the test data, the variations with free parameters should do

well even if the training data does not exactly match the test data. This robustness is highlighted

for the 30,000-sentence training set from the Switchboard corpus, as discussed in Section 5.1.1.

5.1.5 Held-out and Deleted Estimation

In this section, we compare the held-out and deleted interpolation variations of Jelinek-Mercer

smoothing. In Figure 22, we display the performance of the jelinek-mercerand jelinek-mercer-delest

algorithms on the WSJ/NAB corpus for bigram and trigram models over a variety of training set

sizes. These two algorithms di�er only in that jelinek-mercer uses the held-out data to optimize

the � parameters, while jelinek-mercer-delest optimizes the � parameters using deleted estima-

tion (i.e., the leave-one-out technique). We see that jelinek-mercer performs signi�cantly better

for smaller training sets, but for large training sets jelinek-mercer-delest performs slightly

better.

14

Smoothing can be viewed as modeling the di�erence in nature between a training and test set.

Held-out data external to the training data will tend to be more di�erent from the training data

than data that is deleted from the middle of the training data. As our evaluation test data is also

external to the training data (as is the case in applications), �'s trained from held-out data may bet-

ter characterize the evaluation test data. This may explain the superior performance of jelinek-

mercer on smaller data sets. We hypothesize that the reason why jelinek-mercer-delest does

well on larger data sets is that on larger training sets, data that is deleted from the middle of a

training set is su�ciently di�erent from the remainder of the data that it is similar in nature to

14

These results di�er slightly from those reported in previous work (Chen, 1996); in that work we reported that

held-out estimation is superior. However, in that work we did not use training sets as large as those in this work,

so that we did not observe the cross-over point in performance.

39

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-fix

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

100 1000 10000 100000 1e+06 1e+07
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-fix

Figure 18: Performance relative to baseline of kneser-ney and kneser-ney-fix algorithms on

WSJ/NAB corpus, bigram and trigram models

-0.15

-0.1

-0.05

0

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 2-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-fix

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 3-gram

jelinek-mercer-baseline

kneser-ney

kneser-ney-fix

Figure 19: Performance relative to baseline of kneser-ney and kneser-ney-fix algorithms on

Switchboard corpus, bigram and trigram models

40

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-fix

-0.25

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000 1e+06 1e+07
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-fix

Figure 20: Performance relative to baseline of kneser-ney-mod and kneser-ney-mod-fix algo-

rithms on WSJ/NAB corpus, bigram and trigram models

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 2-gram

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-fix

-0.2

-0.15

-0.1

-0.05

0

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on Switchboard corpus, 3-gram

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-fix

Figure 21: Performance relative to baseline of kneser-ney-mod and kneser-ney-mod-fix algo-

rithms on Switchboard corpus, bigram and trigram models

41

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 2-gram

jelinek-mercer-baseline

jelinek-mercer

jelinek-mercer-delest

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

100 1000 10000 100000

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

jelinek-mercer

jelinek-mercer-delest

Figure 22: Performance relative to baseline of jelinek-mercer and jelinek-mercer-delest

algorithms on WSJ/NAB corpus, bigram and trigram models

held-out data. Thus, the preceding e�ect is less pronounced, and perhaps because of the larger

amount of data used to optimize parameters, the performance of jelinek-mercer-delestbecomes

superior. However, the implementation jelinek-mercer-delest does not completely characterize

the technique of deleted interpolation as we do not vary the size of the chunks that are deleted.

5.2 Count-by-Count Analysis

In order to paint a more detailed picture of the performance of various algorithms, instead of just

looking at the overall cross-entropy of a test set, we partition test sets according to how often each

n-gram in the test set occurred in the training data, and examine performance within each of these

partitions. More speci�cally, the cross-entropy of an n-gram model p of a test set T as expressed

in equation (6) can be rewritten as

H

p

(T) = �

1

W

T

X

w

i

i�n+1

c

T

(w

i

i�n+1

) log

2

p(w

i

jw

i�1

i�n+1

)

where the sum ranges over all n-grams and c

T

(w

i

i�n+1

) is the number of occurrences of the n-

gram w

i

i�n+1

in the test data. Instead of summing over all n-grams, consider summing only over

n-grams with exactly r counts in the training data, for some r; i.e., consider the value

H

p;r

(T) = �

1

W

T

X

w

i

i�n+1

:c(w

i

i�n+1

)=r

c

T

(w

i

i�n+1

) log

2

p(w

i

jw

i�1

i�n+1

) (27)

Then, we might compare the values of H

p;r

(T) between models p for each r to yield a more detailed

picture of performance.

However, there are two orthogonal components that determine the value H

p;r

(T), and it is

informative to separate them. First, there is the total probability mass M

p;r

(T) that a model p

uses to predict n-grams with exactly r counts given the histories in the test set, i.e., the value

M

p;r

(T) =

X

w

i

i�n+1

:c(w

i

i�n+1

)=r

c

T

(w

i�1

i�n+1

)p(w

i

jw

i�1

i�n+1

)

42

An interpretation of the value M

p;r

(T) is the expected count in the test set T of n-grams with

r counts according to model p, given the histories in the test set. Ideally, the value of M

p;r

(T)

should match the actual number of n-grams in the test set T that have r counts in the training

data, c

r

(T), where

c

r

(T) =

X

w

i

i�n+1

:c(w

i

i�n+1

)=r

c

T

(w

i

i�n+1

)

The value M

p;r

(T) is proportional to the average probability a model p assigns to n-grams with r

counts; an algorithm with a larger M

p;r

(T) will tend to have a lower H

p;r

(T).

Now, consider a metric similar to H

p;r

(T) where we factor out the contribution of M

p;r

(T), so

that algorithms with a larger M

p;r

(T) will not tend to receive a better score. That is, consider

a metric where we scale probabilities so that all algorithms devote the same total probability to

n-grams with r counts for each r. In particular, we use the value

H

�

p;r

(T) = �

1

W

T

X

w

i

i�n+1

:c(w

i

i�n+1

)=r

c

T

(w

i

i�n+1

) log

2

c

r

(T)

M

p;r

(T)

p(w

i

jw

i�1

i�n+1

)

This is similar to de�ning an (improper) distribution

p

�

(w

i

jw

i�1

i�n+1

) =

c

r

(T)

M

p;r

(T)

p(w

i

jw

i�1

i�n+1

)

where we are assured M

p

�

;r

(T) = c

r

(T) as is ideal, and calculating the performance H

p

�

;r

(T) for

this new model. As the measure H

�

p;r

(T) assures that each model predicts each count r with the

same total mass, this value just measures how well a model distributes its probability mass among

n-grams with the same count.

To recap, we can use the measure M

p;r

(T) to determine how well a smoothed model p assigns

probabilities on average to n-grams with r counts in the training data; in particular, we want

M

p;r

(T)

c

r

(T)

(or the ratio between expected and actual counts in the training data) to be near 1 for all

r. The value H

�

p;r

(T), which we refer to as normalized cross-entropy or normalized performance,

measures how well a smoothed model p distributes probabilities between n-grams with the same

count; as with cross-entropy, the lower the better.

We ran experiments with count-by-count analysis for two training set sizes, 30,000 sentences

(about 750,000 words) and 3,700,000 sentences (about 75 million words), on the WSJ/NAB corpus.

We used a test set of about 10 million words; a larger test set was desirable because of the sparseness

of n-grams with exactly r counts for larger r.

5.2.1 Expected vs. Actual Counts, Overall

In Figure 23, we display the ratio of expected to actual counts

M

p;r

(T)

c

r

(T)

for various algorithms on

the larger training set for bigram and trigram models for low counts r � 5. In Figure 24, we have

the analogous graphs for higher counts 5 � r < 40.

15

For low counts, we see that the algorithms

katz and kneser-ney-mod come closest to the ideal value of 1. The values farthest from the ideal

are attained by the methods jelinek-mercer-baseline, jelinek-mercer, and witten-bell-

backoff. These algorithms assign signi�cantly too much probability on average to n-grams with

low counts. For high counts, katz is nearest to the ideal.

15

For the zero-count case, we exclude those n-grams w

i

i�n+1

for which the corresponding history w

i�1

i�n+1

has no

counts, i.e., for which

P

w

i

c(w

i�1

i�n+1

w

i

) = 0.

43

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 2-gram, 75M words training

ideal
jelinek-mercer-baseline

jelinek-mercer
witten-bell-backoff

katz
kneser-ney-mod

kneser-ney
abs-disc-interp

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 1 2 3 4 5

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 3-gram, 75M words training

ideal
jelinek-mercer-baseline

jelinek-mercer
witten-bell-backoff

katz
kneser-ney-mod

kneser-ney
abs-disc-interp

Figure 23: Ratio of expected number to actual number in test set of n-grams with a given count

in training data for various smoothing algorithms, low counts, WSJ/NAB corpus, bigram and

trigram models

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 2-gram, 75M words training

ideal
abs-disc-interp

kneser-ney
kneser-ney-mod

katz
jelinek-mercer-baseline

jelinek-mercer
witten-bell-backoff

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 3-gram, 75M words training

ideal
abs-disc-interp

kneser-ney
kneser-ney-mod

katz
jelinek-mercer-baseline

jelinek-mercer
witten-bell-backoff

Figure 24: Ratio of expected number to actual number in test set of n-grams with a given count

in training data for various smoothing algorithms, high counts, WSJ/NAB corpus, bigram and

trigram models

44

0

0.5

1

1.5

2

1 3 5 7 9 11 13

av
er

ag
e

co
rr

ec
t d

is
co

un
t

original count

1M words training

trigram

bigram

0

0.5

1

1.5

2

1 3 5 7 9 11 13

av
er

ag
e

co
rr

ec
t d

is
co

un
t

original count

200M words training

trigram

bigram

Figure 25: Correct average discount for n-grams with a given count in training data on two training

set sizes, WSJ/NAB corpus, bigram and trigram models

To explain these behaviors, we calculate the ideal average discount for each count. That

is, consider all n-grams w

i

i�n+1

with count r. Let us assume that we perform smoothing by

pretending that all such n-grams actually receive r

�

counts; i.e., instead of the maximum-likelihood

distribution

p

ML

(w

i

jw

i�1

i�n+1

) =

r

c(w

i�1

i�n+1

)

we take

p

0

(w

i

jw

i�1

i�n+1

) =

r

�

c(w

i�1

i�n+1

)

Then, we can calculate the value of r

�

such that the ideal probability mass M

p

0

;r

(T) = c

r

(T) is

achieved. We take r � r

�

for the ideal r

�

to be the ideal average discount for count r. This is an

estimate of the correct number of counts on average to take away from all n-grams with r counts

in the training data. In Figure 25, we graph the empirical estimate of this value for r � 13 for

bigram and trigram models for a one million and 200 million word training set. (For values above

r = 13, the graph becomes very noisy due to data sparsity.) We can see that for very small r the

correct discount rises quickly, and then levels o�.

In other words, it seems that a scheme that discounts di�erent r uniformly is more appropriate

than a scheme that assigns discounts that are proportional to r. Algorithms that fall under the

former category include abs-disc-interpand kneser-ney; these algorithms use a �xed discount

D

n

over all counts. Algorithms that fall in the latter category include all three algorithms that

fared poorly in Figures 23 and 24: jelinek-mercer-baseline, jelinek-mercer, and witten-

bell-backoff. These algorithms are all of the form given in equation (12)

p

interp

(w

i

jw

i�1

i�n+1

) = �

w

i�1

i�n+1

p

ML

(w

i

jw

i�1

i�n+1

) + (1� �

w

i�1

i�n+1

) p

interp

(w

i

jw

i�1

i�n+2

)

where the discount of an n-gram with count r is approximately r � �r. Because discounts are

linear in r when ideally they should be roughly constant, discounts for these algorithms were too

low for low counts and too high for high counts.

Katz smoothing chooses discounts according to the Good-Turing discount, which theoretically

should estimate the correct average discount well, and we �nd this to be the case empirically.

45

While Katz assigns the correct total mass to n-grams with a particular count, it does not perform

particularly well because it does not distribute probabilities well between n-grams with the same

count, as we shall see when we examine its normalized cross-entropy.

The algorithm kneser-ney-mod uses a uniform discount D

n;3+

for all counts three and above,

but separate discounts D

n;1

and D

n;2

for one- and two-counts. This modi�cation of Kneser-Ney

smoothing was motivated by the observation in Figure 25 that smaller counts have a signi�cantly

di�erent ideal average discount than larger counts. Indeed, in Figure 23 we see that kneser-ney-

mod is much closer to the ideal than kneser-ney for low counts. (The performance gain in using

separate discounts for counts larger than two is marginal.)

5.2.2 Normalized Performance, Overall

In Figure 26, we display the normalized cross-entropyH

�

p;r

(T) of various algorithms relative to the

normalized cross-entropy of the baseline algorithm on the 75 million word training set for bigram

and trigram models for low counts r � 5. In Figure 27, we have the analogous graphs for higher

counts 5 � r < 40. For the points on the graph with a count of 0, we exclude those n-grams w

i

i�n+1

for which the corresponding history w

i�1

i�n+1

has no counts, i.e., for which

P

w

i

c(w

i�1

i�n+1

w

i

) = 0.

The associated values for these cases are displayed under a count value of -1.

We see that kneser-ney and kneser-ney-mod signi�cantly outperform all other algorithms on

low counts, especially for the point with a count value of zero. We attribute this to the modi�ed

backo� distribution that is used in Kneser-Ney smoothing as described in Section 2.7. As the

ratio of expected to actual counts for these algorithms is not signi�cantly superior to those for all

other algorithms, and as their normalized performance on high counts is good but not remarkable,

we conclude that their excellent normalized performance on low counts is the reason for their

consistently superior overall performance.

The algorithms with the worst normalized performance on low (nonzero) counts are katz and

witten-bell-backoff; these are also the only two algorithms shown that use backo� instead

of interpolation. Thus, it seems that for low counts lower-order distributions provide valuable

information about the correct amount to discount, and thus interpolation is superior for these

situations. Backo� models do not use lower-order distributions to help estimate the probability of

n-grams with low (nonzero) counts.

For large counts, the two worst performing algorithms are jelinek-mercer and jelinek-

mercer-baseline. We hypothesize that this is due to a combination of two factors. First, both

algorithms use linear discounting, which as mentioned in Section 5.2.1 leads to large discounts

for large counts. Second, these models are interpolated as opposed to backo� models, so that

these discounts vary according to lower-order models. Because of these two factors, discounts for

n-grams with large counts can vary widely from n-gram to n-gram. Given that smoothing methods

that assign the same probability to n-grams with a given count across di�erent distributions (such

as Katz) perform well on large counts, we hypothesize that the ideal discount for n-grams with

a given high count r should not vary much. This mismatch in the variation of discounts could

explain the poor performance of jelinek-mercer and jelinek-mercer-baseline in this domain.

All of the other algorithms are very near to each other in terms of normalized performance on large

counts; we guess that it does not matter much how large counts are smoothed as long as they are

not modi�ed too much.

46

-0.8

-0.6

-0.4

-0.2

0

-1 0 1 2 3 4 5

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 2-gram, 75M words training

katz
witten-bell-backoff

abs-disc-interp
jelinek-mercer

kneser-ney
kneser-ney-mod

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1 0 1 2 3 4 5
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

count

normalized performance for each count, 3-gram, 75M words training

katz
witten-bell-backoff

abs-disc-interp
jelinek-mercer

kneser-ney
kneser-ney-mod

Figure 26: Normalized cross-entropy for n-grams with a given count in training data for various

smoothing algorithms, low counts, WSJ/NAB corpus, bigram and trigram models

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

5 10 15 20 25 30 35

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 2-gram, 75M words training

jelinek-mercer
abs-disc-interp

witten-bell-backoff
kneser-ney

kneser-ney-mod
katz

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

5 10 15 20 25 30 35

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 3-gram, 75M words training

jelinek-mercer
abs-disc-interp

witten-bell-backoff
kneser-ney

kneser-ney-mod
katz

Figure 27: Normalized cross-entropy for n-grams with a given count in training data for various

smoothing algorithms, high counts, WSJ/NAB corpus, bigram and trigram models

47

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1e+06 1e+07

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 c

ro
ss

-e
nt

ro
py

training set size (sentences)

bigram model

r=0

r<=1

r<=2
r<=10

r<=infinity

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1e+06 1e+07

cu
m

ul
at

iv
e

fr
ac

tio
n

of
 c

ro
ss

-e
nt

ro
py

training set size (sentences)

trigram model

r=0

r<=1

r<=2 r<=10

r<=infinity

Figure 28: Cumulative fraction of cross-entropy on test set devoted to n-grams with r or fewer

counts in training data for various r on WSJ/NAB corpus, jelinek-mercer-baseline smoothing,

bigram and trigram models

5.2.3 Performance Variation Over Training Set Size

Given the preceding analysis, it is relevant to note what fraction of the total entropy of the test

data is associated with n-grams of di�erent counts, to determine how the performance for each

count a�ects overall performance. In Figure 28, we display the cumulative values of

H

p;r

(T)

H

p

(T)

(see

equation (27)) for di�erent counts r for the baseline algorithm over a range of training set sizes for

bigram and trigram models on the WSJ/NAB corpus. A line labeled r � k graphs the fraction of

the entropy devoted to n-grams with up to k counts, i.e.,

P

k

r=0

H

p;r

(T)

H

p

(T)

. Actually, this is not quite

accurate, as we exclude from this value the contribution from all n-grams w

i

i�n+1

for which the

corresponding history w

i�1

i�n+1

has no counts. The contribution from these n-grams represent the

area above the r � 1 line.

As would be expected, the proportion of the entropy devoted to n-grams with high counts

grows as the size of the training set grows. More surprising is the fraction of the entropy devoted

to low counts in trigram models even for very large training sets; for a training set of 10 million

sentences about 40% of the entropy comes from trigrams with zero counts in the training data.

This explains the large impact that performance on low counts has on overall performance, and

why modi�ed Kneser-Ney smoothing has the best overall performance even though it excels mostly

on low counts only.

In combination with the previous analysis, this data also explains some of the variation in the

relative performance of di�erent algorithms over di�erent training set sizes and between bigram

and trigram models. In particular, algorithms that perform well on low counts will perform well

overall when low counts form a larger fraction of the total entropy (i.e., small data sets), and

conversely, algorithms that perform well on high counts will perform better on large data sets.

For example, the observation that jelinek-mercer outperforms katz on small data sets while

katz is superior on large data sets is explained by the fact that katz is superior on high counts

while jelinek-mercer is superior on low counts. Similarly, since bigram models contain more

high counts than trigram models on the same size data, katz performs better on bigram models

than on trigram models.

48

5.2.4 Backo� vs. Interpolation

In this section, we examine the count-by-count performance of the backo� and interpolated versions

of several smoothing algorithms, namely the algorithms: witten-bell-interp and witten-bell-

backoff, abs-disc-interpand abs-disc-backoff, and kneser-ney-mod and kneser-ney-mod-

backoff.

In Figures 29 and 30, we display the normalized performance of the backo� and interpolated

versions of Witten-Bell and modi�ed Kneser-Ney smoothing over a range of counts for both bigram

and trigram models. We can see that the interpolated algorithms signi�cantly outperform the

backo� algorithms on low (positive) counts. Though not shown, this holds for absolute discounting

as well. As discussed in Section 5.2.2, it seems that for low counts lower-order distributions provide

valuable information about the correct amount to discount, and thus interpolation is superior for

these situations.

In Figures 31 and 32, we display the ratio of expected to actual counts of the backo� and

interpolated versions of Witten-Bell and modi�ed Kneser-Ney smoothing over a range of counts

for both bigram and trigram models. For modi�ed Kneser-Ney smoothing, we see that the backo�

version is generally closer to the ideal according to this criterion. Though not shown, we see

similar behavior for absolute discounting. For Witten-Bell smoothing, we see that the backo�

version is closer to the ideal for small counts, but not quite as close for large counts. However, the

interpolated version is signi�cantly worse for the count of zero, being a factor of 1.5{2 away from

the ideal. We hypothesize that the better performance of the backo� model on low counts on this

criterion is the reason for its better overall performance.

Thus, we see that for these models the interpolated versions generally have better normalized

cross-entropies, while the backo� versions have more ideal expected-to-actual count ratios. We

hypothesize that the relative strength of these two in
uences determine the relative performance

of the backo� and interpolated versions of an algorithm. Since the relative strengths of these

factors vary, whether the backo� or interpolated version of an algorithm is superior depends on

the algorithm, as we have seen earlier.

5.3 Auxiliary Experiments

5.3.1 Higher Order n-Gram Models

Due to the increasing speed and memory of computers, there has been some use of higher-order

n-gram models such as 4-gram and 5-gram models in speech recognition in recent years (Seymore

et al., 1997; Weng, Stolcke, and Sankar, 1997). In this section, we examine how various smoothing

algorithms perform for these larger models.

In Figure 33, we display the performance of 2-gram through 5-gram models relative to a tri-

gram model (all with jelinek-mercer-baseline smoothing) on various training set sizes on the

WSJ/NAB corpus. As would be expected, the larger the training set, the larger the gain in using

a higher-order model. For very large data sets, the gain in using a 4-gram or 5-gram model over

a trigram model can become quite signi�cant, over 0.2 bits/word. Note that all of these models

were built with no count cuto�s; Chen (1996) gives a description of our implementation.

In Figure 34, we display the relative performance of various smoothing algorithms relative

to the baseline method for 4-gram and 5-gram models over a range of training set sizes on the

WSJ/NAB corpus. Again, we see kneser-ney and kneser-ney-mod consistently outperforming

the other algorithms. In addition, we see that algorithms that do not perform well on small data

sets for bigram and trigram models perform somewhat worse on these higher-order models, as the

use of a larger model exacerbates the sparse data problem. The methods katz, abs-disc-interp,

49

-0.4

-0.3

-0.2

-0.1

0

0 5 10 15 20 25 30 35

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 2-gram, 75M words training

jelinek-mercer-baseline

witten-bell-backoff

witten-bell-interp

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30 35
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

count

normalized performance for each count, 3-gram, 75M words training

jelinek-mercer-baseline

witten-bell-backoff

witten-bell-interp

Figure 29: Normalized cross-entropy for n-grams with a given count in training data for witten-

bell-backoff and witten-bell-interp, WSJ/NAB corpus, bigram and trigram models

-0.4

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20 25 30 35

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 2-gram, 750k words training

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-backoff

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

count

normalized performance for each count, 3-gram, 750k words training

jelinek-mercer-baseline

kneser-ney-mod

kneser-ney-mod-backoff

Figure 30: Normalized cross-entropy for n-grams with a given count in training data for

kneser-ney-mod and kneser-ney-mod-backoff, WSJ/NAB corpus, bigram and trigram models

50

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 2-gram, 75M words training

ideal

witten-bell-backoff

witten-bell-interp

0.5

1

1.5

2

0 5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 3-gram, 75M words training

ideal

witten-bell-backoff

witten-bell-interp

Figure 31: Ratio of expected number to actual number in test set of n-grams with a given count

in training data for witten-bell-backoff and witten-bell-interp, WSJ/NAB corpus, bigram

and trigram models

0.9

0.95

1

1.05

1.1

0 5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 2-gram, 750k words training

ideal

kneser-ney-mod

kneser-ney-mod-backoff

0.85

0.9

0.95

1

1.05

1.1

1.15

0 5 10 15 20 25 30 35

ex
pe

ct
ed

 c
ou

nt
 /

ac
tu

al
 c

ou
nt

count

ratio of expected to actual counts, 3-gram, 750k words training

ideal

kneser-ney-mod

kneser-ney-mod-backoff

Figure 32: Ratio of expected number to actual number in test set of n-grams with a given count

in training data for kneser-ney-mod and kneser-ney-mod-backoff, WSJ/NAB corpus, bigram

and trigram models

51

-0.4

-0.2

0

0.2

0.4

0.6

0.8

100 1000 10000 100000 1e+06di
ff

er
en

ce
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 tr
ig

ra
m

 (
bi

ts
/to

ke
n)

training set size (sentences)

relative performance of n-gram orders on WSJ/NAB corpus

2-gram

3-gram

4-gram

5-gram

Figure 33: Performance relative to trigram model of n-gram models of varying order on WSJ/NAB

corpus, jelinek-mercer-baseline smoothing

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 4-gram

baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 5-gram

jelinek-mercer-baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

w-b-b

Figure 34: Performance relative to baseline of various algorithms on WSJ/NAB corpus, 4-gram

and 5-gram models

52

and witten-bell-backoff perform about as well or worse than the baseline algorithm except for

the largest data sets. On the other hand, jelinek-mercer consistently outperforms the baseline

algorithm.

5.3.2 Count Cuto�s

For large data sets, count cuto�s are often used to restrict the size of the n-grammodel constructed.

With count cuto�s, all n-grams of a certain length with fewer than a given number of occurrences

in the training data are ignored in some fashion. How counts are \ignored" is algorithm-speci�c,

and has not generally been speci�ed in the original descriptions of previous smoothing algorithms.

In these experiments, we implemented what we felt was the most \natural" way to add cuto�s to

various algorithms. The general strategy we took was: for n-grams with counts below the cuto�s,

we pretended they occurred zero times and assigned probabilities through backo�/interpolation;

for n-grams with counts above the cuto�s, we assigned similar probabilities as in the non-cuto�

case; and we adjusted the backo�/interpolation scaling factors so that distributions were correctly

normalized.

For instance, for Katz smoothing (Section 2.4) we use the identical d

r

as in the non-cuto� case,

but instead of equation (13) we use the following equation

c

katz

(w

i

i�1

) =

�

d

r

r if r > r

cut

�(w

i�1

) p

ML

(w

i

) if r � r

cut

where r

cut

is the corresponding cuto�, and where �(w

i�1

) is still chosen so that the total number

of counts in the distribution is unchanged. Later in this section, we brie
y describe our count

cuto� implementations for various algorithms.

To introduce the terminology we use to describe cuto� models, we use an example: 0-0-1 cuto�s

for a trigram model signals that all unigrams with 0 or fewer counts are ignored, all bigrams with

0 or fewer counts are ignored, and all trigrams with 1 or fewer counts are ignored. Models with no

cuto�s can be said to have 0-0-0 cuto�s. Using cuto�s of one or two for bigrams and trigrams can

greatly decrease the size of a model, while yielding only a small degradation in performance.

In Figure 35, we display the performance of bigram and trigram models with di�erent cuto�s

relative to the corresponding model with no cuto�s for jelinek-mercer-baseline smoothing

on various training set sizes on the WSJ/NAB corpus. For bigram models, we see that models

with higher cuto�s tend to perform more poorly as would be expected, though for very large

training sets 0-1 cuto�s are comparable with no cuto�s. However, for trigram models we see that

models with 0-0-1 cuto�s actually outperform models with no cuto�s over most of the training set

sizes. In other words, it seems that the algorithm jelinek-mercer-baseline smooths trigrams

with one count so poorly that using these counts actually hurts performance. To show that this

behavior does not hold for all smoothing algorithms, in Figure 36 we display the graph analogous

to the graph on the right of Figure 35 except using kneser-ney-mod instead of jelinek-mercer-

baseline smoothing. For kneser-ney-mod, we see that models with cuto�s indeed perform more

poorly than models without cuto�s. The decrease in performance is moderate for these cuto�

values, though, especially for larger data sets (about 0.05 bits/word).

In Figures 37 and 38, we display the performance of various smoothing algorithms for bigram

and trigram models, respectively, for di�erent cuto�s over a range of training set sizes on the

WSJ/NAB corpus. Overall, we see that the ordering of algorithms by performance is largely

unchanged from the non-cuto� case; kneser-ney and kneser-ney-mod still yield the best per-

formance. The most signi�cant di�erence is that our implementation abs-disc-interpperforms

53

0

0.02

0.04

0.06

0.08

0.1

0.12

100 1000 10000 100000 1e+06

di
ff

er
en

ce
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 n
o

cu
to

ff
s

(b
its

/to
ke

n)

training set size (sentences)

relative performance of cutoffs on WSJ/NAB corpus, bigram

no cutoffs

0-1 cutoffs

0-2 cutoffs

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06
di

ff
er

en
ce

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 n

o
cu

to
ff

s
(b

its
/to

ke
n)

training set size (sentences)

relative performance of cutoffs on WSJ/NAB corpus, trigram

no cutoffs

0-0-1 cutoffs

0-0-2 cutoffs

0-1-1 cutoffs

Figure 35: Performance relative to model with no count cuto�s of models with cuto�s onWSJ/NAB

corpus, jelinek-mercer-baseline smoothing, bigram and trigram models

0

0.05

0.1

0.15

0.2

100 1000 10000 100000 1e+06

di
ff

er
en

ce
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 n
o

cu
to

ff
s

(b
its

/to
ke

n)

training set size (sentences)

relative performance of cutoffs on WSJ/NAB corpus, trigram

no cutoffs

0-0-1 cutoffs

0-0-2 cutoffs

0-1-1 cutoffs

Figure 36: Performance relative to model with no count cuto�s of models with cuto�s onWSJ/NAB

corpus, kneser-ney-mod smoothing, trigram model

54

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

rel. perf. of algs. on WSJ/NAB corpus, 2-gram, 0-1 cutoffs

katz

kneser-neykneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

100 1000 10000 100000 1e+06
di

ff
 in

 te
st

 c
ro

ss
-e

nt
ro

py
 f

ro
m

 b
as

el
in

e
(b

its
/to

ke
n)

training set size (sentences)

rel. perf. of algs. on WSJ/NAB corpus, 2-gram, 0-2 cutoffs

jelinek-mercer-baseline

katz

kneser-neykneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

Figure 37: Performance relative to baseline of various algorithms on WSJ/NAB corpus, bigram

model with 0-1 and 0-2 cuto�s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

rel. perf. of algs. on WSJ/NAB corpus, 3-gram, 0-0-1 cutoffs

jelinek-mercer-baseline

katz

kneser-ney

kneser-ney-mod

abs-disc-interp

jelinek-mercer

witten-bell-backoff

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e

(b
its

/to
ke

n)

training set size (sentences)

rel. perf. of algs. on WSJ/NAB corpus, 3-gram, 0-1-1 cutoffs

jelinek-mercer-baseline

katz

kneser-neykneser-ney-mod

abs-disc-interp

j-m

witten-bell-backoff

Figure 38: Performance relative to baseline of various algorithms on WSJ/NAB corpus, trigram

model with 0-0-1 and 0-1-1 cuto�s

55

more poorly relative to the other algorithms; it generally performs worse than the baseline algo-

rithm, unlike in the non-cuto� case. In addition, the magnitudes of the di�erences in performance

seem to be less when cuto�s are used. For example, for trigram models with cuto�s, kneser-ney-

mod performs up to 0.15 bits/word better than jelinek-mercer-baseline; for models with no

cuto�s, this value is around 0.25 bits/word.

Cuto� Implementations In this section, we brie
y describe our implementations for count

cuto�s for various algorithms. As mentioned earlier, the general strategy we took was: for n-grams

with counts below the cuto�s, we pretended they occurred zero times and assigned probabilities

through backo�/interpolation; for n-grams with counts above the cuto�s, we assigned similar

probabilities as in the non-cuto� case; and we adjusted the backo�/interpolation scaling factors so

that distributions were correctly normalized. For the implementation of cuto�s for Katz smoothing,

refer to the beginning of Section 5.3.2.

For jelinek-mercer and jelinek-mercer-baseline, we use an equation analogous to equa-

tion (12) from Section 2.3:

p

interp

(w

i

jw

i�1

i�n+1

) = �

0

w

i�1

i�n+1

p

cut

(w

i

jw

i�1

i�n+1

) + (1� �

0

w

i�1

i�n+1

) p

interp

(w

i

jw

i�1

i�n+2

) (28)

where

p

cut

(w

i

jw

i�1

i�n+1

) =

c

cut

(w

i

i�n+1

)

P

w

i

c

cut

(w

i

i�n+1

)

and where

c

cut

(w

i

i�n+1

) =

�

c(w

i

i�n+1

) if c(w

i

i�n+1

) > c

n

0 otherwise

where c

n

is the count cuto� for that n-gram level. For �

0

w

i�1

i�n+1

, we take

�

0

w

i�1

i�n+1

=

P

w

i

c

cut

(w

i

i�n+1

)

P

w

i

c(w

i

i�n+1

)

�

w

i�1

i�n+1

Then, the left term on the right-hand side of equation (28) is equivalent to the corresponding term

in equation (12); i.e., n-grams with counts above the cuto� are assigned similar probabilities in

the cuto� and non-cuto� cases.

For Witten-Bell smoothing, instead of equation (17) in Section 2.5 we take

p

WB

(w

i

jw

i�1

i�n+1

) =

c

cut

(w

i

i�n+1

) +N

0

1+

(w

i�1

i�n+1

�)p

WB

(w

i

jw

i�1

i�n+2

)

P

w

i

c(w

i

i�n+1

) +N

1+

(w

i�1

i�n+1

�)

where c

cut

(w

i

i�n+1

) is de�ned as before and N

0

1+

(w

i�1

i�n+1

�) is chosen so that probabilities sum to

1; i.e., we take

N

0

1+

(w

i�1

i�n+1

�) = N

1+

(w

i�1

i�n+1

�) +

X

w

i

c(w

i

i�n+1

)�

X

w

i

c

cut

(w

i

i�n+1

)

For absolute discounting, we use an equation analogous to equation (18) in Section 2.6

p

abs

(w

i

jw

i�1

i�n+1

) =

maxfc

cut

(w

i

i�n+1

)�D; 0g

P

w

i

c(w

i

i�n+1

)

+ (1� �

w

i�1

i�n+1

) p

abs

(w

i

jw

i�1

i�n+2

)

56

7

7.5

8

8.5

9

9.5

10

1000 10000 100000 1e+06

cr
os

s-
en

tr
op

y
of

 te
st

 d
at

a
(b

its
/to

ke
n)

training set size (sentences)

abs-disc-interp
katz

kneser-ney-fix
kneser-ney-mod

34

36

38

40

42

44

46

48

50

52

1000 10000 100000 1e+06

w
or

d-
er

ro
r

ra
te

 o
n

te
st

 s
et

training set size (sentences)

abs-disc-interp
katz

kneser-ney-fix
kneser-ney-mod

Figure 39: On left, cross-entropy of various algorithms on Broadcast News speech recognition test

set over various training set sizes, trigram model; on right, speech recognition word-error rate for

same models on same test set

To have this distribution sum to 1, instead of equation (19) we take

1� �

w

i�1

i�n+1

=

DN

1+

(w

i�1

i�n+1

�) +

P

w

i

c(w

i

i�n+1

)�

P

w

i

c

cut

(w

i

i�n+1

)

P

w

i

c(w

i

i�n+1

)

For Kneser-Ney smoothing, we make the same adjustments as in absolute discounting.

5.3.3 Cross-Entropy and Speech Recognition

In this section, we brie
y examine how the performance of a language model measured in terms

of cross-entropy correlates with speech recognition performance using the language model. Speech

recognition is perhaps the most prevalent application of language models, and we perform this

study to give an example of how cross-entropy correlates with an application-speci�c measure of

performance. Speech recognition performance is generally measured in terms of word-error rate,

which is the number of word errors made divided by the number of words in the correct transcript.

It has been shown previously that there is some linear correlation between the word-error rate

produced using a language model and the cross-entropy of the model on the corresponding text

(Chen, Beeferman, and Rosenfeld, 1998). However, the strength of the correlation depends on the

nature of the models being compared.

For these experiments, we used Broadcast News speech data (DARPA, 1998). We generated

narrow-beam lattices with the Sphinx-III speech recognition system (Placeway et al., 1997) using

a Katz-smoothed trigram model trained on 130 million words of Broadcast News text; trigrams

occurring only once in the training data were excluded from the model. We calculated word-error

rates for the language models in this experiment by rescoring these lattices with the given language

model.

We constructed trigram language models for each of four smoothing algorithms for �ve di�erent

training set sizes (ranging from 1,000 to 8,300,000 sentences). Listed from best to worst in terms

of cross-entropy, these algorithms are kneser-ney-mod, kneser-ney-fix, katz, and abs-disc-

interp. All models were built with no count cuto�s except for the largest training set, for which

57

34

36

38

40

42

44

46

48

50

52

7 7.5 8 8.5 9 9.5 10 10.5

w
or

d-
er

ro
r

ra
te

 o
n

te
st

 s
et

cross-entropy of test set

abs-disc-interp
katz

kneser-ney-fix
kneser-ney-mod

Figure 40: Relation between perplexity and speech recognition word-error rate on test set for 20

language models

trigrams occurring only once in the training data were excluded. The cross-entropy on the test

data of these 20 models are displayed on the left in Figure 39 by training set size.

Then, we calculated word-error rates for each of these 20 models on the test data using the

procedure described earlier. On the right in Figure 39, we plot the word-error rates of these 20

models by training set size. In Figure 40, we plot the cross-entropy vs. the word-error rate for each

of the 20 models. We can see that the linear correlation between cross-entropy and word-error

rate is very strong for this set of models. Thus, it seems that smoothing algorithms with lower

cross-entropies will generally lead to lower word-error rates when plugged into speech recognition

systems. For our particular data set, we see a reduction of about 5.4% absolute in word-error rate

for every bit of reduction in cross-entropy. As seen in Section 5.1, the di�erence in cross-entropy

between the best smoothing algorithm and a mediocre smoothing algorithm can be 0.2 bits or

more, corresponding to about a 1% absolute di�erence in word-error rate. Hence, the choice of

smoothing algorithm can make a signi�cant di�erence in speech recognition performance.

6 Discussion

Smoothing is a fundamental technique for statistical modeling, important not only for language

modeling but for many other applications as well, e.g., prepositional phrase attachment (Collins

and Brooks, 1995), part-of-speech tagging (Church, 1988), and stochastic parsing (Magerman,

1994; Goodman, 1997). Whenever data sparsity is an issue, smoothing can help performance, and

data sparsity is almost always an issue in statistical modeling. In the extreme case where there is

so much training data that all parameters can be accurately trained without smoothing, one can

almost always expand the model, such as by moving to a higher-order n-gram model, to achieve

improved performance. With more parameters data sparsity becomes an issue again, but with

proper smoothing the models are usually more accurate than the original models. Thus, no matter

how much data one has, smoothing can almost always help performance, and for a relatively small

e�ort.

In this work, we have measured the performance of smoothing algorithms primarily through

the cross-entropy of test data, and we have also performed experiments measuring the word-

error rate of speech recognition. Cross-entropy does not always correlate well with word-error

58

rate, especially when the models compared are created using very di�erent techniques (Chen,

Beeferman, and Rosenfeld, 1998). However, in our experiments we found that when the only

di�erence between models is smoothing, the correlation between the two measures is quite strong.

It is certainly possible that in other domains, improved cross-entropy from better smoothing will

not correlate with improved application performance, but we expect that in most cases it will. For

speech recognition, better smoothing algorithms may lead to up to a 1% absolute improvement in

word-error rate.

To our knowledge, this is the �rst empirical comparison of smoothing techniques in language

modeling of such scope: no other study has systematically examined multiple training data sizes,

di�erent corpora, or has performed automatic parameter optimization. We show that in order

to completely characterize the relative performance of two techniques, it is necessary to consider

multiple training set sizes and to try both bigram and trigram models. We show that sub-optimal

parameter selection can signi�cantly a�ect relative performance. We have also developed a novel

smoothing algorithm that outperforms all previous techniques, by applying insights gleaned from

using the tools that we have created for the detailed analysis of smoothing algorithms.

Multiple runs should be performed whenever possible to discover whether any calculated di�er-

ences are statistically signi�cant; it is unclear whether many of the previously reported results in

the literature are conclusive given that they are based on single runs and given the variances found

in this work. For example, we estimated that the standard deviation of the performance of Katz

smoothing relative to the baseline method for a single run is about 0:015 bits, which translates to

about a 1% di�erence in perplexity. This standard deviation is comparable to previously reported

di�erences in performance. For instance, in the N�adas and Katz papers, di�erences in perplexity

between algorithms of about 1% are reported for a single test set of 100 sentences. MacKay and

Peto present perplexity di�erences between algorithms of signi�cantly less than 1%.

We point out that because of the variation in the performance of di�erent smoothing meth-

ods and the variation in the performance of di�erent implementations of the same smoothing

method (e.g., from parameter setting), it is vital to specify the exact smoothing technique and

implementation of that technique used when referencing the performance of an n-gram model.

For example, the Katz and N�adas papers describe comparisons of their algorithms with \Jelinek-

Mercer" smoothing, but they do not specify the bucketing scheme used or the granularity used in

deleted interpolation. Without this information, it is impossible to determine the import of their

comparisons. More generally, there has been much work comparing the performance of various

models with that of n-gram models where the type of smoothing used is not speci�ed. Again,

without this information we cannot tell if the comparisons are signi�cant.

Of the techniques studied, we have found that Kneser-Ney smoothing and variations consis-

tently outperform all other algorithms. In particular, our novel algorithm kneser-ney-mod con-

sistently had the best performance. This algorithm di�ers in several ways from Kneser and Ney's

original algorithm: interpolation is used instead of backo�, we use a separate discount for one-

and two-counts instead of a single discount for all counts, and we estimate discounts on held-out

data instead of using a formula based on training data counts. Our experimental results show that

all three of these choices improve performance. Performing just slightly worse is the algorithm

kneser-ney-mod-fix; this algorithm di�ers from kneser-ney-mod in that discounts are set using

a formula based on training data counts. This algorithm has the practical advantage that no

external parameters need to be optimized on held-out data.

We provide techniques for analyzing the count-by-count performance of di�erent smoothing

techniques. This detailed analysis helps explain the relative performance of various algorithms,

and can help predict how di�erent algorithms will perform in novel situations. These analysis tools

helped us design our modi�cations to Kneser-Ney smoothing.

59

From our experiments and analysis, we found several factors that had a consistent e�ect on the

performance of smoothing algorithms.

� The factor with the largest in
uence is the use of a modi�ed backo� distribution as in Kneser-

Ney smoothing. This seemed to be the primary reason that the variations of Kneser-Ney

smoothing performed so well relative to the remaining algorithms.

� Absolute discounting is superior to linear discounting. As was shown earlier, the ideal average

discount for counts rises quickly for very low counts but is basically
at for larger counts.

However, the Good-Turing estimate can be used to predict this average discount even better

than absolute discounting, as was demonstrated by Katz smoothing.

� In terms of normalized performance, interpolated models are signi�cantly superior to back-

o� models for low (nonzero) counts. This is because lower-order models provide valuable

information in determining the correct discount for n-grams with low counts.

� Adding free parameters to an algorithm and optimizing these parameters on held-out data

can improve the performance of an algorithm, e.g., kneser-ney-mod vs. kneser-ney-mod-

fix.

Our algorithm kneser-ney-mod gets its superior performance from a combination of all of these

factors.

While we have systematically explored smoothing for n-gram language models, there remain

many directions that need to be explored. Almost any statistical model, not just n-gram models,

can and should be smoothed, and further work will be needed to determine how well the techniques

described here transfer to other domains. However, the techniques we have developed, both for

smoothing and for analyzing smoothing algorithm performance, should prove useful not only for

language modeling research but for other tasks as well.

Acknowledgements

The authors would like to thank Stuart Shieber and the anonymous reviewers for their comments

on previous versions of this paper. This research was supported in part by the National Science

Foundation under Grant No. IRI-93-50192 and Grant No. CDA-94-01024. The second author was

also supported by Grant No. IRI-97-12068 and a National Science Foundation Graduate Student

Fellowship.

References

Bahl, Lalit R., Peter F. Brown, Peter V. de Souza, and Robert L. Mercer. 1989. A tree-based

statistical language model for natural language speech recognition. IEEE Transactions on

Acoustics, Speech and Signal Processing, 37:1001{1008, July.

Bahl, Lalit R., Frederick Jelinek, and Robert L. Mercer. 1983. A maximum likelihood approach

to continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-5(2):179{190, March.

Baum, L.E. 1972. An inequality and associated maximization technique in statistical estimation

of probabilistic functions of a Markov process. Inequalities, 3:1{8.

60

Bell, Timothy C., John G. Cleary, and Ian H. Witten. 1990. Text Compression. Prentice Hall,

Englewood Cli�s, N.J.

Brown, Peter F., John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Frederick Jelinek,

John D. La�erty, Robert L. Mercer, and Paul S. Roossin. 1990. A statistical approach to

machine translation. Computational Linguistics, 16(2):79{85, June.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai, and Robert L.

Mercer. 1992a. An estimate of an upper bound for the entropy of English. Computational

Linguistics, 18(1):31{40, March.

Brown, Peter F., Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai, and Robert L. Mercer.

1992b. Class-based n-gram models of natural language. Computational Linguistics, 18(4):467{

479, December.

Chen, Stanley F. 1996. Building Probabilistic Models for Natural Language. Ph.D. thesis, Harvard

University, June.

Chen, Stanley F., Douglas Beeferman, and Ronald Rosenfeld. 1998. Evaluation metrics for lan-

guage models. In DARPA Broadcast News Transcription and Understanding Workshop.

Chen, Stanley F. and Joshua T. Goodman. 1996. An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th Annual Meeting of the ACL, pages 310{318,

Santa Cruz, California, June.

Church, Kenneth. 1988. A stochastic parts program and noun phrase parser for unrestricted

text. In Proceedings of the Second Conference on Applied Natural Language Processing, pages

136{143.

Church, Kenneth W. and William A. Gale. 1991. A comparison of the enhanced Good-Turing and

deleted estimation methods for estimating probabilities of English bigrams. Computer Speech

and Language, 5:19{54.

Clarkson, P. and R. Rosenfeld. 1997. Statistical language modeling using the CMU-Cambridge

toolkit. In Proceedings of Eurospeech '97.

Collins, Michael and James Brooks. 1995. Prepositional phrase attachment through a backed-o�

model. In David Yarowsky and Kenneth Church, editors, Proceedings of the Third Workshop

on Very Large Corpora, pages 27{38, Cambridge, MA, June.

Cover, Thomas M. and Joy A. Thomas. 1991. Elements of Information Theory. John Wiley.

DARPA. 1998. DARPA Broadcast News Transcription and Understanding Workshop.

Gale, William A. and Kenneth W. Church. 1990. Estimation procedures for language context:

poor estimates are worse than none. In COMPSTAT, Proceedings in Computational Statistics,

9th Symposium, pages 69{74, Dubrovnik, Yugoslavia, September.

Gale, William A. and Kenneth W. Church. 1994. What's wrong with adding one? In N. Oostdijk

and P. de Haan, editors, Corpus-Based Research into Language. Rodolpi, Amsterdam.

Gale, William A. and Geo�rey Sampson. 1995. Good-Turing frequency estimation without tears.

Journal of Quantitative Linguistics, 2(3). To appear.

61

Godfrey, J.J., E.C. Holliman, and J. McDaniel. 1992. SWITCHBOARD: Telephone speech corpus

for research and development. In Proceedings of ICASSP-92, volume I, pages 517{520.

Good, I.J. 1953. The population frequencies of species and the estimation of population parame-

ters. Biometrika, 40(3 and 4):237{264.

Goodman, Joshua. 1997. Probabilistic feature grammars. In Proceedings of the International

Workshop on Parsing Technologies 1997.

Hull, Jonathon. 1992. Combining syntactic knowledge and visual text recognition: A hidden

Markov model for part of speech tagging in a word recognition algorithm. In AAAI Symposium:

Probabilistic Approaches to Natural Language, pages 77{83.

Je�reys, H. 1948. Theory of Probability. Clarendon Press, Oxford, second edition.

Jelinek, Frederick and Robert L. Mercer. 1980. Interpolated estimation of Markov source param-

eters from sparse data. In Proceedings of the Workshop on Pattern Recognition in Practice,

Amsterdam, The Netherlands: North-Holland, May.

Johnson, W.E. 1932. Probability: deductive and inductive problems. Mind, 41:421{423.

Katz, Slava M. 1987. Estimation of probabilities from sparse data for the language model com-

ponent of a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing,

ASSP-35(3):400{401, March.

Kernighan, M.D., K.W. Church, and W.A. Gale. 1990. A spelling correction program based on a

noisy channel model. In Proceedings of the Thirteenth International Conference on Computa-

tional Linguistics, pages 205{210.

Kneser, Reinhard and Hermann Ney. 1995. Improved backing-o� for m-gram language model-

ing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal

Processing, volume 1, pages 181{184.

Kucera, H. and W.N. Francis. 1967. Computational Analysis of Present-Day American English.

Brown University Press, Providence R.I.

Lidstone, G.J. 1920. Note on the general case of the Bayes-Laplace formula for inductive or a

posteriori probabilities. Transactions of the Faculty of Actuaries, 8:182{192.

MacKay, David J. C. and Linda C. Peto. 1995. A hierarchical Dirichlet language model. Natural

Language Engineering, 1(3):1{19.

Magerman, David M. 1994. Natural Language Parsing as Statistical Pattern Recognition. Ph.D.

thesis, Stanford University, February.

Marcus, M., B. Santorini, and M. Marcinkiewicz. 1993. Building a large annotated corpus of

English: the Penn Treeback. Computational Linguistics, 19(2).

Markov, A.A. 1913. An example of statistical investigation in the text of `Eugene Onyegin'

illustrating coupling of tests in chains. Proceedings of the Academy of Science, St. Petersburg,

7:153{162.

62

Nadas, Arthur. 1984. Estimation of probabilities in the language model of the IBM speech

recognition system. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-

32(4):859{861, August.

Ney, Hermann, Ute Essen, and Reinhard Kneser. 1994. On structuring probabilistic dependences

in stochastic language modeling. Computer, Speech, and Language, 8:1{38.

Placeway, P., S. Chen, M. Eskenazi, U. Jain, V. Parikh, B. Raj, M. Ravishankar, R. Rosenfeld,

K. Seymore, M. Siegler, R. Stern, and E. Thayer. 1997. The 1996 Hub-4 Sphinx-3 system. In

Proceedings of the DARPA Speech Recognition Workshop, February.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1988. Numerical Recipes in C.

Cambridge University Press, Cambridge.

Ries, Klaus. 1997. personal communication.

Rogina, Ivica and Alex Waibel. 1995. The Janus speech recognizer. In ARPA SLT Workshop.

Rosenfeld, Ronald. 1995. The CMU statistical language modeling toolkit and its use in the 1994

ARPA CSR evaluation. In Proceedings of the Spoken Language Systems Technology Workshop,

pages 47{50, Austin, Texas, January.

Rudnicky, A.I. 1996. Hub 4: Business Broadcast News. In Proceedings of the DARPA Speech

Recognition Workshop, pages 8{11.

Seymore, K., S. Chen, M. Eskenazi, and R. Rosenfeld. 1997. Language and pronunciation mod-

eling in the CMU 1996 Hub 4 evaluation. In Proceedings of the DARPA Speech Recognition

Workshop, Washington, D.C., February.

Srihari, Rohini and Charlotte Baltus. 1992. Combining statistical and syntactic methods in

recognizing handwritten sentences. In AAAI Symposium: Probabilistic Approaches to Natural

Language, pages 121{127.

Stern, Richard M. 1996. Speci�cation of the 1995 ARPA hub 3 evaluation: Unlimited vocabulary

NAB news baseline. In Proceedings of the DARPA Speech Recognition Workshop, pages 5{7.

Weng, Fuliang, Andreas Stolcke, and Ananth Sankar. 1997. Hub4 language modeling using domain

interpolation and data clustering. In Proceedings of the DARPA Speech Recognition Workshop,

Washington, D.C., February.

Witten, Ian H. and Timothy C. Bell. 1991. The zero-frequency problem: Estimating the probabil-

ities of novel events in adaptive text compression. IEEE Transactions on Information Theory,

37(4):1085{1094, July.

63

