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80, South Bridge
Edinburgh
EH1 1HN

Contact: Simon.King@ed.ac.uk

Abstract
We report work on the first component of a two stage speech recognition architecture
based on phonological features rather than phones. The paper reports experiments
on three phonological feature systems: 1) the Sound Pattern of English (SPE) system
which uses binary features, 2) a multi valued (MV) feature system which uses tradi-
tional phonetic categories such as manner, place etc, and 3) Government Phonology
(GP) which uses a set of structured primes. All experiments used recurrent neural
networks to perform feature detection. In these networks the input layer is a standard
framewise cepstral representation, and the output layer represents the values of the
features. The system effectively produces a representation of the most likely phono-
logical features for each input frame.

All experiments were carried out on the TIMIT speaker independent database. The
networks performed well in all cases, with the average accuracy for a single feature
ranging from 86% and 93%. We describe these experiments in detail, and discuss
the justification and potential advantages of using phonological features rather than
phones for the basis of speech recognition.
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1. Introduction
1.1. The theoretical basis of phonological features

This paper reports work on the first component of a two stage recognition architecture
based on phonological features rather than phones. While phonological features have
been proposed before as the basis of a speech recognition system (see section 1.3 for
a review), the use of features has been out of favour until recently because there had
been little success in extracting them from the speech waveform. This paper reports
a set of experiments which show that phonological features can be accurately and
robustly extracted from speech; furthermore, we have shown that this is possible for
speaker independent continuous speech.

Most speech recognisers today are based on phones (or phonemes) which, in our
opinion, are often given undue legitimacy in the speech community, particularly with
respect to the assumption that a sequence of acoustic observations can be synchro-
nised with a sequence of phones. Often phones are seen as being the “atoms” of
speech in that they are the set of units from which all else (that is, word sequences)
can be built. But just as with atoms in physics, it is now widely accepted in phonol-
ogy that phones are decomposable into smaller, more fundamental units. There is no
consensus as to what these units are, but the most popular view is that phones can be
constructed from a set of phonological distinctive features.

The principle of distinctive features was first proposed in the classic work of Jakob-
son, Fant and Halle [17]. Although this work gained much attention when published,
many (e.g. [18]) regarded features as no-more than a useful classification scheme,
whereby one could refer to the class of “nasal phones” or “voiced phones”. The power
of features became evident with the publication of The Sound Pattern of English by
Chomsky and Halle [7] (hereafter SPE), where the authors showed that what were oth-
erwise complex phonological rules could be written concisely if features were used
rather than phones. For example, consider the well-known phenomena of nasal assim-
ilation in English. When a prefix such as “in” is added to a word, the nasal changes and
takes on the place of articulation of the first phone of the word. E.g. “in” + “possible”

“impossible”, “in”+ “balance” “imbalance”, “in” + “material” “immaterial”
etc. Rather than write a rule for each phone, this can be expressed neatly by saying the
place of articulation is the same for the nasal as for the first phone of the word. Other
uses of features include specification of phonotactics. In English it is very laborious to
list the large set of possible syllable initial consonant sequences (e.g. “sp”, “st” “sk”,
“spr”, “spl” etc). But the same sequences can be described neatly by appealing to fea-
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tures (for example only unvoiced stops can appear after an /s/, and only approximants
can appear after a stop).

The SPE feature system used production-based binary features. In this system, each
phone was composed of a vector of 13 binary components which represented produc-
tion features such as voicing, high, low (representing tongue position during vowels),
round (for lip rounding), continuant (to distinguish continuous sounds such as vowels
and fricatives from stops), and so on. Features have also been proposed as the basis of
spoken language universals, in the sense that while the phonemes of a language vary,
the set of features does not and is the same for all languages.

The goal of feature theory in phonology has been to discover the most basic set of
fundamental underlying units (the features) from which surface forms (e.g. phones)
can be derived. Feature schemes should be minimal in the sense that the features
should be independent and not contain redundancy. This follows on from the idea of
finding the most basic set - if for example in a particular feature set, two features
were found to regularly co-occur, then that could be taken as evidence that a different,
as yet undiscovered, feature could replace them. The physics analogy is particularly
useful here. If elements are described individually, they seem to exhibit idiosyncratic
and somewhat arbitrary behaviour. However, by describing them in terms of their
sub-atomic makeup, the picture becomes much clearer (cf. the periodic table). The
important point is that a small number of relatively simple sub-atomic particles can be
used to describe the complex behaviour of a much larger set of units from which they
are made. Likewise, the principle behind phonological features is that a small number
of simple features can be combined to give rise to the larger number of phones, whose
behaviour is more complex.

1.2. Advantages of Phonological Features over Phones

Phones are a useful representation because words can easily be re-written as phones
using a lexicon. In conventional HMM systems, phones are then re-written as HMM
states. HMMs are generative models, with each observation generated by a single
state. During recognition, the state sequence is hidden, and the probability that a par-
ticular model has generated a given sequence of observations is often calculated ap-
proximately using Viterbi decoding. We argue here that it is inappropriate to align
observations, phones and words in this strict fashion.

In HMM speech recognition, the acoustic model which relates states to observa-
tions effectively does two jobs: 1) it turns representations from the acoustic domain
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to a phonetic one; 2) it models the time dynamics of the acoustics so that a sequence
of similar acoustic observations are modelled as single phone. Our feature based ap-
proach performs each of these operations separately. The feature extraction compo-
nent maps from the acoustic domain to the phonetic domain, but the representation
is still one of frame based time varying vectors. The phone model then operates in
the feature domain. The phonological features could be regarded as latent variables: a
simple, hidden process which gives rise to a (more complex) observable process.

The basic problem with performing the two steps at once is that the HMM has no
inherent ability to model the dynamics of the acoustic observations . Speech produc-
tion from phones to acoustics is complex and non-linear and hence phenomena which
can have relatively simple phonetic explanations can give rise to extremely complex
acoustic patterns. While it is easy to model nasality spread phonetically, it is very dif-
ficult to do so in the acoustic domain as the effects of nasality can not be represented
by a simple function operating on the acoustics.

Critical and non-critical articulators

Rather than view phonological features as an alternative frame-based vector represen-
tation to cepstra, it can be helpful to view feature representations as trajectories in time
in which each component of the frame (each feature) exhibits different, but coupled,
dynamic behaviour. This is clearer if we refer to actual articulatory movements. Fig-
ure 1 shows data recorded using an Electro-magnetic Articulograph (EMA). During
production of the d, the critical articulator is the tongue tip – the place of articulation
in the SPE system is coronal. Note the rapid movement of the tongue tip upwards
(see tongue tip y track) to make the stop closure. Non-critical articulators, such as
the lower lip (see lower lip y track) exhibit slower movement which is spread across
phones: the lower lip is raised to produce the closure for the [p], then lowers to make
the vowel, and raises again for the [d]. Note how the lowering and raising movement
takes place during the vowel – this articulator never reaches a stable position during
the vowel as it anticipates the following stop. In other words, the degree of lowering
of the lower lip to make the vowel is not required to be precise, but the closure for the
[p] is. In addition, each feature is of varying importance, depending on the phone in
question. The consequence of this is that when uttering a [d] in some context, only the
tongue tip/alveolar ridge feature is distinctive - all the other features are governed by

The combination of a discrete state and the Markov property restricts trajectories of parameter
means to be piecewise constant. This situation is mitigated a little by appending first and second dif-
ferences to the observation.
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Figure 1: Example EMA data for the word “pod”. Vertical lines show phone boundaries. The y coordi-
nate is vertical (increasing y means upward movement), and the x coordinate is horizontal (increasing
x means forward movement).

context, and during the [d] will probably just interpolate the positions required by the
preceding and following phonological units. If this can be modelled in the phonetic
domain, the crucial nature of a [d] can be represented quite simply by specifying high
weighting for the alveolar feature while diminishing the importance of other evidence.
Exactly the same [d] model can be used regardless of context. However, if acoustic
observations are used, it will seem that [d] in different contexts exhibit a large amount
of (unexplained) variance. So, the essence of the feature based model is that phenom-
ena that seem extremely complex in the acoustic domain can have relatively simple
explanations in the phonetic feature domain.
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Contextual effects

HMMs make the following independence assumption:

where is the sequence of observations associated with phone . It is widely ac-
cepted that this assumption is not valid. That is, it is wrong to assume that is
independent of its neighbouring phones and (or indeed , etc). In fact the
observations associated with a phone are heavily influenced by phonetic context. If
the parameters of a phone model are estimated from training examples from multiple
contexts, the variances in the phone model will be excessively high, leading to poor
modelling. However, rather than change the form of the model to make explic-
itly depend on (and so on), the technique of context-dependent phones is often
used instead. A different model of each phone is required for each possible context;
typically one phone to the left and right is used as context, giving triphone models.
This divisive modelling strategy results in a large number of models, each with less
training data, and means that techniques for reducing the number of model parameters
are necessary; usually this means sharing (tying) parameters: state or mixture tying,
for example. State tying is often performed using decision trees, in which a series of
questions are asked, often about the phonological features of the phone and its context
[36].

In search of a more principled system than this, we argue against the approach
of assuming that all phonetic contexts are different, then grouping them together to
reduce the number of parameters. Specifically, we propose that modelling context
effects directly in terms of phonological feature trajectories should allow for better,
more accurate models.

1.3. Related work on Phonological Features

The idea of using phonological features for speech recognition is not new, as many
others have seen the basic theoretical advantages laid out above. Among others, the
CMU Hearsay-II system [13] made some use of features, as did the CSTR Alvey
recogniser [14]. Often these systems used knowledge based techniques to extract their
features and in the end the performance of these systems was poor on speaker inde-
pendent continuous speech. Some more recent work has continued in this vein. For



King and Taylor: Detection of Phonological Features 7

example, Bitar and Espy-Wilson [2, 3, 11] used a knowledge-based approach to ex-
tract phonetic features from the speech signal. They measured properties of the signal,
such as energy in certain frequency bands, and formant frequencies, and defined the
phonetic features as functions of these acoustic measurements. Ali et al [1] also use
rules, to segment and classify phones from a 30 speaker subset of the TIMIT database.
Results are not reported in the conventional way, as a phone recognition accuracy, so
are hard to compare with other work. Their results for phonetic feature detection, such
as place of articulation, are only given for certain classes of segment. Lahiri and Reetz
[24, 28] use a bottom-up rule based approach to extract phonological features from the
speech signal which are subsequently decoded into lexical words. While these studies
have shown some useful insights into the relationship between features and acoustics,
there is still little evidence that such techniques have reached the performance levels
required for speaker independent continuous speech recognition.

Kirchhoff [19] proposed a system which used HMMs to estimate feature values
which are bundled into syllable units; complete temporal independence is allowed
within units, with alignment at unit boundaries. In [20, 21], Kirchhoff describes a
different system, somewhat similar to that described here in which a neural network
is used to predict manner and place features. A particularly interesting point about this
work was that she showed that the feature based recogniser performed comparatively
better under noisy conditions and that a combination of a phone based recogniser
and feature recogniser was better than either alone. Koreman et al [23] use Kohonen
networks to map between MFCCs and phonetic features, using these as observations
in HMM monophone models. A great improvement was reported over HMMs using
MFCCs as observations, albeit from a low baseline. Huckvale [16] proposes a tiered
model based on non-linear phonology in which the “fairly independent tiers”, such as
Excitation and Position [of articulation] correspond roughly to phonological features.
Neural networks are used to automatically label speech with this tiered representation.
The database consists of a single repetition of 666 monosyllabic words for training
and 359 for testing, and 51% of test words were correctly recognised.

A similar, but distinctly different, approach has been to use articulatory features
(see figure 1) in recognition. Articulatory features differ from the features we are
interested in here in that they are more closely linked to the physiology of the speech
production mechanism rather than to phonological contrasts. Nevertheless, they share
some interesting properties with phonological features, for example with respect to
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asynchronicity at phone boundaries. Deng and colleagues [8, 9, 10] have modelled
feature spreading explicitly in an HMM system via changes to the HMM topology.

Kirchhoff [22] examined conditional mutual information (CMI) between pairs of
observations (MFCC, LPC, etc) at differing times conditioned on various co-articulatory
conditions: speaking rate, stress type and vowel category. CMI is used as an indicator
of co-articulatory effects in the speech signal. As expected, higher speaking rate, un-
stressed syllables and central/lax vowels all exhibit greater co-articulation. Bridle et
al [6] give evidence for the principle of critical articulators. For example, they explain
that when uttering a [d], the crucial thing is for the speaker is to make contact between
the tongue and the alveolar ridge - the shape of the rest of the mouth and the tongue
isn’t important for phone identity.

Papcun et al [27] infer articulatory parameters from acoustics with a neural network
trained on acoustic and X-ray microbeam data. Their articulatory parameters were
very simple: vertical co-ordinates of the lower lip, tongue body and tongue dorsum.
Zacks and Thomas [37] use neural networks to learn acoustic–to–x-ray microbeam
mapping, then do vowel classification on the output by simple template matching.
Soquet et al [32] report an increase in accuracy when appending articulatory and
aerodynamic features to MFCCs in a speaker-dependent HMM recogniser.

2. Neural Networks for Feature Detection
This section describes the basic principles of our feature based approach. Perhaps
the most useful way of describing the approach is by comparison with hybrid neural
network/HMM recognisers [30, 5]. In these hybrid systems, the network performs a
1-from-N classification over the set of phones, In our approach, the network has an
output for each feature, and more than one feature can be “on” at any time. At run-
time, the outputs of the trained network range continuously from 0 to 1 and this can
be interpreted as a posterior probability. Another interpretation is that the network
is performing a non-linear mapping problem from one space (acoustic) to another
(phonological).

2.1. Network Outputs

Neural networks are typically trained by presenting successive pairs of known input
and output patterns. The weights of the network are adjusted using the back propaga-
tion algorithm so as to minimise the mean squared error between network output and
the target output. In our case each pair of patterns comprises an input of one frame of
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Figure 2: Speech recognition by HMMs, shown on the left, and by phonological features, shown on
the right.

Mel cepstral coefficients and a phonological feature description for that frame. The
cepstral coefficients can be directly calculated using signal processing on a frame by
frame basis from the speech waveform, but the provision of the target output values
is more tricky.

The problem arises because we can’t actually determine what the phonological
feature specification for a particular frame should be. Given a labelled corpus, it is
of course possible to determine a canonical feature representation for each frame by
assigning it the feature representation of the phone which is marked. However this
doesn’t take into account many of the points made above with respect to features
changing asynchronously at phone boundaries. This problem raises the difficult issue
of how concrete (close to the acoustics) or abstract (close to the phonology) we would
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Figure 3: Deriving phonological feature values from phone labels.

like these feature representations to be. Given our framework, a concrete interpretation
would make the features easier to recognise from the acoustics, implying that they
would exhibit many of the properties mentioned above such as asynchronicity and
critical articulations. It would however, be difficult to provide accurate training targets
for concrete features as we have no mechanism at present to predict this from the
phonetic transcription. On the other hand, it would be easy to specify the training
targets for an abstract interpretation, but the recognition task is inherently harder and
hence recognition errors may be more common.

Our solution to this problem is to use different interpretations for training and run-
ning the networks. Training is achieved by specifying the canonical targets for each
labelled phone, but at run-time features frequently change at different frames near
phone boundaries, which shows that the network naturally tends towards an asyn-
chronous mode of behaviour. This can be seen more clearly in the following sections
which describe our experiments.

Our training corpus is fully labelled and segmented: we know the identity and
boundaries of all phones. For each feature, the target is set to if the feature is present
in the canonical representation, and otherwise. The outputs can therefore be inter-
preted as specifying the probability that each feature is present, which during training
are either or , but during run time, the outputs will take continuous values between
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and . That is, for a 1-from-N classification task, the (normalised) network out-
puts can be interpreted as a discrete PDF; for an m-from-N task, individual outputs
can be interpreted as posterior probabilities. Figure 3 shows how we derive the target
phonological descriptions from phone labels.

2.2. Experimental setup

Our experiments used the TIMIT database [12]. This is a corpus of high-quality
recordings of read continuous speech from North American speakers. The entire cor-
pus is reliably transcribed at the word and surface phonetic levels. The speech was
parameterised as 12 Mel-frequency cepstral coefficients plus energy for 25ms frames,
with a 10ms frame shift.

All our experiments used networks with time-delaying recurrent connections, which
give the network some “memory” from one pattern to the next. All networks had a
single hidden layer. The network thus can learn to use as much left context as re-
quired. Only a percentage of possible connections between units in successive layers
are allowed; typically this parameter was varied from 25% to 100%. Higher values
mean more weights to be trained. The Nico [33] toolkit was used throughout.

TIMIT is divided into 3648 training utterances and 1344 test utterances (only the
si and sx sentences were used). To allow optimisation of network size and training
parameters, a validation set of 100 utterances was taken from the training set, leaving
3548 utterances for training network weights. None of the test speakers are in the
training set, and hence all experiments are speaker independent.

During network training, performance on the validation set was observed. Training
was terminated when this performance (measured either as a classification percentage,
or as the error between target and actual network output) reached a plateau. To deter-
mine the optimum network size, networks with various numbers of hidden units were
used. The training method employed prunes connections with low weights as training
proceeds, allowing some automatic determination of the number of free parameters
in the network. Variables such as learning rate (step size), momentum and degree of
connection pruning were also varied to optimise training time and performance on the
validation set.

3. Chomsky-Halle binary features
In experiment I we used the binary feature system from Chomsky and Halle’s “Sound
Pattern of English” [7]. There are 13 features in this system and each pronunciation
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unit is represented by a binary combination of these features. Table 1 gives examples
of the feature specification of some phones.

aa ow p l n f
vocalic + + - - - -
consonantal - - + + + +
high - - + + - -
back + + - - - -
low + - - - - -
anterior - - + + + +
coronal - - - + - -
round - + - - - -
tense + + - - - -
voice + + - + + -
continuant + + - + - +
nasal - - - - + -
strident - - - - - +
silence - - - - - -

Table 1: SPE binary feature values for some phones from the TIMIT set.

Feature
Frames

correct (%) chance (%)
vocalic 88 71
consonantal 90 52
high 86 75
back 88 76
low 93 86
anterior 90 66
coronal 90 74
round 94 92
tense 91 78
voice 93 63
continuant 93 62
nasal 97 94
strident 97 85
silence 98 86
Average over all features 92 76
All correct together 52 14
Mapped to phone accuracy 59 14

Table 2: Results for the SPE feature system.

A single network was trained to recognise all features simultaneously, with one out-
put for each feature and an additional network output for silence. A network with 250
hidden units, 50% connectivity and approximately 150 000 connections was found to
give the best performance (measured on the validation set). The results for this net-
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vocalic    
consonantal
high       
back       
low        
anterior   
coronal    
round      
tense      
voice      
continuant 
nasal      
strident   
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

vocalic    
consonantal
high       
back       
low        
anterior   
coronal    
round      
tense      
voice      
continuant 
nasal      
strident   
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 4: Example network output for the words “...economic cutbacks” for SPE feature system. The
top plot shows the target values as derived from the canonical phone representation. The bottom plot
shows the output of the neural net. It can be seen that in general the output of the network is very
accurate and tracks the ideal values well. The major difference is that the target values switch between
0 and 1 at phone boundaries, whereas the network output values are often only at extremes in the
middles of phones: values at boundaries tend to be intermediate.

work on the full test set are given in table 2. It is clear from the table that the general
recognition accuracy is high, and in all cases substantially above chance levels. The
performance on training and testing portions of the database did not differ greatly –
this indicates that the network learned to generalise well. When evaluating the results
in the table, chance levels, giving the most common value for the feature, should be
taken into account. The chance level is the prior probability of the most likely value
for a feature given as a percentage. The “all correct together” figure gives the percent-
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age that all features are correct for a given frame. This means that the network has
found the right combination 52% of the time from a possible choice of
feature combinations. The vast majority of these feature combinations don’t give rise
to valid phones. By forcing every frame to have a valid feature value combination (that
is, a phone in the language), we can increase the phone accuracy from 52% to 59%.
This is achieved by replacing invalid feature value combinations with the nearest valid
combination (using a simple Euclidean distance measure). These two figures are only
meant as a guide to overall network accuracy as they of course take no account of the
asynchronous nature of the features: simple framewise phone classification is not our
aim. Figure 4 shows the network output for an utterance from the test set, along with
the canonical values (those that would have been used for targets had this utterance
been in the training set).

4. Multi-valued features

aa ow p l n f
centrality central full nil nil nil nil
front-back back back front front front front
manner vowel vowel occlusive approximant nasal fricative
phonation voiced voiced unvoiced voiced voiced unvoiced
place low high labial coronal coronal dental
roundness unrounded rounded unrounded unrounded unrounded unrounded

Table 3:Multi-valued features for some phones from the TIMIT set.

Experiment II investigated the use of a more traditional multi-valued feature sys-
tem. In this system, there are fewer features, but each can take one of many values.
Table 3 gives the feature specifications for some example phones. In this experiment
one network was trained for each feature, so each network is performing a 1-of-N
classification task. The size of each network was determined using the validation set,
as for the previous experiment. The networks for roundness and centrality had 20
hidden units, for phonation, 40, and place, frontback and manner each had 80.

While the average per feature performance is worse for these features than for the
SPE features (86% as opposed to 92%), the average chance level is much lower also.
The “all correct together” figures are about the same as for SPE, showing that perfor-
mance of the networks on both feature systems is quite similar. Figure 5 shows the
network output for an utterance from the test set.
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Feature Possible Values
Frames

correct (%) chance (%)
centrality central full

85 47nil
continuant continuant noncontinuant 86 45
frontback back front 84 59
manner vowel fricative

approximant 87 34
nasal occlusive

phonation voiced unvoiced 93 63
place low mid

high labial
coronal palatal 72 25
corono-dental labio-dental
velar glottal

roundness round non-round 92 78
tenseness lax tense 87 65
Average over all features 86 52
All correct together 53 14
Mapped to phone accuracy 60 14

Table 4: Results for the multi-valued feature system. All features can additionally take the value ‘si-
lence’.

vowel      
fricative  
approximant
nasal      
occlusive  
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

vowel      
fricative  
approximant
nasal      
occlusive  
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 5: Example network output for the words “...economic cutbacks” for the manner feature of the
multi-valued feature system. The top plot shows the target values as derived from the canonical phone
representation. The bottom plot shows the output of the neural net. Compare with figures 4 and 6.
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sil
en
ce

ap
pr
ox
im
an
t

fri
ca
tiv
e

na
sa
l

oc
cl
us
iv
e

vo
w
el

silence 89.0 1.3 2.3 1.3 3.1 3.0
approximant 0.9 68.6 1.8 1.8 1.3 25.7

fricative 1.9 0.9 88.2 1.1 4.6 3.1
nasal 1.8 1.9 2.1 84.4 2.6 7.3

occlusive 3.1 0.8 5.6 2.3 85.8 2.4
vowel 0.5 4.7 1.2 1.2 0.9 91.5

Table 5: Confusion matrix for the manner feature of the multi-valued system. Each row is for a
correct feature value, and columns show the automatically determined values; for example, 4.7% of
vowel frames were labelled approximant. All figures are percentage of frames correct.

5. Government Phonology primes
In Government phonology [15], or simply GP, sounds are described by combining
primes in a structured way, and phonological phenomena are accounted for by the
fusing and splitting of primes within a sound. GP also accounts for the combination
of sounds into onset-rhyme groups; this allows elegant descriptions of phonological
rules which operate on these structures.

aa ow p l n f

Primes

A � � � �

I
U � � �

@
? � � �

h � �

H � �
N �

Head
a �
i
u �

Table 6: Government Phonology primes for some phones from the TIMIT set.

The primes A, I, U and @ are known as the resonance primes, and capture conso-
nant and vowel sounds. They are derived from examination of the spectral properties
(formant structure) of vowels [25]. The ? prime is present in sounds with a closure
or any abrupt and sustained decrease in amplitude. Frication (acoustically evident as
aperiodic energy) is indicated by the presence of the h prime, and the nasal primeN is
present in sounds with an articulatory oral closure and acoustically with zeros in the



King and Taylor: Detection of Phonological Features 17

spectrum. The H prime indicates unvoiced sounds, where the vocal folds are stiff and
not vibrating periodically.

The vowels [a], [i], [u], [@] are represented by just a single prime while all other
sounds are made by fusing primes. For example, fusing A and U gives [o] and fusing
A and I produces [e]. More complex sounds, like diphthongs, require the primes to
be arranged in a structured way. As well as simply fusing two or more primes, one
of the primes can optionally be made the head of the expression, denoting its greater
significance both phonologically and in determining the phonetic realisation of the
sound.

As the GP representation is heavily structured, detecting the primes is not enough
to distinguish all sounds. In experiment III, rather than attempt to recognise the struc-
ture directly, we have taken the approach of encoding the structure information as a
set of pseudo-features. In this way, a network can be trained to recognise a GP rep-
resentation in the same way as for the other features. To represent the set of TIMIT
segments, we allow three of the primes to be the head: A, I and U. Table 6 shows the
GP primes for some example phones from the TIMIT set. Table 7 shows the results
for the GP system. Again all features are recognised with high accuracy compared
with the chance levels. Figure 6 shows the network output for an utterance from the
test set.

Feature
Frames

correct (%) chance (%)

Primes

A 86 62
I 91 79
U 88 79
@ 88 75
? 92 72
h 95 79
H 95 79
N 98 94

Head
a 97 94
i 96 90
u 96 94

Average over all features 93 82
All correct together 59 14
Mapped to phone accuracy 61 14

Table 7: Results for Government Phonology primes.
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A
I
U
E
S
h
H
N
a
i
u

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

A
I
U
E
S
h
H
N
a
i
u

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 6: Example NN output for the words “...economic cutbacks” for the government phonology
system. The top plot shows the target values as derived from the canonical phone representation. The
bottom plot shows the output of the neural net. Compare with figures 4 and 5.
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6. Discussion
The primary aim of this paper has been to describe techniques for the detection of
phonological features from continuous speech. However, it is now worth discussing
some issues concerned with actual recognition, that is the conversion of feature de-
scriptions for an utterance into linguistic units such as phones or words. The long term
goal is to develop or adapt statistical models which make explicit use of the benefits
of features, for example by assuming conditional independence between the differ-
ent feature values in a frame, and by modelling co-articulation with reference to the
theory of critical articulators. While this is the subject of current and future work, it
certainly is reasonable to ask at this point what evidence we have that we are on the
right track and that we haven’t simply developed an interesting representation that
will prove of no great benefit towards solving the larger problem.

A simple way of testing the information content of a feature representation is to
treat it as a normal acoustic feature representation and train standard models. To this
end, we performed a phone recognition experiment on TIMIT with a simple HMM
speech recogniser. This used tied-state, cross word triphone models, and a mixture
of Gaussians to model the observation density. A phone bigram language model was
used. Our baseline system used Mel-scale cepstral features and using these as obser-
vations the phone accuracy was 63.3%. While this figure is lower than state of the
art for TIMIT phone recognition, it should be noted that no particular optimisation
of the recogniser was performed for the phone recognition task. An equivalent ex-
periment was performed using exactly the same recognition architecture, but using
multi-valued features rather than cepstra. That is, the trained neural network (as de-
scribed in section 2) was used to produce multi-valued feature descriptions, and these
were used as observations in the HMM system. This system gave a higher (but not
statistically significantly so) phone recognition accuracy of 63.5%.

While we do not actually advocate that phonological features should simply be
used instead of acoustic features in a HMM recogniser, what this experiment shows
is that they are at least as useful a representation, and the mapping from acoustics to
features performed by the network hasn’t been at the expense of information useful
for recognition. We propose that phonological features are potentially a more useful
modelling domain than MFCCs. Kirchhoff [21] has also tried this approach and used
features similar to ours in place of acoustic observations in Hybrid NN/HMM and
HMM recognition systems. Her results show a similar pattern to ours, in that the
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systems using features have very close performance to systems using cepstra for the
same recognition architecture.

A number of interesting models have recently been proposed for use with acous-
tic features which we think would be suitable to serve as the basis of a phonological
recognition model. A number of these approaches have been developed with the inten-
tion of modelling asynchrony. Multi-stream models [4, 35] examine frequency bands
separately and are motivated by the fact that listeners can perform partial recogni-
tion on individual bands and recombine the evidence relatively late in processing. In
separate work, Sagayama et al. [31] have proposed asynchronous transition HMMs
(AT-HMMs) which model the temporal characteristics of each acoustic feature com-
ponent separately. Their system uses a form of the successive state splitting algorithm
[34, 26] to learn the temporal and contextual characteristics of each feature. Using
Mel-scale cepstra as observations, they report a significant reduction of errors com-
pared to a standard HMM approach. Bridle et al [6, 29] describe a hidden dynamic
model in which deterministic segmental descriptions (targets) are filtered by a dy-
namical system model to simulate the effects of co-articulation and critical articula-
tors, before being passed through a non-linear mapping (neural network) to generate
acoustic vectors. These approaches are ideally suited to our task as they model asyn-
chrony inherently.

It is useful at this stage to say something about the nature of the features with regard
to asynchrony. In section 2.1 we discussed the issue of how concrete or abstract the
feature representations should be, and explained that the more concrete (i.e. close to
the acoustics) the representations are the more they could be expected to exhibit asyn-
chrony. While the neural networks were trained on feature values which switched
instantaneously at phone boundaries, it is clear from their output that even when the
networks are performing well, features often do not all change at phone boundaries,
(for example the transition between [n] and [aa] in figure 4). To measure the size of
this affect, we calculated the framewise classification accuracy if the features values
were allowed some leeway near phone boundaries. Taking each feature individually,
and examining two consecutive phones with differing values for that feature, if the
value of the feature is correct for the first phone up to a point within two frames of
the boundary (before or after), and is the correct value for the second phone after that
point, then all the frames around the boundary of those two phones are also taken as
correct. In other words, the feature must make the correct transition between the two
values either side of the boundary ( to , or to ), but the timing of this transition
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may be up to two frames away from the reference phone boundary. This measure re-
laxes the requirement that feature values must change at exactly at phone boundaries.
Using this reclassification on the SPE features, the accuracy figure for “all frames
correct” changes from 52% to 63%, and the figure for mapping to the nearest phone
increases from 59% to 70%. These significant differences in performance show that
asynchronous feature value changes are common, and indicate that recognition mod-
els which can model this properly should achieve significantly higher performance
than the standard, frame synchronous HMM system reported above.

Given that it has been shown that neural networks can produce reasonable 1 from N
phone classifications in hybrid systems, it is valid to ask at this point whether our net-
works are really performing feature detection, or whether they are just doing phone
classification as with the hybrid systems, and then rewriting these phone classifica-
tions as features using a learned feature table. The proven asynchronous nature of the
network behaviour shows this to some extent, but a further experiment was performed
to show that more than phone boundary dynamics are involved. To test that the net-
works were really learning features, and not phones and converting them to features,
we repeated the entire experiment (preparing the data, training a network and scoring
the output) using SPE features from section 3 but with a randomised phone-to-feature-
value table. The original table had one row per phone and one column per feature. The
new table was made by randomly re-ordering the entries within each column. The re-
ordering was different for each column. All phones still had unique feature values
after the re-ordering. The original result was that all features were correct together in
52% of frames. For the randomised feature system, this figure drops to 37%. If the
net was (internally) performing phone classification, then mapping to a binary feature
representation, we would expect the two results to be the same.

A final point worth discussing concerns the nature and design of feature sets. The
three sets we have tested here can be thought of as being representative of three differ-
ent generations of research in phonological features, with the multi-valued set being
the most traditional, the SPE set representing the original generative tradition and the
GP set representing more current phonological theory. These three systems were cho-
sen to be representative of different traditions in phonology, but there are many more
feature sets and phonological theories that are equally valid candidates for the basis of
recognition. While some have features in common with the three sets described here,
many are completely different. It is therefore valid to ask whether it is sensible to base
a recogniser on a particular phonological theory given that there is so much disagree-



King and Taylor: Detection of Phonological Features 22

ment in the linguistics literature over what the best theory should be. But while there is
much variation in the feature systems themselves, these differences are not arbitrary,
and actually phonologists are pretty much agreed as to what an ideal feature system
should look like: that is they agree on the desiderata of a feature system. In essence,
the perfect feature system will be compact, have independent features, which combine
naturally with pronunciation mechanisms to describe naturally occurring patterns as
simply as possible.

It is interesting to note how closely this relates to the desiderata of the properties of
observations in a probabilistic system, namely that fewer features are better, indepen-
dent features are better (so that correlations don’t have to be learned) and that features
which combine naturally with the structure of the probabilistic model are also better
(all other things being equal). Hence the goals of feature system design for phonol-
ogists and statisticians are the same. This leads us to our final conclusion, which is
to say that perhaps self organising algorithms and other statistical mechanisms could
be employed to learn more optimal feature representations, for use in both phonology
and speech recognition.
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Appendix
The following tables were used to map between TIMIT phone labels (the full set of
61 phones) and phonological feature values (refer to tables 4 and 7 for the full names
of feature values in the MV and GP systems). Note that not all 61 phones have unique
feature values, but when collapsed to the reduced set of 39, they do.

SPE feature system
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aa + - - + + - - - + + + - - -
ae + - - - + - - - + + + - - -
ah + - - + - - - - - + + - - -
ao + - - + + - - + + + + - - -
aw + - - + + - - + + + + - - -
ax + - - + - - - - - + + - - -
ax-h + - - + - - - - - + + - - -
axr + - - - - - - - - + + - - -
ay - - - + + - - - + + + - - -
b - + - - - + - - - + - - - -
bcl - + - - - + - - - - - - - -
ch - + - + - - + - - - - - + -
d - + + - - + + - - + - - - -
dcl - + - - - + + - - - - - - -
dh - + - - - + + - - + + - - -
dx + + - - - + + - - + - - - -
eh - - - - - - - - - + + - - -
el - + - - - + + - - + + - - -
em - + - - - + - - - + - + - -
en - + - - - + + - - + - + - -
eng - + - + - - - - - + - + - -
er + - - - - - - - - + + - - -
ey - - - - - - - - + + + - - -
f - + - - - + - - - - + - + -
g - + - + - - - - - + + - - -
gcl - + - + - - - - - - - - - -
hh - + - - + - - - - - + - - -
hv + + - - + - - - - + + - - -
ih + - - - - - - - - + + - - -
ix + - + - - - - - - + + - - -
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(SPE continued)
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iy - - + - - - - - + + + - - -
jh - + + - - - + - - + - - + -
k - + + + - - - - - - - - - -
kcl - + + + - - - - - - - - - -
l - + + - - + + - - + + - - -
m - + - - - + - - - + - + - -
n - + - - - + - - - + - + - -
ng - + - + - - - - - + - + - -
nx + + + - - + + - - + - + - -
ow + - - + - - - + + + + - - -
oy - - - + + - - - + + + - - -
p - + + - - + - - - - - - - -
pcl - + - - - + - - - - - - - -
q - + - + + - - - - - - - - -
r + + - - - - + - - + + - - -
s - + - - - + + - - - + - + -
sh - + + - - - + - - - + - + -
t - + - - - + + - - - - - - -
tcl - + - - - + + - - - - - - -
th - + - - - + + - - + + - - -
uh + - + + - - - - - + + - - -
uw + - + + - - - + + + + - - -
ux + - + + - - - + + + + - - -
v - + - - - + - - - + + - + -
w - + + - - - - + - + + - - -
y - + + - - - - - - + + - - -
z - + - - - + + - - + + - + -
zh - + + - - - + - - + + - + -
sil - - - - - - - - - - - - - +



King and Taylor: Detection of Phonological Features 25

MV feature system

ph
on

e
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aa v v lo b u c
ae v v lo f u f
ah v v lo f u f
ao v v m b r f
aw v v m b r f
ax v v m n u c
ax-h v v m n u c
axr v v m n u c
ay v v m f u f
b v o l f u n
bcl uv o l f u n
ch uv f c f u n
d v o c f u n
dcl uv o c f u n
dh v f d f u n
dx v o c f u n
eh v v m f u f
el v a c f u f
em v n l f u n
en v n c f u n
eng v n v b u n
er v a v b u f
ey v v h f u f
f uv f d f u n
g v o v b u n
gcl uv o v b u n
hh uv f g b u n
hv v f g b u n
ih v v h f u f
ix v v h f u f
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iy v v h f u f
jh v f c f u n
k uv o v b u n
kcl uv o v b u n
l v a c f u n
m v n l f u n
n v n c f u n
ng v n v b u n
nx v n c f u n
ow v v h b r f
oy v v h b r f
p uv o l f u n
pcl uv o l f u n
q uv o g b u n
r v a v b u n
s uv f c f u n
sh uv f c f u n
t uv o c f u n
tcl uv o c f u n
th v f d f u n
uh v v h b r f
uw v v h b r f
ux v v h b r f
v v f d f u n
w v a l f r n
y v a v b u n
z v f c f u n
zh v f c f u n
sil s s s s s s
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GP feature system
ph

on
e

A I U E S h H N a i u
aa + - - - - - - - + - -
ae + - - - - - - - - - -
ah - - + + - - - - - - -
ao + - + + - - - - - - +
aw + - + - - - - - + - +
ax - - - + - - - - - - -
ax-h - - + + - + - - - - -
axr + - - + - - - - - - -
ay + + - - - - - - + + -
b - - + - + + - - - - -
bcl - - + - + - - - - - -
ch - + - - + - + - - - -
d + - - - + + - - - - -
dcl + - - - + - - - - - -
dh + - - - - + - - - - -
dx + - - + + - - - - - -
eh + + - - - - - - - - -
el + - - - + - - - - - -
em - - + - + - - + - - -
en + - - - + - - + - - -
eng - - - + + - - + - - -
epi - - - - - - - - - - -
er + - - + - - - - - - -
ey + + - - - - - - - + -
f - - + - - + + - - - -
g - - - - + + - - - - -
gcl - - - - + - - - - - -
hh - - - - - + + - - - -
hv - - - - - + - - - - -
ih - + - - - - - - - - -
ix - + - + - - - - - - -

ph
on

e

A I U E S h H N a i u
iy - + - - - - - - - + -
jh - + - - + - - - - - -
k - - - + + + + - - - -
kcl - - - + + - + - - - -
l + - - - + - - - - - -
m - - + - + - - + - - -
n + - - - + - - + - - -
ng - - - + + - - + - - -
nx + - - - + - - + - - -
ow + - + - - - - - - - +
oy + + + - - - - - - + +
p - - + - + + + - - - -
pau - - - - - - - - - - -
pcl - - + - + - + - - - -
q - - - - + - - - - - -
r + - + + - - - - - - -
s - - - + - + + - - - -
sh - + - - - + + - - - -
t + - - - + + + - - - -
tcl + - - - + - + - - - -
th + - - - - + + - - - -
uh - - + + - - - - - - -
uw - - + - - - - - - - -
ux - - + - - - - - - - -
v - - + - - + - - - - -
w - - + - - - - - - - -
y - + - - - - - - - - -
z - - - + - + - - - - -
zh - + - - - + - - - - -
sil - - - - - - - - - - -
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