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Abstract: In this paper, we describe a new approach for extracting thin nets in grey level
images. The key point of our approach is to model thin nets as the crest lines of the image
surface. Crest lines are the lines where the magnitude of the maximum curvature is locally
maximum in the corresponding principal direction. We define these lines using first, second
and third derivatives of the image. We compute the image derivatives using recursive filters
approximating the Gaussian filter and its derivatives. Using an adapted scale factor, we
apply this approach to the extraction of roads in satellite data and blood vessels in medical
images. We also apply this method to the extraction of the crest lines in depth maps of

human faces.
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Extraction de réseaux fins et lignes de créte :
Application aux images satellites et aux images

médicales

Résumé : Dans cet article, nous décrivons une nouvelle approche pour extraire des réseaux
fins dans une image de niveaux de gris. Le point clé de notre approche est de modéliser les
réseaux fins comme les lignes de créte de la surface image. Les lignes de créte sont les lignes
ou la valeur absolue de la courbure maximum est localement maximum dans la direction
principale correspondante. On définit ces lignes en utilisant les dérivées d’ordre 1,2,3 de
I'image. Nous calculons les dérivées partielles de I'image avec des filtres récursifs approximant
le filtre gaussien et ses dérivées. En utilisant un facteur d’échelle, nous appliquons cette
méthode a I'extraction des routes dans des images satellites et des vaisseaux sanguins dans
des images médicales. Nous présentons aussi des résultats sur I'extraction de lignes de créte

dans des cartes de profondeur de visages.

Mots-clé : Lignes de crétes, images satellites, géométrie differentielle, reseaux fins, routes,

vaisseaux sanguins, images médicales, courbures



1 Introduction

In many images, Thin Nets (TN) correspond to important features [GJ 94] [GJ 91]. For
instance, in aerial and medical images, TN are attached respectively to roads and blood
vessels. TN are formed by the points where the grey-level is locally extremum in a given
direction. This direction is the normal to the curve traced by the TN at this point. Classic
edge detection algorithms [Can 83] [Har 84] [TP 86] [Der 87] are not able to detect TN. In
this paper, we propose a new method to detect TN using differential geometry. An important
point of our approach is its ability to identify TN by crest lines on the surface defined by
the image [PB 85].

We use the definition of crest lines proposed in [MBF 92] for 3D volumic images, i.e. the
points where the magnitude of the maximum curvature is maximum along the maximum
curvature direction. In the present case, we come up with different expressions of the surface
differential properties using partial derivatives of the 2D images. The principal curvatures
and principal curvature directions of the surface defined by the image are expressed using
first and second order partial derivatives of this image. These are the same as those given in
reference [PB 85]. We propose a new criterion which uses in addition to the first and second
order partial derivatives a third partial derivative for characterizing the crest lines. We stress
that this criterion is different from the one proposed in [MBF 92] for 3D volumic images,
although it characterizes the same differential property. To compute the partial derivatives,
we use an extension to the third order of the recursive filters approximating the Gaussian and
its derivatives [Der 93][MLD 93]. We come up with a three-stage algorithm which extracts
the TN :

1. Computation of 1,2,3 order partial derivatives of the image using recursive Gaussian

filters.

2. Computation of the principal curvatures, the principal curvature directions and the
directional Derivative of the Maximum Curvature along the corresponding principal

direction (DMC).

3. Extraction of the zero-crossings of the DMC which form crest lines or TN.
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We present the partial derivative computations in the first section. In the second section, we
give the definition of TN and we compute the DMC and the zero-crossings of the DMC. We
finish this paper by the algorithm of the extraction of TN, the experimental results and an
appendix on computation of our image derivatives. We have tested this method on satellite
data and medical images in which TN correspond to roads and blood vessels respectively.
We have also applied this method on depth maps of human faces provided with a stereo
vision process [FL 94] to extract the crest lines. The quality of the results obtained clearly

shows the flexibility and the pertinence of our approach.

2 Computing partial derivatives of a 2D image using

the Gaussian filter and its derivatives
Let I(z,y) be a 2D image. We look for the partial derivatives of I(z,y) using the following

formula :

_o0"((=zy)
- axmayp ’ n=m + p (1)

Here, we use the subscript notation Im,» to describe of the derivative orders. If g(z,y) =

[zmyp

g9(z)g(y) is the impulse response of a smoothing filter, the restored image I, is equal to
I % g, where * is the convolution product. Typically, when the properties of the convolution
product are used, we obtain :

oL,  0MIxg)
oxmOyp  OzmoyP

0"g
ox™OyP

*( ) (2)

g
Ox™OyP’
Using the separability property, we use the Gaussian smoothing filter and its derivatives up

where, the impulse response of the filter which computes I,m,» can be defined by :

to the third order described in the Appendix to compute the derivatives of a 2D image. We
use these filters because all the results of the forthcoming algorithms strongly depend on

the way the partial derivatives are computed. We come up with the following algorithm for

s

g :
azmayp,m—l—pgi% [MLD 93]:

computing

for (m, p) such that (m + p) < 3 do
R =1 gy(z)
[xmyp = R* gp(y)
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where the convolution products are implemented using the recursive implementation of the

filters. In the next section, we use I, Iy, Ioga, Iy, Iyy, Iyyy, Loy, L

vos Lyyys Loys Loy, Iooy Which we estimate

using this algorithm.

3 Using differential properties of the image surface

to extract the TN

3.1 TN and crest lines of an image surface

In the grey level images, the Thin Nets (TN) are formed by the points where the luminance
is locally extremum in a given direction. This direction is the normal to the curve traced by
the TN at this point. Classic edge models [Can 83] [Har 84] [TP 86] [Der 87] are not able
to characterize TN. One way to tackle this problem is to define TN, using the differential
properties of the image surface (an image /(z,y) defines the surface (z, y, I(z,y))). Some work
on corner and vertex detection [GD 91] [Nob 88] use the same paradigm. We define TN as the
crest lines of the image surface for an adapted scale factor. We use the definition of crest lines
proposed in [MBF 92] for 3D volumic images, i.e. the points where the maximal curvature
is locally maximal in the corresponding principal direction. These lines can be characterized
as the zero-crossings of a coefficient, noted e,,, which they called extremality. e, is the
directional Derivative of the Maximum principal Curvature (DMC) in the corresponding
principal direction defined by :

-

€m = Vk;wa: - tmae (3)

We use expression e,,=0 in order to extract TN or crest lines according to scale factor, but
our explicit equation of e, is completely different because it must be obtained from a 3D
surface defined by a 2D image.

We can also extract the TN by the zero-crossings of the following expression :

- -

9m = VI(2,9) . tmas (4)

where I(z,y) is the 2D grey level image function. The explicit expression of g,, shows that g,

can be computed directly from the first and second derivatives of the image , an interesting

RR n“ 2480



aspect of this method. We have tested this expression on a number of images provided
with satellite data, medical images and depth maps but unfortunately, the quality of the
results obtained is not acceptable for various reasons including noise. In particular, for the
depth maps it is evident that this expression is not a solution of our problem. Moreover
conceptually speaking, this method does not stem from the differential geometry properties

of the surfaces. This is why we have chosen e,, = 0 using the third derivative of the image.

3.2 From partial derivatives to crest lines of an image surface

3.2.1 Computation of the directional Derivative of the Maximum principal Cur-

vature (DMC)

Let us consider the suface S (z,y) associated to the grey-level intensity of a 2D image I(z,y)

described by the equation:
S(z,y) = (2,9, I(z,))" (5)

At each point P of this surface, there is an infinite number of curvatures attached to each
direction £ in the tangent plane at P [Car 76]. There are two privileged directions, called
the principal directions (t_{ and t;), which correspond to the two extremal values of the
curvatures k; and ks, except for the umbilic and flat points, where we can not define two
principal directions. One of these two principal curvatures is maximal in absolute value and
is called the maximal curvature. The other is the minimal curvature.

We define the tangent plane Sp(z,y) of surface g(:c,y) described in Equation 5, at each

point P by:
Sz = (g_x) = (170a[z)t
Sy=(2)=(0,1,1,) (6)

where I, and I, represent respectively the partial derivatives of the image function along z
and y.
The first and second Fundamental Forms can be used to compute the principal curvatures

and principal directions at each point P of the surface S(z,y) [Car 76]. The coefficients of
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the first Fundamental Form, in the basis {57;, 5_';}, form a matrix F; defined by :

F1 == ¢ f
I g
where
59 5 o 59
e= S f=28.5, g=I5l (7)

Using the partial derivatives of the image I(z,y), for derivative of S (z,y), we have:
e=14+1I f=0L1I, g=1+1I (8)

Similarly, we obtain for the second Fundamental Form, in the same basis, a matrix noted

F23

I m
F2 =
m o n
The elements [, m, and n can be written as:
l:]\_f.S;z mzﬁ.S;y nzﬁ.S;y (9)

where S:z, S;y, S;y are respectively the second derivatives of S (z,y) along the corresponding

axes and N is the surface unit normal given by :

. S,AS,
N=—>—"L (10)
152 A Syl
Similarly, using partial derivatives, we obtain:
— IIEID
(+12+12)
J— Izy
m= (1+12+12) (11)
— Iyy
n= (1+12+12)

The principal curvatures and principal directions correspond respectively to the eigenvalues
(k; and k,) and the eigenvectors (£; and £3) of the Weingarten endomorphism, the matrix of

which is:

_ W11 Wi2

Wa1 Wa2
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The coefficients of W are computed as follows :

wy = %(gl — fm)

wiz = g(gm — fn) (12)
W1 = %(em — f1)

Wy = 37(en — fm) (with H =eg— f?)

By definition, K=k ks is the Gaussian curvature and Szé(kl + ko) is the average curvature
at each point of the surface S (z,y). Moreover, K and S are also respectively the determinant

and half the trace of the matrix W. Therefore, the expressions of K and S are given by :

1 2
K = W11 Wo9 — W1oWao1 = ﬁ(ln —m )

(13)
S = %(wuwzg) = ﬁ(en —2fm+ gl)
Using Equations 8 and 11, K and S are expressed by :
K= é(Imey — 1) (14)

S = st (oo — 2LoLoyly + Loo Ly + Iy + LyL,%)  (with d =1+ L%+ I,2)

Finally, the principal curvatures k; and ky are the solutions of a second-order equation given

as follows :
ki=S+VS?—-K (15)
ko=S—-vS?-K
where the explicit expressions can be written as:
kio = s oo — 2Leloyly + LgI2 + Iy + 121,
£ 12, + 412, — 2Upp Iy + AIZI2, + IE12,—

2ol Ly — A1y Lpp Iy I3 — 212150 Iy~

AL Ipy Iy Iy + 212,12 + 412, 12 + 12, I+ 18)

I+ 20200, — A3 gy Iy Iy — Al Do Loy Iy +

212 Ipy I3,y + AIZI2, T2

]1/2

. (with d= 1+[§+I§)

The expressions of k; or ky show that the principal curvatures of a surface can be compu-

ted directly from the first and second derivatives of the image. Once k; and ks, are computed,
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the principal directions ¢; and £, which are the two eigenvectors of the matrix W, may be
represented in the basis {5, 5;} with #; = (u; v;)! and thus satisfy the system of:
(w1 — kg)u; + W120; =0 (17)
Wo1 Uy + (w22 — kz)’l)l =0 7€ 1, 2.
For each i € 1,2, the two equations are dependent, and thus the solution set for (u; v;)* will
lie along a line colinear with t;. We can compute #; with either of the two equations presented

in 17, which gives us two vectors:

- w - w
£ = 12 £ = 12 (18)
k1 — w1 ko — w11
Let kmge = k1 be the maximum curvature in absolute value (|ky| > |k2|) and also tmge = 1.
The gradient of k,,,, in the associated direction tmaz, called the directional Derivative of the

Maximum Curvature (DMC), is given by :

DMC = Vkmas - tmas (19)
where
akmaz
- =gz - w12
vkmaaf: = oz tmaz = (20)
ak:rn,az k — w
—By mazr 11

The expression of the DMC can also be written as:

akma.’b 8kma$
DMC = ( B )(wi2) + ( By )(Fmaz — wi1) (21)

We will now present in detail, the explicit expression of the DMC, where k,,,, = ki and
tmz = 11. We have computed the derivatives of kpaq along = and y. These results can be

written as follows:
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(Bpos) = B (=L + 2L Loyly — Lol — Iy — 121, ) (Lo Lo + I, 1y,))+
5577 oo = 2Loloayly — 2Lop Loy Iy + Lo I 2 + 20,1001y —
2I$]iy]§y +_21i1]&1@y +_]§y2 +_I£1?y1}+
[ dr((6Ipluq + 61,1y, )(— 12, — AIZ, — 41212, + Al Ipo 1oy 1, — I212, —

TTTy oYYy

2 72 2 72 272 12 3 2 74 272
212,12 — AI2 12 — AI2I2 1% + Al Loy Dy I3 — 12, 1% + 21,51,y — 21212, +
212 Loq Ly + Al Loy Iy Ly + AL, 1,1y + 20, 121, — 2121, 121, — I2)

)4+ 5 2aoloee 4 8luayley + 812 Lnayley + 81515512,
Al Dol pgyly — 412 1oy 1, — 411 p0plyy 1, +
4zl preI2 + 8lugyloyI2 + 812 1pay Iy I2+
81, 1unl2, 1% — AL L p Loy I3 — 412, 1, I3~

oY~y zyly
4IzIZMI”I§’ + 2IMIZMI;1 - 4IZI§ZI”—
2lp0nlyy — 2I§IMEI” — 4l Iyl yy+
4I£zInyy - 4IzIznynyy - 413[mnyIyy_
Al lpy Iy 1y — 121312351@1,11,1” + 8I§yly1yy—|—
SIzlgnyIyy + 41r13z151yy — 2Izmly2]yy+
21

22 yne 12Ty — 120, Lo Iy T2 1, +

2 3 2 3 2
A2, 130,y + 41 L 12, + AL, 12, —

ALy 2, — AL, 12, — 41, 1,12+

AL Lo Iy 12, — 2gplyye — 21210l yyn—

Al Iy Iy Iy — 4I§’Izyly[yyz - ZIMISI”E—I—
ZIa'c?ImIi;?Iyyw + 2Ly Iy + 4Iéquylyyw+
2 1y 1y,

)

1/ g (12, + A2, + 41212, — AL Ip Ipy I+

Tz zy

212,12 + 412,12 + 41212 12 + I212

zxly zltzyly zltyy

AT Tpplp I3 + T2 T4 — 21,1, + 21212, —

Yy 'y zTr-yy T Yy
2 3
220, Iy, — Al Iy, I, 1, — 4130, 1,1, —

2o 121,y + 2121, 121, + 12,
]1/2

(with d=1+12+12).

(22)
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Similarly, the derivative of k., along y is given as:

akmaz —
(a—y) - 2d+/2 [(_Im + 2IzIzny - Imlg - Iyy - Ig[yy)(lzlzy + Iylyy)]+
1
[ (11—4( (61,14, + GInyy)(—Iﬁz — 4I§y — 4I§I§y + A4l Loyl —
2 72 2 712 2712 12

212,12 — A, I? — AIZI2 T2+

AL Lo Loy I3 — 12,10 + 20,01, +

221,00y + A Ly Iy Ly + AL T, 1,1, +

oIy — 2120121, — 12, —

21212, — I4I2,)

7YYy 7YYy

)4+ B 2aology + 8113, — Al Iogy Iyl — Al 12, 1+

ALy Ty 12 + 81,13, 12 — AL, L0, I, I3 —

TYy"y Yy

AL 2,13 4 2L, Loy It — 20,0y 1, —

zyty

2[3[,;19]” =8I Lo lpylyy + 4[335[?,[”—0—
4I§ylylyy — 4]3[3ylylyy — ZImngIyy—i—
2I§Izzyfy2[yy — SIzIMIzyISIyy—I—

4[31151” — 4IMIyI§y + 4I£IzzIyI§y—l—

81,y lyys + SIngyfyyz — 4l 1o Iy Iy e+
8IzyI§Iyyx + SIﬁLE;,I;IWc — 4III”I§’I”$—
4IwaInyyyw - 4131y[yy[yyz - 2Irzlyyy*
213123119?;1/ - 4Irlwylylyyy - 4Ig1zylylyyy_
2111151”1, + 21;3[”[5[”3, + 20y Iyyy+
413[yylyyy + 21§Iyylyyy

)

1/ d34/2 131—0—4]294—4[2[2 T P P P RS

i zy

212 1% + 412 1% + 41212 12—

Ty TYy"y rTry"y

AL Ly Ly I3 + T2, 14 — 20,1, — 2121, 1, —
41,1,

LI

ylytyy

AL,y 1y — 20, 120+

TY Y yy Yy

2 2 2 272 472
22 ool yy + 12, + 21212, + 1312,
]1/2_

35577 [(Loay — 213;,[9 + Imy]y2 + 2on Iy Ly — 2o Iy Iyys + Lyyy + 121y)]+

(23)

The expression of the DMC shows that the directional derivative of the principal maxi-

mum curvature at each point of a surface can be directly computed from the first, second

and third derivative of the image. Once the DMC is computed, we extract the points where

DMC=0 (the zero-crossings of the DMC).
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3.2.2 Extraction of the zero-crossings of the DMC

Here, we present how to extract the zero-crossings of the DMC, computed in previous sec-
tion. Theoretically, the absolute value of the DMC is invariant, but its sign depends on the
orientation of the vectors £; or f; (See Equation 18) [Thi 94]. This is one reason why Thirion
introduced the Gaussian extremality, an Euclidian invariant but having a different geome-
tric meaning than crest lines. However, in our case, by assuming that (7, i1, t;) is always a
direct orthogonal frame, where 77 is the surface unit normal, we can ensure the coherence of
the orientation of ¢y (See Equation 20). Therefore, the zero-crossings of the DMC can be
characterized, in most cases, as the points where the sign of the DMC changes.

Using Equation 21 and separating the flat and umbilic points [BK 76], we compute the
DMC image. The sign image (Sgmnc) can be built from the DMC image as follows:

Sime =1 if DMC >0 (24)
Sime =0 if DMC <0
The zero-crossings of the DMC are the transitions 0,71 or 1\,0. We select the zero-crossings
of the DMC such that the maximum curvature k,,,, is greater than a given positive thre-
shold. This thresholding image allows us to remove the valley points having one principal
curvature which is negative with a high absolute value and the other having a small value
near zero. Moreover, this thresholding stage yeilds to hold only the points where the maxi-

mum curvature is locally maximum (the zero-crossings of the DMC correspond to both the

maximum and the minimum of the maximum curvature).

4 Algorithm

Our TN extraction algorithm can be split as follows:

1. Computation of 1,2,3 order partial derivatives of the image which can be denoted by :
Lo, Ly, Lpgws Lys Ly, Lyyy, Loy, Loy, Iozy- We estimate these derivatives using recursive

Gaussian filter and its derivatives (See Appendix).

2. Computation of the two principal curvatures k;, ko, as well as the two principal cur-

vature directions 1, fs.
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3. Using the direct derivatives up to the third order of the image, computation of the
directional Derivative of the Maximum Curvature along the corresponding principal
direction (DMC) as follows:

e Separating the flat and umbilic points.

o Computing the DMC on the other points, i.e. elliptic, hyperbolic and parabolic

points.
[ if k1| > |ks| do kmaz = k1 tomaz = 01,
else kmaz = k2 gz = ta,
< end if
| do DMC = Vkmas - tomas

4. Extraction of the zero-crossings of the DMC: Using the sign image (Sgmc) of the DMC,
we extract the transitions of 0,71 or 1\,0.

5. Extraction of the transitions 0,71 or 1,0, where the principal maximum curvature,

kmaz, 18 greater than a given positive threshold.

5 Experimental results

In this section, we discuss some experimental results obtained on synthetic and real data.
For the real data, we use satellite data, medical images, and depth maps of human faces. All
the low-level processes (smoothing and deriving) required, are performed using an extension
of the development method for implementing the Gaussian filter and its derivatives (See
Appendix). The detection and extraction of k., DMC and TN are performed at pixel
precision.

We illustrate the results on synthetic data in Figures 1 to 5. In Figures 1 and 4, we have
added a Gaussian noise with a standard deviation ¢, to pictures representing a circle and
a diamond which have a slope of 45 degrees in the grey-level. This is done in order to make
complicated noisy data. The Signal to Noise Ratio (SNR) on each image can be computed

as follows :
Zi Zj I(Za .7)2

=10 log( =——"— "7~
SNRap = 10 log( =5~ "N (i, )2

) (25)
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where I(i,7) denotes the pure image and N(7,j) the noise image. We have taken 0,=10

and SNR=14dB for these images. Figure 2 presents the results of the edge detection with
a Gaussian filter (¢ = 1) [Der 87] of the original images. These images show that a classic
edge detection algorithm is not able to detect these pictures. Figure 3 is the results of our
extraction algorithm of TN in which we illustrate the extraction of these thin nets. We have
also compared in Figure 5 the response fidelity of our method using two pictures in which step
edge and TN are presented. This result shows the pertinence and fidelity of “ TN extraction
algorithm “ for thin nets and not for step edge.

Figures 6 to 11 present the results of our algorithm on satellite data in order to extract
TN in these images.

In Figures 12 and 13, we have extracted blood vessels in medical images.

Finally, we have also applied this method on depth maps of human faces as illustrated
in Figures 14 to 16. Figure 14(left) is a human face grey-level image. From this image, we
can obtain the depth maps (Figure 14 right), using a stereo vision process. We have applied
our method on the depth maps obtained and for two values of o, we illustrate the results in

Figures 15 and 16.

Figure 1: Original images: Circle and diamond with white Gaussian noise ¢, = 10,

SNR=14dB.
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Figure 2: Edge detection by Gaussian filter (o = 1).

Figure 3: Extraction of TN, using the zero-crossings of the DMC threshold by ke, (0 = 1)
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Figure 4: Original image with white Gaussian noise o, = 10, SNR=14dB.

Figure 5: Extraction of TN (o = 1). Left : threshold=0.5. Right : threshold=0.8.
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Figure 6: Left: Original image. Right : Extraction of TN (¢ = 1).

Figure 7: Left : Original image. Right : Extraction of TN (¢ = 1).
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Figure 9: Left : Original image. Right : Extraction of TN (¢ = 1).
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Figure 11: Left : Original image. Right : Extraction of TN (¢ = 1).
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Figure 13: Left : Original image of blood vessels. Right : Extraction of TN (¢ = 1)
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Figure 14: Left: Original image. Right : Depth maps of the original image built by a stereo

vision process

- —_— H:r.:"t-—._,r ,»-—"’"'_:1
Ao &
|
L i
\ N

PN il

Figure 15: Crest lines detection by extraction of the zero-crossings of DMC. Left: o = 4.
Right: o0 =2
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Figure 16: Superposition of the original image and crest lines detection for the same value

of o
6 Conclusion

We have presented a new approach for extracting crest lines and thin nets in grey level
images, using differential properties of the image surface. This work clearly shows that even
third order differential features can be robustly extracted from grey level images. A key
element in achieving this is, of course, the filters used to compute the partial derivatives
of the image. The quality of the experimental results shows the pertinence of our approach
but also illustrates that great efforts need to be made in order to extract more sophisticated

modelsthe than step edges or ramp edges.
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A Appendix

A.1 Recursive filters to approximate the Gaussian filter and its
derivatives

A.1.1 Approximation of the Gaussian filter and its derivatives

Here, we remind the reader of the main results of [Der 93] and we show how to approximate
the Gaussian filter and its derivatives up to the third order, using Prony’s method.
The 1D Gaussian smoothing filter is given by :

22

90(z) = Boe™ 27 (26)

Its first, second and third derivatives are respectively as follows :

2 2 22

g1(z) = Brze 27, go(x) = Bo(1 — faz?)e 27, gs(z) = %(5433 + Bsz%)e” 207 (27)

where §;, i=0, ..., 5 are the normalization coefficients, the explicit expressions of which are

given in section (A.1.2). The filters go(x), g1(x), go(x) and g3(x) can be approximated in a
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mean square error sense by a function h(z) such that [Der 93]:

h(z) = iaie—*f (28)

where a; and A; are the coefficients that we find in the following (in the present case, m is
set equal to 4).

This approximation problem can be solved using Prony’s approximation method [Der 93].
This method uses an equidistant sampling of a function y = f(z) (in our case, f(z) = e_ﬁ)
at coordinates (o, %0), (Z1,Y1), -y (T, Yn). We can set z, = zg + rh, for r =0,..n, n > m
and define a function as follows:

UL ! m ! ! A
flzr) = ape’™ =3 apes®0e ™ (with X' = ) (29)
k=1 k=1 o

Let ¢, = aze® and v, = eM%. Consequently, f(z,) forms a system of n equations (r =

0,...n) as follows:

4

cl+c2+...+cm=y0

C1U1 + CoVg + ... + C U = U1

(30)
| avf + vy + .+ ey, = Un
To solve this equation system, we use a polynomial defined by :
d(v) = (v —v1)(v—"22)...(V — V), (31)
which can also be written as:
d(v) =™ + 510" 1+ .+ 5, (32)
where sg = 1,81 = v; + V9 + ... + Upp, ... . We now multiply, in turn, each equation belonging

to system 30 by Sm, Sm_1,---, 81,80 (with so = 1). By adding together all the terms of the

equation system obtained, we get the following equation :

d(v1)er + d(v2)es + ... + O(Vm)em = Sm¥Yo + Sm—1Y1 + - + S1Ym—1 + SoYm = 0 (33)
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Using Equation 33 and since ¢(vx) = 0 for &k = 1, ..., m, if we shift the origin by a distance

h =1 to the right and repeat this operation, we obtain a new equation system as follows:

4

Ym—-151 + Ym—252 + ...+ YoSm = —Um
YmS1 + Ym—152 + .- + Y185m = —Ym+1

L Yn—181 + Yn—282 + . + Yn—mSm = —Un
These n—m+ 1 equations with m unknowns s; can then be solved by a least-square method.

Afterwards, we obtain the unknowns v, by solving Equation 33. Finally, we obtain the

coefficients Aj, with the formula A} = lnh”’“, the ¢ from Equation 30, and the a; from a; =
_z0

ckv

The coefficients a; = a; and \; = —oA}, i = 1,..,4, may be complex but conjugate (i.e.

am—i = af and A,—; = Af) in order to deal with real coefficients.
The advantage of this method is that we need not set ¢ to a particular value to compute the

coefficients A; and «;.

A.1.2 Computation of the normalization coefficients

For the filters go, g1, g2, g3 of the previous section, the normalization coefficients in the

continuous case are chosen so that:

400
/_ go(z)dz = 1,

+o00
/ zgi(z)dz = 1;

—00

/+oo o(z)dz = 0 and /+ooaj—gg( Ydz =1,

—0o0

+o00 +oo
/ zgs(z)dz = 0 and / JE—gg,( )dx = 1.

—o0
These conditions ensure that the product convolution by these filters yields the correct

derivatives when applied to polynomials. When the filters above are to be applied in a

discrete setting, the normalization constants are expressed as follows :

k2 k2
= TRee = T2 k22
il k=0 . V2 k=0 ] (35)

_ ¥ _ 2
Y= Nplokle 2 qu = 3R ke
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— k2
We can show that a function F(o) = Y32, k% @, a > 0, can be approximated with a

very low error by a polynomial function F,(c) = I(a)o®*?, with I(a) = [5° =7 dt.
We know that 1(0) = /5,1(1) =1, and I(a + 2) = (a + 1)I(a).
If & = 0, we simply approximate F(o) with F (o) = 1.250 — 0.5 for 0 > 0.5.

Therefore, we obtain the following approximations:

~ 3 /T
72’“‘7\/;

71 ~ 0.5 4 1.250

(36)
V3 & 305\/§ Yy R 1507\/§
Finally, the normalization coefficients are equal to:
1 0.4 1 0.4
Bo = N — bi=—s—r~—-——
2y — 1 o 29 o
B2 =— 3 R—— 3= R (37)
=275 + 27371 — 73 o 272 o
. fo= ot x0

In this way, gg and its derivatives g1, g2, g3 can be approximated by a 4th recursive operator

h(zx):

b1

h(z) = (ag cos(ﬂx) +ap sin(ﬂx))e Lo + (co COS(ﬂiL’) + ¢ sin(%x))e‘Fz (38)
o o o

where the coefficients ag, a1, bg, b1, co, c1, wo, wy are derived from [;, a; and A;. We have

the following results for these coefficients:

90() 91(z) 92() 95()
ag | 0.657/c | -0.173/02 | -0.724/03 | 1.286/0"
a1 | 1.979/c | -2.004/02 | 1.689/c® | -0.290/c*
co | -0.258/c | 0.173/02 | 0.32j5/0® | -1.286/0*
¢ | -0.239/0 | 0.444/02 | -0.721/03 | 0.262/0*
bo 1.906 1.561 1.295 1.012
by 1.881 1.594 1.427 1.273
wo | 0.651 0.700 0.779 0.947
w1 2.053 2.145 2.234 2.338
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A.2 Implementation of the Gaussian filter and its derivatives

Once the coeflicients above are computed, we can easily implement the function h(n) defined
by :

b1

h(n) = (ao cos(ﬂn) + aq sin(ﬂn))e_%o" + (co cos(ﬂn) + ¢ sin(ﬂn))e_7” (39)
g g g g

The z-transform H, (271') = 3%° , h(n)z~™ for the causal part of h(n) is given by :

ng +niz'+n3272+ngz73

Ho(z) =
S G Rl e e e g e g o

where the coefficients of the numerator and the denominator n; and d; can be written as:
ng = ap + co

ny = (a1 sin(“’;ﬁ) — (2¢0 + ap) cos(%l))e_b?rQ + (a1 sin(“c’r—l) — (e + 2ap) cos(%))e_%1
_botby

ny =2e" = ((ao + co) cos(“2) cos(“L) — ay cos(“L)sin(£2) — ¢y cos(“2)sin(“L)) + coe™ 2 +

[

ap€ o©

ng = (a18in(2) —ag cos(%))e‘ibot%1 + (c18in(*2) — co cos(“;—l))e—@
dif = —2e7 7 cos(“) — 2e” = cos(“L)

dy = 4cos() cos(“;—o)e‘bjj—b1 P I

d = e~ cos(“) — -tz cos(4)

d+ - 2bg+2by

4 = o

For its anticausal part H_(z) = -1 h(n)z™", the z-transform is:

_ nyzt +ny 22 + ngzg’ + ny 2*
14 di2t 4 dy 2 dy 2+ dy 2t

H_(z)

We use the following relations for smoothing and second derivative filters (symmetrical filters)

to compute the coeflicients n; and d; :

- J’_ s

d; =d; 1=1,..,4
n;, =n —dind i=1,..,3
n; = —d;ng 1=4
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For the first and third derivative filters (asymmetrical filters), we have the following relations
between the coefficients:

d;Zd?_ 1=1,..,4
n; :_(nj—_d;{_ng_) Z:L '73
n; =d;ng i=4

The z-transforms H, (27'), H_(z) correspond to two rational system transfer functions of

stable 4th order filters and is written in the time-domain by the following difference equa-
tions:

+_ o+ + + + +, + +, + -+, + +,+ _
Yp =No Tk + N\ Tp-1 + 13Tk 2+ N3Tp-3 — 7Yy —dsYp_o — d3Yp_3 — i Yp_4 k=1,..,N
Yp = N Tkt1 + Ny Tpr2 + N3 Thy3 + Mg Thera — A1 Y1 — A3 Ypyo — A3 Ypys — i Y K= N, .., 1

y=vi ty; k=1,.,N

where the x; and the y; are respectively the input and output signal of the filter. The details
of the implementation can be found in [Der 93].
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