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AbstractDeformable models are an attractive approach to recognizing objects which haveconsiderable within-class variability such as handwritten characters. However, thereare severe search problems associated with �tting the models to data which could bereduced if a better starting point for the search were available. We show that bytraining a neural network to predict how a deformable model should be instantiatedfrom an input image, such improved starting points can be obtained. This method hasbeen implemented for a system that recognizes handwritten digits using deformablemodels, and the results show that the search time can be signi�cantly reduced withoutcompromising recognition performance.
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(a) (b) (c) (d)Figure 1: Illustration of the importance of the starting position in a complex search space.(a) is the initialization obtained using the neural network, and (b) is the �nal �t after usingthe short search schedule 3 discussed in section II(B). (c) shows the initalization without theneural network (described in section I(B)) and (d) is the �nal �t from this starting point,again using search schedule 3. If the search from starting position (c) were continued forlonger the loop of the 2 model would unfold to produce a �nal �t very much like that shownin (b).Deformable models have been used widely to characterize the shape variability of objects.Their main use has been to obtain a \best �t" match between the model and given data,as in [25], [10], [8], [9], [1], [11] and [28]. This framework can also be extended to trackingobjects over several frames (e.g. [5]) and to object recognition ([13], [23], [20]). Deformablemodels are closely related to the work on active contour models or \snakes" in [18].A major problem with this framework is that the procedure for �tting a model to an image isvery computationally intensive and typically iterative, because there is no e�cient algorithm(like dynamic programming) for this task. The key idea of this paper is to use fast methods(such as feedforward neural networks) to obtain a better starting point so that the search timecan be reduced signi�cantly. This can be done by \compiling down" some of the knowledgegained while �tting models to data in the slow, iterative fashion. The idea is demonstratedon a handwritten digit recognition task for which we had previously developed a recognizerusing deformable models ([13], [23])1, and is illustrated in Figure 1. This work can be seenas a speci�c example of \caching" or \compiling down" the results of previous searches tospeed up running time.This paper is structured as follows: Section I describes our deformable models of handwritten1This paper is an expanded and revised version of [27].3



digits and shows how they can be used for a digit recognition task. Section II shows howdeformable models can be instantiated using neural nets and reviews relevant previous work.Results are presented showing that similar recognition performance can be obtained using theneural network instantiations, but with more than a factor-of-two reduction in the search timerequired. Section III discusses the results and outlines possible extensions to the method.I. Deformable models for digit recognitionThe basic idea in using deformable models for digit recognition is that each digit has a model,and a test image is classi�ed by �nding the model which is most likely to have generated it.The quality of the match between model and test image depends on the deformation of themodel and how close the inked pixels lie to the model.More formally, the two important terms in assessing the �t are the prior probability distri-bution for the instantiation parameters of a model (which penalizes very distorted models),and the imaging model that characterizes the probability distribution over possible imagesgiven the instantiated model2. Let I be an image, M be a model and z be its instantiationparameters (such as the translation, rotation and deformations of the model). Then theevidence for model M is given byP (IjM) = Z P (zjM)P (IjM;z)dz (1)The �rst term in the integrand is the prior on the instantiation parameters and the secondis the imaging model i.e., the likelihood of the image given the instantiated model. P (M jI)is directly proportional to P (IjM), as we assume a uniform prior on each digit.Equation 1 is formally correct, but if z has more than a few dimensions the evaluationof this integral is computationally intensive. However, it is often possible to assume thatthe integrand is strongly peaked around a (global) maximum value z�, and in this casethe evidence can be approximated by the highest peak of the integrand times a volumefactor �(zjI;M), which measures the sharpness of the peak; this is known as Laplace'sapproximation. P (IjM) ' P (z�jM)P (Ijz�;M)�(zjI;M) (2)2This framework has been used by many authors, e.g. [11].4



By Taylor expanding around z� to second order it can be shown that the volume factordepends on the determinant of the Hessian of logP (z; IjM). De�ne Edef as the negativelog of P (z�jM), and Efit as the corresponding term for the imaging model. In order touse Laplace's approximation we need to �nd a peak of P (zjM)P (Ijz;M), or equivalently aminimum of Etot = Edef + Efit. This is done by iteratively re�ning z until a minimum ofEtot is reached at z�. �(zjI;M) is evaluated at z�. Of course the total energy will probablyhave local minima; for the character recognition task we aim to �nd the global minimum byusing a continuation method (see section I(B)).A. Splines, a�ne transforms and imaging modelsThis section presents a brief overview of our work on using deformable models for digitrecognition. For a fuller treatment, see [23].Each digit is modelled by a cubic B-spline whose shape is determined by the positions of thecontrol points in the object-based frame. The models have eight control points, except forthe one model which has three, and the seven model which has �ve. To generate an idealexample of a digit the control points are positioned at their \home" locations. Deformedcharacters are produced by perturbing the control points away from their home locations.The home locations and covariance matrix for each model were adapted in order to improvethe performance.A model is transformed from the object-based frame to the image-based frame by an a�netransformation which allows translation, rotation, dilation, elongation, and shearing. Allpossible a�ne transformations are permitted during the search.The data we used consists of binary-pixel images of segmented handwritten digits. Thegeneral 
avour of an imaging model for this problem is that there should be a high probabilityof inked pixels close to the spline, and lower probabilities further away. This can be achievedby spacing out a number of Gaussian \ink generators" uniformly along the contour; we havefound that it is also useful to have a uniform background noise process over the area of theimage that is able to account for pixels that occur far away from the generators. The inkgenerators and background process de�ne a mixture model. Using the assumption that eachdata point is generated independently given the instantiated model, P (Ijz�;M) factors intothe product of the probability density of each black pixel under the mixture model.5



Number of generators Maximum number of iterations Variance8 5 0.0415 3 0.023 0.0135 0.00830 35 0.002560 45 0.0006Table 1: The annealing schedule. The maximum number of iterations refers to the fact thatit is wasteful to repeatedly calculate updates if the algorithm has converged at a particularvariance. The fractional change in the total energy �Etot=Etot was monitored, and if it fellbelow a threshold (0.001) the set of iterations was terminated and we moved on to the nextvariance step. The scale was set so that in the object-based frame each model was one unithigh.B. Recognizing isolated digitsFor each model, the aim of the search is to �nd the instantiation parameters that minimizeEtot. The standard (i.e. non-neural) search starts with zero deformations and an initial guessfor the a�ne parameters which scales the model so as to lie over the data with zero skewand rotation. A small number of generators with the same large variance are placed alongthe spline, forming a broad, smooth ridge of high ink-probability along the spline. We use asearch procedure similar to the (iterative) Expectation Maximization (EM) method of �ttingan unconstrained mixture of Gaussians, except that (i) the Gaussians are constrained to lieon the spline (ii) there is a deformation energy term and (iii) the a�ne transformation mustbe recalculated on each iteration. During the search the number of generators is graduallyincreased while their variance decreases according to a predetermined \annealing" scheduleshown in Table 13.After �tting all the models to a particular image, we wish to evaluate which of the modelsbest \explains" the data. The natural measure is the sum of Efit, Edef and the volume3It is also possible to let the EM algorithm e�ectively determine its own annealing schedule; this approachis described in [23]. 6



factor. However, we have found that performance is improved by including four additionalterms which are easily obtained from the �nal �ts of the model to the image. These are (i) ameasure which penalizes matches in which there are ink-generators far from any inked pixels,and (ii) the rotation, shear and elongation of the a�ne transform. It is hard to decide in aprincipled way on the correct weightings for all of these terms in the evaluation function. Weestimated the weightings from the data by training a simple postprocessing neural network.These inputs are connected directly to the ten output units. The output units competeusing the \softmax" function [6] which guarantees that they form a probability distribution,summing to one.II. Predicting the instantiation parametersThe search procedure described above is very time consuming. However, given many exam-ples of images and the corresponding instantiation parameters obtained by the slow method,it is possible to train a neural network to predict the instantiation parameters of novel images.These predictions provide better starting points, so the search time can be reduced.A. Previous workPrevious work on hypothesizing instantiation parameters can be placed into two broadclasses, correspondence based search and parameter space search. In correspondence basedsearch, the idea is to extract features from the image and identify corresponding featuresin the model. Using su�cient correspondences the instantiation parameters of the modelcan be determined. The problem is that simple, easily detectable image features have manypossible matches, and more complex features require more computation and are more di�-cult to detect. For example, Grimson's work [12] on matching polyhedral objects to modelsuses edge features; as every image feature can potentially match every object feature it isnecessary to search the space of possible correspondences using an interpretation tree. Otherauthors [21], [19], [30], [3] have emphasized the grouping of lower-level image elements intohigher level features.An alternative approach is to work directly in parameter space. A simple example of this canbe found in [15], where Horn shows how to instantiate a model of a binary image using image7



moments. Another parameter space approach is the Hough transform, which was originallydesigned for the detection of straight lines in images. Subsequently it was extended to covera number of geometric shapes, notably conic sections and Ballard [2] further extended theapproach to arbitrary shapes with the Generalized Hough Transform. The parameter spacefor each model is divided into cells (\binned"), and then for each image feature a vote isadded to each parameter space bin that could have produced that feature. After collectingvotes from all image features we then search for peaks in the parameter space accumulatorarray, and attempt to verify pose. The Hough transform can be viewed as a crude way ofapproximating the logarithm of the posterior distribution P (zjI;M) (e.g. [16], [24]).However, these techniques have only been used on problems involving rigid models, and arenot readily applicable to the digit recognition problem. For the Hough space method, binningand vote collection is impractical in the high dimensional parameter space, and for thecorrespondence based approach there is a lack of easily identi�ed and highly discriminativefeatures. Furthermore, the strengths of these two techniques, namely their ability to deal witharbitrary scalings, rotations and translations of the data, and their tolerance of extraneousfeatures, are not really required for a task where the input data is fairly well segmented andeasily normalized.Our approach is to use a neural network to predict the instantiation parameters for eachmodel, given an input image. Zemel and Hinton [29] used a similar method with simple 2-dobjects, and more recently, Beymer et al [4] have constructed a network which maps from aface image to a 2-d parameter space spanning head rotations and a smile/no-smile dimension.However, their method does not directly map from images to instantiation parameters; theyuse a computer vision correspondence algorithm to determine the displacement �eld of pixelsin a novel image relative to a reference image, and then use this �eld as the input to thenetwork. This step limits the use of the approach to images that are su�ciently similar sothat the correspondence algorithm functions well.B. Instantiating digit models using neural networksThe network which is used to predict the model instantiation parameters is shown in �gure2. The binary images are normalized to give 16 � 16 8-bit greyscale images. The greyscalelevel of each pixel is computed from the proportion of its area which was inked in the binary8
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Figure 2: The prediction network architecture. \cps" stands for control points.image. The network uses a standard three-layer architecture; each hidden unit computesa weighted sum of its inputs, and then feeds this value through a sigmoidal nonlinearity�(x) = 1=(1 + e�x). The output values are a weighted linear combination of the hiddenunit activities plus output biases. The targets are the locations of the control points in thenormalized image, found from �tting models as described in section I(B). Thus there are 16outputs for each of the ten models ((x; y) locations for each of the 8 control points), exceptfor the one and seven models which have 6 and 10 outputs respectively.The network was trained with backpropagation to minimize the squared error, using 900training images and 200 validation images of each digit drawn from the br set of the CEDARCDROM 1 database of Cities, States, ZIP Codes, Digits, and Alphabetic Characters4. Twotest sets were used; one was obtained from other data in the br dataset, and the otherwas the (o�cial) bs test set. These test sets contained 2000 and 2711 images respectively.When training a neural network it is important to control the complexity of the net if a goodgeneralization performance is to be obtained on novel inputs. In our case the complexity wasadjusted by changing the number of hidden units and also be using a weight penalty �Pj w2j ,which prevents the weights from becoming too large. We experimented with nets usingdi�erent numbers of hidden units and � values and chose � = 1 and 20 hidden units basedon the performance on the validation set. The net took 440 epochs to train to convergenceusing the default conjugate gradient search method in the Xerion neural network simulatorversion 3.15. Targets were only set for the correct digit at the output layer; nothing was4Made available by the Unites States Postal Service O�ce of Advanced Technology.5Xerion was designed and implemented by Drew van Camp, Tony Plate and Geo�rey Hinton at the9



Figure 3: A comparision of the initial instantiations due to the prediction net (top row)and the trivial net (bottom row) on an image of a 2 (which has been thinned for displaypurposes). Notice that for the two model the prediction net is much closer to the data.The other digit models may or may not be greatly a�ected by the input data; for example,the predictions from both nets seem essentially the same for the zero, but for the seven theprediction net puts the model nearer to the data.backpropagated from the other output units. It would be possible to construct ten separatenetworks to carry out the same task as the net described above, but this would intensify thedanger of over�tting, which is reduced by giving the network a common pool of hidden unitswhich it can use as appropriate.For comparison with the prediction net described above, a trivial network which just consistedof output biases was trained; this network simply learns the average value of the control pointlocations. On a validation set the squared error of the prediction net was over three timessmaller than the trivial net. Although this is encouraging, the acid test is to comparethe performance of elastic models settled from the predicted positions using a shortenedannealing schedule; if the predictions are good, then only a short amount of settling will berequired.The feedforward net predicts the positions of the control points in the normalized image. Byinverting the normalization process, the positions of the control points in the un-normalizedimage are determined. The model deformation and a�ne transformation corresponding tothese image control point locations can then be determined by running a part of one iterationUniversity of Toronto. It is available by anonymous ftp from ftp.cs.utoronto.ca/pub/xerion10



of the search procedure. Experiments were conducted with a number of shortened annealingschedules; for each one, data obtained from settling on a part of the training data was usedto train the postprocessing net. The performance was then evaluated on the br test set.The full annealing schedule has six stages. The shortened annealing schedules are:1. No settling at all2. Two iterations at the �nal variance of 0.00063. One iteration at 0.0025 and two at 0.00064. The full annealing schedule (for comparison)The results on the br test set are shown in table 2. The general trends are that the perfor-mance obtained using the prediction net is consistently better than the trivial net, and thatlonger annealing schedules lead to better performance. A comparison of schedules 3 and 4in table 2 indicates that the performance of the prediction net/schedule 3 combination issimilar to (or slightly better than) that obtained with the full annealing schedule, and ismore than a factor of two faster. The results with the full schedule are almost identical tothe results obtained with the default \box" initialization described in section I(B). Figure3 compares the outputs of the prediction and trivial nets on a particular example. Judgingfrom the weight vectors and activity patterns of the hidden units, it does not seem that someof the units are specialized for a particular digit class.A run on the bs test set using schedule 3 gave an error rate of 4.76 % (129 errors), whichis very similar to the 125 errors obtained using the full annealing schedule and the boxinitialization. A comparison of the errors made on the two runs shows that only 67 outof the 129 errors were common to the two sets. This suggests that, if accuracy is moreimportant than speed, it would be very sensible to run both methods and reject cases wherethey do not agree.III. DiscussionThe prediction net used above can be viewed as an interpolation scheme in the control pointposition space of each digit. For each digit model the predicted position in the control point11



Schedule number Trivial net Prediction net Average time requiredto settle one model (s)1 427 200 0.122 329 58 0.253 160 32 0.494 40 36 1.11Table 2: Errors on the internal test set of 2000 examples for di�erent annealing schedules. Thetiming trials were carried out on a R-4400 machine.space �(I) is given by �(I) = �0 + NXi ai(I)�i (3)where �0 is the contribution due to the biases, ai is the activity of hidden unit i and � i isthe weight vector from hidden unit i to the linear output units6. Exactly the same equationwould apply to a Radial Basis Function (RBF) network [7], [22], except in this case thehidden unit activities are computed as a Gaussian function of the distance between theinput pattern and a centre in the input space. Indeed, any function approximator (suchas sigmoidal networks or RBFs) which has \universal approximation" capabilities could beused for this task.If there are more hidden units than output dimensions, then for any particular image thereare an in�nite number of linear combinations of the weight vectors �1; : : : ; �N so that theirsum will match the target vector. However, the network will tend to �nd solutions so thatthe ai(I)'s in equation 3 will vary smoothly as the image is perturbed.The output representation of the prediction net could be enhanced, so that not only �(I) butalso the variance of each control point is predicted, allowing the posterior uncertainty of thecontrol point positions to be represented. This network could be trained in a similar fashionas before, except that the negative log likelihood of the target data would be minimized,rather than the squared error7. A large predicted variance for a control point may imply that6We have used � to denote a location in control point position space to distinguish it from z used forthe instantiation parameters. This distinction is necessary because � gives the coordinates of the controlpoints in the normalized image, whereas z stands for the deformations and a�ne transformation parametersdescribed in section I. � and z can be related by inverting the normalization process.7Minimizing the squared error is equivalent to minimizing the negative log likelihood if the variance is12



there are two or more competing hypotheses as to where the control points should be, and thelength of the search could be increased in this case relative to cases where the predictions areless uncertain. Control point uncertainty can be thought of as inducing variance on the inkgenerators (as each generator position is a linear combination of the control point positions)so that the e�ective variance of a generator is the sum of the imaging-model variance andthe variance contributed by uncertainty in the control point positions.The nets described above output just one set of instantiation parameters for a given model.However, it may be preferable to be able to represent a number of guesses about modelinstantiation parameters; one way of doing this is to train a network that has multiple setsof output parameters, as in the \mixture of experts" architecture of Jacobs et al [17]. Theoutputs can be interpreted as a mixture distribution in the control point position space,conditioned on the input image.The mixture of experts approach models the posterior distribution with a �xed number ofGaussians whose means, variances and mixing proportions are adaptive. An alternativeapproach is to use a �xed set of basis functions f�ig, and to approximate the posteriordistribution (or some function of it) by the linear combinationPi ai(I)�i(z) [14]. For exam-ple, the Hough transform uses indicator functions of the bins as basis functions, although itwould be possible to use other classes of functions, e.g. Gaussians. When using �xed basisfunctions, a further step is necessary in order to decode the pattern of activities; we have togo \bump hunting" in the instantiation parameter space to �nd the (local) maxima of theposterior density. There are many issues involved with the details of this kind of scheme,concerning the density of units in the space (which in turn a�ects the minimum resolvableseparation of two instantiations), and the method used to decode the activity patterns.The strategies described above directly predict the instantiation parameters in parameterspace. It is also possible to use neural networks to hypothesize correspondences, i.e. topredict an inked pixel's position on the spline given a local window of context in the image.With su�cient matches it is then possible to compute the instantiation parameters of themodel. We have conducted some preliminary experiments with this method (described in[26]), which indicate that good performance can be achieved for the correspondence predic-tion task.constant. 13
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