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ABSTRACT

Believing that figural zoom invariance and the cross-figural boundary linking implied by medial loci are

important aspects of object shape, we present the mathematics of and algorithms for the extraction  of

medial loci directly from image intensities. The medial loci called cores are defined as generalized

maxima in scale space of a form of medial information that is invariant to translation, rotation, and in

particular, zoom.  These loci are very insensitive to image disturbances, in strong contrast to previously

available medial loci, as demonstrated in a companion paper. Core-related geometric properties and

image object representations are laid out which, together with the aforementioned insensitivities, allow

the core to be used effectively for a variety of image analysis objectives.
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SYMBOLS

σ ρ θ, , Greek letter, standing for a scalar variable. Italic. Roman (italic) letters, upper case or 

lower case, may also be used for variables.




r r
x, ξ Roman or Greek letter with arrow over it, standing for a vector variable. Italic.

ξ ξ ξi
i

j
i

ij
k

ijklR, , , ,Γ Variable subscripted, superscripted,  or both. The variable may be upper or

lower case and Greek or Roman (italic), but the subscripts and 

superscripts will be one or more digits or lower case Roman (italic)

Pk,  or Pi k, Variable with subscript with comma in it, with the comma possibly not preceded by any 

symbol, indicating a differentiated tensor

σblur variable subscripted with a word

U UAC i j S S i jθ θ θ θ, , ,( ) ( )1 2
Upper-case letter with upper-case subscript, subscripted subscript

r
pt Vector (or matrix) with superscript t, indicating transpose

ℑ Script upper case letter, indicating operator

T Bold upper case letter, indicating set

f x( ) letter followed by parenthesized expression, indicating function




r
u θ( ) letter with arrow over it  followed by parenthesized variable(s), standing for vector 

function

M x y K x, , , ;σ σ( ) ( )r
letter followed by list of parenthesized variables (scalar or vector) separated by 

commas, with possibly one comma replaced by a semicolon

ln , cosf( ) ( )−1 θ Specific functions named by multiple letters and possibly a superscript, here the 

natural logarithm and the inverse cosine

p VΘ( ) ( ), det Probability function of the set upper-case theta, determinant of the matrix

upper-case V

∀ ∈ →, , Mathematical symbols for "for all", "is an element of", and "approaches"



• ×, , ~,o Mathematical symbols for dot product (filled dot), composition (open dot), and is a 

neighbor of, all centered vertically on the line, and for times operation
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SYMBOLS continued

ℜ ℜ +n, Mathematical symbols for the set of reals, normally superscripted by "n", a digit, or "+". 

The mathematical symbol is sometimes written as an R  with its vertical bar 

doubled.

0

2π
∫ ∫

ℜ
,

n
Mathematical symbol for integral with range of integration indicated by symbols below  

integral symbol and as well optionally above it

i

n

i C= ∈
∑ ∑

1
, Mathematical symbol for sumation (upper case Greek sigma) with range of summation

indicated by symbols below  summation  symbol (of form "variable = expression"

or variable is an element of expression)  as well optionally above it (single

variable or digit)

∇ Nabla (upside-down upper-case delta), indicating gradient

D Dk, Upper case D, possibly superscripted by a digit or variable, indicating differentiation

D̂ fij
2 Expression beginning with a D with a circumflex over it, possibly superscripted and 

followed by the operand of the differentiation, indicating scale space 

differentiation

x Function or variable surrounded by vertical bars, indicating magnitude

x

σ
Fraction, where vertical setting is desired

x y

σ σ




 + 




2 2

Radical symbol, covering an expression, indicating square root





r
θi Angle brackets surrounding a vector or scalar random variable, indicating expected value




dss i

2
r
θ[ ]  Function d (subscripted by ss and superscripted by 2) with an argument in square 

brackets, here indicating the squared scale space length of the operand

var , , ~i S j S i j∈ ∈1 2
Word (abbreviation of variance)with complex suscript
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1 INTRODUCTION

Characterization of object shape is useful in describing objects in images or modeling objects as part of

segmentation or other image analysis objectives. Two types of relationships between boundary points

have been suggested as capturing aspects of object shape: the local boundary relations of slope and

curvature and cross-figural relations captured by a medial locus (see Figs. 1.1 and 1.2). In this paper we

focus on a means of defining and extracting medial loci directly from image intensities in a way

insensitive to intensity noise, blurring, or boundary details. Beginning from the long-standing

characterization of the shape of an image object as everything that is invariant to rotation, translation,

and zoom and to luminance properties of the object interior, we develop in this paper a zoom invariant

medial locus that exhibits the desired extractability from image intensities in a way insensitive to image

disturbances. The insensitivity is verified experimentally and discussed at length in a companion paper

entitled Zoom-invariant vision of figural shape: effects on cores of image disturbances  [39]. This

introduction makes this approach more precise.

Like many before us, we see an object as being a directed graph of primitive regions that we call figures

[3, 43], such as the whole object and individual protrusions and indentations (see Fig. 1.1 for an

example), and we see shape as having three aspects:

1) Figural shape: the shape of the individual figures, derived from cross-figural linking, or

equivalently, the medial locus;

2) Interfigural shape: the size, position, and orientation of a figure relative to its parent figure in the

graph; and

3) Boundary shape: the local shape and texture of the boundary locus, relative to the information

predicted by the figural description.

This paper derives mathematically a medial representation of figural shape, the core. The loci in scale

space that form these cores have mathematical properties much different from other medial loci but still

retain the powerful abilities to extract the many aspects of shape provided by an analysis in which

medial and boundary extraction are coupled [43]. As a result of the sensitivity to shape at the scale of the

figure and insensitivity to image disturbances, certain image analysis techniques based on cores are

effective.
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teardrop

indentation protrusion 

Fig. 1.1. Some of the figures making up this object are the teardrop and its two children in the graph

representation shown: the protrusion on the teardrop's right and the indentation on its left. The boundary

texture of being smooth in some regions and undulating in others is included in the boundary shape.

Fig. 1.2. Boundary point linking via a skeletal middle

The rest of this section clarifies the definitions and assumptions determining the core and the algorithms

for its extraction from images.  First we must clarify the definition of invariance that we are using. We

define the invariance of a measurement M  applied everywhere on a manifold M to a family T of

transformations T   to mean that ( ∀ ∈T T)(

∀ ∈rx M) M x T TM x
r r( ) = ( )[ ] . (1)
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Second we clarify the definition of a medial locus with the required invariances. Following [1, 2], we

understand the representation of figural shape to be the locus of middle and width points, 
r
m,r , linking

two points 


r
bi , i=1,2 at opposite sides of a figure such that each 



r
bi  behaves like an object boundary with

normals,  


r
ui :, i.e., 



r r r
b m ru ii i= + =, ,1 2, where the 


r
ui  are unit vectors. What is new is that we restrict the

measurements allowed in determining the medial locus to functions of location 


r
mand radius r  that are

direct functions of image intensities and are larger the more the position  


r
m  behaves like a medial point

with respect to a radial width r . In addition, we insist that the measurements are translation (shift)

invariant. Also, for now we will restrict the primitive image measurements to those that are linear in the

intensity values (though we will relax this requirement later). Thus they must involve  convolution with

some set of  kernels 

w x
r( )  or equivalently computation of the measurement at 


r
x0  using a set of

weighting functions 

w x x
r r

0 −( ) . In addition, we will require the operations to be rotation invariant. This

requirement implies that

w x
r( )  must be rotationally symmetric.

What is the implication of the further requirement, central to figural shape, that medial locus extraction

must be invariant not only to rotation and translation but also to zoom? Any weighting function



w x x
r r

0 −( ) can be characterized as having an aperture size, or scale, defined as the root mean squared

width, σw ,  of  w : σw x w x w x
n n

2 2= ( )∫ ( )∫
ℜ ℜ

r r r
/ . We will characterize image operations not only by their

location of application 
r
x0  but also their scale σw . It should be intuitively obvious that zoom invariance

requires that as one zooms into the scene the aperture must be proportionately zoomed, i.e., its scale

must be magnified. Proving this fact, however, involves quite some subtlety, which we will not

reproduce here. The detailed analysis can be found in [23].

This requirement of scale proportionality with zoom leads to considering the kernels in families vs. σw .

That is, the kernel w  should be a function not only of offset  

r
x  but also of scale σw .  Moreover, zoom

invariance requires that the medial width  r  must increase proportionately with zoom, so functions of

width r  can equivalently be thought of as functions of σw .
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As discussed in section 2, the theoretical studies of scale space imply that linear combinations of

appropriately scale-normalized derivatives of Gaussians centered at a point satisfy the translation,

rotation, and zoom requirements that we have set if the scale σ  of the Gaussians increases

proportionately with the zoom. Thus we will produce medial measurements that are translation, rotation,

and zoom invariant if they are produced from kernels 

K
r
x,σ( ) that are linear combinations of scale-

normalized derivatives of Gaussians with scale σ  with the linear combinations satisfying a rotational

symmetry such that the radius of rotation is proportional to σ . Thus, σ σK r∝ ∝ . Section 2 will derive

some particular linear combinations of Gaussian derivatives that do the job.

Given a set of measurements 

M
r
x,σ( ) [or equivalently 

M

r
x,r( )] produced using kernels 

K

r
x,σ( ), we

need to choose the medial locus by virtue of M being locally high there. In analogy to extracting

boundaries as a generalized maximum, or ridge, of a graded measurement of a position behaving

like a boundary (cf., for example, Canny's approach [1987] to boundary extraction),  our approach is

to extract our medial locus by a generalized maximum of the graded measurement M of a

(position, width) combination behaving as medial. We will call the graded measurement medialness

and will write it as a function M  from scene position and scale:  M n: ℜ × ℜ → ℜ+ .  The space

ℜ × ℜ +n  capturing all positions and scales is called scale space.  The generalized maximum will take

the form of a directional maximum in a subset of the directions of the space in which the medial

measurement is made [13; 22].

Section 2 covers  means of producing a scale space of medialness that satisfies the specified invariances.

In section 3 we derive scale space operators that generalize previous definitions of ridges of image

functions [24] in a way so as to retain the invariances, and by using these operators on the scale space of

medial information to extract cores. The geometry of this scale space and the mathematical properties of

cores are then derived. After a brief summary in section 4 of the companion paper on the insensitivity of

cores to image disturbances, section 5 derives core-related geometric properties and image object

representations that have been shown useful for object-related image analysis operations such as

registration, recognition, segmentation, and shape measurement.
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2 MEDIAL THEORY

2.1 Requirement of Scale

We need to make more mathematically precise the concepts of scale and scale space , as they apply to

figural shape.  We make the assumptions given by  [31], namely that not only do the three invariances

discussed in section 1 hold but also that linearity properties hold and also that

a) the scale space has the properties that intensity maxima must decrease with scale (maximum

suppression) and that

b) for all ∆σ > 0 the image information at scale σ σ+ ∆  can be derived from that at σ  by an

operation of the same form as that deriving the information at scale σ  from that at the inner scale

(semigroup property).

Lindeberg shows that a consequence is that increasing scale corresponds to running the diffusion

equation with  t =σ 2 2/ ,  i.e., building our medialness functions out of Gaussians of scale σ  and their

derivatives.

We have seen that zoom invariance leads to a medialness operator in which the radius is proportional to

the scale of the Gaussians on which it its built. Let ρ > 0 be the constant of proportionality between the

aperture size σ  and the figure's radial width r , i.e., σ ρ= r . To avoid the need to specify an arbitrary

origin for the  magnification, the scale-to-width relationship is more appropriately quantified in terms of

how changes in radial width, dr , are related to changes in scale, σ .  The relationship is concisely  

d drσ ρ= . (2)

Denote the input intensities by I x( )
r

.  For simplicity we assume that the input is defined for all 
r
x n∈ℜ .

A vision system produces multiscale data 

L x
r
,σ( )  for 



r
x n, ,σ σ σ( ) ∈ℜ × [ ]0 1 ,where σ0, called the inner

scale, is the minimum scale consistent with the image production process and σ1, called the outer scale,

is the largest scale consistent with the image size.  The function L  can be described generally by the

operator equation




L x I x x

L x I x

n( , ) ( ), , , ,

( , ) ( ),

r r r

r r
σ σ σ σ
σ

= ℑ ( ) ∈ℜ × [ ]
=

0 1

0

(3)
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where the operator ℑ  is determined by additional requirements imposed on the vision system, such as

that it measures medialness.

As stated above, the requirements of semigroup, maximum suppression, linearity, and invariance with

respect to translations, rotations, and zoom imply that scale space is generated by linear diffusion. When

written in terms of σ  rather than the more common t  t =( )σ 2 2/  and when the relation between scale

and space given by the factor ρ   is reflected, the diffusion equation becomes





∂
∂σ ρ

σ σ σ σ

σ

L
L x

L x I x

n= ∇ • ∇( ) ( ) ∈ℜ × [ ]
=

1
0 1

0

, , , ,

( , ) ( ).

r

r r
 (4)

In terms of the physical model for the heat equation, ρ  is the density function and σ  is the conductance

function.

The diffusion process generates  the multiscale data.  The figural vision system also must interpret this

data in a geometric way in order to construct the representations that later stages of processing will use.

Geometric interpretation requires imposing a metric on scale space.  To obtain the desired invariances,

note that a measured spatial difference  is meaningful only relative to the scale at which it is measured.

Similarly, when making multiscale measurements, a measured scale difference  is meaningful only in the

context of the scales at which it is measured.  These properties, which follow from zoom invariance,

suggest specifying differential forms as the measurement tools.  As a Euclidean space the 1-forms used

for ℜ × [ ]n σ σ0 1,  are dx i ni , 1≤ ≤ , and dσ . However, to retain the desired invariances, the

dimensionless 1-forms to be used for scale space measurements are 
dx

i ni

σ
, 1≤ ≤ , and 

dσ
σ

.  The

geometry of scale space is determined by the metric involving these forms:



ds

dx dx d2
2

2

2 2= • +
r r

σ
σ

ρ σ
. (5)

In order to compare spatial differences 
dx
r

 and scale differences dσ , we need to use the proportionality

constant,  ρ  , between width and scale.  The inclusion of ρ  in the metric makes the "units'' of  dx
r

 and

dσ ρ/   the same and allows us to combine space and scale so that geometric information can be
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properly interpreted.  We will see in section 3 and the associated appendix that scale space with metric

(5) has a non-Euclidean geometry.

The metric and the diffusion process are intimately linked.  If M x
r
,σ( )  represents the real-valued

measurement of interest in scale space, then changes in M  are measured as

dM
M

x
dx

M
d

M

x

dx M d

ii

n

i
i

i

i

n
= ∑ + = ∑ +

= =

∂
∂

∂
∂σ

σ σ ∂
∂ σ

ρσ ∂
∂σ

σ
ρσ1 1

.

The natural derivatives to take in scale space are therefore σ∂ ∂M x i ni/ , 1≤ ≤ , and ρσ∂ ∂σM / .  These

quantities are dimensionless.  Now the diffusion can be viewed as ρσ ∂
∂σ

σ σL L= ∇( ) • ∇( ) , where the

left-hand side is a single application of the scale space derivative with respect to scale and the right-hand

side is a repeated application of the scale space spatial gradient.  We will show in section 3 how

measurements of figures, such as figure width, are based on the scale space differentiation.

2.2 Boundariness and Medialness

Our own vision system appears to recognize a figure in an image by locating and pairing opposing

boundaries of the figure [3, 4, 29].  The boundaries are usually noticeable because of sharp contrast in

luminance at those  locations, but the contrast may be in some other property, as well.  Sharp contrast is

related to locally large directional derivatives in luminance.  However, the pairing of opposing

boundaries is a multilocal task which requires the full power of multiscale analysis and scale space.  A

well accepted starting point for human or computer vision is that the vision system makes a measure of

boundariness at each position  


r
x , scale σ , and orientation 



r
u .  Denote this function  as  

B x u

r r
, ,σ( ).

Specific choices for B  might depend on the  system and the task; a simple one measuring luminance

change is  

B x u u L x
r r r r
, , ,σ σ σ( ) = • ∇ ( )   (6)

for bright (dark) figures on a dark (bright) background, or 

B x u u L x
r r r r
, , ,σ σ σ( ) = • ∇ ( )  (7)

for figures where the foreground/background intensity ratios vary through 1 as the figure boundary is

traversed. More complicated and more effective  boundariness measurements involve the strengthening

of a simply measured  boundariness according to its agreement in direction or curvature  to continuations

of the boundary [51].
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The multilocal task of pairing opposing boundary points (called involutes ) requires matching points

whose boundariness in a putative boundary normal direction meet at a common distance at a putative

central location of the figure (Fig. 1.2).  Consistent with extracting boundaries via a graded measure of

boundariness, we propose that the vision system makes a measure of medialness at each position 


r
x  and

scale σ  by accumulating boundariness values at locations whose common distance from 

r
x  is distance

r =σ ρ/  in a way producing a function invariant to translation, rotation, and zoom.

There are many functions, 

M x( , )
r σ , that satisfy the invariance requirements for medialness and for some

class of image objects provide a local measure that increases with behaving like a medial point and

width.  Each function is suitable for a particular class of images or image objects.  In addition to

commuting with the operations of rotation and translation of an image, the medialness functions must be

zoom invariant. It can be shown that these invariances hold if

a) 

M x( , )
r σ  is based on normalized Gaussian derivatives of intensity, σ k kD L , where



L x G x I x( , ) ( ; ) ( )
r r rσ σ= ∗  and 
G x( ; )

r σ  is a Gaussian with zero mean and variance σ 2 ; and

b) the set of locations at which derivatives contribute to 

M x( , )
r σ   are offset from 



r
x  by vectors that

scale with σ , and are positioned in a rotationally invariant fashion relative to  
r
x .

We classify each medialness function in two ways.  First, the function is either central  or offset.  A

central function is one for which  
M x( , )
r σ  is measured using only low order, spatial derivative

information of  

L x( , )
r σ  at the putative spatial center 

r
x  at scale σ .  An offset function is one for which



M x( , )
r σ  is measured by querying neighbors at some finite spatial distance from the point  

r
x  at scale σ .

Central medialness functions have the property that they attempt to localize object boundaries by

averaging spatial information about  

r
x  over some region whose average radius is proportional to σ .

Such functions are desirable when the objects of interest contain uncorrelated, small scale noise.  The

functions are not as effective when the object interior contains correlated, large scale noise (in this

category we include image objects interior to the object of interest).  On the other hand, offset

medialness functions attempt to localize object boundaries by accumulating information of a relatively

small scale, σ , at neighbors which are at a distance proportional to σ  from the test point  


r
x .



13

Fig. 2.1  Binary sawtooth object

Second, medialness functions are classified as linear or adaptive.  In each case M x( , )
r σ  is computed by

some weighting of information from the original image I x( )
r

 in a neighborhood of  


r
x  whose size is

proportional to the scale σ .  In the linear case the neighborhood weights are necessarily radially

symmetric to satisfy the rotational invariance and are data-independent.  Thus, a linear medialness

function can be computed as a linear convolution of some kernel K x( ; )
r σ  with I x( )

r
.  In the adaptive

case the neighborhood weights are data-dependent, with properties such as the orientation or extent of

the weights depending on the image data in the neighborhood.  The next subsections illustrate the ideas

with specific medialness functions for two spatial dimensions.  Fig. 2.1 is a binary sawtooth object

whose medialness is computed using the specific functions.

2.2.1.  Central Linear Medialness

An example of a central linear medialness function is the linear convolution

M x y K x y I x y( , , ) ( , ; ) ( , )σ σ= ∗ , where the kernel is the normalized Laplacian of a Gaussian* G x y( , ; )σ :

K x y G G
R

exx yy

R

( , , ) ( )σ σ
σ

= − + = − − −2
2

2
22

2

, where R
x y= +( ) ( )
σ σ

2 2 .  Fig. 2.2 shows a rendered

graph of the kernel and medialness of a binary object at small, medium, and large scale. This medialness

is extensively used in [16, 17] for extracting anatomic objects with nonparallel sides, approximately

uniform interiors, edges of fixed contrast polarity, and possibly low signal to noise ratio in portal

radiographs, CT scans, MR images, and other medical images.

* Throughout this paper a subscript on a function indicates a derivative with respect to the subscripted
variable or in the subscripted direction. Double subscripts indicate second derivatives, etc.
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 Fig. 2.2.  Upper left: linear, central medialness kernel.  Upper right: medialness of sawtooth object at

r=4 pixels, in a 128 x 128 image.  Lower left: medialness of sawtooth object at r=8.  Lower right:

medialness of sawtooth object at r=16.

2.2.2   Offset Linear Medialness

An example of an offset linear medialness function is the linear convolution

M x y K x y I x y( , , ) ( , ; ) ( , )σ σ= ∗ , where the kernel acts as an integrator of directional Gaussian derivatives

around a circle with center (x,y) and whose radius r is proportional to scale.  Define the oriented

boundariness measurement B x y u L x y( , , , ) ( ) ( , , )σ θ σ θ σ= − • ∇r
, where 





r
u( )

cos( )

sin( )
θ

θ
θ

= 




. The medialness

is defined by  



M x y B x y ru d( , , ) (( , ) ( ), , )σ θ σ θ θ

π
= +∫

r

0

2
, where r =σ ρ/  for some constant ρ .  Therefore,

the kernel is defined by  K x y u G x y ru d( , ; ) ( ) (( , ) ( ), )σ σ θ θ σ θ
π

= − • ∇ +[ ]∫
r r

0

2
.

Fig. 2.3 shows a rendered graph of the kernel and medialness of a binary object at small, medium, and

large scale. This medialness has been analyzed in detail in [35, 36,37,38]. Because the kernel is near

zero in the central region but is sensitive to boundary pairs at all angles with the same contrast polarity at
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both edges, this kernel has been found effective for analyzing general medical image objects that have a

variety of shapes, significant internal intensity structure, and a fixed polarity of contrast around the

object. The cortex of the brain in CT head images is an example.

  

 
Fig. 2.3.  Upper left: linear, offset medialness kernel.  Upper right: medialness of sawtooth object at r=4.

Lower left: medialness of sawtooth object at r=8.  Lower right: medialness of sawtooth object at r=16.

2.2.3   Central Adaptive Medialness

We now relax the linearity requirement. This allows the choice of medialness operators that respond

only to involute pairs and are selective to the image properties at the involutes, while retaining the

required invariances. For example, the orientation of the operator can be adjusted to respond most

sensitively to the orientation of parallel boundaries, or to respond most sensitively to the the inter-

boundary angulation (i.e., the what Blum called the object angle) at the involutes.  Or its elongation can

be adjusted to respond to the elongation of the gap between the figure of interest and the a neighboring

figure. Or the operator can be set to respond optimally to the polarity of intensity change at the

boundaries.

An example of a local adaptive medialness function is  


M x y L p D Lppp

t( , , )σ σ σ σ λ= − = − = −2 2 2 2rr
r r

,
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where D L2  is the 2x2 matrix of second-order spatial derivatives of L and where 

D Lp p2 r r= λ , and λ  is

the largest magnitude eigenvalue of D L2 . At a single location the neighborhood weights, thought of as a

kernel, are K x y G x yxx( , ; ) ( , ; )σ σ σ= − 2 , but the kernel is oriented in the direction of vector 


r
p .  Fig. 2.4

shows a rendered graph of the kernel and medialness of a binary object at small, medium, and large

scale.

 

 
Fig. 2.4.  Upper left: adaptive, central medialness kernel; the maximum response over all orientations of

this kernel is chosen.  Upper right: medialness of sawtooth object at r=4.  Lower left: medialness of

sawtooth object at r=8.  Lower right: medialness of sawtooth object at r=16.

This medialness is analyzed in [16, 20]. It is particularly effective for objects with parallel sides and

uniform interior intensity, such as a blood vessel (see Fig. 3.1.2). It is less sensitive to intensity

variations along the object axis than the linear, central medialness shown in Fig. 2.2.

2.2.4   Offset Adaptive Medialness

An example of an offset adapative medialness function is

    

M x y u G x y ru u G x y ru( , , ) ( ) (( , ) ( ); ) ( ) (( , ) ( ); )σ σ θ θ σ σ θ θ σ= − • ∇ + + • ∇ −r r r r
,
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where the angle θ  is selected to maximize the right-hand side over all possible angles.  At a single

location the neighborhood weights, thought of as a kernel, are

K x y G x r y G x r yx x( , ; ) ( , ; ) ( , ; )σ σ σ σ σ= − + + − ,  but the kernel is oriented in the direction of the vector




r
u( )θ .  Fig. 2.5 shows a rendered graph of the kernel and the medialness of a binary object at small,

medium, and large scale. This kernel is the sum of two boundariness operators, each with a scale

proportional to the medial radius.

 

 
Fig. 2.5.  Upper left: adaptive, offset medialness kernel; the maximum response over all orientations of

this kernel is chosen.  Upper right: medialness of sawtooth object at r=4.  Lower left: medialness of

sawtooth object at r=8.  Lower right: medialness of sawtooth object at r=16.

This medialness is especially effective for objects with parallel edges but with internal structures of scale

significant compared to the object of interest. It is less sensitive to intensity variations along the object

axis than the linear, offset medialness shown in Fig. 2.3. It was studied in [44] to help measure stenosis

in arteries which are imaged under various noisy or blurry conditions.

Another example of offset adaptive medialness made by summing two boundariness results adapts not

only the medial orientation but also the object angle. Such a medialness operator,  discussed in [43],
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particularly closely matches the Blum definition of the medial axis given earlier in the paper. It is not

discussed further here because the results with this operator have not been fully demonstrated. A variant

on this operator,  due to McAuliffe [1996], optimizes the elongation of the medialness weighting

function at each involute to avoid too much effect from neighboring objects.

Another example of an offset adaptive medialness function is obtained by integrating the absolute value

of boundariness around the circle of radius r  [35, 38]:

    



M x y B x y ru d( , , ) | (( , ) ( ), , ) |σ θ σ θ θ

π
= +∫

r

0

2
.

In the linear case the kernel is designed to detect bright objects on a dark background.  This nonlinear

function is useful if an object's intensity near the boundary is in some locations brighter than the

background and in some places darker than the background.

3 CORES

In this section we define the core as a generalized maximum, i.e., ridge, of medialness,. We argue that

for the core based on such an invariant medialness to itself be invariant, the generalized maximum

operator must itself satisfy these invariances. We then give the mathematics for producing such ridges.

Medialness collects bilocal information about linkable boundariness into a local measure of the degree to

which a point in scale space behaves like a figural middle at a width that is a fixed multiple of the scale.

We desire a medial locus, which we call a core,  made from centrally located positions and a scale and

based on medialness. Such a locus is a track at which medialness is locally large compared to nearby

locations and scales.  At such a point the medialness should decrease as you move towards the involutes

and as scale increases or decreases. That is, it is a generalized local maximum of  M x
r
,σ( ) , generalized

so that the relative maximum need only be taken in a subset of the directions forming the space (here, a

scale space).  In other directions at such a point, e.g., in a direction tangent to the medial locus,  the

medialness need not be locally maximal.  Local maxima of a function with respect to a restricted number

of directions have been called ridges [24, 9]. The mentioned works involve the study of ridge definitions

in Euclidean space. However, to attain the desired invariances of cores, the definition of ridge used here
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must be invariant to rotation, translation, and zoom. Also, we need extensions of the definitions to scale

space with its imposed metric (eq. 5). That is, the derivatives involved in finding the generalized

maxima must be those that reflect the desired invariances. This will first require a description of the

geometry of scale space that is very mathematical and thus is given in the appendix.

We believe it is necessary to lay out this mathematics in detail because the results are generally

applicable to problems of locus definition in scale space and because the success of using medialness

ridges to obtain medial loci in scale space depends on doing the mathematics correctly. Crowley et al.

[1984] inspired our effort with their idea of using ridges in scale space for this purpose, but they

achieved limited success because the definitions of medialness and ridge they used failed to have the

necessary invariances and also their ridge definition had other mathematical weaknesses.

3.1 Ridges of Medialness

To produce a d -dimensional core manifold from a medialness function in a scale space of dimension

n +1, we must choose the subset of  n d+ −1  directions in which medialness is locally maximal (has a

zero first directional derivative and a negative second directional derivative). The choice of these

directions, which determines our definition of ridge, must be invariant to rotation, translation, and zoom.

Two options that we have proposed is that the two directions are

1) the two orthogonal directions of greatest convexity of medialness, leading to the maximum

convexity  ridge  [24, 9];

2) the direction of pure scale change and the direction of greatest convexity of the projection of

medialness at the optimal scale onto position, leading to the so-called optimal scale ridge   [15,

1993; Pizer, 1994a].

3.1.1 The Maximum Convexity Ridge in Scale Space

The maximum convexity ridge definition is based on finding local maxima of functions  f
r
ξ( ) where the

domain is restricted to the span of the maximum convexity subset of eigenvectors of the second-

derivative (Hessian) matrix.  This definition applies also for f  in the scale space 
r rξ σ= x, , where we use



20

covariant derivatives rather than partial derivatives.  The formal tensor products in the definition are

manipulated so that scale space derivatives occur.  This is essential for the numerical implementation of

core construction. The mathematical details are given in section A.6 of the appendix.

For 2D images the scale space is three-dimensional, and the core is a curve (1-manifold [8]) in scale

space. Thus there are two maximum convexity directions in which the medialness must be a maximum.

For 3D images the scale space is four-dimensional, and the core is most commonly a 2-manifold in scale

space. For objects with a nearly circular cross-section, a core which is a 1-manifold forming a skeleton

of the tube also makes sense [22]. For the core that is a 2-manifold there are two maximum convexity

directions in which the medialness must be a maximum, and for the core that is a 1-manifold there are

three such directions.

3.1.2 Optimal scale ridge

Instead of choosing the vectors vi
1 and vi

2  in which f  must be maximum as the directions of greatest

convexity of f , in the case where f  is medialness we may choose vi
1 as 0 0 0 1, ,..., ,( ), the unit vector in

the σ  direction. At each spatial location 

r
x  call those σ  for which 

f xσ σr,( ) = 0 and  

f xσσ σr,( ) < 0

optimal scales at 


r
x .  Generally these optimal scales are a continuous function  

σ

r
x( ) .  For any of these

optimal scale manifolds, we wish to choose vi
2  as the spatial direction of greatest convexity of the

projection of f  at optimal scale. That is, 


r
x,σ( ) is on an optimal scale ridge of f  if 

f xσ σr,( ) = 0,



f xσσ σr,( ) < 0 ,  



f xv ir

r
2

0,σ( ) = , and 



f xv vi ir r

r
2 2

0,σ( ) < , where  vi
2  is the maximum convexity eigenvector of

the scale space Hessian of M  restricted  to the image space with σ  fixed at its optimum scale value (in

the terms of the appendix v hi
i2 0, =  andv h vi

ij
j

2 2 0, < , where v wi i
2 1 0= ( ), , h x f x x

r r r( ) = ( )( ),σ , and wi
1 is the

eigenvector with the most negative eigenvalue of D h2 ). The optimal scale ridge can be shown to be

equivalent to the maximum convexity ridge with vi
1 and vi

2  the solutions of the generalized eigenvector

equation 

A x B xo
r

o
r

, ,σ λ σ( ) = ( )  with A =  the scale-space Hessian and B
I

= 





0

0 0
 with the identity

matrix of size equal to the number of spatial dimensions.
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Our experience is that the maximum convexity ridge and the optimal scale ridge produce qualitatively

similar results.

3.2 Core Extraction from 2D Images

Let f u uij
j

i, =α , f v vij
j

i, = β , and f w wij
j

i, = γ , where α β γ≤ < .  Consistent with maximum convexity

ridges, we will assume that the eigenvectors form an orthonormal system whose derivatives satisfy

u
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 for some choice of continuous tensors aj  and bj .  Define P u fi
i= , ,

Q v fi
i= , , and R w fi

i= , .  Core points satisfy P = 0, Q = 0, and α β≤ < 0.

All of the techniques for core extraction begin from an approximate core point in scale space and flow to

(see Appendix A.7.1) or search for a nearby point on the ridge. There are four techniques that we have

used to follow the core locus from such a starting point:

1) Integrating the differential equation P = 0, Q = 0 (see Appendix A.7.2).

2) Extending the ridge in the w  direction and finding the root of P = 0, Q = 0 in the plane of the

maximum convexity eigenvectors at the extended point (see Appendix A.7.3 and [13]).

2a) Extending the ridge in the w  direction and minimizing DM D M I DMt 2 −( )γ  in the plane of the

maximum convexity eigenvectors at the extended point (see Appendix A.7.4 and [13]).

3) Sampling the local scale space in a Cartesian fashion and applying zero-trapping techniques

combined with convexity constraints, resulting a marching ridges approach [22] that is comparable

to the well-known marching cubes approach [32].

The relative strengths of these methods are as follows:

1) Following the ridge direction explicitly increases the chance that the ridge will not be lost.

2) Avoiding the solution of the differential equation lowers the required order of differentiation by one

and allows much larger steps, considerably speeding the process. Methods 1 and 2 are in most

common use in our  laboratory.
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2a) This method avoids having to decide whether a Hessian eigenvector or its negative is the

continuous extension of the that eigenvector used at the previous step.

3) This method is speedier than the others because it allows larger steps and requires second

derivatives of P and Q only at points that satisfy the zero test. It also generalizes nicely to

following higher dimensional ridges in higher dimensional ridges.

3.3 Core Extraction Examples

Figs. 3.1  shows a number of examples of cores extracted from objects in 2D test images or medical

images. The medial axes (the projections of the cores onto image space) are shown as tracks on the

images, and the core widths are indicated by darkening or brightening the region formed by the union of

disks at each core point with each disk having the radius given by the core point at which it is centered.

These cores were extracted on various workstations in a period of just under a second to 3 seconds.

The results shown in Figs. 3.1 all use method 1 described in section 3.2 to find optimal scale ridges. The

medialness function used for the test object and the MRI brain slice was obtained via the linear, central

medialness kernel described in section 2.3.1. The medialness function used for the blood vessels and the

portal image was obtained via the adaptive, central medialness kernel described in section 2.3.3.

3.4 2D-from-3D Core Extraction

The aforementioned theory generalizes to intensity functions of  ℜ 3. This produces a 4-dimensional

scale space, ℜ × ℜ +3 , in which normally cores are 2D manifolds. Each point on this manifold gives a

medial position between two opposing boundary faces as well as a radius (scale) of the fuzzy tangent

sphere.
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Fig. 3.1: Original images and selected cores (light grey or black) and width envelopes (dark grey or

white): Gun-shaped test object, MRI head, artery tree in angiogram, bones in portal radiograph.
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We call these 2D-from-3D cores, because they are 2D manifolds extracted from 3D images (via a 4D

scale space). The underlying mathematics is given in section A.8 of the appendix. An algorithm for 2D-

from 3D core extraction with an approach similar to the marching cubes algorithm [32] is reported in a

separate paper [22].

4 INSENSITIVITIES TO IMAGE DISTURBANCES

Images and their content typically suffer from various forms of disturbance, the results of variations in

the imaging process, e.g., blur, which produce different images of the same scene when imaged by

different modalities, devices, or settings;

random variables in the imaging process, e.g., intensity noise,  which produce different images of the

same scene even with the same device and settings; or

the image content, which produce different images of scenes that are identical except for small object

deformations or changes in boundary texture, or possibly the addition of protrusions or

indentations.

Each of these disturbances may be thought of as having an associated spatial scale, i.e., spatial

magnitude of the disturbance. Image blur clearly has a spatial extent.  Greater levels of noise have a

larger spatial influence when low-pass filtered to a fixed mean amplitude.  And minor variations

between objects may often be described as indentations or protrusions of varying size.

The companion paper entitled Zoom-invariant vision of figural shape: effects on cores of image

disturbances  [39] presents mathematics and Monte Carlo experiments that indicate that the effect of a

disturbance on cores is determined by the scale of the disturbance relative to the scale of the core.

Disturbances that are much smaller than the scale(s) used to make measurements in the image have little

effect, while those comparable to the core scale have significant effect. The reason for this behavior is

that the core is extracted from medialness that uses an aperture whose size is proportional to the figural

width there. Measurements using this aperture strongly damp variations in intensity at contrasts

comparable to or less than that of the figure and at scales distinctly smaller than that of the aperture.
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It is the stability of cores against small scale disturbances, together with the way in which medial loci

capture figural shape, that leads to its usefulness in image analysis.

Spatial integration of information using an aperture is what allows cores to capture certain relationships

much more easily than in other approaches that begin with boundaries measured with a single fixed

(usually small) aperture. Consider the example shown in Fig. 4.1. Hierarchical approaches to shape

representation that begin with an initial fixed-scale contour [27, 40, 45] perform an initial separation of

the figure into interior and exterior, and separately represent each—they can't realize that the notch is a

piece missing from the interior instead of a part of the exterior. They represent this shape as two

touching rectangles (admittedly, a valid interpretation in some settings) instead of a rectangle with a

notch cut out from it. As shown, cores are able to represent both the notch and the overall properties of

the object without the notch (the rectangle).

Fig 4.1. The spatial projections of cores of a notched rectangle.

5 CORE-BASED IMAGE ANALYSIS

The invariances of the core and its insensitivities to image disturbances make it a good basis for or aid in

various image analysis tasks, including figural shape description and shape change measurement,

segmentation, recognition, and registration. Each of these are described briefly in the following

paragraphs.

In segmentation the core leads to an approximate object boundary that aids in methods, such as

deformable contours, which require a good initial boundary estimate [33, 43]. It also allows the

identification of protrusions and subfigures that necessarily begin near this approximate boundary [20].
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Also, simultaneous extraction of an object's core and boundary using a model that reflects all of figural,

interfigural, and boundary shape can stabilize a deformable contour method [48, 49, 50, 43].

Registration methods involving fiducials are based on either matching corresponding fiducial loci in a

target image and a reference image or optimizing an integrated image property on the target image on a

fiducial extracted from a reference image [18, 19]. Cores provide a fiducial locus that is insensitive to

image disturbances. When the core is chosen as a fiducial, the locus matching requires the measurements

of distance between loci in scale space, and the property optimization approach involves the

measurement of medialness in the target image on the geometrically transformed locus from the

reference image.

Recognition involves measuring how the loci and spatial relations representing shape accord with those

of a model. Cores are useful in in characterizing the figural shape in a model and in extracting a model

from training images. Shape change measurement and the measurements of shape variability that form a

useful part of a model benefit from involving the figural shape measures locally extractable from a

sampled core.

Using cores for these tasks requires core-based measurements, loci, and models. In particular, it is useful

for the distance between cores and core-based image coordinates to satisfy the conceptual basis of cores,

that all distances are relative to object width (core scale). A core-based approximation of the figural

boundary, called the boundary at the scale of the core (BASOC), is useful to link medial information

with boundary and subfigure information. And segmentation and recognition benefits from a means of

representing a) structured collections of figures to form object models and b) all aspects of the shape

variations of an object from a model or within a family of scenes or images. The computer vision

methods based on these ideas and the performance of these methods are reported in separate papers. The

mathematics of the necessary core-based measurements, loci, and models are covered in the following

sections.

5.1 Distance in Scale Space
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The principle of zoom invariance of objects implies that both spatial distances and scale changes must be

measured relative to object width. This is the relation stated by equation 5. From this relation geodesic

distances in scale space can be determined. The result is that the distance between 

r
x1 1,σ( )  and 



r
x2 2,σ( )

is given by 
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One use for this distance is in core-based registration methods, where the distance between two cores

that are supposed to match can be measured as the integral of interpoint distances between the cores.

However, registration in real images requires that these distances be normalized by their variability

under the imaging and scene disturbances.

5.2 The Boundary at the Scale of the Core, and Multifigure Objects

The core specifies a medial locus in spatial coordinates, a locus that we call the core middle. The core

also specifies the radius of a fuzzy n-sphere at each point of the medial locus. If the sphere is made hard

and the envelope of these spheres is taken, the result is a locus we call the boundary at the scale of the

core  and abbreviate as the BASOC. The core is the Blum medial manifold of the BASOC, so the core is

isomorphic to the BASOC. The BASOC gives, at the scale of the core, an approximation to the

boundary of the figure represented by the core.

As illustrated in Fig. 5.1, the normal to the BASOC (a BASOC ray) meets the core middle at an angle

given by cos cos− −




=







1 1 1dR

dy

d

dyρ
σ

 for a 2D image. For a 3D image the normal to the BASOC meets

the core middle surface at angle cos− ∇






1 1
ρ

σ  in the direction ∇ ∇σ σ/ , where the gradient is taken

with respect to motion in the core middle surface.
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Fig. 5.1. Relation between core middle and BASOC. The coordinate y measures arc length along the

core middle.

By this means each point on the core is associated with one (for core endpoints) or two (the normal case)

continuous regions of boundary.  It has been proven that cores cannot generically branch [8], so

generically no core point corresponds to more than two boundary regions.

A full object is typically represented by a collection of cores, one for the main figure and others for

subfigures, sub-subfigures, etc. These subfigures can be either protrusions or indentations.  The BASOC

can be generalized for a collection of figure and subfigure cores by taking the boundary of the envelope

of union of the interiors of the BASOCs of the main core and protrusion figures and taking the set

subtraction of the union of the interiors of the BASOCs of the indentation figures.

Fritsch [1995b] has shown how subfigure cores can be extracted by using as new stimulation points

maxima of medialness as a function of scale and BASOC arc length. Each subfigure core is taken as a

child of the core whose BASOC stimulates it. In general, the resulting structure is a directed acyclic

graph (see Fig. 5.2 for an example).

McAuliffe [1996] has shown that the BASOC forms an effective starting point for an active contours

boundary refinement. Thus core-based segmentation involves first core extraction, then BASOC

computation, and finally active contour refinement (see Fig. 5.3).
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Fig. 5.2. DAG of brain ventricle computed automatically from single stimulation at center of ventricle in

the image in Fig. 5.3.

  
Fig. 5.3. Cores, BASOC, and evolved boundary of brain ventricle in MR image

Each BASOC point is associated with a single ray from a single core point, defined in Fig 5.1. Actual

object boundary points are usefully thought of as being associated with a nearby BASOC point [42]. In

practice, continuing the ray from the core middle of the narrowest figure defining the BASOC locally, to

its intersection with the boundary is used to associate boundary points with BASOC and core points.

5.3 Core-Based Gibbs Object Models

The recognition of image objects involves starting from a set of training images and using the shape

information of an object of interest in these training images to extract the corresponding object in a new

image. The core, in combination with a related boundary representation, provides a powerful means of
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representing the statistics of object shape from the training images [48, 49, 50, 43] and for extracting the

object in this training phase.  Medialness is a useful measure in the recognition and segmentation phase.

In this approach, the shape of an object is taken to be characterized by the three aspects of shape listed

early in this paper:

1) figural shape, each given by a connected, unbranching medial locus;

2) interfigural shape, given for a protrusion or indentation subfigure by the positional, angular, and

size relation of its medial locus endpoint near the parent BASOC and a medial locus point in the

parent core;

3) boundary shape, given by each point on the object boundary relative both to adjacent boundary

points and to the medial point with which it is associated.

Wilson has shown how all of these can be captured by a Markov random field, with each site being a

point on a medial locus or a boundary point and the random variables at each site being the location in

scale space of the corresponding point (see Fig. 5.4). Corresponding to the three aspects of shape, five

types of neighbor relations, or links,  are established:

1) The relation between a medial point and an adjacent medial point on the same figure's medial

locus. The scale space vector between the locations of these neighbors characterizes the local

figural shape.

2) The relation between a medial point of one figure and the proximal endpoint of its subfigure's

medial locus. The scale space vector between the locations of these neighbors, and the angle of

the first link from the subfigure endpoint relative to the links from the parent figure medial point

characterize the position, width, and orientation of the proximal end of the protrusion or

indentation relative to the parent figure there.

3) The relation between a medial point and either of the two corresponding boundary points along

the associated BASOC rays.  The difference between the width in the medial point and the length

of the image space vector between the locations of these neighbors characterizes the  the level of

detail or texture of the boundary there.

3) The relation between a medial endpoint and the corresponding boundary vertex. The scale space

vector between the locations of these neighbors characterizes the local shape of the boundary at
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the vertex relative to the core. The importance of vertices in shape characterization in human

vision has been emphasized by Hoffman [1984] and by Leyton [1992].

4) The relation between adjacent boundary points. This is the relation commonly used in deformable

contours methods in computer vision.

Fig 5.4.  Sites and scale space vectors whose statistics define a brain ventricle. [Courtesy of  Liyun Yu]

The approach to recognition described by Wilson [1995a,b,c] and by Pizer [1996]is Bayesian, with the

prior containing the statistics on the relations just listed as derived from the family of training images.

Wilson and Johnson have shown how a Gibbs distribution can be used for this prior,  with potentials

measuring the variance-normalized scale space squared distance between the vector between neighbors

and the vector between the corresponding means for the families :

log ( ) log , , ˆ ˆ , ˆ ,
~

p Z U i j j i j j
i j

Θ = − − −( )∑ θ θ θ θ θ θ

 where Θ  is the set of sites, Θ̂  is the corresponding set of sites in the model,  Z is a normalizing

constant, each  θi   represents a site,  ~  represents the neighbor relationship, - represents a difference in

image space or scale space, as appropriate, and the potentials U measure the scale space difference

between the interneighbor link θ θi j−  and the corresponding link in the model relative to the standard

deviation of this link in the training set. In the case of interfigural links, the scale space difference is

relative to properties at the parent site.  Cores are used to extract the medial loci used in the training

stage.
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[43] discusses how recognizing and segmenting an object in a new image, as well as object -based

registration of a pair of images,  can be done by optimizing the posterior of  linked medial and boundary

loci. The  log likelihood function used in this deformable loci expresses the likelihood of the image as a

sum of the medialness at the medial points C, boundariness at the boundary points B, and vertexness at

the vertex points V:

log ( | )p I k M k B k VC i
i C

B i
i B

V i
i V

Θ = ( )∑ + ( )∑ + ( )∑
∈ ∈ ∈

θ θ θ .

Such posterior optimization has produced a stable, automatic recognition and segmentation in early trials

on ventricles in MR images [43]. The power of this variant of a deformable contours technique [e.g., 26;

47, 6, 46, 34] is that medial loci's ability to capture figural shape and the stability of medialness against

image disturbances, causes a stabilization of the localization of the boundary, relative to methods that

are purely boundary based, while retaining the advantages of previous methods in the boundary being

measured at small scale when the image information supports that.  It also provides a means of

identifying where and how much the resulting boundary deviates from the model shape.

The result of all the image analysis methods discussed in this section, as applied to medical images, is

covered in [17, 18, 19, 20, 21] and [43].

SUMMARY

We have argued that the invariance requirements commonly associated with the concept of shape, the

use of a medial approach to figural shape description, and a recognition that measurement aperture size

is an essential aspect of image analysis lead to the core as the representation of figural shape. After

giving the mathematics associated with the definition and extraction of cores, we sketched why and how

the core is stable against smaller-scale image disturbances. We then sketched ways in which cores are

proving to be useful for image analysis tasks, and we gave mathematics relevant to core-based image

analysis.
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APPENDIX: THE GEOMETRY OF SCALE SPACE AND CORES

Let scale space be denoted by ℜ × ℜ +n  with typical element denoted by 

r rξ σ= ( )x, .  For indexing

purposes, we have ξi ix=  for 1≤ ≤i n  and ξ σn+ =1 .

A.1 Tensor Notation

Tensor calculus is used throughout.  Indices are used both for denoting the components of a tensor

(scalar, vector, matrix, etc.) and for denoting derivatives with respect to independent variables ξi .

Subscripted indices are used for covariant components and superscripted indices are used for

contravariant components.  If a tensor quantity contains covariant derivatives of indexed quantities, a

comma is used to separate the subscripted indices from derivatives.  For example, if T  is a zero-order

tensor (depending on ξ ), then Ti,  is the first-order covariant tensor whose components are the

derivatives of T  with respect to ξi .  The covariant derivative of the first-order covariant tensor Ui is the

second-order covariant tensor Ui j, .  The covariant derivative of the first-order contravariant tensor Vi  is

denoted V j
i

, .

The Einstein summation convention will be used.  If an index occurs twice in a term, once as a subscript

and once as a superscript, it indicates a summation over the repeated index.  Occurrence of an index

more than two times in a term is not allowed, and contraction of two subscripted indices or of two

superscripted indices is not allowed.  For example, if aij  is a second-order covariant tensor and b j  is a

first-order contravariant tensor, then c a bi ij
j=  is a first-order covariant tensor obtained by summing

over the j  index.

A.2 Metric Tensor
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The metric (eq. 5) can be written in tensor form as ds g d dij
i j2 = ξ ξ , where gij  is called the metric tensor.

It is a diagonal matrix whose first n diagonal entries are 1 2/σ  and whose last diagonal entry is 1 2/ ρσ( ) .

In contrast, the metric tensor for standard Euclidean space is gij ij=δ , the Kronecker delta which is 1 if

both indices are equal, but 0 otherwise.  The inverse metric tensor is denoted by gij  and has the property

g gik
kj

i
j=δ   The metric can be used to raise or lower indices through contraction.  If  ui  is a covariant

tensor and ui  is its contravariant counterpart, they are related by u g ui ij
j=  (raising an index) and

u g ui ij
j=  (lowering an index).

A.3 Christoffel Symbols

The analysis involves tensor quantities which need to be differentiated.  In general, the partial derivative

of a tensor is not necessarily a tensor. Tensor differentiation requires the use of some nontensorial

objects called Christoffel symbols, Γij
k kl jl

i

il

j

ij

l
g

g

x

g

x

g

x
= + −







1
2

∂
∂

∂
∂

∂
∂

.  Let 
r
ek

n∈ℜ +1 denote the n +( ) ×1 1

unit length vector whose components are all 0 except for the kth component which is 1.  For the scale

space metric, define the matrix Γ Γk
ij
k= [ ] ; then  





Γ k k n
t

n k
t

n n
t

l l
t

l
n

e e e e k n

e e e e k n
= −

+ ≤ ≤
− = +∑









+ +

+ + =

1 1

1
1 1

1 1
2

1σ ρ

r r r r

r r r r
,

,
. For

example, if n =1, Γ1 1 0 1

1 0
= − 



σ

 and Γ 2
21 0

0 1
= − −







σ

ρ
, and if n = 2 ,

Γ Γ Γ1 2 3

2

21
0 0 1

0 0 0

1 0 0

1
0 0 0

0 0 1

0 1 0

1
0 0

0 0

0 0 1

= −
















= −
















= −
−

−














σ σ σ

ρ
ρ, , .  Each Γ k  is a symmetric matrix.

A.4 Riemann Tensor and Curvature

The implication of using the scale space metric is that the geometry is Riemannian.  The Riemann tensor

of the second kind is defined by R
x xjkl

i jl
i

k

jk
i

l
jl
m

mk
i

jk
m

ml
i= − + −

∂
∂

∂
∂

Γ Γ
Γ Γ Γ Γ  . The Riemann curvature relative

to the metric gij  is defined for each pair of contravariant vectors ui  and vi  as 




K u v
R u v u v

G u v u v
ijkl

i j k l

ijkl
i j k l

r
ξ ; , ,( ) =

where R g Rijkl im jkl
m=  and G g g g gijkl ik jl il jk= − .  It can be shown that the only nonzero independent

components are  Rijij = −ρ σ2 4/  and Gijij =1 4/σ , for 1 1≤ < ≤ +i j n .  The other components are either

0 or are determined by the values of the terms mentioned above.  Consequently, the Riemann curvature
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of the space is identically a constant,  K = −ρ2.  When ρ =1, this particular Riemannian geometry is

called hyperbolic geometry and has been studied extensively in the differential geometry literature.

A.5 Covariant and Scale Space Derivatives

Covariant differentiation provides the generalization of partial differentiation to scale space.  The

covariant derivative of a tensor is itself a tensor.  The scale space derivatives we define are

dimensionless quantities but turn out not to be tensors.  Define the non-tensorial quantity aij  to be the

square-root of the metric tensor gij .  The first n  diagonal entries of aij  are 1/σ , and the last diagonal

entry is 1/ ρσ( ).  Similarly, define the non-tensorial quantity aij  to be the inverse of aij .  Thus,

g a aij ki kj= , g a aij ki kj= , and  a a a aki
kj ki

kj ij= =δ , where the summation convention is used despite the

terms not being tensors.  The idea is that the metric can be written symbolically as

ds g d d a d a dij
i j

ki
i

kj
j2 = = ( )( )ξ ξ ξ ξ , where the summation convention is still used.  The terms a dki

iξ  are

the natural dimensionless 1-forms used for scale space measurements.

Let 



f
r
ξ( ) be a smooth real-valued function.  The calculation of cores will require third-order derivatives.

The first covariant derivative of f  is given by f i, .  The total derivative of f  is

df f d f a a d a f a di i i
ki

kj j
ki

i kj j= = =( )( ), , ,ξ ξ ξ , so the dimensionless scale space first derivatives  are

defined by ˆ
,Df a fi

ik
i= ,which is not a tensor.  The covariant derivative of f i,  is given by

f
f

fij
i
j ij

k
k,

,
,= −

∂
∂ξ

Γ , where the Christoffel symbols were defined earlier.  The dimensionless scale space

second derivatives  are defined by ˆ
,D f a a fij

ik jl
ij

2 = , which is not a tensor. The covariant derivative of

f
f

f fijk
ij
k ik

l
lj jk

l
il,

,
, ,= − −

∂
∂ξ

Γ Γ , and the dimensionless scale space third derivatives  are defined by

ˆ
,D f a a a fijk

li mj nk
lmn

3 = , which is not a tensor.

Define λij  to be the matrix whose diagonal values are the ordered eigenvalues of f ij, , say

λ λ λ1 2≤ ≤ ≤... n , and whose off-diagonal values are zero.  Let vij  be the matrix whose columns are the

covariant eigenvectors of f ij, .  The contravariant eigenvectors are obtained by raising an index,

v g vj
i ik

kj= .  Additionally assume that the selected eigenvectors form an orthonormal system with respect

to the metric.  That is, v vki j
k

ij=δ .  The eigensystems are collectively represented by f v vij k
j

il k
l

, = Λ .
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A.6 Maximum Convexity Ridges of Medialness

We define the maximum convexity ridge of dimension n −1 since that provides the n −1-dimensional

core manifold that is appropriate for general objects in  ℜ n. The definition is easily restated for a ridge

of arbitrary dimension d  by modifying the number of dimensions in which derivative constraints must

hold from 2 to n d+ −1 . Define the directional derivatives P v fj j
i

i= ,  for 1 1≤ ≤ +j n .  The n -

dimensional core points are those ridge points of medialness,  

r
x,σ( ), for which f  has a local maximum

when restricted to the 2-dimensional geodesic surface whose tangents at 


r
x,σ( ) are the first two

eigenvectors vi
1 and vi

2  [12].  This is equivalent to finding those points 

r
x,σ( ) such that 
P x1 0

r
,σ( ) = ;



P x2 0
r
,σ( ) = , 

λ σ λ σ1 2 0

r r
x x, ,( ) ≤ ( ) < . We are solving 2 equations in n +1 variables, so we generally

expect the solutions to lie on  n −1-dimensional manifolds.

The tests P1 0=  and P2 0=  implicitly assume the continuity of eigenvectors vi
1 and vi

2 , which is true

when λ1 and λ2 are distinct eigenvalues, but may not hold otherwise.  This problem can be

circumvented, but the details are very technical and tedious, so are not presented here [11].  The basic

idea is to restrict our attention to regions for which  λ λ2 3<  to avoid eigenvector swaps between the first

2 eigenspaces and the last n −1 eigenspaces.  The eigenvectors vj
i  can be replaced by smoothly varying

orthonormal eigenvectors  uj
i  for which (1) the span of ui

1 and ui
2  is equal to the span of vi

1 and vi
2  and

(2) the span of ui
3 through un

i
+1 is equal to the span of vi

3 through vn
i
+1. Moreover, the vectors can be

chosen so that (1) the derivatives uj k
i
,  for j =1 2,  are linear combinations of the uj

i  for 3 1≤ ≤ +j n  and

(2) the derivatives of uj k
i
,  for 3 1≤ ≤ +j n  are linear combinations of the uj

i  for j =1 2, .  Defining

Q u fj j
i

i= , , the tests P1 0=  and P2 0=  can be replaced by Q1 0=  and Q2 0= . Core calculation requires

computing derivatives of the Qj .  These derivatives are used for initially locating a core point and

traversing the core by following tangents to the core.  In [11] it is shown that the direction of continuous

flow to the ridge can be calculated using only the eigenvalues and eigenvectors, despite the

discontinuities that occur in the eigenvectors.  It is also shown that continuous tangent vectors can be

calculated using only the eigenvalues and eigenvectors.  The discontinuity of eigenvectors is captured by

a single coefficient in the tangent vector equations.  This coefficient is the determinant of the matrix

vj
i[ ]  and is either 1 or -1.  In the numerical calculations it is necessary to keep track of the determinant
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and adjust the computed tangent vectors in the event the determinant is -1.  In light of this result, in the

next sections we will treat the eigenvectors vj
i  as if they have the properties assigned to the smooth uj

i ,

to simplify the development.

A.7  Flow to and Along a Core

Differentiating P  and Q yields P u f u f u Ra Q v f v f u Rbk
i

ik k
i

i k k k
i

ik k
i

i k k, , , , , , , ,, .= + = + = + = +α β

The tensors ak  and bk  are determined by the eigensystem for w . Differentiate this eigensystem to obtain

f w f w w wij k
i

ijk
j

i k k i, , , , ,+ = +γ γ .  Substitute for w a u b vj
i

j
i

j
i

, = − − , w a u b vi j j i j i, = − −  to obtain

α γ β γ γ−( ) + −( ) = −u a v b f w wi k i k ijk
j

k i, , . Contracting with ui  and vi , then solving for ak  and bk  yields

a f u w b f v wk ijk
i j

k ijk
i j=

−
=

−
1 1

α γ β γ, ,, .  Substituting back into the gradients for P  and Q yields

P u
R

f u w Q v
R

f v wk k ijk
i j

k k ijk
i j

, , , ,, .= +
−

= +
−

α
α γ

β
β γ

Our core extraction algorithms all consist of finding an approximation in scale space to a core point,

moving to the ridge of medialness that is the core, and then traversing the core. These formulas will be

used both in finding an initial core point and in determining the core direction.

A.7.1 Finding a Core Point from an Approximation

Given an approximation  
r r
u xu u0 = ( ),σ  to a core point, finding the core point involves solving the

equation 

P u Q u
r r( ) = ( ) =0 0,  subject to the constraints 
λ λ1 2 0

r r
u u( ) ≤ ( ) < . Recall that P and Q are defined

in terms of the vectors  

v u1 r( ) and 

v u2 r( ) . The numerical approach is then to take a step to a root of



P u Q u
r r( ) = ( ) =0 0,  in the space spanned by 

v u1 r( ) and 

v u2 r( )  for the 



r
u  that is the present approximation

to the core point, and then to iterate this process. We have found that the stability of a root-trapping

method is necessary, so a method based on bisection is used for this root trapping. However, a variety of

other root finding methods have been tried, and some are also in use.

A.7.2 Traversing the Core by Integration of the Differential Equation
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Let 


r
u  be a core point. To find successive points on the core, we can use the fact that the core is a

solution to a differential equation, or we can take a step in a direction approximately along the core and

then return to the core using the method described in section A.7.1.

Let us first derive the differential equation for which the core is the solution.  If 
r r
T ξ( ) is a tangent vector

to the core, the core can be traversed by solving a system of ordinary differential equations,
d t

dt
T t ui

i i i
ξ ξ ξ( ) = ± ( )( ) ( ) =, 0 , where two traversals are required, one in the direction 




+ ( )r r

T ξ  and one in

the direction 



− ( )r r

T ξ .  The problem is now to construct a closed formula for the ridge direction 

r
T .

The core curve is the intersection of surfaces implicitly defined by P ξ( ) = 0 and Q ξ( ) = 0.  The curve

direction is therefore a vector which is orthogonal to both surface normals.  The contravariant vectors

N g Pi ij
j= ,  and M g Qi ij

j= ,  are surface normals, so a core direction is the cross product of the two

vectors, T e N Mi ijk
j k= , where eijk  is the permutation tensor defined by

e e e e e e123 231 312 132 213 3211 1 0= = = = = = −, ,  otherwise.  If the sign of the tangent vectors is handled

carefully, the core tangent is a continuous function despite discontinuities in the eigenvectors.

A.7.3 Traversing the Core by  Approximation of Ridge Tangent and Root Finding

We have found that it frequently is more efficient and more stable to use the fact that typically the third

eigenvector of the Hessian of medialness approximately points along the core so a step proportional to

the extracted radius at a core point (proportional to the extracted scale) produces an approximation to a

core point. From this approximation, the method of section A.7.1 can be applied to return to the core.

A.7.4Traversing the Core by  Approximation of Ridge Tangent and Use of Gradient Orthogonality

Expressing the gradient of M  in terms of the eigenvectors of D M2  leads to DM Pu Qv Rw= + + .  It

follows that D M I DM Pu Qv2 −( ) = −( ) + −( )γ α γ β γ . Thus the ridge point can be found as a zero of

D M I DM2 −( )γ , which can be computed by minimizing DM D M I DMt 2 −( )γ  and assuring that the

minimum value in magnitude is below some threshold.
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All of the methods that we have programmed for core extraction calculate medialness derivatives using

n +1-dimensional splines fit to local medialness values. Only medialness values needed for this

purpose, i.e., in the neighborhood of the core, are evaluated.

A.8  2D Maximum Convexity Ridges of Medialness from 3D Images

Let f u uij
j

i, =α , f v vij
j

i, = β , f w wij
j

i, = γ , and f ij
j

i, φ δφ= , where α β γ δ≤ < ≤ .

u

v

w

a c

b d

a b

c d
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v
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j
i

j
i

j
i

j
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j j

j j

j j
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0 0

 for some choice of continuous tensors  aj , bj , cj , and dj .  Define

P u fi
i= , , Q v fi

i= , , R w fi
i= , ., and S fi

i=φ , . Core points satisfy P = 0, Q = 0, and α β≤ < 0.

Differentiating P  and Q yields 

P u f u f u Ra Sc Q v f v f u Rb Sdk
i

ik k
i

i k k k k
i

ik k
i

i k k k, , , , , , , ,, .= + = + + = + = + +α β

The tensors ak , bk , ck , and dk  are determined by the eigensystem for w  and φ.  Differentiate the

eigensystems to obtain  f w f w w w f fij k
i

ijk
j

i k k i ij k
i

ijk
j

i k k i, , , , , , , , , ,, .+ = + + = +γ γ φ φ δφ δ φ  Substitute for

w a u b vj
i

j
i

j
i

, = − − , w a u b vi j j i j i, = − − , φ, j
i

j
i

j
ic u d v= − − , and φi j j i j ic u d v, = − −  to obtain

α γ β γ γ α δ β δ φ δ φ−( ) + −( ) = − −( ) + −( ) = −u a v b f w w u a v b fi k i k ijk
j

k i i k i k ijk
j

k i, , , ,, .  Contracting with

ui  and vi , then solving yields

a f u w b f v w c f u d f vk ijk
i j

k ijk
i j

k ijk
i j

k ijk
i j=

−
=

−
=

−
=

−
1 1 1 1

α γ β γ α δ
φ

β δ
φ, , , ,, , , .

Substituting back into the gradients for P  and Q yields

 P u
R

f u w
S

f u Q v
R

f v w
S

f vk k ijk
i j

ijk
i j

k k ijk
i j

ijk
i j

, , , , , ,, .= +
−

+
−

= +
−

+
−

α
α γ α δ

φ β
β γ β δ

φ

These formulas will be used both in finding an initial core point and in determining the core tangent

spaces.

The 2-dimensional tangent space of a 2D-from-3D core is determined by the system of differential

equations defining steps in the tangent space to the core.  We restrict the expressions to the maximum

convexity ridge, though the generalization is similar for the optimal scale ridge. The core surface is the

intersection of two 3-dimensional surfaces implicitly defined by P ξ( ) = 0 and Q ξ( ) = 0.  The core
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tangent space is therefore the orthogonal complement (in  ℜ 4) of the space spanned by the normals

N g Pi ij
j= ,  and M g Qi ij

j= , .  Define T V e N Mij ijkl
k l= ( )det , where eijkl  is the permutation tensor on four

symbols and V  is the matrix of eigenvectors of D M2  so det V( ) = ±1.

The four eigenvectors of the matrix T Tij=  give two normals and two tangents to the core. The two

tangents correspond to the nonzero eigenvalue of multiplicity 2.
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