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This paper presents a method for estimating the position and
orientation of a camera with respect to a known 3-D object from
line correspondences. The main idea of the method is to estimate
a pose with either a weak perspective or a paraperspective camera
model and to improve this pose iteratively. At convergence the result
is compatible with a perspective camera model. This iterative im-
provement of a linear (affine) camera model has already been used
for points but has never been extended to lines. Known methods
which compute pose from line correspondences deal with a set of
nonlinear equations which are solved either in closed-form or using
minimization techniques. These methods have to deal with multiple
solutions. In contrast our method starts with a solution which is very
close to the true solution and converges in very few iterations (typi-
cally three to five iterations). The rank analysis of the linear system
to be solved at each iteration allows us to characterize geometric
configurations which defeat the algorithm. c© 1999 Academic Press

1. INTRODUCTION AND BACKGROUND
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these two classes lead to nonlinear minimization techniques.
These techniques work well provided that an initial solution is
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The problem of object pose from 2-D to 3-D feature cor
spondences has received a lot of attention in the past two dec
A large majority of the proposed methods use point corres
dences [2, 5, 8, 10, 13]. However, from a practical point of v
it is often advantageous to use lines. Indeed, line detectio
more accurate and more reliable than points and line matc
is more robust than point matching with respect to partial
clusions. Moreover, pose can be estimated from lines wit
finding their endpoints.

Nevertheless, the perspective camera model is nonlinea
hence pose estimation from point and/or line corresponde
is nonlinear as well. With three line correspondences Dh
et al.[3] and Chen [1] showed that the solutions are given by
eight-degree equation in one unknown. If the three lines me
a common point, the solution is given by a fourth-degree eq
tion in one unknown [6] which degenerates to a second-de
equation if the 3-D lines are mutually orthogonal. For more t
three lines closed form solutions become unpractical. Both
and [12] showed that two classes of methods are possible
lines: rotation then translation and rotation and translation. B
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Recently, Dementhon and Davis [2] proposed a method

determining the pose of a 3-D object with respect to a cam
from 3-D to 2-D point correspondences. The method consis
iteratively improving the pose computed with a weak persp
tive camera model to converge, at the limit, to a pose estima
computed with a perspective camera model. Oberkampfet al.
[11] extended this method to coplanar sets of 3-D points
Horaudet al. [8] established the link between perspective a
paraperspective for point correspondences. They showed
the iterative paraperspective methodhas better convergenc
properties then theiterative weak perspective methodboth in
terms of rate of convergence and of number of iterations.

In this paper we extend these methods, i.e., [2, 8, 11]
line correspondences. We establish the basic equations lin
perspective to weak perspective and to paraperspective an
embed these equations into an algorithm. Moreover, we s
line configurations which defeat this algorithm. Finally, we a
lyze the convergence of the algorithm, we study the accurac
pose computation in the presence of image noise, and we
pare point-based linear and nonlinear methods with line-ba
linear and nonlinear methods.

2. CAMERA MODELS

Figure 1 shows the general setup of the problem. The or
of the 3-D frame is an object pointP0. A 3-D (or object) line—
denoted byDi —is represented by a reference pointÄi and a
directionDi . Let us denote by (i , j , k) the rows of matrixR and
by t = (tx, ty, tz) the translation vector, both defining the rig
transformation between the object frame and the camera fr

T =
(

R t

0T 1

)
.

2.1. Perspective Camera Model

We assume that the camera is calibrated and hence im
coordinates can be replaced by unitless camera coordin
The 3× 4 matrix describing the projection of the 3-D Euclide
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FIG. 1. This figure shows the general setup. The pointP0 is the reference point of the object frame and is projection isp0(x0, y0). A 3-D line is represented by a
reference pointÄi and a direction vectorDi expressed in the object frame (Ωi ⊥ Di ). The projection of the 3-D lineDi is di .

pec-
space onto the 2-D image is in this case

M p = ( R t ) .

With the notations

I = i
tz

J = j
tz

K = k
tz

x0 = tx
tz

and y0 = ty

tz

we obtain

M p =

 I T x0

JT y0

K T 1

 .

2.2. Weak Perspective Camera Model
Weak perspective may well be viewed as a linear approxim
tion of full perspective. It is well known that in this case th
projection matrix becomes

Mwp =

 I T x0

JT y0

0T 1

 . (1)

2.3. Paraperspective Camera Model

Paraperspective is a first-order Taylor expansion of pers
tive projection [8] and the projection matrix writes

M pp =


I T

p x0

JT
p y0

0T 1

 (2)

with

I p = I − x0K (3)

a-

e J p = J − y0K . (4)
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POSE FROM LINE C

3. POSE EQUATIONS FROM LINE
CORRESPONDENCES

The goal of pose estimation is to compute the orienta
(i , j , k) and the translation (tx, ty, tz) of the camera frame with
respect to the object frame. Equivalently one may comp
I , J, x0, andy0 in the case of weak perspective [2] orI p, J p, x0,
andy0 in the case of paraperspective [8].

3.1. Perspective Model

Let us denote byPi a 3-D point belonging to the 3-D lineDi .
Thus, we may write

Pi = Ωi + λDi .

The projection of this point onto the image verifies

( spi

s

)
= M p

(
Pi

1

)
=

 I ·Ωi + x0

J ·Ωi + y0

1 + ηi

+ λ

 I · Di

J · Di

µi

 (5)

with

ηi = K ·Ωi and µi = K · Di .

Moreover, pointpi is constrained to lie onto an image lin
and its coordinates verifyai x + bi y + ci = 0. By substitution in
the previous equation and after grouping terms we obtain

ai I ·Ωi + bi J ·Ωi + ai x0 + bi y0 + ci (1 + ηi )

+ λ(ai I · Di + bi J · Di + ci µi ) = 0.

This equation is verified for all pointsPi of the 3-D line, i.e.,
for all values ofλ. Therefore we obtain two equations:

ai I ·Ωi + bi J ·Ωi + ai x0 + bi y0 + ci (1 + ηi ) = 0 (6)

ai I · Di + bi J · Di + ci µi = 0. (7)

The unknowns are the pose parametersI , J, x0, and y0 as
well asηi andµi which encapsulate the perspective effect.
n correspondences, we have 2n equations.

Equivalently, we can write these equations withI p and Jp.
From Eqs. (3) and (4) we haveI = I p + x0K andJ = J p + x0K
and by substitution in Eqs. (6) and (7), we obtain

ai I p ·Ωi + bi J p ·Ωi + (ai x0 + bi y0 + ci )(1 + ηi ) = 0 (8)

ai I p · Di + bi J p · Di + (ai x0 + bi y0 + ci )µi = 0. (9)

3.2. Weak Perspective
The equations that link a 3-D line to its projection for wea
perspective can be easily derived from above. Indeed, from
ORRESPONDENCES 139
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expression of the weak perspective projection matrix given
Eq. (1) we obtain the following equations:

ai I ·Ωi + bi J ·Ωi + ai x0 + bi y0 + ci = 0 (10)

ai I · Di + bi J · Di = 0. (11)

Therefore, by settingηi = µi = 0 in Eqs. (6) and (7), we obtain
the weak perspective equations of 2-D to 3-D line matching

3.3. Paraperspective

Similarly, using the paraperspective projection matrix giv
by Eq. (2) we obtain the following equations:

ai I p ·Ωi + bi J p ·Ωi + ai x0 + bi y0 + ci = 0 (12)

ai I p · Di + bi J p · Di = 0. (13)

Therefore, by settingηi = µi = 0 in Eqs. (8) and (9), we obtain
the paraperspective equations of 2-D to 3-D line matching.

4. POSE COMPUTATION

The sets of equations that we just established allow us
compute the pose parameters under various projection mod

• Weak perspective: Equations (10) and (11) are linear i
I , J, x0, andy0. Since there are eight unknowns and each l
correspondence provides two equations, a minimum of four li
are necessary to estimate these unknowns from which the
parameters (rotation matrix and translation vector) can be ea
estimated [2].

• Paraperspective: Equations (12) and (13) are linear inI p,

J p, x0, andy0 from which (under the same conditions as abov
the pose parameters can be easily estimated as well [8].

• Full perspective: In this case the pose parameters can
estimatediteratively by solving either Eqs. (6) and (7) (wea
perspective iterations) or Eqs. (8) and (9) (paraperspective
ations). In both cases the iterative algorithm is the following

1. For alli, i ∈ {1 . . . n}, ηi = µi = 0;
2. Solve the overconstrained set of linear Eqs. (6) and

or (8) and (9);
3. Estimate the translation vector (tx, ty, and tz) and the

matrix with i , j , andk) as row vectors; Orthogonalize this matr
to estimate the rotationR [8];

4. For alli , compute

ηi = k ·Ωi

tz
and µi = k · Di

tz
.

If the ηi andµi computed at this iteration are equal to theηi and

k
the
µi computed at the previous iteration then stop, otherwise go to
step 2.
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5. SOLVING THE LINEAR EQUATIONS

Both the weak perspective and paraperspective iterative
rithms need to solve an overconstrained system of linear e
tions, namely Eqs. (6) and (7) (weak perspective iterations
Eqs. (8) and (9) (paraperspective iterations). In matrix form th
equations can be written as

A︸︷︷︸
2n×8

x︸︷︷︸
8×1

= b︸︷︷︸
2n×1

. (14)

More precisely, this matrix equation is
· · · · · · · · · · · ·

aiΩ
T
i biΩ

T
i ai bi

ai DT
i bi DT

i 0 0

· · · · · · · · · · · ·




I T

JT

x0

y0

 =


· · ·

−ci (1 + ηi )

−ci µi

· · ·

 .

Or, equivalently,
· · · · · · · · · · · ·

aiΩ
T
i biΩ

T
i ai (1 + ηi ) bi (1 + ηi )

ai DT
i bi DT

i ai µi bi µi

· · · · · · · · · · · ·




I T
p

JT
p

x0

y0



=


· · ·

−ci (1 + ηi )

−ci µi

· · ·

 .

We recall that a 3-D lineDi is described by a 3-D point arbitrari
chosen along this line,Äi , and a direction vectorDi . The 2-D line
matching this 3-D line is described by three scalarsai , bi , andci .

The unknown vectorx has eight components. Therefore t
2n × 8 measurement matrixA must have a rank equal to 8.

5.1. Rank Analysis

We analyze under which geometric configurations matriA
satisfies the rank constraint stated above and we identify
line configurations for which pose cannot be computed.
to the fact that this rank analysis is based on the 3-D geom
configurations associated with known object lines, one can e
avoid configurations which defeat the method.

First, notice that the two equations associated with a l
match, (6) and (7)1, are independent. The only configuration
which these two equations are not independent is when the
line passes through the center of projection. In such a cas
must haveΩi = αDi and the 2-D line is reduced to a point.
1 Equations (8) and (9) are strictly equivalent to (6) and (7).
D HORAND
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FIG. 2. This figure shows all the geometric configurations which defeat
pose computation method described in this paper. In the case of a noncop
configuration the only forbidden configuration is a pencil of three lines or mo
whether they intersect in a common point (a) or they are parallel (b). In the
of a coplanar configuration three lines are sufficient but these three lines
not intersect in a common point (c) or be parallel (d).

Second, we consider two 3-D lines. These lines project o
two distinct image lines and hence there are two distinct p
jection planes associated with them; e.g., Fig. 1. Therefore
line correspondences have four independent equations as
ated with them.

Third, we consider three 3-D lines, Figs. 2a and 2b. If the
lines intersect in a common point, the three associated projec
planes form a pencil of planes and any plane in this pencil
linear combination of the two other planes. Therefore, a pe
of lines, i.e., three or more parallel lines or three or more lin
intersecting in a common point, will contribute as two lines.

Fourth, we consider four 3-D lines. A set of four lines is sa
to be in “general position” if the lines are not coplanar and if
three lines among them form a pencil of lines.

To conclude, the minimal configuration which allows po
computation is a set of four lines in general position. Figures
and 3b show a few examples of line configurations which c
be used in conjunction with Eq. (14).

We are left with the case of coplanar object lines. It will b
shown below that the coplanarity constraint can be explic
taken into account such that three coplanar lines are suffic
to compute pose without ambiguity.

5.2. Coplanar Object Lines

Whenever the object lines lie in the same plane, the co
narity constraint can be explicitly used to compute pose. A

will be shown below, the practical advantage is that a minimum
of three lines are sufficient to estimate the pose parameters.
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FIG. 3. This figure shows a few examples of noncoplanar, (a) and (b),
coplanar, (c) and (d), configurations which can be used to compute pose
either camera model described herein.

We consider the plane containing the object lines and lu
be the unit vector normal to this plane. VectorsI and J can
be written as a linear combination of a vector belonging to
plane and of vectoru, namely,

I = I 0 + αu (15)

J = J0 + βu. (16)

The main idea (introduced in [11]) is to modify Eq. (14)
replacing the unknownsI andJ with I 0 andJ0 and by adding to
the linear system two additional constraints, namelyI 0 · u = 0
and J0 · u = 0. By substituting Eqs. (15) and (16) into Eqs. (
FIG. 4. Position error as a function of the distance camera-object in prese
of gaussian noise from line (and point) correspondences (the object is shifte
respect to the optical axis).
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FIG. 5. Orientation error as a function of the distance camera-object in p
ence of gaussian noise from line (and point) correspondences (the obje
shifted in respect to the optical axis).

and (7) and by noticing thatΩi · u = 0 andDi ·u = 0, we obtain

A′x′ = b′

or  A

uT 0T 0 0

0T uT 0 0




I 0

J0

x0

y0

 =

b
0

0

 .

The vectoru is orthogonal toI 0 and J0, thusu · I 0 = 0 and
u · J0 = 0 are two more independent equations and the ma
A′ is of rank 8. Thus we obtain a solution forI 0, J0, x0 andy0:

x′ = (A′TA′)−1A′Tb′.

Clearly, due to the orthogonality between vectoru and the
object lines, the two additional rows of matrixA′ are independent
of the rows of matrixA. SinceA′ must have a rank equal to 8,
is sufficient that the rank ofA is equal to 6.

Therefore three lines (not mutually parallel and not interse
ing at the same common point) are sufficient to solve forx′.
Figures 2c and 2d show two examples of coplanar line confi
rations which defeat the method and Figs. 3c and 3d show
examples of coplanar line configurations which can be used
pose computation using the method described in this sectio

Finally, in order to estimateI and J from the estimatedI 0

andJ0, one must determine the scalarsα andβ. This can be eas-
ily done by combining Eqs. (15) and (16) with the constrain
‖I ‖ = ‖J‖ and I · J = 0. For more details concerning the es
mation ofα andβ see [11] and [8].

6. EXPERIMENTS

nce
d inIn order to test the method we run a large number of simu-
lations. Thus we tested both the iterative weak perspective and
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FIG. 6. Number of iterations as a function of the distance camera-objec

presence of gaussian noise from line correspondences (the object is shifte
respect to the optical axis).

ter
or

is defined as being the rotation angle (in degrees) needed to align
cal
the object frame in the computed position with the theoreti
FIG. 7. Straight lines and junctions are extracted from the raw data (top). A
(bottom). The result is a set of line-to-line and junction-to-junction correspo
D HORAND

in
d in

iterative paraperspective methods in the presence of image n
and as a function of the relative position and orientation of
3-D data with respect to the camera. We studied:

• Object pose error (in position and orientation) as a funct
of the camera-object distance (Figs. 4 and 5);

• The convergence of the two iterative algorithms (Fig. 6)

For the synthetic data, the parameters are the following:

• The intrinsic camera parameters areuc = vc = 256,αu =
αv= 1000.

• The 3-D model is made out of 18 lines.

We added gaussian noise (with standard deviationσ = 1 pixel) to
the image data, and we performed 500 random measures for
experiment. The rotation matrices for these 500 orientations
computed from Euler angles chosen in the range [0, 2π ]. The
object position is defined by a translation vector from the cen
of projection to the origin of the object frame. The rotation err
wireframe representation of the object is matched against the set of lines and junctions
ndences.
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FIG. 8. Pose computed with: (a) weak perspective and lines, (b) paraperspective and lines, (c) iterative weak perspective and lines, (d) iterative weak perspective
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and points, (e) nonlinear minimization and lines, (f) nonlinear minimization

position. The position error is defined by the norm of the vec
which represents the difference between the two translation
tors (the computed vector and the theoretical vector), divided
the object size. The abscissa of the graphic plots represent
z component of the translation vector divided by the object s

The performance of these line-based algorithms is quite s
ilar with the point-based ones thoroughly studied by Hora

et al.[8] and by Dementhon and Davis [2] (Figs. 4 and 5). How
ever, we had not taken into account the fact that lines are
and points.

or
ec-
by
the
e.

im-
ud

tracted with a better accuracy than points. The iterative we
perspective method and the iterative paraperspective me
converge to the same solution. This is explained because
rely on equivalent perspective equations. Nevertheless, the
ative paraperspective method converges faster than the iter
weak perspective algorithm because the pose obtained afte
first iteration with the former is more accurate than the po

-

ex-
obtained with the latter algorithm. For all these configurations,
convergence rate was 100%.
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An example of application of pose computation is visual s
voing. Within the framework of visual servoing, the camera is
the real-time feedback loop of a robot manipulator and the
ter must be directed toward a target position in accordance
image changes. Variations in the image must therefore be tr
formed immediately into 3-D robot commands. If only one ca
era is being used, pose computation becomes crucial [4] a
must be performed in a few milliseconds.

An example of application of object pose within visual se
voing is the grasping of a polyhedral object by a parallel-j
gripper, [7]. A single camera observes both the object to
grasped and the gripper. In order to control the robot and g
the gripper toward the object, one must locate the object w
respect to the camera, i.e., compute its pose. The raw ima
segmented into junctions and lines and these lines and junc
are matched with a wireframe representation of the object.
result of matching is a list of point correspondences and a
of line correspondences, e.g., Fig. 7. Therefore pose com
tation can be performed either from point or from line cor
spondences. Figure 8 shows the results obtained with var
algorithms:

(a) weak perspective pose from line correspondences; th
the result of the first iteration of the iterative weak perspec
algorithm described in this paper;

(b) paraperspective pose from line correspondences; th
the result of the first iteration of the iterative paraperspec
algorithm described in this paper;

(c) perspective pose from line correspondences obtained
the iterative weak perspective algorithm;

(d) perspective pose from point correspondences obta
with the iterative weak perspective algorithm;

(e) perspective pose from line correspondences obtained
a nonlinear method [12], and

(f) perspective pose from point correspondences obta
with the same nonlinear method.

In order to asses these results quantitatively we computed
error between the pose computed with the nonlinear methods
the pose computed with the iterative weak perspective meth
The results of this comparison are summarized in Table 1
this tableRopt and topt correspond to the pose computed w
a nonlinear method (Figs. 8e and 8f): the pose computed

TABLE 1
A Comparison between the Pose Computed with Point Correspo-

ndences and the Pose Computed with Line Correspondencesa

Iterative weak perspective ‖Ropt − R̂‖ ‖topt − t̂‖

With points 0.031 10.2%
With lines 0.018 3.7%

a
 The optimal pose parameters were estimated using a nonlinear minimiza
method. The rotation error is the square root of the sum of the differences o
coefficients of the two matrices.
D HORAND
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points is identical, in this case with the pose computed with lin
In this case the line-based iterative weak perspective algorit
performs better than the point-based one.

7. DISCUSSION

This paper extends the work on pose estimation from po
matches [2, 8, 11] to line matches. Lines represent a good a
native to points whenever the vertices of a polyhedral object
occluded.

The methods described above (iterative weak perspective
iterative paraperspective) are able to deal with both noncop
nar and coplanar sets of 3-D lines. We studied the geome
configurations which defeat the method. The main advantag
the algorithm is that it is very fast regardless of the number
correspondences.

In theory, the paraperspective-based algorithm involves few
iterations than the weak perspective one. However, becaus
the computational simplicity and ease of implementation, t
latter should be preferred to the former.
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