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This paper presents a method for estimating the position and
orientation of a camera with respect to a known 3-D object from
line correspondences. The main idea of the method is to estimate
a pose with either a weak perspective or a paraperspective camera
model and to improve this pose iteratively. At convergence the result
is compatible with a perspective camera model. This iterative im-
provement of a linear (affine) camera model has already been used
for points but has never been extended to lines. Known methods
which compute pose from line correspondences deal with a set of
nonlinear equations which are solved either in closed-form or using
minimization techniques. These methods have to deal with multiple
solutions. In contrast our method starts with a solution which is very
close to the true solution and converges in very few iterations (typi-
cally three to five iterations). The rank analysis of the linear system
to be solved at each iteration allows us to characterize geometric
configurations which defeat the algorithm.  © 1999 Academic Press

1. INTRODUCTION AND BACKGROUND

The problem of object pose from 2-D to 3-D feature corr

spondences hasreceived alot of attention in the pasttwo decal

A large majority of the proposed methods use point corresp

these two classes lead to nonlinear minimization technique
These techniques work well provided that an initial solution is
provided.

Recently, Dementhon and Davis [2] proposed a method fo
determining the pose of a 3-D object with respect to a camer
from 3-D to 2-D point correspondences. The method consists ¢
iteratively improving the pose computed with a weak perspec
tive camera model to converge, at the limit, to a pose estimatio
computed with a perspective camera model. Oberkazhpd.
[11] extended this method to coplanar sets of 3-D points an
Horaudet al. [8] established the link between perspective anc
paraperspective for point correspondences. They showed th
the iterative paraperspective methdths better convergence
properties then théerative weak perspective methbdth in
terms of rate of convergence and of number of iterations.

In this paper we extend these methods, i.e., [2, 8, 11], t
line correspondences. We establish the basic equations linkir
perspective to weak perspective and to paraperspective and \
embed these equations into an algorithm. Moreover, we stuc
line configurations which defeat this algorithm. Finally, we ana-

B8e computation in the presence of image noise, and we col
are point-based linear and nonlinear methods with line-base

:g:e the convergence of the algorithm, we study the accuracy ¢

dences[2, 5, 8, 10, 13]. However, from a practical point of VieY?hear and nonlinear methods

it is often advantageous to use lines. Indeed, line detection is
more accurate and more reliable than points and line matching
is more robust than point matching with respect to partial oc-
clusions. Moreover, pose can be estimated from lines without
finding their endpoints. Figure 1 shows the general setup of the problem. The origi

Nevertheless, the perspective camera model is nonlinear & éhe 3-D frame is an object poirky. A 3-D (or object) line—
hence pose estimation from point and/or line correspondené&fioted byDi—is represented by a reference paitand a
is nonlinear as well. With three line correspondences DhorfigectionD;. Let us denote byi (|, k) the rows of matrixR and
etal.[3] and Chen [1] showed that the solutions are given by &Y t = (x. ty. tz) the translation vector, both defining the rigid
eight-degree equation in one unknown. If the three lines meett@nsformation between the object frame and the camera fram
a common point, the solution is given by a fourth-degree equa-
tion in one unknown [6] which degenerates to a second-degree
equation if the 3-D lines are mutually orthogonal. For more than T= ( ) :
three lines closed form solutions become unpractical. Both [9]
and [12] showed that two classes of methods are possible with .
lines: rotation then translation and rotation and translation. Bofhl- Perspective Camera Model

We assume that the camera is calibrated and hence ima

coordinates can be replaced by unitless camera coordinate
* This work has been supported by SaiéiAérospatiale and by DGA/DRET. The 3x 4 matrix describing the projection of the 3-D Euclidean

2. CAMERA MODELS

R t
or 1

137

1077-3142/99 $30.00
Copyright®© 1999 by Academic Press
All rights of reproduction in any form reserved.



138 CHRISTY AND HORAND

object frame

image plane

camera frame

]| /f

¥

center of J
projection

FIG. 1. This figure shows the general setup. The p&ints the reference point of the object frame and is projectigm (o, Yo)- A 3-D line is represented by a
reference poinf2; and a direction vectoD; expressed in the object fram&( L D;). The projection of the 3-D lin®; is d;.

space onto the 2-D image is in this case projection matrix becomes
T
Mp=(R t). ! ) X0
Mup=1|J" Yo |- 1)
With the notations o' 1
i k t t 2.3. Paraperspective Camera Model
=L 3= k= %= and yo= - _
t; t; t; t; t, Paraperspective is a first-order Taylor expansion of perspe
tive projection [8] and the projection matrix writes
we obtain
. I1F; Xo
IT X0 Mpp=| 35 Yo 2
M p= J Yo OT 1
KT 1
with
2.2. Weak Perspective Camera Model Iy =1 — %K 3)

Weak perspective may well be viewed as a linear approxima-
tion of full perspective. It is well known that in this case the Jp=J - yoK. (4)
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3. POSE EQUATIONS FROM LINE expression of the weak perspective projection matrix given b
CORRESPONDENCES Eqg. (1) we obtain the following equations:
~ The goal of pose estimation is to compute the orientation al -2 +bJ -2 +ax+by+c =0 (10)
(i, j, k) and the translatiorty;, ty, t;) of the camera frame with
respect to the object frame. Equivalently one may compute al-Di+bJ-Di=0. (11)
I, J, Xo, andyg in the case of weak perspective [2]lgy, J . Xo,
andyo in the case of paraperspective [8]. Therefore, by setting; = ;i = 0 in Egs. (6) and (7), we obtain

_ the weak perspective equations of 2-D to 3-D line matching.
3.1. Perspective Model

Let us denote by, a 3-D point belonging to the 3-D linB;.  3.3. Paraperspective

Thus, we may write Similarly, using the paraperspective projection matrix given

by Eq. (2) we obtain the following equations:
P. — 2 + 1D y Eq. (2) geq

The projection of this point onto the image verifies 8ilp 2 +bJp- 2 +ax+byp+6=0 (12)

p I - 82 + Xo | - Dj

sp; i : .

( E' ) =M p< 1') =|J-2i+Yo|+Ar]JI-Di (5) Therefore, by setting; = u; = 0in Egs. (8) and (9), we obtain
1+ n; i the paraperspective equations of 2-D to 3-D line matching.

with

4. POSE COMPUTATION

ni=K-£ and u =K-D;. _ . .
The sets of equations that we just established allow us t

Moreover, pointp; is constrained to lie onto an image lineCompute the pose parameters under various projection model
and its coordinates Vel’if&,X + bi y+Ci =0. By substitution in ° Weak perspectivdzquations (10) and (11) are |inear in

the previous equation and after grouping terms we obtain | '3 x, andy,. Since there are eight unknowns and each line
correspondence provides two equations, a minimum of four line
al - 92 +bJ -2 +ax+biyo+c(l+n) are necessary to estimate these unknowns from which the po

parameters (rotation matrix and translation vector) can be easi
estimated [2].

¢ ParaperspectiveEquations (12) and (13) are linearlig,

Jp, Xo, andyp from which (under the same conditions as above;
the pose parameters can be easily estimated as well [8].

e Full perspectivelIn this case the pose parameters can be
estimatedteratively by solving either Egs. (6) and (7) (weak
al -Di+bJ-D+cpu =0. (7) perspective iterations) or Egs. (8) and (9) (paraperspective ite
ations). In both cases the iterative algorithm is the following:

+ (@il - Di +biJ-Di +cipi)=0.

This equation is verified for all pointg of the 3-D line, i.e.,
for all values ofx. Therefore we obtain two equations:

al -2 +bJ -2 +ax+by+c@+n)=0 (6)

The unknowns are the pose parameterd, xo, andyp as 1. Foralli,i € {1...n}, 5 = i = O;

well asn; andu; which encapsulate the perspective effect. For 5 ggjve the overconstrained set of linear Egs. (6) and (7
n correspondences, we have @quations. or (8) and (9);

Equivalently, we can write these equations withand Jp. 3. Estimate the translation vectdg(ty, andt,) and the

From Egs. (3) and (4) we have= | p + XK andJ = Jp + XK matrixwith i, j, andk) as row vectors; Orthogonalize this matrix
and by substitution in Egs. (6) and (7), we obtain to estimate the rotatioR [8];

4. For alli, compute
ailp- 92 +bJy- 2 +(@x+by+c)l+n)=0 (8)
k- £ k- Dj
L and pi = L

Z tZ

glp-Di+bJp-Di +(axXo+hbiyo+c)ui =0. (9) ni =

3.2. Weak Perspective If the n; andu; computed at this iteration are equal to thend

The equations that link a 3-D line to its projection for weak:; computed at the previous iteration then stop, otherwise go 't
perspective can be easily derived from above. Indeed, from ttep 2.
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5. SOLVING THE LINEAR EQUATIONS a b
Both the weak perspective and paraperspective iterative algo-
rithms need to solve an overconstrained system of linear equa-
tions, namely Egs. (6) and (7) (weak perspective iterations) or
Egs. (8) and (9) (paraperspective iterations). In matrix form these
equations can be written as
A x = b. (14)
N
21x8 8x1  2nx1 c d

More precisely, this matrix equation is

a2l b a b a7 | —s@+m) \'

aD! bD 0 O Xo —Ci i

. FIG. 2. This figure shows all the geometric configurations which defeat th

Or, equwalently, pose computation method described in this paper. In the case of a noncopla

configuration the only forbidden configuration is a pencil of three lines or more

1T whether they intersect in a common point (a) or they are parallel (b). In the ca

T T of a coplanar configuration three lines are sufficient but these three lines m
afy by al+mnm) b(l+m) JT not intersect in a common point (c) or be parallel (d).

aD/ bDl au bi i Xo

Second, we consider two 3-D lines. These lines project on
two distinct image lines and hence there are two distinct pre
_ _ jection planes associated with them; e.g., Fig. 1. Therefore tv
=G (1+m) l ; ;
= ) ine correspondences have four independent equations ass
—Gi i ated with them.
Third, we consider three 3-D lines, Figs. 2a and 2b. If thes
lines intersectin a common point, the three associated projecti
We recall thata 3-D lin®; is described by a 3-D point arbitrarily planes form a pencil of planes and any plane in this pencil is
chosen alongthislin;, and adirection vectdp;. The 2-Dline linear combination of the two other planes. Therefore, a penc
matching this 3-D line is described by three scadgrb;, andc;.  of lines, i.e., three or more parallel lines or three or more line
The unknown vectok has eight components. Therefore thintersecting in a common point, will contribute as two lines.

2n x 8 measurement matrik must have a rank equal to 8. Fourth, we consider four 3-D lines. A set of four lines is saic
_ to be in “general position” if the lines are not coplanar and if ne
5.1. Rank Analysis three lines among them form a pencil of lines.

We analyze under which geometric configurations mahrix To conpluo!e, the minimal_ configuration Whi(.:h allows POS!
satisfies the rank constraint stated above and we identify Mé]pl;taﬂon |sa}set of fourllmesfllr_n gener?l posmon. Fﬁgrﬁs )
line configurations for which pose cannot be computed. Dglg' 3 ds' owa ew.examp;]es ot line configurations which ce
to the fact that this rank analysis is based on the 3-D geomet?ig USed in conjunction with Eq. (14).

configurations associated with known objectlines, one can easily' '¢ &€ left with the case of cpplanar Ot?JeCt lines. It W'l.l t.)e
avoid configurations which defeat the method. shown below that the coplanarity constraint can be explicitl

First, notice that the two equations associated with a linf2Ke€N into account such that three coplanar lines are sufficie
match, (6) and () are independent. The only configuration fof® COMPUte pose without ambiguity.
which these two equations are not independent is when the 3-D . .
line passes through the center of projection. In such a case %v% Coplanar Object Lines
must haves2, =aD; and the 2-D line is reduced to a point. Whenever the object lines lie in the same plane, the copl
narity constraint can be explicitly used to compute pose. As
will be shown below, the practical advantage is that a minimut
1 Equations (8) and (9) are strictly equivalent to (6) and (7). of three lines are sufficient to estimate the pose parameters.
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FIG.5. Orientation error as a function of the distance camera-object in pres
ence of gaussian noise from line (and point) correspondences (the object

shifted in respect to the optical axis).

FIG. 3. This figure shows a few examples of noncoplanar, (a) and (b), and o )
coplanar, (c) and (d), configurations which can be used to compute pose vaid (7) and by noticing tha®; - u=0 andD; - u=0, we obtain
either camera model described herein.

A'X =D
We consider the plane containing the object lines and let,,
be the unit vector normal to this plane. Vectdrand J can |
be written as a linear combination of a vector belonging to this A 0 b
plane and of vecton, namely, uT 0" 0 0 ;J(O —lo
T T 0
| =lo+au (15) A 0

J = Jo+Bu. (16) The vectoru is orthogonal tol g and Jg, thusu - 1o=0 and

u - Jo=0 are two more independent equations and the matri
The main idea (introduced in [11]) is to modify Eq. (14) bya’ is of rank 8. Thus we obtain a solution fbg, Jo, Xo andyo:
replacing the unknownisandJ with | o andJo and by adding to
the linear system two additional constraints, namelyu =0 X' =(ATAYIATY.
and Jg - u=0. By substituting Egs. (15) and (16) into Egs. (6) .
Clearly, due to the orthogonality between veatoand the
objectlines, the two additional rows of matAxare independent

0.3 T T T

iterative weak perspective 21%2335 - of the rows of matriXA. SinceA’ must have a rank equal to 8, it
itezative paraperspective (points) -o-- is sufficient that the rank oA is equal to 6.
028 [ : . Therefore three lines (not mutually parallel and not intersect
5 P ing at the same common point) are sufficient to solvexfor
502 Il Figures 2c and 2d show two examples of coplanar line configu
5 ‘ / . rations which defeat the method and Figs. 3c and 3d show tw
5 oos 7 st examples of coplanar line configurations which can be used fc
2 /ﬁ,ﬂ" pose computation using the method described in this section.
g ail e Finally, in order to estimaté and J from the estimated o
= r/ﬁ/" andJo, one must determine the scalarandg. This can be eas-
oos L T ] ily done by combining Egs. (15) and (_16) with thg constram_ts
PO o ITI=11J] and! - J =0. For more details concerning the esti-
e . mation ofe andg see [11] and [8].
02 4 [} 8 10 12 14 16 18 20
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6. EXPERIMENTS

FIG. 4. Position error as a function of the distance camera-object in presence .
of gaussian noise from line (and point) correspondences (the object is shifted i Order to test the method we run a large number of simu

respect to the optical axis). lations. Thus we tested both the iterative weak perspective ar
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FIG. 6. Number of iterations as a function of the distance camera-object

presence of gaussian noise from line correspondences (the object is shifte

respect to the optical axis).
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iterative paraperspective methods in the presence of image nc
and as a function of the relative position and orientation of th
3-D data with respect to the camera. We studied:

e Object pose error (in position and orientation) as a functio
of the camera-object distance (Figs. 4 and 5);
e The convergence of the two iterative algorithms (Fig. 6).

For the synthetic data, the parameters are the following:

e The intrinsic camera parameters ake= v, = 256, ay =
a,=1000.
e The 3-D model is made out of 18 lines.

We added gaussian noise (with standard deviatienl pixel) to

the image data, and we performed 500 random measures for e
experiment. The rotation matrices for these 500 orientations &
computed from Euler angles chosen in the range ], Zhe

§b|;ect position is defined by a translation vector from the cent
of projection to the origin of the object frame. The rotation erro
is defined as being the rotation angle (in degrees) needed to al
the object frame in the computed position with the theoretic:

T
r

FIG.7. Straightlines and junctions are extracted from the raw data (top). A wireframe representation of the object is matched against the set of Btieasnd |
(bottom). The result is a set of line-to-line and junction-to-junction correspondences.
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FIG.8. Pose computed with: (a) weak perspective and lines, (b) paraperspective and lines, (c) iterative weak perspective and lines, (d) iteratipeetivak pel
and points, (e) nonlinear minimization and lines, (f) nonlinear minimization and points.

position. The position error is defined by the norm of the vecttnacted with a better accuracy than points. The iterative wea
which represents the difference between the two translation veerspective method and the iterative paraperspective meth
tors (the computed vector and the theoretical vector), divided bgnverge to the same solution. This is explained because th
the object size. The abscissa of the graphic plots representsriilg on equivalent perspective equations. Nevertheless, the ite
z component of the translation vector divided by the object sizative paraperspective method converges faster than the iterati

The performance of these line-based algorithms is quite simeak perspective algorithm because the pose obtained after t
ilar with the point-based ones thoroughly studied by Horadist iteration with the former is more accurate than the pos
et al.[8] and by Dementhon and Davis [2] (Figs. 4 and 5). Howebtained with the latter algorithm. For all these configurations
ever, we had not taken into account the fact that lines are @onvergence rate was 100%.
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An example of application of pose computation is visual sepoints is identical, in this case with the pose computed with line
voing. Within the framework of visual servoing, the camera s im this case the line-based iterative weak perspective algorith
the real-time feedback loop of a robot manipulator and the laterforms better than the point-based one.
ter must be directed toward a target position in accordance with
image changes. Variations in the image must therefore be trans- 7 DISCUSSION
formed immediately into 3-D robot commands. If only one cam-
era is being used, pose computation becomes crucial [4] and iThis paper extends the work on pose estimation from poit
must be performed in a few milliseconds. matches [2, 8, 11] to line matches. Lines represent a good alt

An example of application of object pose within visual semative to points whenever the vertices of a polyhedral object a
voing is the grasping of a polyhedral object by a parallel-jayccluded.
gripper, [7]. A single camera observes both the object to beThe methods described above (iterative weak perspective a
grasped and the gripper. In order to control the robot and guiigérative paraperspective) are able to deal with both noncopl
the gripper toward the object, one must locate the object wiiar and coplanar sets of 3-D lines. We studied the geomet
respect to the camera, i.e., compute its pose. The raw imagedafigurations which defeat the method. The main advantage
segmented into junctions and lines and these lines and junctigiig algorithm is that it is very fast regardless of the number
are matched with a wireframe representation of the object. Thérrespondences.
result of matching is a list of point correspondences and a listin theory, the paraperspective-based algorithm involves few
of line correspondences, e.g., Fig. 7. Therefore pose comfrérations than the weak perspective one. However, because
tation can be performed either from point or from line correthe computational simplicity and ease of implementation, th
spondences. Figure 8 shows the results obtained with varigaiger should be preferred to the former.
algorithms:

(a) weak perspective pose from line correspondences; that is, REFERENCES
the result of the first iteration of the iterative weak perspectiv? H. Chen, Pose determination from line-to-plane correspondences: existel
aIgonthm descnbed_ in this paper; . . solutions, and closed-form solutiohEEE Tra%s. Pattern Ap;1al. Mach. Intell
(b) paraperspective pose from line correspondences; that is, 136), 1991, 530-541.
the result of the first iteration of the iterative paraperspective. p_ g pementhon and L. S. Davis, Model-based object pose in 25 lines
algorithm described in this paper; code,Int. J. Comput. Visior5(1/2), 1995, 123-141.
(c) perspective pose from line correspondences obtained with M. Dhome, M. Richetin, J. T. Lapreste, and G. Rives, Determination of th
the iterative weak perspective algorithm; attitude of 3D objects from a single perspective vitREE Trans. Pattern
(d) perspective pose from point correspondences obtained Anal- Mach. Intell 11(12), 1989, 1265-1278.
with the iterative weak perspective algorithm; 4. B. Espiau, F. Chaumette, and P. Rives, A new approach to visual servoi

(e) perspective pose from line correspondences obtained with n rObOtfcs'lEEE Trans. Robotics Automa(3), 1992, 313-326. )
a nonlinear method [12], and 5. M. A. Fischler and R. C. Bolles, Random sample consensus: A paradig

; . . for model fitting with applications to image analysis and automated cartoc
(f) perspective pose from point correspondences obtained rapny commun. Assoc. Comput. Ma@4(6), 1981, 381-395.

with the same nonlinear method. 6. R.Horaud, B. Conio, O.Leboulleux, and B. Lacolle, An analytic solution fol

s the perspective 4-point proble@pmput. Vision Graphics Image Process.
In order to asses these results quantitatively we computed the ,, 5989p33_4 4 pointp emp P g

error between the pOSQ ComPUted_Wlth the nonlmear.methc’ds ari].dR. Horaud, F. Dornaika, and B. Espiau, Visually guided object graspin
the pose computed with the iterative weak perspective methods. |eeg Trans. Robotics Automat4(4), 1998, 525-532.
The results of this comparison are summarized in Table 1 18 R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy, Object pose: Th
this tableRgpt andtqp: correspond to the pose computed with  link between weak perspective, paraperspective, and full perspelctive,
a nonlinear method (Figs. 8e and 8f): the pose computed with J. Comput. Visior22(2), 1997, 173-189.
9. Y. Liu, T. S. Huang, and O. D. Faugeras, Determination of camera locatic
from 2-d to 3-d line and point correspondend&EE Trans. Pattern Anal.
10. D.Lowe, Fitting parameterized three-dimensional models to imH#gEE,
Trans. Pattern Anal. Mach. IntelL3(5), 1991, 441-450.
11. D. Oberkampf, D. F. DeMenthon, and L. S. Davis, Iterative pose estimatic
using coplanar feature pointSpmput. Vision Image Understandi6g(3),

A Comparison between the Pose Computed with Point Correspo-
ndences and the Pose Computed with Line Correspondences?

Iterative weak perspective Ropt — R topt — €
persp [IRopt I Itopt — Tl 1096, 495511,
With points 0.031 10.2% 12. T.Q.Phong, R. Horaud, A. Yassine, and D. T. Pham, Object pose from 2.
With lines 0.018 3.7% to 3-D point and line correspondencés, J. Comput. Visior15(3), 1995,

225-243.

@ The optimal pose parameters were estimated using a nonlinear minimizatiéh J. S.-C. Yuan, A general photogrammetric method for determining obje
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