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Abstract

We propose a model-based approach to automated 3D extraction of buildings from
aerial images. We focus on a reconstruction strategy that is not restricted to a small class
of buildings. Therefore, we employ a generic modeling approach which relies on the well
de�ned combination of building part models. Building parts are classi�ed by their roof type.
Starting from low-level image features we combine data-driven and model-driven processes
within a multi-level aggregation hierarchy, thereby using a tight coupling of 2D image and
3D object modeling and processing, ending up in complex 3D building estimations of shape
and location. Due to the explicit representation of well de�ned processing states in terms
of model-based 2D and 3D descriptions at all levels of modeling and data aggregation our
approach reveals a great potential for a reliable building extraction.

Keywords: explicit 2D-modeling, coupling of 2D- and 3D-modeling, multilayer aggrega-
tion, building modeling, multi image correspondence analysis, mid-level feature aggregates,
aspect hierarchies, constraint logic programming.

1 Introduction

Due to the fact that more than about 50% of the world population live in urban or suburban
environments the automation of 3D building extraction is an issue of high importance and
shows an increasing need for various applications including geo-information systems, town
planning or environmental related investigations.

Aerial images contain on the one hand a certain amount of information not relevant for
the given task of building extraction like vegetation, cars and building details. On the other
hand there is a loss of relevant information due to occlusions, low contrast or disadvantageous
perspective. To compensate for these properties of image data as well as for being able to
handle the overwhelming complexity of building types and building structures, a promising
concept of automated building extraction from aerial images must incorporate a suÆciently
complete model of the objects of interest and their relations within the whole process of image
interpretation and object reconstruction (cf. [58]).

We propose a model-based approach to automated 3D extraction of buildings from aerial
images. The knowledge about buildings is used to control and to evaluate building extraction in
all stages of the process. It is encoded by means of a generic 3D object model, which describes
spatial appearances of buildings and characterizations of their components. Furthermore, a
2D image model, which is capable to integrate sensor and illumination modeling, describes the
projective appearances of buildings speci�c for the given aerial imagery.
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1.1 Related work

Related work on 3D building extraction | or in general on 3D scene reconstruction | re-
veals di�erent modeling schemes. Polyhedral models show a long tradition as approximative
object descriptions (e.g. [7], [32], [63], [59], [36], [30]). Obviously polyhedral descriptions are
too general for the use within 3D building extraction and therefore move the burden of build-
ing modeling on additional representation schemes to represent and organize domain speci�c
heuristics and constraints like in the MOSAIC system (cf. [29]) or in the approach of [4]. Pa-
rameterized models are restricted to describe the most common building types in the sense of
prototypes (cf. [45], [51], [39], [41], [43], [42], [49]) but show a lack to represent variations and
combinations of their shapes as well as other relations. Prismatic models can describe arbitrary
complex polygonal ground plans of buildings, but reveal the strong restriction to buildings with
only 
at roofs (cf. [65], [64], [53]). CAD models are used to describe objects with �xed ge-
ometry and topology in object recognition tasks, especially for controlling industrial processes
(cf. [24], [14], [33], [48]). The use of CAD models in building extraction is therefore restricted
to the identi�cation of a priori known buildings (cf. [55], [54], [31]).

Generic modeling approaches promise on the one hand the greatest modeling power, but
on the other hand demand e�ective constraints and heuristics to restrict modeling to building
speci�c shapes. [19] employ simple box-type primitives but propose an explicit representation
of legal primitive combinations to more complex building aggregates. The approaches of [10]
and [1] are from outstanding importance due to the integration of 3D generic object models and
an explicit modeling of 2D projective object appearances within a recognition-by-components
strategy (cf. [2]). Both approaches employ volumetric primitives instead of simple box-types
but neglect the description of elaborated schemes for domain dependent primitive combina-
tions. Furthermore the reliable extraction of their primitives from real images is concern of
current research (cf. [47], [50]). [3] propose a generic roof model which assumes planar roof
surfaces. The roof patches are extracted by combining photometric and chromatic attributes
of image regions with spatial edge geometry. The 3D patches are grouped by an overall opti-
mization according to the simplicity, compactness and completeness of the resulting roof shape.
To complete the building shape, vertical walls are assumed. [27] adopt the modeling approach
of [3], but extracting image regions with homogeneous photometric and chromatic properties
by navigating through a constraint triangulation network where each extracted line segment
coincide with edges of the triangles. [28] present impressive results of their approach on some
test data but obviously show no explicit modeling of building types and building speci�c aggre-
gation schemes. Groups of planar 3D patches optimized according to the criteria of simplicity,
compactness and completeness are not necessarily real roof shapes.

For a general and up-to-date overview on the topic of building reconstruction we highly
recommand the proceedings of the two workshops on \Automatic Extraction of Man-Made
Objects from Aerial and Space Images" (cf. [22], [21]) as well as the proceedings of the workshop
on \Semantic Modeling for the Acquisition of Topographic Information from Images and Maps"
(cf. [17]).

1.2 Overview

In [5] we proposed in detail the concepts and processes which have to be taken into account for
a suÆcient complete modeling framework for 3D building extraction. This modeling framework
integrates interrelations between image data and model descriptions at di�erent aggregation
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levels and in terms of corresponding 3D object and 2D projective object descriptions. Within
this paper now we present a strategy for a well de�ned path from the unstructured image data
to the model-based and highly structured 3D reconstruction of buildings.

The overall strategy follows the paradigm of hypotheses generation and veri�cation and
combines bottom-up (data-driven) and top-down (model-driven) processes. Domain know-
ledge constrains even the early stages of hypotheses generation due to an elaborated is-part-

of-hierarchy of 3D building parts and their corresponding projective descriptions. The re-
construction process is carried out already for local 2D feature aggregates to allow an early
domain speci�c classi�cation as 3D local building feature aggregates. A step-wise and strongly
model-driven aggregation process combines 3D local building feature aggregates to well de-
�ned parameterized 3D building parts and then to more complex 3D building aggregates.
The resulting complex 3D building hypotheses and their components are back projected into
the images to allow a component-based and robust hypothesis veri�cation applying constraint
solving techniques (cf. [37]).

First results of our approach were presented at the SMATI workshop in Bonn (cf. [13]).
This paper is a substantially extended version which describes our models and operations in
more detail.

Due to the explicit representation of well de�ned processing states in terms of model-based
2D and 3D descriptions at all levels of modeling and data aggregation our approach reveals a
great potential for a reliable building extraction.

2 Concept

In this section we present the proposed building model and discuss its implications on the
developed strategy.

2.1 Models

For coping with the complexity of natural scenes we propose an application speci�c modeling
of the domain buildings. The general concept has been presented in [5]. It contains a close
interaction of bottom-up and top-down strategies within an aggregation hierarchy in 2D and
3D. In this aggregation hierarchy the concept of building parts plays the fundamental role for
our approach to a generic building model. This model is not based on a polyhedral scheme
(cf. [29, 28]) which proved to be too general in order to restrict reconstruction results to building
speci�c shapes in terms of well-de�ned roof types and ground plans etc. On the other hand our
approach overcomes the limitations of parametrized CAD models due to the explicitly de�ned
combinations of domain speci�c volumetric and parametrized primitives in terms of building
parts.

Another crucial aspect of the approach is the explicit representation of building appearances
in aerial images in terms of an image model covering all levels of the aggregation hierarchy.
This allows a tight coupling of 2D and 3D reasoning based on a coherent representation of
object and image model. We start with the modeling of the 3D shape of buildings yielding the
object model. The sensor model will transfer many of the concepts of the object model to the
image model describing the expected appearance of the objects.

3



Corner

Wing

Terminal

Region

Point

Line

Whole

Part

part-of

Aggregation

Generalization

Superclass

is-a is-a

Subclass Subclass

Building

Face

Building Part

Feature Aggregate

Feature

Connector

2D 3D

Figure 1: Building model: The di�erent semantic levels of the part-of hierarchy are
shown in vertical direction, the di�erent levels of abstraction of the is-a hierarchy in
horizontal direction, which is only shown for the 3D-model. The 2D-image model
describes the expected appearance of the building in the di�erent levels of the part-of
hierarchy, which is indicated by not showing the hidden lines.

2.1.1 Object Model

Buildings reveal a high variability in structure which suggests to represent them as an aggrega-
tion of several simple building parts. Furthermore, this modeling approach meet the problems
of incomplete results of low-level feature extraction, caused by occlusions, low contrast, noise
and disturbances.

We therefore propose a multi-level part-of hierarchy (cf. �gure 1). It re
ects di�erent levels
of the envisaged semantic abstraction. The primitives of each aggregation level are specialized
by an is-a hierarchy into subclasses.

Each primitive is described by its geometry, its domain speci�c role in terms of class
memberships and its relations to other primitives. The geometry is described by pose and
shape parameters.

We currently employ four description levels for modeling complex buildings, which seems
to be suÆcient for a large class of buildings.

The �rst level (feature level) contains features F , namely attributed points P , lines L
and regions R. Attributes for lines and regions, for instance, are the orientation classi�cations
horizontal (h), oblique (o) and vertical (v). Regions have an additional attribute describing its
role: valid values among others are wall, roof and 
oor. In general the set of parameters is
divided into positional parameters on one hand, describing position and orientation, and form
parameters on the other hand like width, height and length.

The second level (feature aggregate level) contains feature aggregates A which are induced
by points, lines and regions, and contain all their direct neighbors. Each aggregate is de�ned by
a feature graph, given by a set F = ff1; : : : ; fkg of features and adjacency relations R � F �F .
A Corner C, for instance, contains one point and all its adjacent lines and regions (cf. �g. 2).
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Figure 2: A corner is a feature neighborhood of a point (left). Drawn as graph the
arcs express the adjacency relation (mid). Assuming no occlusions and disturbances
its expected appearance in the image reveals the same neighborhood relations between
the corresponding 2D-features (right).

The third level (building part level) contains building parts BP . Currently, we concentrate
on the reconstruction of 3D corners. Therefore, the building part models are de�ned as corner
graphs given by a set C = fc1; : : : ; cng of corners and adjacency relations R � C�C. In future
work we will describe the building part models as graph structures which will also integrate
line and region induced feature aggregates (s. the discussion in 2.2). Each building part model
is also described as a parameterized volumetric object and has at least one so called plug face

which is used for connecting building primitives to each other. We discriminate terminals

having exactly one plug face and connectors with two or more plug faces (cf. �gure 3).

Terminals: Connectors:

Figure 3: Some examples of building parts. Plug faces, which are used to connect them,
are drawn dashed.

The fourth level (building level) contains complete buildings. Buildings are de�ned as
graphs with building parts as nodes, the arcs representing pairs of building parts connected by
corresponding plug faces. Thus, the most simple building consists of two connected terminals.

2.1.2 Image Model

The 2D image model describes the expected appearance of the building at the same levels of
aggregation as the corresponding 3D-structures.1 This guarantees a maximum of coherence
for representation and processing of 2D- and 3D-information.

The image model contains all properties which are invariant under projection and is taken to
de�ne constraints. This especially holds for all class memberships, neighborhood and geometric
relations, as far as they are not disturbed by self occlusions. These self occlusions can be
predicted by an appropriate representation of the image model following the concept of an
aspect-based scheme. E.g. a 2D-corner, being a point induced image aggregate inherits the

1Actually the image model contains the raster image as the lowest, say 0th level, from which the image

features are extracted. This lowest level is not shown as we do not explicitly refer to it.
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class membership of the corresponding 3D gable corner, the neighborhood relation between
two faces of a roof in general can be expected to be transferred to a pair of image region,
whereas { assuming weak perspective { parallel 3D-roof lines map to parallel 2D-roof lines.
Constraints of the higher aggregation levels are transferred to the primitives of the lower ones,
if necessary.

Thus, the transformation from the object model to the image model needs at least the
de�nition of an appropriate projective model, i.e. perspective or parallel projection, depending
on the distance between the sensor and the objects of interest. In fact, to take into account
all e�ects which contribute to the process of image formation and feature extraction, there
is a need for models of sensor characteristics, illumination and low-level feature extraction
methods. The results, presented in this paper, are derived by using a pinhole camera as sensor
model and assuming weak perspective projection. The potential role of the integration and
usage of an illumination model is discussed elsewhere (cf. [57]) and will only be sketched in
part 3.3.

The image model is currently used for both, the multi view reconstruction of 3D feature
aggregates and the 2D veri�cation of complete building hypotheses. But of course, an enhanced
image model can be used at each aggregation level, to utilize photometric attributes, to verify
intermediate aggregation results and to estimate certain parameters by monocular analysis,
e.g. of shadows and wall projections (cf. [49]).

2.2 Strategy

Our input data are given as digital raster images with multiple overlap. Further information
about the aerial image 
ight like exterior and interior camera orientation and time stamp are
used. The starting point of our analysis is the extraction of a polymorphic image description
consisting of points P 2D, lines L2D, and regions R2D and their mutual relations (cf. [15], [20]).
It allows to derive point, line, and region neighborhood aggregates A2D, where vertices V 2D

are the most promising ones for starting our analysis.
To cope with the combinatoric complexity of interpretation and reconstruction processes,

a tight integration of 2D and 3D reasoning has proven to be succesful (cf. [28, 27]). Therefore
we decide to carry out the 3D reconstruction process already for local feature aggregates, to
meet projective ambiguities and to allow an early domain speci�c interpretation utilizing 3D
geometry. Due to their relative stability against partial occlusions we select corners (vertices +
class label) as the basic class of feature aggregates for the reconstruction process. This selection
should be regarded as a �rst choice. Future work will utilize a polymorphic reconstruction
approach on the feature aggregate level, which will include also line and region induced feature
aggregates, i.e. wings and faces.

Now, our current strategy consists of three main tasks, which are executed subsequently
(cf. Fig. 4) and will be described in detail in section 3:

1) 2D ! 3D: reconstruction of 3D corners. To cope with the combinatorics of feature
and building aggregation, we aim at an early integration of 2D and 3D reasoning, this way
reducing the overall number of future hypotheses. This is done by extracting feature groups,
namely vertices in the images, which are evaluated as projections of building corners with
the help of a 2D corner model. These 2D corners hypotheses of di�erent images are used to
derive 3D corner reconstructions by bundle adjustment. The 3D corner reconstructions will be
interpreted by a domain speci�c 3D corner model.

2) 3D! 3D: generation of building hypotheses. The 3D corners are used for indexing
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Figure 4: Information transfer within the whole
process. The close integration of 2D and 3D rea-
soning is performed by an iteration loop. The
dashed arrow marks the initialization step. 3D-
reconstruction, generation and veri�cation of
hypotheses for building parts and buildings is re-
peated. Veri�cation is based on generated views
using matching on the feature level.

into a library of parameterized building parts, which explain these corners. Within this indexing
process, the parameter set of an indexed building part is instantiated due to the measured 3D
geometry of the corner reconstructions. Generally, more than one building part is needed to
explain all reconstructed 3D corners. Thus, the indexed building parts have to be aggregated
to complete 3D building hypotheses. This aggregation step is implemented by successive steps
of merging and connecting building parts.

3) 3D ! 2D: veri�cation of building hypotheses. For the veri�cation the 3D building
hypotheses are projected back into the original aerial images, resulting in parameterized views
for buildings. Due to incomplete results of feature extraction, not all parameters of building
parts and the aggregated building hypotheses may be instantiated. Thus, we call the backpro-
jection parameterized views and implement these views in terms of a modi�ed aspect notation
(cf. Fig. 1). Hypotheses are com�rmed by a voting process according how close the projected
features of their parametrized views are to the originally extracted image features. Further-
more, geometric reasoning in the images and with projective geometry may derive previously
undected image features and may determine free object parameters of the building hypotheses.

The successful sequence of matching steps results in an iteratively improved gain in knowl-
edge. The three steps are repeated until no further hypotheses can be generated: The veri�ed
building hypotheses lead to predicted unobserved 2D primitives on the lower levels, giving
additional information for reconstructing previously undetected corners, initiating a second
iteration of 3D-reconstruction, generation of building hypotheses and veri�cation.

3 Models and Operations

Within this section, we describe in detail the three main steps of our approach to building
reconstruction as proposed in 2.2, i.e. (1) 2D ! 3D: reconstruction of 3D corners, (2) 3D
! 3D: generation of building hypotheses, (3) 3D ! 2D: veri�cation of building hypotheses
(cf. Fig. 4). Each step is presented by describing the underlying models and the operations of
reconstruction, aggregation and veri�cation.

3.1 2D ! 3D: Reconstruction of 3D Corners

This section describes the �rst two levels of our hierarchical aggregation approach, namely the
extraction and reconstruction of features and feature aggregates (cf. �g. 1). We select point
induced corner features as the �rst choice for feature aggregates to be processed. Corners
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(a) reveal a high stability against occlusions, (b) their projections into the images give strong
restrictions during the correspondence analysis using epipolar geometry, and (c) corners have
proved to be suitable components for the proposed 3D aggregation process.

Our experience with fully automatic subprocesses for the purpose of 3D reconstruction has
shown a high stability while using image patches with multiple overlap (cf. [39], [38]). It
motivates us in using all available image data simultaneously. Furthermore we use the com-
monly available orientation data which de�ne geometric restrictions during the correspondence
analysis.

3.1.1 Models of Corner Features

The corner reconstruction is guided top-down by the 3D corner model, with the corners being
parts of the hierarchical building model as described in chapter 2.1. For reconstruction we
perform the transition from image space to object space on the level of feature aggregates.
Therefore we need to model corners in object space as well as their appearence in the images
using the corner model in 2D and in 3D.

3D Corner Model: The representation of corners is subdivided into the geometric infor-
mation and the domain speci�c class labels !c. Each corner c3Di = (v3Di ; !c) is geometrically
described by the vertex v3Di which is represented by its components on the feature level, being
a corner point, several lines and planar faces (cf. �g. 2) and a corner class label !c 2 
C out
of the set of all de�ned corner classes 
C (cf. chapter 2.1).

The corner classes are given by a two-level specialization hierarchy, which distinguishes
corners into subclasses !c. The partitioning into classes !c depends on di�erent geometric
class inherent constraints �3D!c 2 �3D

!c from the set of all possible constraints �3D
!c of the class

!c. The 3D corner c3D = (v3D; !c) results from implying the class depending constraints �3D
!c

onto the vertex geometry v3D.
On the �rst level of the specialization hierarchy we use unary constraints for classi�cation.

They refer to single components of a corner, especially the corner components of type line. We
use line attributes due to their slope orientation with respect to the corner point, given by the
qualitative geometric labels (h), (v+), (v-), (o+) and (o-) (cf. [23]). We exclude meaningless
corners as e.g. a corner with line attributes ( (h), (h), (h) ), which make no sense in the context
of buildings and their functionality. For example the �rst specialization level compounds 21
possible classes of corners with node degree 3.

This description is further re�ned by the second level of the specialization hierarchy. It
uses binay constraints which refer to the geometric relationship of pairs of corner components.
Examples of binary constraints are (symmetry) of two lines with respect to the vertical or
(orthogonality) of two lines. The explicit de�nition of subclasses on this level is not sensible as
we cannot be capable to prede�ne it without restricting the variability of buildings.

If there are no constraints attached to the corner we call it the unconstrained corner with
the class label !0.

Examples of di�erent corner classes are given in �gure 5. The typical corner at the ridge
of a hip roof (cf. �g. 5, corner no. 7) is given by the line attributes f (h), (o-), (o-), symmetry

((o-),(o-)) g. The distiction between corner no. 7 and corner no. 5 is due to the second level of
the specialization hierarchy as on the �rst level they both are described by the line attributes
( (h), (o-), (o-) ).
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2D Corner Model: The 2D corner model aims at giving access to 3D corners starting with
the image observations. Because of the higher expressiveness of the 3D vertex geometry in
contrast to 2D, the assignement of a corner class label !c to the geometric vertex elements can
much easier be performed in object space.

Therefore we propose using a 2D corner model without any distinction into subclasses to
�nd point induced vertex aggregates V 2D which have the structural characteristics of corner
projections into the images (cf. �g. 2). These characteristics de�ne the vertex class !v. We
statistically model the probability of a vertex being a projected corner by using the conditional
probabilities P (!vjv

2D) of the vertex class !v given the vertex observation v2D. It is used for
classifying point induced feature aggregates being a vertex. The vertex class !v describes the
ideal corner projection using speci�c geometric and structural characteristics. Please note that
the transition of vertices to corner elements additionally requires the assignment of a class
label !c.

3.1.2 Operations: Construction and Veri�cation of Corner Hypotheses

The construction of corner hypotheses starts with the analysis of 2D vertices V 2D. The vertices
can be directly derived using the feature adjacency graph (cf. section 2.2).

By correspondence analysis in the images i 2 I we derive the vertex correspondence set
[v2Di ] = (v2D1 ; : : : v2DI ) which is then used for the transition to 3D vertices V 3D. They represent
the geometry of corners C3D and thus serve for the subsequent interpretation by assigning the
vertex v3D to a corner class !c. The result of this step are corner hypotheses c3Di = (v3Di ; !c;i).

In the following we give a detailed description of the 3D vertex- and 3D corner generation
steps.

3D Vertex Generation: In the �rst step the search for corresponding vertices is guided
by a priority list of 2D vertices V 2D which is build up by evaluating their suitability for the
correspondence analysis and reconstruction by statistical classi�cation which is based on the
2D corner model. The priority list is given by minimizing the information I(!v j v

2D) for the
vertex class !v while observing the vertex v2D. The information I(!v j v

2D) is derived using
the probability P (!v j v

2D) with I(!v j v
2D) = �lbP (!v j v

2D) = � lnP (!v j v
2D)= ln 2.

The conditional probability results from P (!v j v
2D) = P (!v j b; c) using discrete as well

as continuous vertex characteristics b and c . Bayes' theorem breaks it down into

P (!vjb; c) =

Qnk
k=1 P (bkj!v) � p (cj!v)Qnk

k=1 P (bk) � p (c)
� P (!v): (1)

With the discrete characteristics bk with k = 1; : : : nk and the continuous characteristics cj
with j = 1; : : : nj being uncorrelated with mean �j and variance �2j this leads to
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I(!vjb; c) =
1

2 ln 2

2
4 nkX
k=1

�2 lnP (bkj!v) +

njX
j=1

�
cj � �j
�j

�2
3
5 (2)

The characteristics consider the stability, uniqueness and structural richness of the vertex
and thus models the uncertainty while observing 2D corners. Actually we use the number of
lines and the number of regions as discrete characteristics and the length of corner lines as
continuous characteristics.

The second step during the search for corresponding vertices evaluates the structural sim-
ilarity of matching candidates by cost minimization. The cost function introduces in addition
to the information of single vertices a score value which describes the relation of vertex com-
ponents to the epipolar plane.

Based on the correspondence tuple [v2Di ], the transition to object space is performed by a
joint forward intersection of the corresponding image feature components points [p2Di ] and lines
[l2Di ] of the vertex correspondence tuple [v2Di ] using all images i 2 I simultaneously. Epipolar
geometry once again gives geometric restrictions, which facilitates the matching of the features
F 2D.

predicted vertex

vertex acces by following reconstructed lines

reconstructed corner

Figure 6: shows the information propagation for selecting and predicting vertices for
the next reconstruction step. The upper left image visualizes one reconstructed corner.
The other images show the reduced search space for vertices which are used for the next
corner reconstruction. The access to these vertices is given by the point-line adjacency
relation de�ned by image lines wich are used for the reconstruction of the previous
corners. The right most image shows the top-down prediction of a vertex generated by
line intersection where no access via the feature adjacency graph was possible.

The search space for the next correspondence set is de�ned by the neighbourhood relations
of the corresponding image features of the reconstructed features F 3D using the prolongation
of lines and the neighbourhood of faces. For instance we have to expect further corners in the
prolongation of reconstructed 3D lines. Therefore we �rst follow line features of reconstructed
vertices for directly selecting a set of vertex aggregates V 2D which serves for the next recon-
struction step. In case we thus do not �nd appropriate vertices, the neighbourhood of faces
are used for vertex access by analysing the region-induced aggregates.
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In addition to vertices which are directly derived using the feature adjacency graph we also
perform a top-down prediction of additional vertices. We therefore select a pair of possibly
corresponding vertices (vi; vj). By forward intersection we derive the 3D position of the vertex
point which we propagate to the expected vertex positions in the remaining images by back-
projection. At these positions we then can perform a well-aimed search for line intersections
to generate additional 2D vertices. The prediction helps to bridge the incompleteness of the
extracted features or feature adjacency relations without unnessesarily enlarging the search
space.

3D Corner Generation: Establishing corner hypotheses C3D uses the 3D corner model
by following the specialization hierarchy of corners. We perform a hierachical interpretation,
starting with the set of all corner classes 
C . It is reduced in two steps to 
0

C and 
00

C

by testing possible class inherent constraints �3D!c 2 �3D
!c . The reason for performing a two-

step interpretation using the corner specialization hierarchy is to prevent the instantiation
of mutually dependent, redundant or contradicting constraints which is fundamental for the
subsequent veri�cation by parameter estimation (cf. [16]).

The �rst interpretation step tests the generated 3D vertices V 3D for unary constraints.
Therefore the corner components of type line are analysed for their qualitative geometric
labels being (h), (v+), (v-), (o+) or (o-). They are used to obtain the subset 
0

C of 
C .
Within the second interpretation step, for each element of !c 2 
0

C possible binary constraints
like (symmetry) and (orthogonality) are tested. Thus we yield a further reduced 
00

C � 
0

C , where
each element in 
00

C is an admissable interpretation of the vertex v3D. The corner specialization
hierarchy for example ensures that we do not test the line pair ((h), (v+)) for (orthogonality)

as the orthogonality constraint is impicitely contained within the line labels and may lead to
redundant or contradicting constraints.

In case the test accepts no constraints 
00

C is the empty set and the underlying vertex
represents an unconstrained corner of class !0.

Depending on the selected constraints we complete the reconstructed vertices to corners
using the most probable corner class !c which contains the identi�ed vertex constraints. There-
fore we hypothesize additional corner components of feature type line L. In the most simple
case we just index into the corner classes (cf. �g. 5) E. g. if we observe a reconstructed vertex
of node degree 2 with line labels (h) and (o-) with the two lines further ful�lling the constraint
orthogonal(h,o-) , we perform a model based prediction of a corner of node degree 3 of class
(h,o-,o-) where the line pair (o-,o-) ful�lls the constraint vertical symmetry(o-,o-) as
it occurs for the corner at the ridge of a gabled roof building with the lines (o-,o-) spanning
a vertical plane (cf. corner no. 5, �g 5). For a more general approach a priori probability
distributions for the di�erent corner classes can be learned as proposed in [11] and can be
introduced for selecting the most probable corner class !c.

This way we may obtain several corner hypotheses c3Dj = (v3D; !c;j) for each vertex recon-

struction v3D which have to be resolved in the veri�cation step.

Veri�cation of Corner Hypotheses: For veri�cation of the corner hypothese, we perform
a second rigorous classi�cation by statistical analysis. This is formulated as an optimization
problem for �nding the best interpretation ĉ of the data [v2Di ] from all possible corner interpre-
tations cj = (v3D; !c;j) with !c;j 2 
00

C . Using Bayes theorem and neglecting the denominator
by normalization, we can break down the conditional probabilites, which leads to
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Figure 7: Examples of 3D corner reconstruction. From left to right: a. feature aggre-
gates marked in one image, b. reconstructed 3D corners with each corner plane shown
as triangle (please note that the corner planes are open ended, the drawn lines support
the visualization).

ĉ = argmax
cj

P (cj j [v
2D
i ]) / argmax

cj
P ([v2Di ] j cj)P (cj) (3)

The a priori probability P (cj) for the corner class !c;j can be obtained empirically by learning
(cf. [11]) and can in principle be integrated to evaluate the model dependent in
uence on the
result.

The conditional probability P ([v2Di ] j cj) evaluates how good the corner class instantiation
�ts the observed image features points P 2D and lines L2D which are contained in the vertex
[v2Di ]. Introducing the unknown class speci�c parameters �j which depend on the geometric
constraints �!c of the corner class !c;j, equation 3 reads the following:

ĉ; �̂ / argmax
cj

P ([v2Di ] j cj;�j)P (�j j cj)P (cj) (4)

/ argmax
cj

P ([v2Di ] j �j)P (cj) (5)

As we suppose the unknowns �j to be prede�ned by the model, the probability P (�j j cj) is
constant and eq. 4 can be reduced to eq. 5.

For each hypothesis, we estimate the geometric parameters by a maximum likelihood pa-
rameter estimation using all supporting image features. The matching features are selected
by backprojecting the instantiated corner model into the images. Thus we may get access to
features which were not contained in the selected vertices. Assuming the expected values E(y)
of the observations being a function E(y) = f(�) of the geometric parameters �, the evalua-
tion can be derived from the residuals y � ŷ of the optimal estimation ŷ = f(�). We use the
probability density function p([v2Di ] j �) in case the features exist and have been successfully
matched to the model.
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p([v2Di ] j �) =
1

(2�)u=2(det�yy)1=2
e(�

1

2
(y�ŷ)T��1

yy (y�ŷ)); (6)

where u is the number of unknowns in � and �yy is the covariane matrix of the observations
y.

To decide for the the optimal interpretation and its corresponding constraints which de�ne
the unknowns �, we �rst test for acceptance of the reconstruction of the unconstained corner
of class !0 with �

3D
!0 = ;. If this test is successful, we test for the class speci�c constraints �3D

!c .
Both tests use a Fisher distributed testvalue depending on the residuals2 
 = (y� ŷ)T��1

yy (y�
ŷ) of the maximum likelihood parameter estimation.

Table 1 gives two examples of the estimation using 4 images simultaneously. Example 1
uses constraints of the corner class no. 5, example 2 of the corner class no. 6 (cf. �g. 5) as
given while corner hypotheses generation.

n u r 
[ ] �0[ ] �x[m] �y[m] �z[m]

Example 1 no constraints 42 9 33 33.65 5.86 0.037 0.026 0.063
constraints 42 5 37 38.47 6.32 0.021 0.018 0.036

Example 2 no constraints 34 9 25 40.80 8.16 0.074 0.034 0.128
constraints 34 6 28 45.81 8.66 0.043 0.085 0.075

Table 1: shows for two examples the result of parameter estimation using the class de-
pending constraints or no constaints. The precision of the reconstructed vertex point is
increased while using the constraints for stabilization. (n is the number of observations,
u the number of unknown parameters and r the redundance of the estimation system).

According to the second test the increase of the internally derived precision �0 is not
signi�cant. Thus in both cases the class speci�c constraints �3D

!c are accepted. They are
useful for geometric stabilization of the reconstruction as shown with the decrease of the
empirical standard deviation �x; �y and �z of the three corner coordinates (x; y; z) while using
the constraints (cf. tab. 1).

Further details of the corner reconstruction approach can be found in (cf. [40], [6]).
The result of the estimation are evaluated corner reconstructions c3D = (v3D; !c) con-

strained by �3D
!c . They form the basis for the 3D aggregation and generation of building

hypotheses as presented in the next section. After the �rst iteration of the whole building
reconstruction process, we want to use newly generated 2D corners C2D (cf. section 3.3.2),
in addition to the original vertex data and thus expect an increasing number of reconstructed
corners.

3.2 3D ! 3D: Generation of Building Hypotheses

This section describes the last two levels of our hierarchical aggregation approach in 3D, namely
the reconstruction of building parts and aggregates. The indexing into a library of parameter-
ized volumetric building parts uses the 3D corner hypotheses derived at the feature aggregate
level. Building parts are merged and combined successively to complex aggregates describing
complete building hypotheses.

2please note that 
 in this context is used for a statistical measure in contrast to 
c being the set of possible

corner classes !c 2 
c.
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Thus, in this section we describe in detail our models of 3D building parts and aggregates
and the operations for the selection and aggregation of building parts to complete 3D building
hypotheses.

3.2.1 Models of Buildings and Building Parts

Given a set C3D = fc3D1 ; : : : ; c3Dn g of n reconstructed corner aggregates, one or more building
hypotheses have to be generated that explain all corners in the following sense. A corner is
either part of the building hypotheses or is explicitly classi�ed as not being part of it. If a
corner is part of a hypothesis, this corner must match the hypothesis geometry and structure.

We use a component based approach for the modeling and construction of buildings. Build-
ing part models are selected and instantiated according to the reconstructed 3D corners. Sub-
sequent aggregation operations combine these building parts to more complex ones and �nally
to complete buildings. In the current state of our work the set of building part models is
selected manually. In the future, learning schemes as described by [11] will be used.

Plug Faces, Terminals, Connectors: Each building part contains one or more so called
plug faces where it can be connected to other building parts. According to the number of
plug faces the set of building part models is classi�ed into terminals having one plug face and
connectors having two or more plug faces (see Figure 3). A type is assigned to each plug face,
which represents its geometry and topology. Two building parts may be connected to each
other via two plug faces only if they are of the same type. A building part is called open,
if it contains one or more plug faces and closed if it contains no plug face. A �nal building
hypothesis consists of one closed building part.

Parameterization of Building Parts: Building part models are parameterized by pose
parameters determining the location and orientation and by shape parameters determining
features like slope of the roof, width and height (s. �gure 8). If a parameter has an assigned
value, it is called �xed, otherwise free. Constraints on the parameters restrict them to valid
values.

v5

l5

l4

l3
l2

l1

v4

v3

v2

hr
v1

w

hs

z
y

x vi =

0
@ xi

yi
zi

1
A

vi xi yi zi
v1 +w 0 0
v2 +w +hs 0
v3 0 +hs + hr 0
v4 �w +hs 0
v5 �w 0 0

Figure 8: Parameterised description of a hip roof terminal. The table on the right
shows the coordinates of the vertices v1; : : : ; v5.

Closed building parts that cover all corner observations are the requested building hy-
potheses. In general, there will be more than one building hypothesis for a given set of corner
observations. The result of maximum likelihood estimations used for the determination of the
hypotheses parameters are used to de�ne an order on them.
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3.2.2 Operations: Selection and Aggregation of Building Parts

The generation of building hypotheses is performed with three basic types of operations:
Indexing selects and instantiates building part models from a library of building parts. The
two aggregation operations of Merging and Connection combine existing building parts to
more complex ones. Closed building parts generated in this process, which cover all corner
observations, are called building hypotheses.

First, we describe these three types of operations in detail. Then, we propose our strategy
to organize these operations to derive 3D building hypotheses in an eÆcient way.

Indexing, Merging and Connection:

Indexing(c) into the library of building part models yields a one partially instantiated build-
ing part for the reconstructed 3D corner c. Location and orientation of the reconstructed
corner c will �x also position and orientation of the indexed building parts. Further-
more, its parameters of shape will be determined as far as possible. In general there are
several competing building part models and several di�erent instances of each of these
models that match a single corner. Therefore, subsequent invocations of Indexing(c)
yield di�erent building parts.

We say that the corner reconstruction c is covered by the instantiated building part.

Indexing �nds for a given corner observation ci all possible mappings � to all corners cj
of all building part templates, such that one such � maps ci's edge indices onto cj 's edge
indices with the following properties:

� Every edge of ci is mapped onto one edge of cj.

� The model corner cj may have more edges than ci, but not less, due to possibly
unobservable edges in the images.

� The labels of a model edge and an observed edge identi�ed by � must be the same.

If for a pair of model corner cj and corner observation ci such a mapping � is found, it im-
plies a set of equations, which determine location, orientation and some form parameters
of the instantiated building part template.

Merging(b1,b2) joins two building parts b1 and b2 of the same type, which show the same
location and orientation and a consistent setting of the �xed parameters of shape (cf.
Fig 10). All corners covered by b1 and b2 are also covered by the resulting building part.

o-

o-

h

o-
o-

h

Figure 9: Indexing establishes a link between corner observations (left) and building
part primitives (center) resulting in an instantiated building part (right).
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Connection(b1,b2,f1,f2) is the aggregation of the two building parts b1 and b2 via their plug
faces f1 and f2. The two plug faces must have the same type and their orientation must
be opposite to each other. The aggregation is performed by \glueing" f1 to f2 (ref.
�g. 10). Edges of the two building parts, which meet at f1 and f2, are joined together.

A new length parameter is introduced, that allows these new edges to shrink or expand.
Parameters that de�ne the shape of the plug faces are uni�ed. If parameters which are to
be uni�ed have �xed values, they may di�er only by a small amount. This condition may
be used for an early rejection of the aggregation of two building parts: if for example the
position and orientation of two building parts does not �t, they may not be aggregated.

All corners covered by b1 and b2 are also covered by the resulting building part.

Figure 10: Left: Two saddle roof terminals are merged together. Parameters are
adjusted. Right: Two saddle roof terminals are connected together. The resulting
building part is closed.

Each operation is followed by a maximum likelihood parameter estimation in form of a
chi-square least-squares �tting. This parameter estimation determines in case of a merging
or connection operation, whether the parameters of the two participating building parts are
compatible or not. In case of an indexing operation it determines initial values for position
and orientation and some of its form parameters.

Strategy for Selection and Aggregation: The straightforward way would start with a set
B0 that contains all instantiated building parts resulting from indexing. Iterated aggregation
steps generate from a set Bi a new set Bi+1 = Bi _[Ni, where Ni contains all possible building
parts that are constructed by merging and connection of building parts in Bi. Note, that only
building parts get constructed, which are not already in Bi. Therefore Bi and Ni are disjunct.
The iterations stop after n steps, because there are only n corner observations and a building
hypothesis may not contain more than one building part per reconsturcted corner. The number
of hypotheses contained in Bn is exponential in n.

We use an approach that employs a heuristic that typically allows the construction of
the best building hypothesis in much fewer steps while the construction of all closed building
hypotheses covering all corner observations is still exponential. This is achieved by using
a priority queue to order the operations Indexing, Merging, and Connection. As long as
the queue is not empty, the �rst operation in it is performed and removed from the queue.
Afterwards new operations are inserted into the queue. The process terminates if the priority
queue is empty and no new operations can be inserted. All closed building parts generated in
this process that cover all corner reconstructions, are called building hypotheses.

Organization and Execution of the Priority Queue: The strategy that leads to a fast
construction of hypotheses is expressed by the following construction principles:
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S1 Indexing is performed before any aggregations take place. This provides the starting point
for the algorithm.

S2 Aggregation is done depth �rst. Construct aggregates with as much covered corner obser-
vations and minimal values for the least-squares �tting as soon as possible.

S3 The growth of aggregations shall be as uniform as possible. This avoids having one ker-
nel steadily growing by connecting small building parts to it and thus neglecting other
possible hypotheses.

These construction principles de�ne how the operations are ordered within the priority
queue and which operation is to be performed next. Let �1 and �2 be two operations:

1. If �1 and �2 have di�erent types, Indexing comes before Merging before Connection (S1).

2. If �1 and �2 are both of type Indexing, then

(a) if the operations belong to di�erent corner observations, the corner having less
building part interpretations is preferred (S2),

(b) else if the operations belong to the same corner observation, the operation with an
a priori better expected result is performed �rst (S2).

3. If �1 and �2 are both of type Merging or Connection, with the argument building parts
bi;1 and bi;2 of �i, the following attributes are considered:

(a) The operation �i with the higher number of corner observations covered by bi;1
and bi;2 is performed �rst: aggregates with as much covered corner observations as
possible are generated �rst (S2).

(b) The operation �i with the smaller di�erence in corner observations covered by bi;1
and bi;2 is performed �rst (S3).

(c) Finally, the operations �i are sorted according to the sum of the values of the
function minimised in the least-squares �tting performed after the construction of
bi;1 and bi;2: aggregates that �t the observed corners best are constructed �rst (S2).

Algorithm: The set of building hypotheses H and the set of building parts B are initially
empty. The priority queue is initialised with all indexing operations for each corner. As long
as the queue is not empty, the �rst operation in it is removed and executed. If its result, the
building part b, is closed, then if it covers all corner observations it is a new building hypothesis
and is added to H. If b does not cover all observations, it is removed. If b is open, new entries
for the priority queue are constructed:

� If b is an instance of a building part model, then for the set fb1; : : : ; bkg � B of existing
building parts, which are instances of the same building part model and have the same
orientation (with respect to uncertainty), the operations Merging(b,bi), 1 � i � k, are
inserted into the priority queue.

� For each plug face f of b and for each plug face f 0 of another building part b0 2 B: if
f and f 0 are of the same type and their orientation is opposite to each other, insert the
operation Connection(b,b0,f,f 0) into the priority queue.
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An operation is inserted only if its result is not yet member of B or H and if it covers every
corner observation at least once. After all possible operations are inserted into the queue, b is
added to B.

If no new operations can be inserted and the priority queue is empty the algorithm termi-
nates. If H is not empty, it contains all the generated building hypotheses. Otherwise, it has
not been possible to generate a closed building hypothesis. If there exist closed building parts
in B which do not cover all corner observations, the one which covers the most observations is
chosen as building hypothesis. If all building parts in B are open, one building part is selected
from B and its open plug faces are closed by connection to default terminals. The building
part selected, is the one which consists of the most instantiated building models and the fewest
plug faces and �ts the corner observations best.

Example: Figure 11 shows an example. Six corner reconstructions are shown on the left. Af-
ter all indexing operations and two merging operations are performed, the best scored building
parts are shown in the middle. The building part in the front covering three corner recon-
structions is the result of the two merging operations. The visible three terminals and the one
connector are aggregated to the building hypotheses shown on the right in three connection
operations. Please note that there are no corner reconstructions at ground level, and therefore
the height parameter is undetermined. Only for visualisation a default value has been chosen.

Figure 11: On the left the given corner observations are shown. The �gure in the middle
shows the best �tting building parts after all indexing steps and some merging steps
(building part in the front). These building parts are aggregated in three operations
resulting in the building hypothesis shown on the right.

3.3 3D ! 2D: Veri�cation of Building Hypotheses

This section describes the last two levels of our hierarchical aggregation approach in 2D, namely
the image models of building parts and aggregates. Each aggregation level can be accompa-
nied by corresponding aspect descriptions (cf. [12]) for intermediate hypotheses veri�cation
and parameter estimation by image analysis. Due to the high complexity of hypotheses ver-
i�cation for complex building shapes, we employ constraint satisfaction and propagation to
derive hypotheses veri�cation in an eÆcient way. We have currently implemented our veri�ca-
tion procedure for complete|but also only partially instantiated|building hypotheses. But
obviuously, our veri�cation procedure can by applied also for the veri�cation of intermediate
aggregation results.
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Thus, in this section we describe the generation of the image models for the 3D hypotheses
of buildings and building parts and the constraint-based reasoning for hypotheses veri�cation
and the derivation of new image features.

3.3.1 Image Modeling by Parameterized View Hierarchies

To generate image models of building parts and aggregates, we employ a modi�ed version of
the aspect hierarchies proposed by [9]. Aspect hierarchies describe qualitative image models
of volumetric primitives in terms of aspects. Each aspect is decomposed into a hierarchical
feature-based description, to facilitate the recognition of primitives even in the case of partial
occlusion by the detection of its visible features.

While aspects represent qualitatively di�erent object appearences due to di�erent viewpoint
positions, di�erent appearences of our building hypotheses are caused by di�erent settings of
free shape parameters. The parameters of location and orientation are usually �xed due to the
�tting with the 3D corner reconstructions. If all parameters of a building hypothesis are �xed,
exactly one view is generated due to the �xed camera position and orientation. If one or more
parameters are still undetermined, the valid parameter space is sampled and several views are
inserted (s. �g. 12). Due to the reliable processes of feature extraction and reconstruction,
the number of free parameters is generally low (in the worst case we have up to three free
parameters of shape).

To facilitate hypotheses veri�cation even in the case when occlusions and noise cause incom-
plete feature extraction, we adopt the hierarchical feature-based representation of the approach
of Dickinson et al. The image models of the hypotheses of buildings and build parts are called
parameterized view hierarchies due to their independency from viewpoint. For each aerial
image one parameterized view hierarchy is generated. It consists of three levels:

Level 1: On the highest level contains all three dimensional building hypotheses. Note that
a hypothesis may still contain undetermined parameters.

Level 2: The medium level contains all relevant two dimensional views of these hypotheses.

Level 3: Each view is decomposed into its image features and their relations like parallelisms,
symmetries etc. which describe the lowest level of the hierarchy.

Figure 12 shows an example of a view hierarchy for four di�erent building hypotheses for
the same set of corner observations (ref. �g. 11 left).

The image model currently employed for hypotheses veri�cation, utilizes a pinhole sen-
sor model with weak perspective projection of the visible object contours. Obviously, more
enhanced models of sensor characteristics, illumination and physical properties of building ma-
terials allow further analysis for determining shape parameters and verifying intermediate and
complete results of the aggregation hierarchy. Currently, we are investigating view represen-
tations which employ a standard lighting model including ambient light and di�use re
ection,
where the sun vector is computed from sensor model and time stamp. The analysis of illu-
mination and shadows allows to derive 3D object parameters and to test the consisteny of
shadow-ground transitions and inter-surface intensities (cf. [57]).

3.3.2 Operations for Veri�cation and Parameter Estimation

Hypotheses veri�cation relies on the matching between the image models of complex building
hypotheses on the one hand and extracted image features of the aerial images on the other
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Figure 12: Example of a view hierarchy. For one set of corner reconstructions four
di�erent building hypotheses have been generated due to two di�erent indexing results
into the library of building parts for the leftmost ridge corner and the free parameter
of height (no ground corner was reconstructed).

hand. Since this matching process considers objects and their interrelationships, this task is
an instance of relational matching [61]. We employ constraint solving methods (cf. [46]) to
handle the exponential combinatorial complexity, permitting exhaustive search for the optimal
match.

Matching between image features and image model yields a grouping of fragmented lines and
a model-based interpretation of each matched image feature. Then, previously not extracted
2D corners are detected by geometric reasoning with robust estimations on intersections of
identi�ed lines. These 2D corners are additional information that is used to reconstruct further,
previously undetected 3D corners in the next iteration of the whole building reconstruction
procedure.

The transformation of building hypotheses to a constraint satisfaction problem (CSP), the
matching and its implementation using constraint logic programming (CLP) (cf. [60], [34]) is
explained in detail in [37].

Transformation of View Hierarchies to Sets of Constraints: A view hierarchy enu-
merates the possible views for the building hypotheses with respect to one image. To evaluate
the correspondence of these image models with the originally extracted image features, the
matching between the view hierarchy and the image features is done on the lowest level of
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our model hierarchy shown in �gure 1. The entities considered for matching are objects of
the three feature classes points, lines, and regions and di�erent relations, e.g. adjacency, line
parallelism, region symmetry, and region contrast. The line parallelism and region symmetry re-
lations re
ect the respective 3D properties in 2D. For each pair of adjacent regions the contrast
relation expresses their expected intensity ratio.

Thus, we employ a representation of the image model, which describes each view as a set
of 2D image features and a set of relations between them. These relations may be regarded as
a set of constraints which have to be satis�ed simultaneously by the corresponding objects. A
consistent match, also called consistent labeling [26], is an identi�cation of a set of extracted
image features which satisfy all constraints. The decomposition of the matching problem into
the simultaneous satisfaction of di�erent constraints leads to a structure CSP(V;D; C) which
is adequately represented by the translation of hypotheses into conjunctions of constraints C
where the features are represented by variables V with restricted domains D. Figure 13 il-
lustrates the constraint representation of views of building hypotheses using constraint logic
programming. For each view of a hierarchy, one corresponding constraint representation will
be employed.

house_aspect(F1,F2,F3,L1,...,L10,Sum) :-

extracted_blobs(BlobDomain), [F1,F2,F3] ∈ BlobDomain,

extracted_lines(LineDomain), [L1,...,L10] ∈ LineDomain,

[C1,...,C19] ∈ [-1,0,1],

all_distinct([F1,F2,F3]),

all_distinct([L1,...,L10]),

fag_arc(F1,L1,C1), fag_arc(F1,L2,C2), fag_arc(F1,L3,C3),

fag_arc(F1,L4,C4), fag_arc(F1,L5,C5), fag_arc(F2,L4,C6),

fag_arc(F2,L6,C7), fag_arc(F2,L8,C8), fag_arc(F2,L10,C9),

fag_arc(F3,L5,C10),fag_arc(F3,L7,C11),fag_arc(F3,L9,C12),

fag_arc(F3,L10,C13),

line_parallel(L2,L3,C14), line_parallel(L6,L7,C15),

line_parallel(L6,L10,C16), line_parallel(L7,L10,C17),

line_parallel(L4,L8,C18), line_parallel(L5,L9,C19),

Sum = C1 + C2 + ... + C18 + C19.

F1

F2 F3

L1

L3 L2

L4 L5

L8 L9

L6 L7

L10

Figure 13: Constraint representation of a building hypothesis for a saddleback roof
house. The fag arc-constraints express the adjacencies between lines and regions.
The indicator variables C1; : : : ; C19 re
ect the status of each constraint: �1 means
violated, 0 relaxed, and 1 satis�ed (see chapter 3.3.2).

Matching of Constraint Sets to the Image Data: The matching is done separately for
every aerial image and view model by searching for a valid assignment of extracted image
features to the variables of the corresponding CSP such that all constraints are satis�ed. Con-
sistency techniques, like forward checking and look ahead, as described in [44, 25, 8, 60] exploit
the structured representation of the matching problem as a constraint network. Each constraint
is used to restrict the domains of its variables and these reductions are propagated through the
network. This causes early prunings of the search tree and in most cases dramatically reduces
the computational e�ort.

These standard techniques for constraint solving demand that a match satisi�es every
constraint. Due to occlusions and disturbances often neither every predicted model feature of
a view can be found nor all their incident constraints are satis�able. Thus, the resulting CSPs
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are in general over-constrained [35]. The approaches of MaxCSP as proposed by Freuder and
Wallace [18, 62] or inexact graph matching described by Haralick and Shapiro [56, 26] handle
this by allowing the relaxation of constraints. The best matching then is de�ned as the one
which satis�es the maximum number of constraints.

The main problem of this metric lies in the inappropriate representation of unobservability
and is discussed in detail in [61]. If an expected model feature is missing in the image, the
corresponding variable has to be assigned a wildcard value, and all its incident constraints have
to be relaxed in order to get a solution for the CSP. However, these costs are not correlated to
the importance of the model feature!

To overcome this problem, we also permit the explicit elimination of variables. The domain
of every variable is extended by the wildcard �, which is assigned to a variable if the respective
model feature could not be found in the image. We further distinguish between the relaxation
of constraints due to the unobservability of an incident feature and due to single constraint
violation. Therefore, we extend every constraint c(t1; : : : ; tn) of the model by a variable b with
the three possible values �1, 0, or 1 to a constraint c0(t1; : : : ; tn; b) where

c0(t1; : : : ; tn; b), (b = 0) _ ((b = 1) ^ c(t1; : : : ; tn)) _ ((b = �1) ^ :c(t1; : : : ; tn)) (7)

In the framework of constraint logic programming (CLP), variable b is used both as an indicator
and a switch. If the original constraint c is satis�ed, b is set to 1. If it is violated, b is set to
�1. If b is set to 1 (or �1), c has to be satis�ed (or violated respectively) to ful�ll c0 and thus
c0 will be replaced by c (or :c). If a wildcard is assigned to a variable vi 2 V, every incident
constraint c0j(: : : ; vi; : : : ; bj) 2 C

0 has to be relaxed by setting bj = 0. If the wildcard is removed
from the domains of all variables v1; : : : ; vn of a constraint c0(v1; : : : ; vn; b), the value 0 can be
removed from the domain of b. Vice-versa, if b is set to 0, the wildcard has to be removed from
the domains of the variables v1; : : : ; vn.

So the original constraint satisfaction problem CSP(V;D; C) is transformed to a problem
CSP'(V;D0; C0) with D0 = D [ f�g and C0 = fc0(t1; : : : ; tn; b) j c(t1; : : : ; tn) 2 C; b 2 f�1; 0; 1gg.
To �nd the best mapping we maximize

f(C) =
nX

i=1

bi with c0i(: : : ; bi) 2 C
0 (8)

using a branch-and-bound algorithm embedded in the CLP context [60]. During the search,
the lower bound � is added as a constraint f(C) � � to the constraint system. From this
constraint the CLP system can infer additional knowledge about the values of the variables bi.
For example, if we have eight constraints, six of which have already been �xed (four to 1 and
two to 0), and � is 6, the �nal two constraints have to be satis�ed to reach the lower bound
and so the bi for the remaining two constraints can be set to 1, enforcing both constraints.

The solution of the constraint satisfaction problem consists of valid assignments of ex-
tracted features to the variables. On one hand, these assignments determine the free geometric
parameters of the features of the image model and thus determine free parameters of the whole
building hypothesis. On the other hand, every assigned image feature is identi�ed as a speci�c
component of the building hypothesis. These matched image features are labeled with respect
to the building model. Figure 14 shows highlighted on the left the image features that were
successfully matched with the image model of building hypothesis of a saddle roof house.

Since lines in general are fragmented into several line image features, corresponding line
features are grouped and �tted using the labeling information to determine the lines of the
image model of the building hypothesis.
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Figure 14: Left: Matched image features, right: new 2D corners

Generation of New 2D Corners: The solution of the CSP in general �xes further param-
eters of the building hypotheses. It has to be noted, that free parameters may only remain, if
some constraints or variables had to be relaxed. Corners of the building hypotheses with �xed
positions that have no corresponding vertex structure in the image, �nally are detected in 2D
as illustrated by the right picture in �gure 14 to provide new information for the 3D corner
reconstruction in the next iteration of the reconstruction process.

As mentioned above, the loop of 3D-reconstruction and generation and veri�cation of build-
ing hypotheses will be terminated if no further hypotheses can be generated. After the �nal
veri�cation step, the parameters of the 3D-building model will be determined simultaneously
based on the observed image features and taking all geometric and possibly radiometric con-
straints into account.

4 Results

The current result of the reconstruction procedure is presented for the international test data
set which was distributed from the ETH Zurich for the Ascona Workshop 1995 on Automatic

Extraction of Man-Made Objects from Aerial and Space Images (cf. [22]). The image scale is
1 : 5000. Due to the fact that our feature extraction currently yields too many spurious image
features (e.g. roo�ng tiles) at a resolution of 15�m, we use a resolution of 30�m pixel size.
As building h12 is under construction, only 11 out of the 12 buildings which are contained
in multiple images, are relevant for the analysis. To test the feasibility of the concept in a
�rst instance the number of building primitives is reduced to some few building part terminals
and their possible connectors, which occurr in the data set. To resolve the footprint of the
buildings, higher image resolution is necessary. Thus building heights can not be determined
automatically and therefore are set to �xed values. Figure 15 shows the result after the �rst
iteration loop (cf. �g. 4). Results of the intermediate steps are listed in table 2 and re
ect the
following aspects of the di�erent reasoning steps:

Reconstruction of 3D corners (I): The number of reconstructed corners RC on average
compounds 40% of the buildings corners (C), whereas 3 of them are incorrectely classi�ed. We
are not able to completely reconstruct every corner, because not all corners are observable
in the symbolic image descriptions. An application indepent grouping as presented in [20]
may improve the initial symbolic image descriptions. Possibly still remaining unreconstructed
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Figure 15: Visual-
ization of the recon-
struction result for the
Ascona dataset after
one iteration loop (cf.
Fig. 4) is performed.
The images contain 12
buildings in multiple
overlap. As building
h12 is under construc-
tion, we excluded it
from our analysis. We
are able to completely
reconstruct all of the
11 buildings which
were relevant for the
analysis.

corners have to be identi�ed during the veri�cation step of building hypotheses. The reason
for incorrect classi�cation is given by a weak intersection geometry for the line reconstruction,
which is not yet considered in the modeling process. Neglecting the in
uence of the uncertainty
of the line reconstruction, the corner point is correctely reconstructed. Currently the identi�-
cation of wrong corner interpretations is performed by �nding global inconsistencies during the
generation of building hypotheses. The parameter estimation for correctely classi�ed corners
using 4 images simultaneously achieves an accuracy of the reconstructed corner point about
�x = �y = �6cm and �z = �15cm. The accuracy of the orientation of the corners is about
�� = 0:6o while the reconstruction of the slope of the roof is by �sl = 2o.

Generation of building hypotheses (II): The column BPH gives the number of building
part hypotheses which are generated for each of the reconstructed single corners. The com-
bination of these building parts results in the number BH of hypotheses of complete buildings
which are consistent with all reconstructed corners. If only one corner is given, as it is the case
for h2 and h7, the corresponding terminals are each completed to a closed building hypothesis
with a second terminal of the same type. For each of the BH building hypotheses the view
graph is generated. Currently the view graph of the best building hypothesis is passed to the
veri�cation of building hypotheses. The decision which is the best one is given by using the
Minimum Description Length criterium following [52].

Veri�cation of building hypotheses(III): For each building in each image one view
graph, which is a 2D building hypothesis, is available and matched to the extracted image
features and mutual relations. Column UV lists the number of corners which initially could not
be 3D reconstructed but were predicted by the generated building hypotheses. The column
GV lists for each of the 4 images the number of correctly matched vertices for the previously
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I II III
Building C RC CE BPH BH UV GV FP

h1 6 3 0 3/4/3 4 3 3/3/3/3 0
h2 6 1 0 3 2 5 5/5/5/5 0
h3 12 7 0 3/3/2/3/3/4/0 4 5 3/4/3/3 0
h4 6 3 0 4/3/3 4 3 3/3/3/3 0
h5 6 3 0 3/4/4 4 3 3/3/3/3 0
h6 6 3 1 3/0/4 4 4 4/4/4/4 0
h7 6 2 1 3/0 2 5 5/5/5/5 0
h8 6 3 0 3/3/4 4 3 3/3/3/3 0
h9 6 4 0 3/3/4/8 2 2 2/2/2/2 0
h10 10 6 1 1/4/4 2 5 3/4/3/4 0
h11 6 2 0 3/3 4 4 4/4/3/4 0

C number of corners of the building
RC number of reconstructed corners
CE number of corner classi�cation errors
BPH number of building part hypotheses

for each corner

BH number of building hypotheses
UV predicted corners before veri�cation
GV predicted and veri�ed vertices

per image
FP remaining free parameters

Table 2: Detailed results of the intermediate reconstruction processes Reconstruction
of 3D corners (I), Generation of building hypotheses (II) and Veri�cation of building
hypotheses(III) for the Ascona Dataset. All of the 11 buildings can be reconstructed
as shown in column FP.

unknown corners. It shows that 92% of the undetermined building corners could be correctly
identi�ed by the veri�cation procedure. Since in general the building parameters are redun-
dantly determined by the geometrical and topological constraints between the model features,
all free parameters for every building hypotheses have been determined (see column FP). Please
note that for buildings h2 and h7 the matching process also determined the formerly unknown
length parameter.

5 Conclusions and Outlook

We have proposed a model-based approach to 3D building extraction from aerial images. Our
modeling concept reveals a tight coupling of generic 3D object modeling and an explicitly
represented image model. Object and image model show corresponding part-of hierarchies
describing aggregation states within a recognition-by-components strategy.

The strategy aims at a step by step increase of knowledge during the reasoning. As the the
domain speci�c object models of buildings and building parts de�ne the maximum achievable
knowledge about an actual scene and its granularity determines the resolution for knowledge,
our model spans hierarchically from the smallest observable features to complex building shapes
and allows an adequate evaluation of hypotheses within all di�erent reasoning steps.

We have presented �rst experimental results on test data sets provided by the Landesver-
messungsamt Bonn and the ETH Z�urich.
Currently we are investigating and developing on

� the measurement and propagation of uncertainty within the overall reconstruction pro-
cess;
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� the extension of the current building modeling by more sophisticated knowledge about
buildings, esp. functional aspects;

� the use of enhanced image models including sensor characteristics and lighting models
within hypotheses veri�cation;

� the derivation of domain dependent heuristics to constrain search spaces;

� the handling of incomplete observations within all processes and stages of hypotheses
generation and veri�cation.

Especially we have to consider the integration of logical and statistical knowledge into the
framework of constraint logic programming. Furthermore the approach has to be compared to
di�erent automatic algorithms for segmentation, 3D reconstruction and classical photogram-
metry. In order to achieve this goal, an attempt is made to �nd a set of standardized repre-
sentations about basic building models, parts of buildings and classes of buildings to ease such
comparisons on a conceptual level.
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