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The Velocity Snake: Deformable Contour for 

Tracking in Spatio-Velocity Space 

N at an Pet erfr eund 

Center for Engineering Systems Advanced Research (CESAR) 

Oak Ridge National Laboratory, P. O.Box 2008 

Oak Ridge TN 37'831-6355. email: vdp@mars. epm.ornl.gov 

Abstract 

We present a new active contour model for boundary tracking and position predic- 

tion of nonrigid objects, which results from applying a velocity control to the class of 

elastodynamical contour models: known as snakes. The proposed control term mini- 

mizes an energy dissipation function which measures the difference between the contour 

velocity and the apparent velocity of the image. Treating the image video-sequence as 

continuous measurements along time: it is shown that the proposed control results in 

an unbiased tracking. This is in contrast to the original snake model which is proven 

to be biased due to the image (object) velocity, thus resulting in high sensitivity to 

image clutter. The motion estimation further allows for position prediction of nonrigid 

boundaries. Based on the proposed control approach, we propose a new class of real 

time tracking contours; varying from models with batch-mode control estimation to 

models with real time adaptive controllers. 
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1 Introduction 

Tracking the boundary of moving objects and the analysis of motion have been intensively 

studied in the past few years in the context of target tracking [SI, [12], image compression and 

video analysis [22]. -4 subclass of these issues, and probably the most difficult one, is motion 

analysis and tracking of non-rigid objects such as the human body and muscle actions [2]. 

Tracking techniques for such objects include boundary detection via active contour methods 

[23] and optical fiow based motion analysis [13]. Combining these methods. we propose a 

new real time active contour model for boundary tracking and motion analysis of non-rigid 

objects. 

Boundary tracking based on deformable planar contours, known as snakes, was originally 

introduced by Terzopoulos et. al. (e.g. [23], [14]). Snakes are deformable contours that move 

under the influence of the image forces? under certain internal deformation const.raints. The 

contour dynamics are' given by the Euler-L,agrange equations of motion associated with the 

contour potential. Using gradient based image potential? for example, results in edge-based 

deformation forces, leading the contour towards high contrast boundaries; thus performing 

boundary tracking. 'Typically, the active contour model suffers from t.wo major problems. 

The first relates to image clut,ter which, during tracking of an object? forces the contour to- 

wards ot,her image boundaries? and the second problem consists of numerical issues associated 

with the solution of the equations of' motion. Recent. work tried to overcome the numerical 

problems through curve evolution methods [19] and by applying model based boundary repre- 

sentation such as splines [SI, polygonal approximation [lo]? and 3-D deformable superquadric 

models [20]. 

14'hile the problem of tracking moving objects is continuous in time, the tracking scheme pre- 

sented in these studies is stationary in its nature, as the contour evolves under the influence 

of a single image. More recent techniques limit the contour position to areas where there is 

a change between successive images [lo], [21]. This still does not change the static nature 

of tracking and the approach is limited to stationary cameras. Stepping to the next image 
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before convergence or temporary boundary disappearance due to lighting conditions or oc- 

clusions, may cause unpredictable effects on the tracking contour. These problems could be 

prevented if the vision based tracking were treated as a continuous process in time, leading 

to predictive capabilities through combined space-velocity estimation techniques. 

Motion estimation from a sequence of images is based on the apparent motion of brightness 

pattern in the image, known as optical flow [13]. Manv solutions for computing the optical 

flow have been proposed in the past two decades, among of which include regularization 

techniques [13], [16], estimation theory based methods [lS], and velocity segmentation [l]. 

These methods are the basis for target tracking, position prediction and 3-D reconstruction 

of object structure. Incorporating the motion estimation within intensity based contour 

tracking, we propose a new 2-D tracking scheme in which the contour dynamics are controlled 

both by the boundary contrast and by the object velocity. This leads to a new tracking 

method of non-rigid objects with temporal motion estimates and predictive capabilities. 

The numerical approximation of the equations of motion is also shown to be more stable 

compared to the original snake model [23]. 

2 Preliminaries 

In this section we present the active contour model originally proposed by Terzopoulos et. 

al. [23], and the principles of optical flow estimation (e.g. [4]). 

2.1 The Active Contour Model 

Consider the closed contour v(.s,t) = (x(.s, t) ,  y(.s,t)) for some spatial parametric domain 

s f [0, 11 and time t E [O,m). Let E, 2 and cSs e s. The L,agrangian energy of the 

snake, proposed by Terzoupulos et. al. [23], is given by 
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The first term in this equation defines the internal deformation energy with zc1(s) and Z C ~ ( S )  

controlling tension and rigidity, respectively. The second and third terms are the kinetic and 

potential field energies of the contour. Given the image sample I ( x )  where x = (x, y) denote 

the spatial coordinates, typical potential field energies are functions of image intensity with 

P = fl(x),  or contrast, with P = f ( (Vl (x ) ( ( ,  where V I  denotes the spatial gradient of 

I ( x ) .  The energy dissipation function which is used to dampen the snake energy (l), so it 

can converge to a static position, is given bv [23] 

Assuming the Lagrangian (1) and the above energy dissipation function: the E,uler-L,agrange 

equations of' motion are then given by [23] 

Next we consider the discretization of the snake (3) both in space and time. Consider 

equidistant sampling of the contour v(s, -) along .s with a sampling distance h ( h  > 0). and 

let u = [ul,. . . , u-w] be the vector of samples with u,  = v(.s,. -) denoting the i-th sample of 

v(s .  e ) .  Using finite difference approximation, the partial derivatives are given by 

Substituting (4) into (31, the discrete version of the contour motion is given by [23] 

where the deformation matrix A- = [ki j]  satisfies 

k . .  - 
23 - 
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Note that the indices in (6) are modulo 34. The discretization of (5) in time is based on the 

central difference approximat ion 
i 1 
1 1 

~ , t (  - ?  t )  x -( u( . ?  t + 1) - u( .? t - 1)) and t )  = -( u( . ?  t + 1) - 2u( -, t )  + U( . ?  t - 1)) (7) 2T T2 

where T is the sampling interval. A performance analysis of the snake model can be found 

in [li’]. 

2.2 Velocity Estimation 

Let I (x , t )  denote the image intensity of the sample at time t .  Assuming intensity is con- 

served, i.e. y = 0, and a sufficiently small translation between successive images, velocity 

estimation degenerates into the soIution of the gradient constraint equation (e.g. [13]) 

where tu = [wz, wUIT is the unknown velocity vector and ” - ”  denotes the dot product. wT 

denotes the transpose of w. As the above constraint equation doesn’t have a unique solu- 

tion, further constraints are needed. An example for that is the combined minimization of 

the gradient constraint equation with a global smoothness term. The optical flow is then 

computed by minimizing [ 131 

where D is the image domain. If zc is assumed to be the result of an affine transformation. 

i.e. 

w = A x + b  (10) 

for some real matrix A and vector b, it can be shown that V I .  w = Cz&,,. where the row 

vector Cz is a function of V I  and x and Cw is the column vector of the parameters of the 

affine transformation. Minimizing (9) with 3 = 0 leads to the solution (e.g. [5]) 
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3 Combined Space-Velocity Tracking 

The tracking scheme of the deformable contour is space dependent only, as the contour 

evolves according to the spatial gradients of a static image. This corresponds to proportional 

(P) control (e.g. [6]). -A proportional-integral (PI) control. on the other hand, is known to 

be more stable and has better tracking characteristics such as zero steady state error for 

constant velocitv inputs (e.g. [6]). Following this result, we propose a new snake model 

which, in addition to error-dependent position tracking, minimizes the velocity difference 

between the contour dynamics and the boundary velocity. As this term is unknown in 

advance, we substitue for it the estimated velocity of the image at the contour position. 

3.1 The Space-Velocity Tracking Model 

Consider the Lagrangian (1) with a time varying potential field function P(c, t ) .  Typically 

this function corresponds to the space gradient of the temporal image I(x,t). Let cb and 

vt denote the boundarv position and velocity, respectively. Generalizing the dissipation 

function in (2), we propose the velocity-tracking energy dissipation function 

where L is a real matrix. The second term represents a smoothness constraint. Assuming 

the Lagrangian (l), a time varying potential field function P(v , t )  and the above dissipation 

function, the Euler-Lagrange equations of motion of the new snake model are then given by 

where the velocity control term C(vt ,  e:) satisfies 

Note that since the velocity of the object boundary is unknown in advance, we use instead 

the image velocity estimate at the contour position. Comparing the resulting equation to the 
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original model (3), we find the velocity error control term yLLT(ct - v,") used for minimiz- 

ing the error between the contour and the object's velocities, and the velocity smoothness 

term -5z(zct) .  8 8  As will be shown, the smoothness term also increases the stability of the 

numerical solution. 

One of the major problems in object tracking is boundary disappearance, which may result 

due to changes in lighting conditions or occlusions. Unlike existing contour models, the pro- 

posed approach allows for velocity-based object tracking in the absence of spatial boundary 

information. The velocity is given by the results of motion estimation prior to boundary 

disappearance. The tracking model in t,his case is given by the contour model (13) with 

V P ( v ,  t )  0. Since image velocity is space dependent? t.he velocity estimation and predic- 

t,ion is based on a model-based representation of motion, such as the affine transformation 

(10). This approach allows for velocity estimation based on previous measurements. An 

estimation method for the velocity parameters is given in the next subsection. 

Next we show that while the new model converges to t.he boundary of an object moving 

with constant velocity? there is a bias between the solution of the original model and the 

actual boundary. This bias is proportional to the object velocity and causes "cracks" in t,he 

tracking scheme, where parts of the snake stop tracking t.he boundary and converge to some 

other objects in the scene. Assuming objects moving at constant. velocity in a world wit,h 

a L,ipschitz continuous depth, it can be shown that the image velocity (optical flow) is also 

L.ipschitz continuous i.e., 

for some K > 0 and E > 0, where xt is the image velocity (optical flow). The above 

assumption is reasonable as the image we get is a smoothed digitized version of the real 

world. The following result describes the tracking properties of the space-decoupled version 

of (13). i.e., with 3 = w1 = w2 = 0. The result clarifies the importance of the proposed 

velocity control term. 
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Theorem 3.1 (zero Bias Tracking): Consider the system (13) with 9 = uil = w2 = 0 

and 7 > 0.  Assuming constant boundary velocity v: and the initial state v(s, 0 )  such that 

Ilv(.s,O) - zb ( s ,  0)ll 5 E for  some E > 0,  then 

A .  v(s,t)t+s ---f zb(.s,t). 

B. I f  z! in the control term (14) is replaced by the image velocity at the contour, 2.:: and the 

image velocity is Lipschitz continuous in the boundary vicinity, then there exist some positive 

scalars P and Q such that for 0 < 7 < P and 0 < p < Q we have v (s ,  t)+,, i vb(.stt). 

C. I f $  0 in (Z4), we have limt-,x, Ilv(s,t) - vb(s:t)ll > k ($ )  for some positive function 

k ( 3 .  

The proof is given in Appendix A. According to the above result, the contour will converge 

to the boundarv moving at constant velocity if the initial contour is sufficiently close to 

the boundary of the moving object, and if we have the velocity of the object at the contour 

position (which could be computed via optical flow techniques). On the other hand, we show 

that the lack of motion control in the original model causes a bias in the contour position: 

which could lead to serious tracking problems even in the case of' non cluttered environments. 

Consider the system (13) with replaced by the apparent motion 'L'; of the image at c(.s,t). 

A special case of interest of' this model is when L = VI(v( . s , t ) ) .  In this case the velocity 

control term (14) satisfies 

As vi is the apparent velocity, we have, by the optical flow constraint (S)! VI-vf  = -It. Sub- 

stituting this result into (14) a.nd (13): we obtain the optical flow constrainb-based tracking 

model 

In this model there is no need to estimate the image velocity because the optical flow term 

provides a measure of the error in velocity estimation. However, this scheme is more sensitive 



I -  to measurements and numerical noise than the model given in (13), as instead of the velocity 

error, we have a projected version on the direction of VI.  

3.2 Boundary Velocity Estimation 

In this section we deal with estimation of the image velocity at the contour. lye propose two 

types of estimation methods: Batch Mode, in which the velocity is estimated independently 

of the contour dynamics, and Real Time Mode. which uses the temporal velocity estimation 

error as a control term in the contour dynamics. The proposed methods generalize the 

parameter estimation techniques in adaptive schemes, such as adaptive control (e.g. [3J), to 

the case of time-space dependent parameter estimation in nonlinear dynamical svstems. 

Batch Mode 

Many- methods for estimation of the optical flow have been proposed (e.g. [4]). In this work 

we use the method proposed by Horn and Schunk [13] because it relates directly- to the 

velocity based dissipation proposed in (12). Since we need the image velocity only at the 

contour position. we use (9) with D = v ( s , t )  s E [O. 11. and integrate along s .  The solution 

to this problem, given by the Euler-Lagrange equation, is 

3w,,(.s,t) = BI(v(s,t)) (VI(V(S.t)) . u: + It(z.(s, t)))  
(16) 

with w(O,t) = w(1.t). 

where zc = vi is the image velocity at the contour. This problem can be solved using an 

iterative method similar to the one proposed by Horn and Schunk [13]. Further discussion 

of the numerical solution is given in the next section. 

For the least squares problem (9), we assume no correlation between the velocity parameters 

at different time points. In our model, however, the image velocity is assumed to be contin- 

uous both in time and space. which could be modeled as a slowly time-varying process. This 

modeling includes also the case of non-rigid objects, in which the motion parameters are as- 

sumed to be varying slo~vly with time. One approach for estimating such slowly time-varying 
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parameter, is the least squares method with an exponential "forget,ting" of measurements 

over time (e.g. [3]). Applying this approach, we propose the following velocity estimation 

objective function 

l l t  3 1 ( 5 1  exp-a(t -T)[VI(U(S,T))  . w ( s , t )  + I t ( v ( s , 7 ) ) J 2 d r +  ://w.[/~) 2 ds 

In this model we assume that the contour parameterization s does not change over time (at 

least during the effective interval of' integrat,ion). -4 discrete version of this model can be 

found in [ll]. Note that this function also generalizes 

The E,uler-L,agrange equation corresponding to (1 7) is 

d2 (R(s , t )  - .3--)W(S,t) = 
8.92 

where 

the energy dissipation function ( 12). 

- P ( s , t ) 

R(.s,t)= L e x p ( - a ( t - r ) ) V I V I T &  and P ( s > t )  = i' exp( -a ( t - r ) )Vl l& (19) 

lye will show that the discrete version of the velocity estimation (18) can be solved recursively 

along time. Combining this real time estimation of the image velocity with the velocity 

control (14) and snake model (13). we obtain a "pseudo" real time tracking model r i t h  an 

optimal velocity control term. "pseudo" refers to the fact that the velocity is estimated 

independently of the contour dynamics. 

Real Time Mode 

Consider (17) as the energy dissipation function for the contour Lagrangian (1). The Euler- 

Lagrange equations of motion of the time varying model? are then given by (13) with the 

velocity control term 

C ( V t )  = R(t)v,(t) + P(t )  (20) 

where R(t)  and P( t )  are given in (19). These terms can be computed recursively according 

t, 0 

- -aP(t)  + VI( t ) I , ( t ) .  dP(t)  -- - -aR(t) + Vl(t)Vl(t)' and - - dR(t) 
d t  d t  
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Note that (20) and (21) are also functions of .s. In case where we assume no correlation 

between the velocity parameters at different times ( a  + oo), the dissipation function (17) 

coincides with the one proposed by (9) with D = v ( s , t )  and s E [O. 11. In this case we have 

R = VIVI* and P = V I I ,  in (20), and the snake model is the optical flow constraint-based 

tracking model (15). Compared to (15). the above model is less sensitive to measurements 

and numerical noise, as the control term averages the optical flow constraint error along 

time. In case of a rapid change in velocity, however, which could also be caused by depth 

discontinuities, the above scheme could lead to bias in the control term (20). 

Structured Mode 

The velocity estimation schemes proposed in the previous subsections assume no spatial 

model for the image velocity. The lack of spatial relation between the velocities in different 

parts of the projected object. could lead to noisy control in the case of the temporary criteria 

(9), or to a biased one in the case of measurements integration along time, as proposed in 

(17). -4 spatial model, on the other hand. will allow for space independent integration of 

measurements both along space and time, resulting in an improved stability n-ith respect to 

numerical and measurements noise. This space independent property Tyill further allow for 

the prediction of the image velocity at the contour and, hence, the prediction of the contour 

position in the near future. X kev point in defining the space model for the velocity is to 

know the 3-D structure of the imaged object. 

Let ( X ,  Y. 2)  represent the Cartesian coordinate system of the camera and let (2 ,  y) represent 

the corresponding coordinates of the image plane. vith the 5 and the y axes parallel to 

X and Y, respectively. The origin of the planar image is given by ( X ,  Y, 2) = (0,O. 1). 

Relative to the camera coordinate system ( X ,  Y, Z), it was shown that the projected velocity 

w = [w,. wyJT of a point undergoing translation with a translation velocity T = (Tx,  Ty, Tz )  
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and rotation with a rotation velocity R = (ax, f l y ,  az), satisfies (e.g. [l]) 

According to the above result the image velocity is linear in the velocity components. This 

property can allow for an analytic solution to the velocity estimation problem, if the depth 

term 2 in each of the image points is known. Under the assumption that the imaged region 

is a planar surface, i.e., k x X  + k y Y  + kzZ = 1 for some real scalars k x ,  k y  and k z :  the 

image velocity (22) becomes the following transformation [l] 

for some scalars a l , .  . . , a.8. The affine transformation (10) is an approximation to (23). 

Consider the batch mode estimation criteria (1'7) with the velocity model (23 )  ((10)). Since 

the proposed velocity model is smooth in x, we solve the estimation problem with 3 = 0. 

Differentiating (17) with respect to 2c and equating the resulting function to zero, the optimal 

velocity parameter vector Cw = [ a l ,  . . . , a8IT satisfies 

exp (-a(t - 7)) CxC~d.s d r  exp (-a(t - r)) Cxltd.s d.r 

where the row vector Cz satisfies V1.w = CZJzL'. In the case where we assume no correlation 

between the velocity parameters along time ( a  3 m), the above result coincides with the 

solution (11). 

4 Implementation Considerations 

In this section we consider the discretization in space and time of the equations of' mo- 

tion of the proposed velocity controlled contours. The continuous models are transformed 

into simple second order discrete-time equations with nonlinear image-based inputs through 

conventional finite difference techniques, resulting in low complexity tracking schemes. 
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4.1 Space-Time Discretization 

Consider the space discret5zation of the equations of motion as proposed in section 2, and 

let u = [a1,. . . , u.M] denote the contour sampling vector. Using the finite difference approx- 

imation (4), t.he discrete version of (13) is given by 

where 
-1 1 0 ... 0 1 

1 1 0 ... ... -1 

(25) 

T 

is the 'iderivative" matrix. In this model we have the velocity smoothing term 3DDTut in 

addition to the space smoothing term Ku. This control further increases the stability of the 

numerical solution in terms that nearby contour points are prevented from getting too close. 

-4s was presented in section 3, a special case of interest of the contour model (13) with 

L = VI,  results in the optical-flow constraint-based tracking model (15). Based on (25). the 

discrete version of this model along space satisfies 

(27) 

The discretization of time in both models (25) and (27) is performed by the central difference 

approximation (7). 

hiany techniques have been proposed for calculating the spatial and time derivatives of 

images. In this work we use the Sobel operator for approximating the space derivatives and 

substraction between successive images as a temporal derivative approximation. Prior to 

the application of these filters we smoothed the images, both along space and time. with a 

Gaussian filter. An extensive study of' derivative approximations and smoothing operations 

for optical flow estimation can be found in [4], and in [17] for active contours. 
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4.2 Discrete Velocity Estimation 

Consider the solution to the velocity estimation problem (16). Let I1, = diag(I,(u)) and 

II, = diug(Iy(u)),  where d i a g ( b ) .  for some M dimensional vector b, is an Ad x -If diagonal 

matrix, with the diagonal elements given by b. Let 

R(t)  = C(t)C(t)' and P( t )  = C(t)I t (u . : t )  (28) 

where C( t )  = [II, IIY]', and 
r 1 

where D is the derivative matrix (26). Let w = [w:.wf]' be the unknown velocitv vector 

of the image at u ,  where ull and IC; are the vectors of velocities along the z and y axes, 

respectively. Substituting (28) and (29) into (16): we obtain (e.g. [l8]) 

( R  + 3QaT) w = -PIt (30) 

Under the condition that ( R  + 3qQT) is invertible. the solution to (30) is w = - (R  + 
3*@T)-1PIt (e.g. [IS]). This problem can also be solved by the iterative Gauss-Seidel 

method [13]. 

In the case of the time-varying function (17). the solution to the velocity estimation problem 

(18) is given by (30) with 
t t 

R(u, t )  = / exp (-a(t - 5)) CC'dT and P(u,  t )  = exp (-ol(t - 5)) CIt(zl, .i-)dT . (31) 

Next we will show that, under these conditions, (30) can be solved recursively along time. 

The proof is based on differentiating both sides of (30) with respect to time. 

0 . o  

Lemma 4.1 : With R and P given in (31); if(R+3QQT) is invertible for all t ;  the solution 

w of (30) satisfies 

(3'2) 
dw - = -Q(t)  (C( t )e ( t )  + a3JIQ'w) 
d t  

where e( t> = ( ~ ~ ( u , t )  + ~ ' ( t j w )  unci 
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Note that Q = ( R  + 3WT)- ' .  Alternatively one can use the recursive version (21) of R(t)  

and compute Q for each time. This version is less complex. at least in the memory-space 

sense, since the matrix R is sparse. Other discrete versions of this result can be found in 

[ll] in the context of optical flow estimation. 

5 Experimental Results 

JVe demonstrated the performance of' the proposed velocity controlled contour model by 

applving it to real image sequences with both rigid (turning car) and non-rigid (waiving 

hand) objects. The initial contour lines were generated manually, forming a rough polygonal 

approximation to the object's boundary. This task could be done automatically via -4TR 

-based methods followed by rough boundary approximation, as the boundary need not be 

determined exactly. 

Prior to the calculation of image gradients and velocities, the image sequences were smoothed, 

both in space and time, by a Gaussian filt,er. In the proposed examples we used a fixed 

Gaussian filter with = 2, both in space and t.ime. Spatial derivatives of the images were 

calculated by applying a simple 3 x 3 Sobel operator. The sampling interval along t.ime was 

defined t.0 be T = 1. 

Contour parameters: IVe used the contour models with a spatial sampling distance Ji = 5 

(pixels) and with 7' = ,u = 2. The deformation parameters u11 and zc2 were set ,to constant 

values. More complex techniques define the values of zc1 and zc2 to be nonlinear functions of 

the distance between nearby points [17]. In our model. however. we found the velocity control 

to  have similar smoothness effects, making these extensions unnecessary. The potential 

energy function P = -IIVl(x))l and its directional derivatives were computed using a simple 

3 x 3 Sobel operator. These operations were made only in the vicinity of the contour. 

Velocity estimation: A key distinction betiyeen conventional optical flow estimation in 

images (e.g. [4]) and our boundary velocity estimation. is that the latter is performed only 

a t  the contour, resulting in reduced computational effort. The time and spatial derivatives of 
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the images were calculated by a simple substraction and by applying a 3 x 3 Sobel operator, 

respectively. These calculations were made only in the vicinity ofthe contour. As was noted, 

prior to the application of these filters, the image sequence was smoothed, both along space 

and time, with a Gaussian filter. The resulting time and spatial derivatives were used to 

calculate the velocity components, as proposed in section 4. 

Image sequences: The tracking schemes were demonstrated on the following image se- 

quences: 

A. Hamburg taxi sequence: A street scene with moving cars (Figure 1). The tracking scheme 

was applied to the taxi turning at the corner. In this case! due to turning, the taxi boundary 

contour has thought of non-rigid behavior. The sequence is composed of 20 frames sampled 

at  video rate with 1:3 decimation along time (in order to increase the speed of the car). 

B. Ofice scene: An office scene with the author waiving his hand under nonuniform lighting 

conditions (Figure 2). The scene includes image clutter such as shadows, shelves, books and 

a computer monit.or. The sequence is composed of 20 images sampled at video rate. 

Tracking results: The results of tracking the boundary of the turning car are presented 

in Figures l(a)-(e). The initial frame and the corresponding initial contour, are given in 

Figure 1(a). 'The t,racking results of the original model after 19 frames, and those of the 

proposed velocity controlled models, are present.ed in Figure l(b) and in Figures l(c)-(e), 

respectively. In the presence of image motion in clutt,ered environments, the original model 

is inferior to the velocity controlled model. This result is mainly due to t.he bias property of 

the original model, and the inability to incorporate the velocity measurements in the tracking 

scheme. Note that in our model we do not use any prior knowledge such as boundary and 

clutter models. Figures l(c)-(d) show the results of't,he bat.ch mode model (25) with the 

affine velocity model (10) and with the regularization based ve1ocit.v estimation given by the 

solution of (30) with f i  = 30. We found both schemes to lead to similar tracking results. 

The results of the optical flow constraint-based model (27), shown in Figure l (e)?  exhibit 

slightly larger tracking errors. 
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Figures 2(a)-(e) show tracking ofthe waiving hand. T&Thile the original model (Figure 2(b)) 

is "trapped" by image clutter, e.g. the shelves and the monitor boundary, the nev tracking 

models perform very IiTell ( Figures 2(c)-(e)). Compared to the batch mode models ( Figures 

2(c)-(d)), we find again that the optical flow constraint-based model has slightly larger 

tracking errors (Figure 2(e)). 

In Figures 3(a)-(b) we study the results of tracking with Structured Mode motion estimation. 

Figure 3(a) shows the tracking results of (25) with the affine velocity model (10). The 

velocity parameters are estimated using (11). The results with the motion model (23) and 

with parameter estimation via integration of measurements along time (24)- are given in 

Figure 3(b). The time integration was computed via simple discrete sum approximation and 

with exp (-aT) = 0.5. In this case, motion estimation based on a single image sample was 

found to be too noisy due to the large number of parameters. Comparing Figures 3(a) and 

3(b), we find that combining a complex velocity model m-ith measurements integration along 

a finite time interval results in improved tracking performance. Note that the error in the 

velocity estimation increases with the complexity of the velocity model. 

One of the major advantages of the proposed approach is the ability to predict the position 

of non-rigid boundaries. This propertv is demonstrated in Figure 4 where we predicted the 

boundary position in the 19-th frame, based only on the first eight frames. The contour 

position in the 8-th frame is given by the dashed line. The prediction was based on the 

Structured Mode velocity model (23) with parameter estimation based on (24). 
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Figure 1: Tracking results of the turning car (after 19 frames): [a) the initial frame with 

the initial contour, (b) original snake model, (c) batch-mode model with affine velocity, (d) 

batch-mode model with regularization based velocity estimation, (e) optical flow constraint- 

based model. 



? 

Figure 2: Tracking results of the waiving hand (after 19 frames): (a) the initial frame with 

the initial contour, (b) original snake model, (c) batch-mode model with affine velocit?i, (d) 

batch-mode model with regularization based velocity estimation, (e) optical flow constraint- 

based model. 
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Figure 3: Tracking results with Structured Mode velocity estimation: (a) affine velocity 

model, (b) velocity model (23) and parameter estimation based on the measurements inte- 

gration along time (24). 

Figure 4: Boundary prediction in the 19-th frame based on the first eight frames. The 

dashed line represents the contour position in the 8-th frame. 
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Concluding Remarks 

a We have described a new class of actlJe contour models which result from applying a velocity 

control to the class of elastodynamical contour models, known as snakes. We showed that 

this model allows for unbiased real-time tracking of an object in a video image sequence, 

provided that the initial contour is sufficiently close to the actual boundary. This demand can 

be relaxed by applying inflation forces on the contour as proposed by [7], [19]. The unbiased 

result is in contrast to the original model which is proven to be biased by the object motion, 

resulting in high sensitivity to clutter and numerical noise. Based on the proposed control 

approach, we developed a new class of real time tracking contours, varying from models 

with batch-mode control estimation, to models with real time adaptive controllers. The 

proposed tracking scheme was applied to boundary tracking of both rigid and non-rigid 

objects, resulting in unbiased tracking and robustness to image clutter and numerical noise. 

The velocity-based boundary prediction of non-rigid boundaries was also shown to have good 

results. 
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Appendix A: Proof of the convergence theorem 

Theorem 3.1 (zero Bias Backing): Consider the system (13) with ,b' = wl = w2 = 0 

and 7 > 0.  Assuming constant boundary velocity vt and the initial state v(s,O) such that 

[lv(.s,O) - vb(.s,O)I( 5 E for some E > 0 ,  then 

A. v ( ~ , t ) ~ , ,  -+ v b ( s , t ) .  

B. If vt in the control (14) is replaced by  the image velocity at the contour, cf ,  and the image 

velocity is Lipschit2 continuous in the boundary vicinity, then there exist some positive scalars 

P and Q such that for 0 < 7 < P and 0 < ,v < Q we have c(s,t)tiw 4 v'(s,t).  

C. ~ f c , b  5 o in (14); we have limt-m Ilv(s,t) - vb(s,t)ll > k ( v f )  for some positive function 

w- 

Proof The following result is based on analyzing the convergence properties of the linearized 

version of (13) with 9 = w1 = w2 = 0. The system performance is then analyzed using 

Lyapunov theory (e.g. [15]). We shall employ the following definitions: The function 

w : IR" + IR is positive definite if w(0) = 0 and W(X)  > 0 for x # 0. The matrix Ad = [~ni j]  

is positive definite if it is symmetric, i.e. mij = m j i ?  and all the eigenvalues have positive 

real park (it can be shown that the eigenvalues are real). A matrix A is said to be stable if 

all the eigenvalues of A have negative real parts. We shall denote the i'th eigenvalue of A by 

X;(A). The absolut'e value of the eigenvalue with the largest. absolute value shall be denot,ed 

by X,,,(A) and the smallest one by &,,(A). The matrix I denotes the identity matrix. 

Consider the initial state v(s ,  0) such that llv(s, 0) - cb(s, 0)ll E for some sufficiently small 

E. Assuming the image moving with a constant velocity, the potential field field function can 

be approximat.ed by 
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for some positive definite matrix M. We shall also assume that L = I in (14). Substituting 

P into (1 3), the linearized version of (13) about vb is then 

L,et y = v - vb. Since is assumed to be constant? it follows that ;i, = vt - v! and j j  = uti 

where ~ also denote the derivative along time. Substituting ZJ into (33) with y1 = y? y2 = zjl 

and y = [yl, y2IT, we obtain 

The matrices I and 0 are 2 x 2 identity and zero matrices, respectively _Assuming p > 0 

and 7' > 0, it can be shown that A is stable iff M is positive definite. This follows from the 

result that for each eigenvalue of +Id. A z ( M ) ,  there exist two corresponding eigenvalues of A, 

given by 

. 
Since A is stable, it follows that ytiW -+ 0 in (34), and by Lvapunov theorem (e.g Theorem 

3.7 p.127 [15]), yt-= + 0 also in the original model (13) provided the initial state y(0) is 

sufficiently small. Hence, the assertion of statement -4 follows. 

If E: is set to zero in the control term (14)? the linearized version of (13) about vb is then 

Since -4 is stable, it can be shown that y = yl + - A I '  l-W-lvf. Since the linearized system is 

biased, it follows that the original system has also the same property. Hence. the assertion 

of st at ement C follows. 

Next we prove statement B. Using (34) and the control term (14) with L = I and v: = ci. 

the linearized version of (13) about is then given by 

(35)  
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We shall prove the convergence of (35) using Lvapunov theory. Given a positive definite 

function w(y),  if the derivative of w(y) along the solution of' ( 3 5 )  is negative definite? then 

the origin of (35)  is asymptotically stable (e.g. Theorem 3.1 p.100 [15]). Let w(y)  = yTPy 

be a scalar function where the matrix P is given by the solution of the Lvapunov matrix 

equation 
r -! 

- 2 :J/p 0 
P A  + ATP = -Q where Q = I I*- I .  1 o -ZM J 

Since A is stable and Q is positive definite, it follows, by the L,yapunov matrix equation 

t,heorem (e.g. Theorem 3.6 p.123 [15]), that P is positive definite. Hence, w(y)  is a positive 

definite function. Further more, substituting Q and A into (36), it can be shown that 

we have 

(37) 
2P 

PI2 = :M and P2 = -34 . 

Using (35). (36) and (377, the derivative of w(y)  along the solution of ( 3 5 )  is then given by 

h l  
I 

2 2P -- dw(y) z vw - y = --yTM2y1 - 2y;mJ2 + 2 ( y 3 4  + y;(-M)(-qv; - vi)) . (38) 
dt P ;! P 

Since the above equation is quadratic in IIy1JJ and Ilyall, necessary and sufficient conditions 

for the right hand side of (39) to be negative definite are 

and 
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From the above inequalities it follows that t.he right hand side of (39) is negative definite iff 

Under the above conditions, it follows that derivative of ~ ( y )  along the solution of ( 3 5 )  

is negative definite, and hence the origin is asymptoticallv stable. This result proves the 

stability property of the original system (13) (e.g. Theorem 3.7 p. 127 [15]) and hence the 

convergence of v to ub, provided the initial state is sufficiently close to vb. Note that the 

L.ipschitz property of the image velocity implies that / lzt(- ,  0) - ut(-, 0)ll 5 KE if ] ] E ( - ,  0) - 

zb(- ,  O>II 5 E .  Hence the assertion of statement B follows. 
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