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Given a sequence of image pairs we describe a method that segments the observed
scene into static and moving objects while it rejects badly matched points. We show
that, using a moving stereo rig, the detection of motion can be solved in a projec-
tive framework and therefore requires no camera calibration. Moreover the method
allows for articulated objects. First we establish the projective framework enabling
us to characterize rigid motion in projective space. This characterization is used in
conjunction with a robust estimation technique to determine egomotion. Second we
describe a method based on data classification which further considers the non-static
scene points and groups them into several moving objects. Third we introduce a
stereo-tracking algorithm that provides the point-to-point correspondences needed
by the algorithms. Finally we show some experiments involving a moving stereo
head observing both static and moving objects 2000 Academic Press

1. INTRODUCTION

The detection, description, and understanding of motion from visual data are am
the most difficult and challenging problems in computer vision. At the low level, 3-I
motion must be analyzed based on the 2-D appearance and time evolution features
are observable in images. At the high level, the 2-D motion fields previously derived m
be interpreted in terms of rigid, articulated, or deformable objects, discriminate betwe
objects undergoing distinct motions, estimate the motion parameters, etc.

Ifthe visual sensor moves as well, one more difficulty is added because one has to esti
egomotion (the motion of the visual sensor with respect to some static reference frame
the same time as motion associated with the observed objects.

Existing techniques for motion/egomotion discrimination and motion segmentati
roughly fall into two categories, methods using an image sequence and methods usin
stereo-motion paradigm:
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e Image sequence analysiBhese methods rely either on the estimation of the optice
flow or on point-to-point correspondences. In the former case the relationship betw
3-D motion of a rigid body and the observed 2-D velocities is explored. In the latter ca:
such constraints as the epipolar geometry and the trifocal tensor are used. Points satis
the same type of constraint are assumed to belong to the same rigid object. There
the problem of motion segmentation becomes the problem of grouping together po
satisfying the same constraint [9, 13, 15, 17, 19]. For example, in [13] this grouping
carried out by a clustering algorithm which uses a posteriori likelihood maximizatio
Other approaches use such techniques as the Hough transform [17] or robust estim
which are used incrementally [19].

e Stereo-motion analysi¥hese methods combine the relationship between 3-D motic
and image velocities described above with stereo constraints such as the epipolar cons
in order to disambiguate the inherent ambiguity associated with optical flow [11, 21—-23

In this paper we address both the problem of egomotion/motion discrimination and
problem of motion segmentation. The approach is based on the stereo-motion parad
The visual sensor consists of a pair of cameras rigidly attached to each other—a st
rig (see Fig. 1). The geometry of this sensor remains rigid over time. This allows one
represent the motion of the sensor (egomotion) with a 3-D projective transformation wh
is conjugated to a 3-D rigid transformation. Because of this relationship between projec
and rigid transformations, metric calibration of the stereo rig becomes an irrelevant is:
[7]. 3-D projective transformations are represented mathematicallyx»$ Bomogeneous
full rank matrices, or homographies. The estimation of such a homography is based or
fact that a moving rig observes a static scene. When both the rig is moving and the scel
not rigid (is composed of both static and moving objects), current homography estimat
methods cannot be applied any more [1].
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FIG. 1. Problem: a moving stereo rig observing a static scene.
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Therefore, the main contribution of this paper is a method for estimating 3-D proje
tive transformations associated with the sensor’'s motion when the observed scene is
posed of both static and moving objects. The output of this resolution technique consis!
the estimation of a homography associated with egomotion as well as the classificatio
the observed 2-D point correspondences into a set of inliers and a set of outliers. The in
are compatible with the observed egomotion while the outliers are not. Therefore, the |
are farther examined by a hierarchical clustering algorithm which operated in the im:
plane and over a long sequence of image pairs.

Organization

The remainder of this paper is organized as follows. The projective motion is defin
in Section 2. In Section 3 we describe a robust estimator that enables to estimate
projective motion associated with the sensor's egomotion and the motion segments
algorithm is described in Section 4. The stereo tracking algorithm that provides poi
to-point correspondences through a sequence of image pairs is presented in Secti
In Section 6 we show some experiments with real data and finally the conclusions
summarized in Section 7.

2. PROJECTIVE MOTION OF A STEREO CAMERA PAIR

Consider a 3-D poini which is observed by a stereorig from two different positions—
positionx and positiony. Let (ux, vy), (Uj, vy) be the image coordinates of the projections
of M when the rig is in positiox and iy, vy) and {1y, v{) be the image coordinates of the
projections of the same point when the rig is in positiorThe associated homogeneous
coordinates of these points ate= (Ux vx 1)", X' = (U, v, 1)" andy=(uy vy 1)7,y' =
(uy, vy, 1)T, wherev' denotes the transpose\af

Throughout this paper itis assumed that the epipolar geometry of the stereo rig is kno
Since the stereo rig has a fixed geometry it is possible to associate a 3-D projective bas
the rig and when the rig moves, this projective basigsicallymoves with the rig. Therefore
there is a projective basis associated with each position of the ri &etlP’ be the 3x 4
projection matrices associated with the left and right cameras. According to what has
been said, these matrices are fixed. The following equations hold,

{x:PX and {y:PY )
X' ~PX y ~PY,

where " denotes projective equalityX andY are 4-vectors denoting the projective
coordinates of the physical poiM in the 3-D projective basiBy associated with position
x and the 3-D projective basl$, associated with positiog.

Equation (1) can be solved using the triangulation technique introduced by Hartley ¢
Sturm [6] and which allowX andY to be estimated. The relationship betweé€andY is

nY=HX, (2)

wherepu is an unknown scale factor aitlis a 4x 4 full-rank matrix representing a projec-
tive transformation of the 3-D projective space. This matrix is defined up to a scale fac
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and therefore it has 15 degrees of freedom associated with it. Equation (2) provides tl
linear constraints in the entries bif and therefore with five points in general position it
is possible to solve linearly fad. However, in [1] and in [7] it was pointed out that the
solution obtained with linear resolution techniques is quite noisesensitive and at leas
to 20 points are required in order to stabilize the numerical conditioning of the associa
measurement matrix.

When the stereo rig has fixed geometry and undergoes rigid motion, it has been shi
in [2] that the projective transformatidf is conjugated to a rigid transformati@n

H ~ H,'DH,,

whereH  denotes the projective-to-metric upgrade. The above equation has been thorou
studiedin [8, 16]H can be interpreted as a projective representation of the motion undergc
by the camera pairprojective motior—and may well be considered as an extension o
affine motion [12] to the 3-D projective space:

DerINITION 2.1. Consider a camera pair with known epipolar geometry which observ
a 3-D rigid scene while it moves. The projective transformation between two projective |
constructions of the same 3-D scene obtained before and after the motion is called proje:
motion.

In theory, one can define projective motion without making the assumption that the ste
rig has a fixed geometry. In practice, however, such an assumption is very useful. Inde
the estimation of the epipolar geometry can be incrementally improved as new image p
provide new left-to-right point correspondences.

3. ROBUST ESTIMATION OF PROJECTIVE MOTION

In order to estimate projective motion one may consider Eq. (2nfer 5 point corre-
spondences. We obtaimdinear equations which can be solved to determine the entries
H. However, such a linear estimation method has two major drawbacks: (i) the method
deal neither with outliers (mismatched points) nor with nonrigid scenes (scenes that con
both static and moving objects), and (ii) the method minimizes an algebraic distance
hence it gives poor results for badly conditioned data. In particulamfer5 the method
is very sensitive to noise [1].

To overcome these two drawbacks we introduce a new method based on robust estim
on one side and on minimizing an Euclidean error on the other side.

3.1. Robust Methods in Computer Vision

Robust regression methods are widely used to solve various vision problems such as
mation of epipolar geometry [18, 24] and estimation of the trifocal tensor [20]. Common
used robust methods are M-estimators, least-median-squares (LMedS) [14], and ran
sample consensus (RANSAC) [3].

We wish to apply robust methods in order to compute projective métiorthe presence
of outliers and/or non static scenes. Moreover, we would like to deal with situations whe
only 50% of the points composing the scene belong to static objects. Therefore we n
choose a robust method which tolerates up to 50% outliers. LMedS and RANSAC |
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the only methods tolerating such a rate of outliers. At first glance they are very simil
Data subsets are selected by a random sampling process. For each such subset a solt
computed and a criterion must be estimated over the entire data set. The solution yiel
the best criterion is finally kept and used in a nonlinear process to refine both the solu
and the sets of inliers/outliers. LMedS minimizes the median of the squares of the er
while RANSAC maximizes the number of inliers. Even if the criteria used by these tv
methods are quite different, in most practical applications, comparable results are obta
with both methods.

The main difference between LMedS and RANSAC resides in the outlier rejection str
egy being used. The user must supply RANSAC with a threshold value while LMedS d«
not require such a threshold. Provided that this threshold is correctly selected, this fea
enables RANSAC (i) to be more efficient in the presence of nonhomogeneous noise, (i
allow for 50% outliers and above, and (iii) to be more efficient because it can quit t
random sampling loop as soon as a consistent solution is found. More detailed compari
description of these algorithms can be found in [14].

In the framework of our application, the outliers may have two interpretations: they m
either belong to independently moving objects or be “real outliers” (i.e., mismatched anc
mistracked points). As the stereo rig is observing a continuous flow of images, that me
that the observed motions of independent objects may be small. In this case, we obs
that LMedsS often tends to choose an average model of all motions. As a result the se
selected inliers often contains some points of the moving objects and the set of outl
contains some points of the static scene.

The RANSAC algorithm performs better than LMedS in the framework of our applicatic
provided that the threshold for inliers/outliers selectig(in the inner loop of RANSAC)
is carefully chosen. As a consequence we chose this algorithm for the estimation of
projective motiorH.

The choice of the threshold is crucial for the success of RANSAC and is chosen suc
thatt? =6.002 whereo is the accuracy of the point location found by the stereo tracke
described in Section 5. This threshold is observed to be often underestimated: the co
dominant projective motion is always found (contrary to what may happen using LMec
but some points of the static scene may not be selected as inliers. However a comple
is performed at the end of RANSAC by using a threshplglightly higher thart; (with
6.00% < téz <9.00%). Using all the successive dominant motions in a sequence and aver
ing the errors over time increases the performances of the robust algorithm (see Sectio

Moreover the number of random sampNMsnust be sufficiently large to guarantee that
the probability of selecting a good subset is high enough, say this probabitityst satisfy
y > 0.999. The theoretical expression of this probabilityis= 1 — (1 — (1 — gou)P)V,
wherep is the number of points that are necessary to compute a solyttierb(n our case)
ande,y is the number of outliers that are tolerateg, (= 0.5 in our case). By substituting
all these numerical values in the above formula we olithin 220 as the minimum number
of samples. However the expressionofloes not take into account the presence of nois
on the inliers and a value of the order of 5 to 10 times larger than the theoretical one sh
be used folN. Hence for the robust method to be effective, the inner loop of the algorith
must be iterated at least 1000 times.

Moreover, remember that outliers have two physical meanings: they may well corresp
either to mismatches or to moving objects. Therefore we must be able to distinguish betw
inliers and small motions. To conclude, the estimation step in the random sampling Ic
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must be fast because it has to be run many times and must provide an estimadi@s of
accurate as possible.

3.2. A Quasi-linear Estimator

Let us devise an estimator fét that minimizes an Euclidean distance. In principle,
such an estimator is nonlinear because of the nonlinear nature of the pinhole camera m
However, as described below, we have been able to devise a method which starts with a li
estimate oH and which incrementally and linearly updates the Euclidean error. Therefol
this method combines the efficiency of a linear estimator with the accuracy of a nonlin
one. In practice it converges in a few iterations (2 to 3) and the solution thus obtained is v
close to the solution that would have been obtained with a standard nonlinear minimizat
method (see Fig. 2).

The method described below can deal with a number of point matches equal or gre
than 5. Within the robust method described above it is however desirable to use the mini
set of points—>5 points in our case.

With the notations already introduced in Sect. 2Xebe the vector of 3-D projective
coordinates obtained by reconstruction from its projectiorsdx’ onto the first image
pair. MatrixH maps these coordinates onfasuch thaty = uH X, and matriced and P’
reproject these coordinates onto the second image pair. Therefore we have the follov
estimated image points:

af = PHX 3)
o'y = PHX. (4)

The 3-vectorsy andy’ are defined up to a scale factarandco’. By dividing the first and
second components of these vectors with their third component we get estimated in
positions as opposed tp and y’ which are measured image positions. The Euclideal
distance between the measured point posiji@md the estimated point positigns

Q0 2 b 2
=gy = (P-w) +(E-w). ®)

ty y

with §7 = (0y 9y fy) andy™ = (uy vy 1).
Let us write matrixH ash, a vector inR® such thath = (Hy; Hiz...Hag)  =(hs. ..

hie)"
By substituting Eqg. (3) into Eq. (5) and with the notation

1

~ PR ©

1
w = =
ty

we obtain for the Euclidean error for the left image

16 2 16 2
82=w2<2ajhj> +w2<ijhj> , @)
j=1 j=1
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where thea; and theb; coefficients depend op, X, andP. Since we deal with an image
pair the reprojected Euclidean error is

e =62 +¢2 (8)

For m point matches we obtain the following criterion:

E:izj;qz 9)
:i<w3<§ajhj>2+w?<§mhj>z

i j=1
16 2 16 2

+w{2<2a4jh,-> +wi’2<2b{jhj> ) (10)
j=1 j=1

In order to find the matri¥d or, equivalently, the vectdr which minimizes the criterion
E of Eq. (10) we suggest the following incremental estimation method (notice that,
definition, the parameters; andw; are dependent dfl):

1. Initialization: Let w; (0) = 1 andw; (0) = 1. EstimateH(0) using Eqg. (6).

2. Evaluatethe parameters) (k + 1) andw; (k + 1) using the current solution fdi (k),
i.e., Eq. (6).

3. Minimize the criterionE(k 4+ 1) of Eq. (10) using standard weighted linear least:
squares to estimaté(k + 1).

4, Sti)p testWhen [EfEI—E04l < ¢ then stop, else return to step 2. Here we chos
e=10".

The quasi-linear estimator requires low cost computation because each iteration of
loop only involves standard weighted linear least-squares (based, in practice, on the sing
value decomposition technique). Moreover the quasi-linear estimator generally convel
in two or three iterations.

Furthermore the quasi-linear estimator minimizes geometric error and therefore it is |
noise-sensitive than standard linear estimators [1] and appears to be well adapted \
used in the inner loop of RANSAC: the error function associated with the inliers/outlie
selection being defined by Eq. (8).

3.3. Experiments with Synthetic Data

Experiments with simulated data are carried out in order to compare the quality of
results.

A synthetic 3-D scene consisting of 140 points is generated and placed at two differ
locations in the 3-D space. The 3-D points of each position are projected onto the cam
of a virtual stereo rig and Gaussian noise with varying standard deviation (from 0.0 to
pixels) is added to the image point locations. Data are normalized as described in [5]
three different methods are applied: the quasi-linear estimator, a standard linear metho
and a classical nonlinear optimization method, such as Levenberg—Marquardt, initiali
with the quasi-linear estimator.
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FIG. 2. Comparison between the different methods in the presence of image Gaussian noise.

This process has been performed 100 times. The mean and standard deviation o
error function in Eq. (8) for each method are shown on Fig. 2. It shows that for noise un
1.0 pixel, the quasi-linear and the nonlinear methods give very close results. It also shi
the efficiency of the quasi-linear method in comparison with the standard linear mett
described in [1]. Furthermore it is faster: depending on the scene it is usually two to th
times faster than the nonlinear algorithm.

The convergence rates for varying levels of noise and number of points in the sc
are studied for different methods: (i) the quasi-linear estimator (ii) the nonlinear optimiz
tion method initialized with the standard linear estimator and (iii) the nonlinear optimiz
tion method initialized with the quasi-linear estimator. Results are reported respectively
Figs. 3, 4, and 5.

It shows that when the nonlinear optimization method is initialized with the quasi-line
estimator, it always converges (as well as the quasi-linear estimator itself). On the contr
when it is initialized with the standard linear estimator, it often falls in local minima. |
can be explained by the fact that the quasi-linear estimator minimizes the same error a:

nb. points | noise level |

oo 02 065 08 1.0 12 16 |

10 pts ' 100 100 100 100 100 100 99 l

100 pts | 100 100 100 100 100 100 100 |

|
|
|
| s0pts | 100 100 100 100 100 100 100 |
|
|

300 pts | 100 100 100 100 100 100 100 I

FIG. 3. Convergence rates (in %) of the quasi-linear estimator.
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nb. points | noise level |

| 00 02 05 08 1.0 12 16 |

10pts | 100 100 87 68 68 63 61 |

100 pts | 100 100 99 99 89 91 85 |

|
l
|
| 30pts | 100 100 97 92 8 86 80 |
|
I

300 pts | 100 100 100 100 100 100 100 |

FIG. 4. Convergence rates (in %) of the nonlinear method initialized with a standard linear estimator.

nonlinear optimization method, i.e., a geometric error in image space, whereas the lir
estimator minimizes an algebraic error.

Therefore the quasi-linear estimator is a good compromise between accuracy and col
tation speed, fits very well with the estimation step of inner loops in robust algorithms li
RANSAC or LMedS, and provides a good initialization for nonlinear optimization method

4. DETECTION OF MOVING OBJECTS

LetPs, ..., Ps, ..., Py be asequence of image pairs gathered with a stereo rigdd_et
be the projective motion associated with the sensor's egomotion between the image |
Ps andPs, 1.

The projective motionkl are estimated with the robust estimator described in Section
In order to discriminate between static scene points from moving scene points we comp
for each tracked point, a global error over the whole sequence.

Let M be a 3-D point tracked through the pafsto P;. For eactt,i <t < j, Eq. (8)
defines the discrepan®(s) between the true motion dfl and the motion predicted by
Hs. In other words, large(s) indicates thatM is not a static point. In order to robustify
this motion measure, we take the aver&gef €?(s) over the image pairs in whicNl is
observed, that is,

3 1
6‘2 = mzez(s).

s=i

The observed scene points are then divided into two categories. Rbsush thag < t/
are selected as static point$ ljeing the threshold defined in Section 3). The other point
are considered as nonstatic points.

[ nb. points ] noise level I

| 0.0 02 05 08 1.0 12 1.6 |

10pts | 100 100 100 100 100 100 100 |

100 pts | 100 100 100 100 100 100 100 |

|
|
| 30pts | 100 100 100 100 100 100 100 |
|
I

300 pts | 100 100 100 100 100 100 100 |

FIG.5. Convergence rates (in %) of the nonlinear method initialized with the quasi-linear estimator.
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However, these nonstatic points have two interpretations. On one hand they may bel
to moving scene objects and on the other hand they may be “real outliers,” i.e., mismatc
and/or mistracked points.

In order to further classify the nonstatic points into points belonging to various movir
objects and into real outliers we suggest to use data classification techniques. Gene
speaking, such a technique groups the available data into several classes based on
metric. The data that we want to classify are the scene points denokédlst My, ..., M,
be the nonstatic points found by the robust method just described.

The segmentation algorithm we propose here consists in grouping in the same clu
points being close to each other in all the sequence. However, since the 3-D reconstru
is projective one cannot define a metric in 3-D space. Therefore the distance we prog
between pointd is based on image point distance.

Let x«(S) andx,(s) be the image projections &l respectively onto the left and right
images ofPs. If M1 andM; are two points appearing together through the pgjreo P;,
we define the distance between these two points as

8(Ma, Mz) = max(d((s). xa(s)). d(x3(s). x5(5)).

This metric encapsulates the property that points which belong to the same moving ob
are close to each other in all the images in which they appear together.

In addition to the point-to-point metric defined above the classification algorithm nee
a cluster-to-cluster metric. The latter is defined as a single linkage distance,

A(Cy, Co) = Mleg'ﬂzecf('\/'l, M), (11)
whereC denotes a cluster.

Therefore, the goal is to group within the same cluster those points which are cl
together and to throw out isolated points. Among the many data classification technig
available, the hierarchical clustering algorithm [10] with single linkage is well adapted f
our purpose for several reasons. First, it does not need to know in advance the final nur
of clusters to be found, which means it does not need to know, a priori, either the numbe
moving objects present in the scene, or the number of real outliers. Second, it uses a sil
stop procedure based on the minimum distance allowed between two clusters. Third,
method is fast because the cluster to cluster distances are efficiently updated.

At initialization there are as many clusters as there are points to be grouped. At e
iteration of the algorithm the distances between all clusters are evaluated and the
clusters for which this distance is the smallest are merged together. The merging of clus
is thus repeated until the smallest distance is higher than a threghivid worth noticing
that if a dense matching is performed, a small valumn be confidently chosen.

Based on location only, the segmentation algorithm segments the scene into dense mc
areas and contrary to many approaches it is able to successfully segment scenes i
presence of nonrigid objects.

5. TRACKING WITH A RIGID STEREO RIG

In order to obtain point correspondences between many views, we propose a tracl
algorithm that makes it possible, from a sequence of image pairs gathered with a sterec
to (i) extract and track points along the sequence and (ii) incrementally estimate the epip
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FIG. 6. Points tracked between two successive image pairs.

geometry of the camera pair. The points that are considered by the tracking algorithm
the interest points: these points are detected in all the images of the sequence by a ¢
detector [4].

A key idea of the approach is that, using a rigid rig, the epipolar geometry is const
over time and can therefore be estimated using a sequence of image pairs. The estim
of the epipolar geometry is well known to be subject to degeneracies when estime
from a single pair of images. Using several pairs of images enables to remove most of tl
degeneracies and therefore makes the computation of the epipolar geometry more stabl
accurate.

The tracking algorithm is described below and illustrated in Fig. 6.

Let S; be a set of left-to-right correspondences associated with the imagepdinese
left-to-right correspondences are the projections of scene pdints. . , My that we want
to track through the sequence.

Therefore the tracking algorithm consists in finding the Sgtsf left-to-right correspon-
dences associated with the projections of the scene pdints. ., My onto the image pair
Ps.

The tracking is performed using an iterative approaghis obtained using the robust
estimator [24] and for a, Ss,1 is derived fromSs in the following way:

e For each match in image pa# we look for all the potential matches in image pair
Ss+1 such that (i) the four points associated with these two matches have almost ide
cal photometric profiles, and (ii) the epipolar constraint is verified. Based on these t
constraints it is possible to select the best matchiin .

e A robust computation of the epipolar geometry is performed usihghe left-to-
right correspondences available fréin . . ., Ss11 with the robust estimator [24]. This step
allows refinement of the estimation of the epipolar geometry over time.

e Ssi1isthen updated: the correspondences which no longer satisfy the newly estim:
epipolar geometry are removed (this case mostly arises when these points have been wr
matched in the previous part of the sequence).
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FIG. 7. Stereo sequence 1. Each column is an image pair of the sequence.

The tracking process then goes on until the end of the sequence and enables the
robustly:

e compute the epipolar geometry of the camera pair;
e match and track points between successive image pairs.

Moreover, an important feature of the tracking algorithm is that it makes possible the
timation of the accuracy of point locatienintroduced in Section 3.1 for the computation of
the thresholdg andt;. o is computed as the standard deviation of the errors of all the left-tc
right correspondences of the sequence with respect to the epipolar geometry of the stere

6. EXPERIMENTS WITH REAL DATA

This section describes two experiments using real images. The same stereo rig has
used for each experiment. It consists of two similar cameras. The baseline is about 30 cm
the relative angle between optical axes is betweeteth@ 10.0 (convergent configuration).
The stereo rig has been moved while capturing sequences and the following proce:
applied to each sequence:

e Points are extracted and tracked with the tracking algorithm and the epipolar geom:
of the stereo rig is estimated;

e The projective motionsls associated with the sensor’'s egomotion are estimated;

e Aglobal erroréis computed for each tracked point with respect tédalbnd used for
selecting static/nonstatic points;

e the segmentation of outliers into different moving objects is performed.

Both sequences involve the same static scene: a robotic laboratory. In the first seque
a single man is walking from left to right. In the second sequence, two men are walki
(both from left to right). These stereo sequences (see Figs. 7 and 8) each consist of
image pairs that can be obtained at

http://www.inrialpes.fr/movi/people/Demirdjian/

ST P P '-.’r-' P [T Py Pt --P-r" » il

VTR TRy

FIG. 8. Stereo sequence 2. Each column is an image pair of the sequence.
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FIG. 10. Evolution of the clustering at iterations 1, 30, 62, and 69 (last) respectively.
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FIG. 11. Evolution of the clustering at iterations 1, 15, 37, and 42 (last) respectively.

It can be noticed that the static scene is composed of different levels of depth (wa
car,...) and that the motions involved in the sequences are small. However, in each ex|
iment, the detection of the static points has been successful (see Fig. 9). We notice th
both sequences feet on the ground are sometimes detected as static but this can be exp
by the fact that these feet have almost not moved in the sequence.

The thresholds required for the clustering algorithm has been fixed to 30 pixels. Th
evolution from the first to the last iteration of the clustering algorithm is shown on Figs. :
and 11. We see that in each case, points belonging to the same object are gathered |
same cluster. We also notice that during the iterations of the clustering algorithm, the bigc
clusters always correspond to parts of moving objects.

7. CONCLUSION

In this paper, we have described a method of detecting moving objects with a mov
stereo rig. Our approach is divided into three steps: (i) a stereo tracking process that sil
taneously tracks points along a sequence of image pairs and robustly evaluates the epi
geometry of the stereo rig, (ii) a robieggomotiorestimation method based on 3D projective
constraints, and (iii) moving object detection using image constraints.
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We showed that, using a moving stereo rig, the detection of motion could be performe
a projective framework and therefore does not require any camera calibration. We imprc
the detection of static points in the case of small motions (i) by using RANSAC in conjur
tion with a quasilinear estimator that accurately estimates projective motions (minimizin
geometric error) and (ii) by selecting inliers/outliers with respect to a global error estima
over the whole sequence.

We introduced a segmentation based on the detection of dense moving areas an
showed that this segmentation could be performed using a classical classification &
rithm. The distance required by this algorithm has been chosen so that it benefits from
redundancy available from the multiple images of the observed sequence.

Finally, the method needs no initialization and from this, we argue that the framework p
sented here can be used in many applications requiring automatic moving object detec
such as autonomous robotics or surveillance systems.
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