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Given a sequence of image pairs we describe a method that segments the observed
scene into static and moving objects while it rejects badly matched points. We show
that, using a moving stereo rig, the detection of motion can be solved in a projec-
tive framework and therefore requires no camera calibration. Moreover the method
allows for articulated objects. First we establish the projective framework enabling
us to characterize rigid motion in projective space. This characterization is used in
conjunction with a robust estimation technique to determine egomotion. Second we
describe a method based on data classification which further considers the non-static
scene points and groups them into several moving objects. Third we introduce a
stereo-tracking algorithm that provides the point-to-point correspondences needed
by the algorithms. Finally we show some experiments involving a moving stereo
head observing both static and moving objects.c© 2000 Academic Press

1. INTRODUCTION

The detection, description, and understanding of motion from visual data are among
the most difficult and challenging problems in computer vision. At the low level, 3-D
motion must be analyzed based on the 2-D appearance and time evolution features that
are observable in images. At the high level, the 2-D motion fields previously derived must
be interpreted in terms of rigid, articulated, or deformable objects, discriminate between
objects undergoing distinct motions, estimate the motion parameters, etc.

If the visual sensor moves as well, one more difficulty is added because one has to estimate
egomotion (the motion of the visual sensor with respect to some static reference frame) in
the same time as motion associated with the observed objects.

Existing techniques for motion/egomotion discrimination and motion segmentation
roughly fall into two categories, methods using an image sequence and methods using the
stereo-motion paradigm:
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• Image sequence analysis. These methods rely either on the estimation of the optical
flow or on point-to-point correspondences. In the former case the relationship between
3-D motion of a rigid body and the observed 2-D velocities is explored. In the latter case,
such constraints as the epipolar geometry and the trifocal tensor are used. Points satisfying
the same type of constraint are assumed to belong to the same rigid object. Therefore,
the problem of motion segmentation becomes the problem of grouping together points
satisfying the same constraint [9, 13, 15, 17, 19]. For example, in [13] this grouping is
carried out by a clustering algorithm which uses a posteriori likelihood maximization.
Other approaches use such techniques as the Hough transform [17] or robust estimators
which are used incrementally [19].
• Stereo-motion analysis. These methods combine the relationship between 3-D motion

and image velocities described above with stereo constraints such as the epipolar constraint
in order to disambiguate the inherent ambiguity associated with optical flow [11, 21–23].

In this paper we address both the problem of egomotion/motion discrimination and the
problem of motion segmentation. The approach is based on the stereo-motion paradigm.
The visual sensor consists of a pair of cameras rigidly attached to each other—a stereo
rig (see Fig. 1). The geometry of this sensor remains rigid over time. This allows one to
represent the motion of the sensor (egomotion) with a 3-D projective transformation which
is conjugated to a 3-D rigid transformation. Because of this relationship between projective
and rigid transformations, metric calibration of the stereo rig becomes an irrelevant issue
[7]. 3-D projective transformations are represented mathematically by 4× 4 homogeneous
full rank matrices, or homographies. The estimation of such a homography is based on the
fact that a moving rig observes a static scene. When both the rig is moving and the scene is
not rigid (is composed of both static and moving objects), current homography estimation
methods cannot be applied any more [1].

FIG. 1. Problem: a moving stereo rig observing a static scene.



MOTION–EGOMOTION DISCRIMINATION 55

Therefore, the main contribution of this paper is a method for estimating 3-D projec-
tive transformations associated with the sensor’s motion when the observed scene is com-
posed of both static and moving objects. The output of this resolution technique consists in
the estimation of a homography associated with egomotion as well as the classification of
the observed 2-D point correspondences into a set of inliers and a set of outliers. The inliers
are compatible with the observed egomotion while the outliers are not. Therefore, the latter
are farther examined by a hierarchical clustering algorithm which operated in the image
plane and over a long sequence of image pairs.

Organization

The remainder of this paper is organized as follows. The projective motion is defined
in Section 2. In Section 3 we describe a robust estimator that enables to estimate the
projective motion associated with the sensor’s egomotion and the motion segmentation
algorithm is described in Section 4. The stereo tracking algorithm that provides point-
to-point correspondences through a sequence of image pairs is presented in Section 5.
In Section 6 we show some experiments with real data and finally the conclusions are
summarized in Section 7.

2. PROJECTIVE MOTION OF A STEREO CAMERA PAIR

Consider a 3-D pointM which is observed by a stereorig from two different positions—
positionx and positiony. Let (ux, vx), (u′x, v

′
x) be the image coordinates of the projections

of M when the rig is in positionx and (uy, vy) and (u′y, v
′
y) be the image coordinates of the

projections of the same point when the rig is in positiony. The associated homogeneous
coordinates of these points arex= (ux vx 1)>, x′ = (u′x v

′
x 1)> andy= (uy vy 1)>, y′ =

(u′y v
′
y 1)>, wherev> denotes the transpose ofv.

Throughout this paper it is assumed that the epipolar geometry of the stereo rig is known.
Since the stereo rig has a fixed geometry it is possible to associate a 3-D projective basis to
the rig and when the rig moves, this projective basisphysicallymoves with the rig. Therefore
there is a projective basis associated with each position of the rig. LetP andP′ be the 3× 4
projection matrices associated with the left and right cameras. According to what has just
been said, these matrices are fixed. The following equations hold,

{
x ' PX

x′ ' P′X
and

{
y ' PY

y′ ' P′Y,
(1)

where “'” denotes projective equality.X and Y are 4-vectors denoting the projective
coordinates of the physical pointM in the 3-D projective basisBx associated with position
x and the 3-D projective basisBy associated with positiony.

Equation (1) can be solved using the triangulation technique introduced by Hartley and
Sturm [6] and which allowsX andY to be estimated. The relationship betweenX andY is

µY=HX, (2)

whereµ is an unknown scale factor andH is a 4× 4 full-rank matrix representing a projec-
tive transformation of the 3-D projective space. This matrix is defined up to a scale factor
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and therefore it has 15 degrees of freedom associated with it. Equation (2) provides three
linear constraints in the entries ofH and therefore with five points in general position it
is possible to solve linearly forH. However, in [1] and in [7] it was pointed out that the
solution obtained with linear resolution techniques is quite noisesensitive and at least 15
to 20 points are required in order to stabilize the numerical conditioning of the associated
measurement matrix.

When the stereo rig has fixed geometry and undergoes rigid motion, it has been shown
in [2] that the projective transformationH is conjugated to a rigid transformationD,

H ' H−1
u DHu,

whereHu denotes the projective-to-metric upgrade. The above equation has been thoroughly
studied in [8, 16].H can be interpreted as a projective representation of the motion undergone
by the camera pair—projective motion—and may well be considered as an extension of
affine motion [12] to the 3-D projective space:

DEFINITION 2.1. Consider a camera pair with known epipolar geometry which observes
a 3-D rigid scene while it moves. The projective transformation between two projective re-
constructions of the same 3-D scene obtained before and after the motion is called projective
motion.

In theory, one can define projective motion without making the assumption that the stereo
rig has a fixed geometry. In practice, however, such an assumption is very useful. Indeed,
the estimation of the epipolar geometry can be incrementally improved as new image pairs
provide new left-to-right point correspondences.

3. ROBUST ESTIMATION OF PROJECTIVE MOTION

In order to estimate projective motion one may consider Eq. (2) form ≥ 5 point corre-
spondences. We obtain 3m linear equations which can be solved to determine the entries of
H. However, such a linear estimation method has two major drawbacks: (i) the method can
deal neither with outliers (mismatched points) nor with nonrigid scenes (scenes that contain
both static and moving objects), and (ii) the method minimizes an algebraic distance and
hence it gives poor results for badly conditioned data. In particular, form= 5 the method
is very sensitive to noise [1].

To overcome these two drawbacks we introduce a new method based on robust estimation
on one side and on minimizing an Euclidean error on the other side.

3.1. Robust Methods in Computer Vision

Robust regression methods are widely used to solve various vision problems such as esti-
mation of epipolar geometry [18, 24] and estimation of the trifocal tensor [20]. Commonly
used robust methods are M-estimators, least-median-squares (LMedS) [14], and random
sample consensus (RANSAC) [3].

We wish to apply robust methods in order to compute projective motionH in the presence
of outliers and/or non static scenes. Moreover, we would like to deal with situations where
only 50% of the points composing the scene belong to static objects. Therefore we must
choose a robust method which tolerates up to 50% outliers. LMedS and RANSAC are
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the only methods tolerating such a rate of outliers. At first glance they are very similar.
Data subsets are selected by a random sampling process. For each such subset a solution is
computed and a criterion must be estimated over the entire data set. The solution yielding
the best criterion is finally kept and used in a nonlinear process to refine both the solution
and the sets of inliers/outliers. LMedS minimizes the median of the squares of the errors
while RANSAC maximizes the number of inliers. Even if the criteria used by these two
methods are quite different, in most practical applications, comparable results are obtained
with both methods.

The main difference between LMedS and RANSAC resides in the outlier rejection strat-
egy being used. The user must supply RANSAC with a threshold value while LMedS does
not require such a threshold. Provided that this threshold is correctly selected, this feature
enables RANSAC (i) to be more efficient in the presence of nonhomogeneous noise, (ii) to
allow for 50% outliers and above, and (iii) to be more efficient because it can quit the
random sampling loop as soon as a consistent solution is found. More detailed comparison/
description of these algorithms can be found in [14].

In the framework of our application, the outliers may have two interpretations: they may
either belong to independently moving objects or be “real outliers” (i.e., mismatched and/or
mistracked points). As the stereo rig is observing a continuous flow of images, that means
that the observed motions of independent objects may be small. In this case, we observe
that LMedS often tends to choose an average model of all motions. As a result the set of
selected inliers often contains some points of the moving objects and the set of outliers
contains some points of the static scene.

The RANSAC algorithm performs better than LMedS in the framework of our application
provided that the threshold for inliers/outliers selectiontc (in the inner loop of RANSAC)
is carefully chosen. As a consequence we chose this algorithm for the estimation of the
projective motionH.

The choice of the thresholdtc is crucial for the success of RANSAC and is chosen such
that t2

c = 6.0σ 2 whereσ is the accuracy of the point location found by the stereo tracker
described in Section 5. This threshold is observed to be often underestimated: the correct
dominant projective motion is always found (contrary to what may happen using LMedS)
but some points of the static scene may not be selected as inliers. However a completion
is performed at the end of RANSAC by using a thresholdt ′c slightly higher thantc (with
6.0σ 2≤ t ′

2

c ≤ 9.0σ 2). Using all the successive dominant motions in a sequence and averag-
ing the errors over time increases the performances of the robust algorithm (see Section 4).

Moreover the number of random samplesN must be sufficiently large to guarantee that
the probability of selecting a good subset is high enough, say this probabilityγ must satisfy
γ ≥ 0.999. The theoretical expression of this probability isγ = 1− (1− (1− εout)p)N ,
wherep is the number of points that are necessary to compute a solution (p= 5 in our case)
andεout is the number of outliers that are tolerated (εout= 0.5 in our case). By substituting
all these numerical values in the above formula we obtainN= 220 as the minimum number
of samples. However the expression ofγ does not take into account the presence of noise
on the inliers and a value of the order of 5 to 10 times larger than the theoretical one should
be used forN. Hence for the robust method to be effective, the inner loop of the algorithm
must be iterated at least 1000 times.

Moreover, remember that outliers have two physical meanings: they may well correspond
either to mismatches or to moving objects. Therefore we must be able to distinguish between
inliers and small motions. To conclude, the estimation step in the random sampling loop
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must be fast because it has to be run many times and must provide an estimation ofH as
accurate as possible.

3.2. A Quasi-linear Estimator

Let us devise an estimator forH that minimizes an Euclidean distance. In principle,
such an estimator is nonlinear because of the nonlinear nature of the pinhole camera model.
However, as described below, we have been able to devise a method which starts with a linear
estimate ofH and which incrementally and linearly updates the Euclidean error. Therefore,
this method combines the efficiency of a linear estimator with the accuracy of a nonlinear
one. In practice it converges in a few iterations (2 to 3) and the solution thus obtained is very
close to the solution that would have been obtained with a standard nonlinear minimization
method (see Fig. 2).

The method described below can deal with a number of point matches equal or greater
than 5. Within the robust method described above it is however desirable to use the minimal
set of points—5 points in our case.

With the notations already introduced in Sect. 2 letX be the vector of 3-D projective
coordinates obtained by reconstruction from its projectionsx andx′ onto the first image
pair. MatrixH maps these coordinates ontoY such thatY=µHX, and matricesP andP′

reproject these coordinates onto the second image pair. Therefore we have the following
estimated image points:

α ŷ = PHX (3)

α′ ŷ′ = P′HX. (4)

The 3-vectorŝy and ŷ′ are defined up to a scale factor,α andα′. By dividing the first and
second components of these vectors with their third component we get estimated image
positions as opposed toy and y′ which are measured image positions. The Euclidean
distance between the measured point positiony and the estimated point positionŷ is

ε2 = d2(ŷ, y) =
(

ûy

t̂y
− uy

)2

+
(
v̂y

t̂y
− vy

)2

, (5)

with ŷ> = (ûy v̂y t̂y) andy> = (uy vy 1).
Let us write matrixH ash, a vector inR16 such thath= (H11 H12 . . . H44)> = (h1 . . .

h16)>

By substituting Eq. (3) into Eq. (5) and with the notation

w = 1

t̂y
= 1

(PHX)(3)
, (6)

we obtain for the Euclidean error for the left image

ε2 = w2

(
16∑
j=1

aj h j

)2

+ w2

(
16∑
j=1

bj h j

)2

, (7)
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where theaj and thebj coefficients depend ony, X, andP. Since we deal with an image
pair the reprojected Euclidean error is

e2 = ε2+ ε′2. (8)

For m point matches we obtain the following criterion:

E =
m∑

i=1

e2
i (9)

=
m∑

i=1

(
w2

i

(
16∑
j=1

ai j h j

)2

+ w2
i

(
16∑
j=1

bi j h j

)2

+w′2i
(

16∑
j=1

a′i j h j

)2

+ w′2i
(

16∑
j=1

b′i j h j

)2)
. (10)

In order to find the matrixH or, equivalently, the vectorh which minimizes the criterion
E of Eq. (10) we suggest the following incremental estimation method (notice that, by
definition, the parameterswi andw′i are dependent ofH):

1. Initialization: Letwi (0)= 1 andw′i (0)= 1. EstimateH(0) using Eq. (6).
2. Evaluatethe parameterswi (k+ 1) andw′i (k+ 1) using the current solution forH(k),

i.e., Eq. (6).
3. Minimize the criterionE(k+ 1) of Eq. (10) using standard weighted linear least-

squares to estimateH(k+ 1).
4. Stop test: When |E(k+ 1)− E(k)|

E(k+ 1)+ E(k) <ε then stop, else return to step 2. Here we chose

ε= 10−4.

The quasi-linear estimator requires low cost computation because each iteration of the
loop only involves standard weighted linear least-squares (based, in practice, on the singular
value decomposition technique). Moreover the quasi-linear estimator generally converges
in two or three iterations.

Furthermore the quasi-linear estimator minimizes geometric error and therefore it is less
noise-sensitive than standard linear estimators [1] and appears to be well adapted when
used in the inner loop of RANSAC: the error function associated with the inliers/outliers
selection being defined by Eq. (8).

3.3. Experiments with Synthetic Data

Experiments with simulated data are carried out in order to compare the quality of the
results.

A synthetic 3-D scene consisting of 140 points is generated and placed at two different
locations in the 3-D space. The 3-D points of each position are projected onto the cameras
of a virtual stereo rig and Gaussian noise with varying standard deviation (from 0.0 to 1.6
pixels) is added to the image point locations. Data are normalized as described in [5] and
three different methods are applied: the quasi-linear estimator, a standard linear method [1]
and a classical nonlinear optimization method, such as Levenberg–Marquardt, initialized
with the quasi-linear estimator.
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FIG. 2. Comparison between the different methods in the presence of image Gaussian noise.

This process has been performed 100 times. The mean and standard deviation of the
error function in Eq. (8) for each method are shown on Fig. 2. It shows that for noise under
1.0 pixel, the quasi-linear and the nonlinear methods give very close results. It also shows
the efficiency of the quasi-linear method in comparison with the standard linear method
described in [1]. Furthermore it is faster: depending on the scene it is usually two to three
times faster than the nonlinear algorithm.

The convergence rates for varying levels of noise and number of points in the scene
are studied for different methods: (i) the quasi-linear estimator (ii) the nonlinear optimiza-
tion method initialized with the standard linear estimator and (iii) the nonlinear optimiza-
tion method initialized with the quasi-linear estimator. Results are reported respectively in
Figs. 3, 4, and 5.

It shows that when the nonlinear optimization method is initialized with the quasi-linear
estimator, it always converges (as well as the quasi-linear estimator itself). On the contrary,
when it is initialized with the standard linear estimator, it often falls in local minima. It
can be explained by the fact that the quasi-linear estimator minimizes the same error as the

FIG. 3. Convergence rates (in %) of the quasi-linear estimator.
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FIG. 4. Convergence rates (in %) of the nonlinear method initialized with a standard linear estimator.

nonlinear optimization method, i.e., a geometric error in image space, whereas the linear
estimator minimizes an algebraic error.

Therefore the quasi-linear estimator is a good compromise between accuracy and compu-
tation speed, fits very well with the estimation step of inner loops in robust algorithms like
RANSAC or LMedS, and provides a good initialization for nonlinear optimization methods.

4. DETECTION OF MOVING OBJECTS

LetP1, . . . ,Ps, . . . ,Pn be a sequence of image pairs gathered with a stereo rig. LetHs

be the projective motion associated with the sensor’s egomotion between the image pairs
Ps andPs+1.

The projective motionsHs are estimated with the robust estimator described in Section 3.
In order to discriminate between static scene points from moving scene points we compute,
for each tracked point, a global error over the whole sequence.

Let M be a 3-D point tracked through the pairsPi toP j . For eacht , i ≤ t ≤ j , Eq. (8)
defines the discrepancye(s) between the true motion ofM and the motion predicted by
Hs. In other words, largee(s) indicates thatM is not a static point. In order to robustify
this motion measure, we take the averageẽ2 of e2(s) over the image pairs in whichM is
observed, that is,

ẽ2 = 1

j − i + 1

j∑
s=i

e2(s).

The observed scene points are then divided into two categories. PointsM such that̃e≤ t ′c
are selected as static points (t ′c being the threshold defined in Section 3). The other points
are considered as nonstatic points.

FIG. 5. Convergence rates (in %) of the nonlinear method initialized with the quasi-linear estimator.
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However, these nonstatic points have two interpretations. On one hand they may belong
to moving scene objects and on the other hand they may be “real outliers,” i.e., mismatched
and/or mistracked points.

In order to further classify the nonstatic points into points belonging to various moving
objects and into real outliers we suggest to use data classification techniques. Generally
speaking, such a technique groups the available data into several classes based on some
metric. The data that we want to classify are the scene points denoted byM . Let M1, . . . ,Mn

be the nonstatic points found by the robust method just described.
The segmentation algorithm we propose here consists in grouping in the same cluster

points being close to each other in all the sequence. However, since the 3-D reconstruction
is projective one cannot define a metric in 3-D space. Therefore the distance we propose
between pointsM is based on image point distance.

Let xk(s) andx′k(s) be the image projections ofMk respectively onto the left and right
images ofPs. If M1 andM2 are two points appearing together through the pairsPi to P j ,
we define the distance between these two points as

δ(M1,M2) = max
i≤s≤ j
{d(x1(s), x2(s)), d(x′1(s), x′2(s))}.

This metric encapsulates the property that points which belong to the same moving object
are close to each other in all the images in which they appear together.

In addition to the point-to-point metric defined above the classification algorithm needs
a cluster-to-cluster metric. The latter is defined as a single linkage distance,

1(C1, C2) = min
M1∈C1,M2∈C2

δ(M1,M2), (11)

whereC denotes a cluster.
Therefore, the goal is to group within the same cluster those points which are close

together and to throw out isolated points. Among the many data classification techniques
available, the hierarchical clustering algorithm [10] with single linkage is well adapted for
our purpose for several reasons. First, it does not need to know in advance the final number
of clusters to be found, which means it does not need to know, a priori, either the number of
moving objects present in the scene, or the number of real outliers. Second, it uses a simple
stop procedure based on the minimum distance allowed between two clusters. Third, the
method is fast because the cluster to cluster distances are efficiently updated.

At initialization there are as many clusters as there are points to be grouped. At each
iteration of the algorithm the distances between all clusters are evaluated and the two
clusters for which this distance is the smallest are merged together. The merging of clusters
is thus repeated until the smallest distance is higher than a thresholdts. It is worth noticing
that if a dense matching is performed, a small valuets can be confidently chosen.

Based on location only, the segmentation algorithm segments the scene into dense moving
areas and contrary to many approaches it is able to successfully segment scenes in the
presence of nonrigid objects.

5. TRACKING WITH A RIGID STEREO RIG

In order to obtain point correspondences between many views, we propose a tracking
algorithm that makes it possible, from a sequence of image pairs gathered with a stereo rig,
to (i) extract and track points along the sequence and (ii) incrementally estimate the epipolar
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FIG. 6. Points tracked between two successive image pairs.

geometry of the camera pair. The points that are considered by the tracking algorithm are
the interest points: these points are detected in all the images of the sequence by a corner
detector [4].

A key idea of the approach is that, using a rigid rig, the epipolar geometry is constant
over time and can therefore be estimated using a sequence of image pairs. The estimation
of the epipolar geometry is well known to be subject to degeneracies when estimated
from a single pair of images. Using several pairs of images enables to remove most of these
degeneracies and therefore makes the computation of the epipolar geometry more stable and
accurate.

The tracking algorithm is described below and illustrated in Fig. 6.
LetS1 be a set of left-to-right correspondences associated with the image pairP1. These

left-to-right correspondences are the projections of scene pointsM1, . . . ,MN that we want
to track through the sequence.

Therefore the tracking algorithm consists in finding the setsSs of left-to-right correspon-
dences associated with the projections of the scene pointsM1, . . . ,MN onto the image pair
Ps.

The tracking is performed using an iterative approach.S1 is obtained using the robust
estimator [24] and for alls, Ss+1 is derived fromSs in the following way:

• For each match in image pairSs we look for all the potential matches in image pair
Ss+1 such that (i) the four points associated with these two matches have almost identi-
cal photometric profiles, and (ii) the epipolar constraint is verified. Based on these two
constraints it is possible to select the best match inSs+1.
• A robust computation of the epipolar geometry is performed usingall the left-to-

right correspondences available fromS1, . . . ,Ss+1 with the robust estimator [24]. This step
allows refinement of the estimation of the epipolar geometry over time.
• Ss+1 is then updated: the correspondences which no longer satisfy the newly estimated

epipolar geometry are removed (this case mostly arises when these points have been wrongly
matched in the previous part of the sequence).



64 DEMIRDJIAN AND HORAUD

FIG. 7. Stereo sequence 1. Each column is an image pair of the sequence.

The tracking process then goes on until the end of the sequence and enables then to
robustly:

• compute the epipolar geometry of the camera pair;
• match and track points between successive image pairs.

Moreover, an important feature of the tracking algorithm is that it makes possible the es-
timation of the accuracy of point locationσ introduced in Section 3.1 for the computation of
the thresholdstc andt ′c.σ is computed as the standard deviation of the errors of all the left-to-
right correspondences of the sequence with respect to the epipolar geometry of the stereo rig.

6. EXPERIMENTS WITH REAL DATA

This section describes two experiments using real images. The same stereo rig has been
used for each experiment. It consists of two similar cameras. The baseline is about 30 cm and
the relative angle between optical axes is between 5.0◦ and 10.0◦ (convergent configuration).
The stereo rig has been moved while capturing sequences and the following process is
applied to each sequence:

• Points are extracted and tracked with the tracking algorithm and the epipolar geometry
of the stereo rig is estimated;
• The projective motionsHs associated with the sensor’s egomotion are estimated;
• A global errorẽ is computed for each tracked point with respect to allHs and used for

selecting static/nonstatic points;
• the segmentation of outliers into different moving objects is performed.

Both sequences involve the same static scene: a robotic laboratory. In the first sequence,
a single man is walking from left to right. In the second sequence, two men are walking
(both from left to right). These stereo sequences (see Figs. 7 and 8) each consist of nine
image pairs that can be obtained at

http://www.inrialpes.fr/movi/people/Demirdjian/

FIG. 8. Stereo sequence 2. Each column is an image pair of the sequence.
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FIG. 9. Detection of static points in sequences 1 and 2.

FIG. 10. Evolution of the clustering at iterations 1, 30, 62, and 69 (last) respectively.
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FIG. 11. Evolution of the clustering at iterations 1, 15, 37, and 42 (last) respectively.

It can be noticed that the static scene is composed of different levels of depth (walls,
car,. . .) and that the motions involved in the sequences are small. However, in each exper-
iment, the detection of the static points has been successful (see Fig. 9). We notice that in
both sequences feet on the ground are sometimes detected as static but this can be explained
by the fact that these feet have almost not moved in the sequence.

The thresholdts required for the clustering algorithm has been fixed to 30 pixels. The
evolution from the first to the last iteration of the clustering algorithm is shown on Figs. 10
and 11. We see that in each case, points belonging to the same object are gathered in the
same cluster. We also notice that during the iterations of the clustering algorithm, the biggest
clusters always correspond to parts of moving objects.

7. CONCLUSION

In this paper, we have described a method of detecting moving objects with a moving
stereo rig. Our approach is divided into three steps: (i) a stereo tracking process that simul-
taneously tracks points along a sequence of image pairs and robustly evaluates the epipolar
geometry of the stereo rig, (ii) a robustegomotionestimation method based on 3D projective
constraints, and (iii) moving object detection using image constraints.
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We showed that, using a moving stereo rig, the detection of motion could be performed in
a projective framework and therefore does not require any camera calibration. We improved
the detection of static points in the case of small motions (i) by using RANSAC in conjunc-
tion with a quasilinear estimator that accurately estimates projective motions (minimizing a
geometric error) and (ii) by selecting inliers/outliers with respect to a global error estimated
over the whole sequence.

We introduced a segmentation based on the detection of dense moving areas and we
showed that this segmentation could be performed using a classical classification algo-
rithm. The distance required by this algorithm has been chosen so that it benefits from the
redundancy available from the multiple images of the observed sequence.

Finally, the method needs no initialization and from this, we argue that the framework pre-
sented here can be used in many applications requiring automatic moving object detection,
such as autonomous robotics or surveillance systems.
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