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An important issue in the realization of an autonomous robot with stereoscopic
vision is the control of vergence. Together with version, it determines uniquely the
position of the fixation point in space. Vergence control is directly related to both
depth perception andbinocular fusion. Previous works in this field employed ei-
ther a measure of correlation of stereo images or some kind of disparity-related
estimate. In this paper, we present a new method of extracting a global dispar-
ity measure for vergence control, which does not require a priori segmentation
of the object of interest. Our method uses images acquired by retina-like sensors
and, therefore, the computation is performed in the log-polar plane. The technique
we present here is: (i) global, in the sense that it is an integral measure over the
whole image, (ii) computationally inexpensive, considering that the goal was to use
it in the robot control loop rather than to accurately measure some 3D world fea-
tures. Moreover, the proposed technique is robust and independent of the average
illumination as well as of other features of the target such as size, shape, and di-
rection of motion. It provides a precise and linear estimate of the vergence error,
which is the only requirement from the control point of view. Several experimen-
tal results on a real robotic setup demonstrate the effectiveness of the proposed
technique. c© 2001 Academic Press
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1. INTRODUCTION

In building a robotic stereo head, an extremely important degree of freedom is represented
by vergence. Given a stereoscopic vision system (Fig. 1), the vergence angle, together with
version and tilt angles, describes uniquely the fixation point in space. The problem we are
dealing with here is controlling the vergence angle only with the assumption that other
subsystems maintain the object of interest close to the image center. For instance, we could
imagine a tracking module, which deals with the problem of following the target in space
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FIG. 1. Stereoscopic vision system. The version (ϑp) and vergence (ϑv) angles are shown.

(by controlling version and tilt) or a binocular saccade-like control to quickly foveate a
possibly interesting target [1].

If vergence could be controlled effectively, several advantages would arise in subsequent
image processing. These include easier fusion of stereo images in one “cyclopean image”
and easier figure–ground segmentation (e.g., by means of zero disparity filters [2]). Of
course, if a tracked object is stable in the retinas, further image processing is facilitated.
Indeed, it is not just a coincidence that most of the biological stereoscopic vision systems in
the higher branches of the evolutionary tree possess a developed and specialized vergence
control system [3]. If we consider biological systems, several kinds of disparity exist (hori-
zontal, vertical, and rotational) in order to implement horizontal and cyclo-vergence [4]. In
this paper only the horizontal component is considered, which is the most relevant for the
control of the vergence angle, in the hypothesis that the other d.o.f. are fixed. Maintaining
a correct vergence angle should not be seen as a goal in itself but as a way of improving
the performance and robustness of successive visual computation. Particularly relevant in
this respect is the intrinsic limit introduced by a correct binocular fusion in the computa-
tion of binocular disparity and 3D feature extraction. Vergence angle, moreover, provides
a measure of absolute distance, even if limited to a point in space, as well as a reference
point in the environment [5]. Therefore, a general principle is that vergence control should
be implemented, keeping in mind its further use by the whole system [6].

In the implementation presented here we consider “only” disparity measure, which, even
if not the only source of information useful for vergence control [7], is possibly the most
direct and relevant. Disparity estimation has been performed according to several techniques.
These are based either on correlation [8–10], matching [11, 12], phase difference [13, 14],
or Bayesian methods [15, 16]. Despite this big variety of disparity estimation methods,
examples employing log-polar images are quite occasional [17–19]. The reason is the
complex geometrical layout of log-polar images, which apparently is not well suited for
disparity computation. Log-polar images, however, are ideal for vergence control tasks. They
provide high resolution in the fovea, where the target should be located, and a wide field of
view at the same time [20]. These features, along with a computationally simple mapping
technique used for disparity estimation, allows real-time performance to be achieved with
high accuracy.
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The experimental results reported in order to show the feasibility of the approach have
been carried out with one main goal in mind: to demonstrate that horizontal disparity alone
allows an efficient and robust vergence control, assuming that vertical, torsional, and focus
degrees of freedom (df ) are fixed. The paper is organized as follows. The essentials of
log-polar images are given in Section 2. Several techniques, which have been applied for
vergence control, are discussed in Section 3. The proposed disparity estimate technique is
extensively described in Section 4. In Section 5, the application of the proposed technique
for vergence control is presented. Section 6 contains the experimental results and, finally,
Section 7 contains some concluding remarks.

2. LOG-POLAR IMAGES

Studies on the primate visual pathways from the retina to the visual cortex have shown
that the geometrical layout follows an almost regular topographic arrangement [21–23].
These results can be summarized as follows:

• The distribution of the photoreceptors in the retina is not uniform. They lay more
densely in the central region called fovea, while they are sparser in the periphery. Conse-
quently, the resolution also decreases, moving away from the fovea toward the periphery.
It has a radial symmetry, which can be approximated by a polar distribution.
• The projection of the photoreceptors array to the primary visual cortex can be well

approximated by a logarithmic-polar (log-polar) distribution mapped onto a rectangular-
like surface (the cortex). Here the representation of the fovea is quite expanded; i.e., more
neurons are devoted to it, and the periphery is represented using a coarser resolution.

From the mathematical point of view the log-polar mapping can be expressed as a trans-
formation between the polar plane (ρ, θ ) (retinal plane), the log-polar plane (ξ, η) (cortical
plane), and the Cartesian plane (x, y) (image plane),{

η = q · θ
ξ = lna

ρ

ρ0

(1.1)

whereρ0 is the radius of the innermost circle, 1/q is the minimum angular resolution of the
log-polar layout, and (ρ, θ ) are the polar coordinates. These are related to the conventional
Cartesian reference system by: {

x = ρ cosθ
y = ρ sinθ.

(1.2)

Figure 2 illustrates the log-polar layout as derived by Eqs. (1.1) and (1.2). In particular, the
grid on the left represents a standard Cartesian image mapped according to Eq. (1.1). The
plot on the right shows the corresponding cortical image.

3. VERGENCE CONTROL

Vergence control issues have been addressed by means of several different techniques. It
is worth noting that all of them are somehow related to the estimation of 3D features. These
techniques can be classified as follows:
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FIG. 2. The log-polar transformation. (a) The log-polar layout mapped into the Cartesian space and (b) the
corresponding cortical image.

(1) segmentation techniques [11, 12, 19, 24, 25];
(2) fusion index [17, 26];
(3) direct disparity estimation [9, 27].

3.1. Segmentation Techniques

This group requires some sort of heuristics to identify the object of interest (segmentation).
The main problem, in this case, is their lack of flexibility. We would like to stress the fact
that the segmentation of the object from its background is not an easy task itself. Many of
the proposed systems do not use any direct control of the vergence angle, but they rather
control each eye separately. These approaches may, for instance, fail in the presence of
a false matching; i.e., the robot might try to follow two different targets. Moreover, in
biological systems, vergence control is a relatively low-level functionality, which does not
require an actual segmentation or recognition of the target object. On the contrary, these
techniques act at a higher level of abstraction, i.e., the object needs to be segmented and/or
recognized.

3.2. Fusion Index

This second group exploits the fact that if an object is correctly verged, the stereo images
should be very similar, at least around the fixation point. Of course, this does not hold
exactly as the two images are never the same. However, under standard conditions, such as
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typical fixation distance, optical parameters, and kinematics of robot heads, the difference
between the images is rather small. In that case, the images are said to be binocularly fused.
The goal of a vergence control system is to minimize this difference. The global index of
binocular fusion is an example of such a difference estimate. It can be computed using the
normalized correlation technique [28],

C(Il , Ir ) = 1−
∑

η,ξ (Ir (η, ξ )− µr ) · (Il (η, ξ )− µl )√∑
η,ξ (Ir (η, ξ )− µr )2 ·∑η,ξ (Il (η, ξ )− µl )2

, (1.3)

whereIr andIl are the right and left images, respectively, andµr andµl represent their mean
values, respectively.C(t) is almost invariant to changes of illumination. It is normalized
in the range [0, 1]. The normalized correlation measure can be employed in a standard
proportional control law,

θ̇ = −K · Ċ, (1.4)

whereK is a constant gain anḋθ andĊ are the first derivatives of the vergence angle and
the fusion index respectively [17, 26].

However, this approach has several drawbacks:

(1) C(t) is not a linear estimation of the angular error.
(2) C(t) is constant, if the eyes are still and the object is not moving (Ċ = 0).
(3) C(t) has minima whose values are variable with image characteristics in a nonlinear

and unpredictable fashion.

For these reasons, though feasible, the use ofC(t) in vergence control is limited.

3.3. Direct Disparity Estimation

The last group concerns the use of direct estimates of the binocular disparity. It is, in our
view, the most promising one, because it uses disparity directly. The latter can be easily
related to the vergence control error. In fact, it can be shown that binocular disparity is
related to depth, which is in turn related to the vergence angle. Consider again the situation
depicted in Fig. 1; using only the sine law, it is easy to derive

r = b
cos(ϑr ) cos(ϑl )

cos(ϑv) cos(ϑp)
, (1.5)

wherer is the distance of the fixation point from the baseline,b the baseline length,ϑr , ϑl the
eye angles,θ = ϑl − ϑr represents the vergence angle, andϑp = (ϑl − ϑr )/2 the version
(or gaze) angle. In principle, Eq. (1.5) can be used to find out the vergence angle required
to move the fixation point from one location to another.

On the other hand, disparity is related to depthz (relative to the fixation point reference
frame) by the approximate equation,

z∼= K (θ, b)

α tan(θ )
(xr − xl ), (1.6)

where K = b/sin(θ ), b is the baseline length,α is the focal length of the cameras, and
xr − xl the binocular disparity [29]. Note that Eq. (1.6) is valid only in a neighborhood of
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the fixation point. Using Eqs. (1.5) and (1.6) together, it is thus possible to link binocular
disparity to vergence error directly. Moreover, we have actually converted the problem
of estimating the vergence error in that of estimating disparity. (That is, starting from
disparity, it is possible to compute depth by using Eq. (1.6), and from depth, which in this
case represents the required motion, recover the vergence angle movement by employing
Eq. (1.5). The goal of the controller is indeed that of zeroing depth.)

Unfortunately, the direct disparity estimation approach has been undermined by some
practical difficulties. In fact, in order to reduce the computational burden, an attention region
should be selected in advance. This means that the object has to be segmented from the
background; this has been proved to be a hard task in itself. On the other hand, this is
not really an issue if we utilize log-polar images and we constrain ourselves to a global
estimate of the object disparity. Of course, there is nothing magic about the use of retina-like
sensors. However, assuming that the object of interest is close to the center of the image, its
relevance (e.g., number of “pixels”) becomes higher than that of more peripheral objects
(its projection in the log-polar plane is effectively magnified) [30].

4. DISPARITY

In order to compute disparity it is necessary to solve a correspondence problem. That is,
we have to establish which pixels on the left and right image planes map to the same point
in space. Formally, considering a standard Cartesian images case, this can be written as

d(x, y) = arg max
d
{1(Il (x, y), Ir (x + d, y))}, (1.7)

where,1 is a similarity measure for each possible shiftd ∈ [−dmax, dmax]. The similarity
measure can be either a sum of squared difference (SSD) or other criteria such as the
normalized correlation.

Assuming symmetric vergence and a simple pinhole camera model, the image and motor
coordinates systems are related by the equation,

d = 2 f · sin

(
1ϑv

2

)
, (1.8)

where1θ is the difference between the actual and the correct vergence angle (the vergence
angle with null disparity),f the camera focal length, andd the measured disparity. It is worth
noting that Eq. (1.8) is monotonic in the required domain (typically1θ ∈ [−π/2, π/2]).
Roughly speaking because the measure is well formed in Lyapunov sense ([31]) the closed
loop system will be stable even if a simple PD controller is used. Furthermore, the shift of
image pixels can be represented by a disparity operatordispcart : <3→<2, defined as

dispcart(x, y, d) ∼= (x + d, y), (1.9)

whered represents the disparity and (x, y) a point in the image plane.
By applying Eq. (1.9) to an image point (x, y), we can generate the corresponding match-

ing point at disparityd. The rationale of definingdispcart will be clear when we will deal
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with nonuniform mapping such as the log-polar one. Combining Eqs. (1.7) and (1.9) yields

d(x, y) = arg max
d
{1(Il (x, y), Ir (dispcart(x, y, d)))}, (1.10)

In a general case, in order to apply Eq. (1.10) and recover the disparity, we need to provide

(i) the disparity functiondisp, which embeds the description of the image geometry;
(ii) the similarity function1, which defines a distance measure between pixel blocks.

Considering the log-polar case, we just need to replace thedispoperator with a suitable one
for that particular topology. However, the mapping is not simple using log-polar images. A
simple horizontal shift in Cartesian coordinates is mapped to a complex curve in log-polar
coordinates. Given a (ξ, η) pair the disparity operatordisplog:<3→<2 is defined as

displog(ξ, η,d) = (ξn, ηn). (1.11)

The transformation is now given by

(
ξn

ηn

)
∼=
 1

q · arctan
[

ρ0 ·aξ · cos(η/q)
ρ0 ·aξ · sin(η/q)+ d

]
√

(ρ0 · aξ · sin(η/q)+ d)2+ ρ2
0 · a2ξ · cos2 (η/q)

 . (1.12)

By applying thedispoperator we can roughly simulate a horizontal shift of (Il , Ir ) without
actually moving the cameras. In practice this is only approximately true because of two
main reasons:

(1) Space-variant images introduce a corresponding space variant distortion. In fact, we
cannot recover the missing information belonging to the periphery, where the resolution is
coarser.

(2) A real camera motion also distorts the image points along the vertical axis. However,
thedispoperator, as it has been defined in Eq. (1.11), does not take this into account.

Concerning the space-variant resolution we are limited by the fact that the information loss
on the periphery cannot be avoided. With regard to the contribution of the vertical disparity,
it is a rather small effect, and we can neglect it as a first approximation. Figure 3 shows how
a regular grid in the left image would be mapped in the right one for increasing values of
disparity (in the range zero to nine pixels). These are exactly the graphical representations
of Eqs. (1.11) and (1.12).

Furthermore, as our objective was to measure a global disparity index, Eq. (1.10) can
be further simplified by including in the aforementioned “neighborhood” of the current
pixel all the image pixels. In this case the disparity indexd is no longer dependent on the
position of a single pixel. A final comment regards the computational load associated with
Eq. (1.12). We can note that the equation depends only on the log-polar geometry. In fact
it is not dependent on the actual images. Therefore, all calculations can be performed in
advance for all possible disparities and stored into a fixed connection map (CM). A CM
is basically a look-up table (LUT), which implements a mapping according to Eq. (1.12).
From a more general point of view, we can see the CM as a network, where the CM values
represent network nodes, and the connections the log-polar geometry itself. This suits very
well our conceptual biological bias. It is easy to imagine how these correspondence maps
might be implemented in parallel using several layers of neurons.
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FIG. 3. The geometrical transformation of the cortical mesh. The disparity values increase from zero and
nine pixels (from the left to the right and form the top to the bottom, respectively). In each graph the horizontal
axis represents the eccentricity, while the vertical axis the angular position. The small circle and the box show the
effects of the transformation.

4.1. Disparity Computation

As is stated above, in order to compute the disparity, we need to store the geometrical
transforms. The corresponding set of CMs can be defined as

CM SET= {CMd, d = 0 . . . N} (1.13)

CMd = {(ξn, ηn)ξ,η : ξ = 0 . . . ξmax, η = 0 . . . ηmax}, (1.14)

whereξmax ηmax is the size of the log-polar images in cortical coordinates,N the total
number of CMs, and

(ξn, ηn)ξ,η,d = displog

(
ξ, η,

(
d − N

2

N

)
· ξmax/2

)
. (1.15)

Using this notation, an image transform can be rewritten as

Ir = displog(Il , d) (1.16)

Implicit in this notation is the fact that we are actually mapping all the pixels of the left
imageIl into those of the right oneIr . That is,

Ir (ξ, η) = Il ((ξn, ηn)ξ,η,d) (1.17)
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FIG. 4. A measured disparity function obtained with an object almost in vergence. It is possible to notice the
maximum of the function near the center of the curve.

It is worth noting that the set of CMs has a finite size. Consequently, in order to evaluate the
arg max function overd we need to evaluate only a finite number of possible disparities. In
other words, at each time instantt the result is the discrete function (which is function of
the disparityd),

χ (Il , Ir , d) = C(Ir , displog(Il , d)), (1.18)

whereC(Ir , Il ) is the normalized correlation function of Eq. (1.3); i.e., we employed the
normalized correlation as similarity criterion1.

Figure 4 shows a real-case plot obtained using the procedure described above. Without
loosing the generality we can define the disparity function, for a given stereo pair (Il , Ir ),
as

χ (d) = χ (Il , Ir , d). (1.19)

The global disparity index is simply

dt = arg max
x

(χ (x)). (1.20)

It is worth stating that:

(1) Given the fact that the disparity functionχ (d) is an integral correlation measure over
the whole image it is extremely robust and reliable.

(2) χ (d) represents the global image disparity because its values are the result of the
correlation of the entire image with its corresponding image, shifted by the geometrical
transformation due tod.
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(3) The significant element inχ (d) is its maximum, which corresponds to the most
common disparity value among the image points.

(4) Most of the noise is rejected, simply because it is located out of the global maximum.

The robustness of the proposed method is a consequence of the fact that, by choosing
the disparity value corresponding to the maximum correlation, the contribution of the not
relevant part of the image is implicitly rejected. Therefore, even if the side lobes are large
in comparison to the maximum of the correlation function, they do not modify the value of
χ (d).

As a matter of fact, a precise measurement of disparity requires a great resolution. In
fact, even a small disparity (in the subpixel range) might correspond to a large variation in
the object distance (more than 10 cm). To prevent such a loss of accuracy it is possible to
increase the image resolution. However, this is, in general, a resource consuming approach.
Consequently, we devised a few techniques to increase the estimated accuracy without
varying the image resolution itself. They are presented in detail in the next paragraphs.

4.1.1. Disparity nonuniform sampling.One of the main drawbacks of the previously
described correlation technique is the lacking of accuracy. The fact that we have used a
set of precomputed CMs restricts disparity to one of these CMs. Therefore, the accuracy is
limited by the disparity difference, which corresponds to the minimum distance between
CMs. In other words, the maximum accuracy is

d1
min =

ξmax

N
, (1.21)

whereN is the number of CMs, andξmax the log-polar image radius.
A possible solution would be to increase the numbers of CMs (increasingN) but this

would increase the computational cost accordingly. A second solution would be to reduce the
radius of the log-polar imageξmax, reducing, consequently, the field of view. An alternative
approach exploits the space variant techniques used by using the same number of CMs
distributed in a nonlinear fashion. In this way resolution for small disparities is improved
without increasing the computational load. This solution does not affect the overall system
performance, since for high-disparity values there is no need for precise disparity estimation
because the higher the value of disparity the higher is the distance of the world point from
fixation. On the other hand, when disparity is small, high precision is required, since the
control should minimize even small errors.

We can therefore replace Eq. (1.13) with

CM SETvariant =
{

CMvariant
d , d = 0 . . . N

}
(1.22)

CMvariant
d = {(ξn, ηn)ξ,η: ξ = 0 . . . ξmax, η = 0 . . . ηmax}, (1.23)

whereξmax, ηmax is the log-polar image size in cortical coordinates,N is the total number
of CMs, and

(ξn, ηn)ξ,η,d = displog(ξ, η, sign(i − N/2)(abs(arctan((1− N/2)/N)))λ · ξmax/2),

(1.24)

whereλ is positive number.λ acts as a steep enhancer in the nonlinear transformation and
it is typically λ = 3.



DISPARITY ESTIMATION ON LOG-POLAR IMAGES 107

FIG. 5. The nonlinear distribution of CMs. (Top) The transformation function. (Middle) The density of the
distribution. (Bottom) The maximum detectable precision of disparity.

Figure 5 is indeed the plot of equation 1.24 forλ = 3. The minimum resolution is now
equal to

d1
min =

ξmax

2
· arctan(1/N) < d1

min. (1.25)

By observing Eq. (1.24) we might think that the accuracy can be increased just by modifying
the nonlinear function, i.e., increasingλ. However, by reducing the disparity step, we reduce
also the offset applied to the original log-polar mesh. For small disparity values, the offset
would be less than one foveal pixel. This means that the log-polar mesh would remain
roughly the same. In other words, ifdmin is too small,

Ir = displog(Il , dmin) = Ir . (1.26)

Hence, as it is intuitively obvious, it is not possible to compute directly a value of disparity
smaller than one foveal pixel.

4.1.2. Quadratic interpolation. It is clear thatχ (d) is actually a sampled version of an
underlying continuous function (i.e., we might imagine to define an infinite disparity set
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FIG. 6. An example of interpolation by using the quadratic approach (Eq. (1.10)). The accuracy improved to
about 0.3 pixels.

instead of the finite one), which has the same formulation asχ (d) but it has no constraints
on its argument: d∈<. It is thus possible to apply an interpolation technique on the samples
χ (d). A straightforward solution is to apply a quadratic interpolation technique as sketched
in Fig. 6. In equation form,

dn = χ (d − δ)− χ (d + δ)
2 · (χ (d − δ)− χ (d)+ χ (d + δ)) , (1.27)

whered is the disparity value computed without interpolation andδ is the minimum disparity
value (δ = dmin) or a suitable multiple.

Given the heuristic of this last technique there are no particular reasons to prefer an
interpolation technique from another. Note also that the interpolation is not performed on
the final data (the estimated disparity) but on the raw data of the disparity function. Of
course, this means that it is not just a mathematical smoothing but it represents a real
improvement over the noninterpolated counterpart.

5. VERGENCE CONTROL FROM DISPARITY COMPUTATION

Vergence control has been implemented by applying the following control law:

θ̇ = −K · dt , (1.28)

whereK is a constant gain,̇θ is the first derivative of the vergence angle, anddt is the
disparity index (see Eq. (1.20)). The advantages of this approach can be summarized as
follows:
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FIG. 7. The disparity function. These two plots were obtained by changing the vergence angle at a constant
speed (total span was 0.16 radians). For each angular position we measured the disparity (top) and the fusion index
C(t) (bottom), respectively.

(1) dt is a linear estimation of the angular error, as shown in Fig. 7.
(2) dt provides the same information irrespective of the state of the system, because it

does not matter if the cameras are moving or if they are still.
(3) dt is robust to noise, environmental modifications, changes in lighting conditions,

and object properties.

A few words are needed to explain the previous points. The properties ofdt are graphically
illustrated in Figs. 7 and 10, in which it is possible to see thatdt is linear in a range of
approximately 0.2 radians. This range is compatible with the goal of keeping the right angle
of vergence, a task that is usually achieved for small values of disparity. Regarding the second
point it is important to stress that one of the major drawbacks of other implementations
of vergence control was the inability of detecting the correct angle without moving the
cameras (e.g., [32]). In other words, for each pair of images we have a meaningful value
for the controller without having to acquire a new pair in order to compute a gradient. Last,
the robustness ofdt is partially derived from the robustness of the correlation functionC( )
and partially from the property of Eqs. (1.18), (1.19), and (1.20).

6. CARTESIAN IMAGES VERSUS LOG-POLAR IMAGES

The main motives in using log-polar images derive from their computational advantages,
their geometrical properties, their wide field of view, their high resolution in the fovea,
and their implicit selection of a target in the central part of the image. All these properties
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are exploited in this implementation of disparity estimation. Of course, a “conventional”
Cartesian system may present each of these properties but not all of them simultaneously.
For example, it is easy to build a Cartesian system with the same resolution and field of view
as a log-polar one but at a much greater computational expense. Similarly, it is possible to
build a system with the same number of pixel but with a limited field of view or, alternatively,
a decreased resolution.

With respect to the disparity estimation and in order to make a comparison with a Cartesian
system we assume the following: Given a log-polar image of sizeξmax× ηmax, there is no
Cartesian equivalent image. Two of the following three parameters should be fixed: the
pixel size, the number of the pixels, and amplitude of the field of view. Therefore, three
different comparative approaches can be constructed and studied:

(1) a Cartesian image having the same number of pixels and the same field of view with
the log-polar one;

(2) a Cartesian image with the same number of pixels corresponding to a square area
smaller than the whole image but with the same number of pixels with the log-polar one;

(3) a Cartesian image having the same amplitude of the field of view and the same
resolution of the fovea, but with a much larger number of pixels.

Let us examine, one by one, these cases. It is assumed thatηmax= 2ξmax, as it is in the usual
case (e.g., [20, 26, 32]), and that the Cartesian equivalent image is square. Besides, it is
reasonable to assume that there would be no oversampling of pixels in the fovea and, thus,
the following equations must hold:

ρ0 = ηmax · r fmin

2π
a = ρ0+ r fmin

ρ0
, (1.27)

wherer fmin is fixed and represents the diameter of the receptive field of minimum size in
the fovea.

Same field of view, same number of pixels.Given a log-polar image of sizeξmax×
ηmax, it is possible to use a Cartesian image of dimensionxmax=

√
ξmax · ηmax=

√
2 · ξmax.

Obviously, having to cover the same field of view, this image has to correspond to the same
area as the log-polar image: this entails a corresponding resolution (in the fovea) of

ρmax · r fmin

xmax
=
√

2 · r fmin · ρ0

ξmax
· aξmax. (1.28)

Using Eqs. (1.27), the previous can be rewritten as

ρmax · r fmin

xmax
=
√

2π
(
1+ ξ−1

max

)ξmax
. (1.29)

This means that given the constrains we have assumed there is a great reduction of resolution
in the Cartesian counterpart. The disparity suffers the same loss in resolution.

Same resolution in the center, same number of pixels.A Cartesian image of size
xmax=

√
ξmax · ηmax=

√
2 · ξmax is assumed. It covers only the central part of the image

and comprises the same resolution as the log-polar image in the fovea (r fmin). In this case
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TABLE 1

A Case Study between Log-Polar Technique and Cartesian Counterparts

Resolution in
Methods Computational load fovea Field of view Drawbacks

Log-polar ξmax · ηmax 1 1
disparity = 2ξ 2

max

Same ξmax · ηmax

√
2π (1+ ξ−1

max)
ξmax 1 Low resolution; no implicit

amplitude = 2ξ 2
max selection of target;

integral estima-
tion of disparityC( )
fails at small targets

Same ξmax · ηmax 1

√
2

2π
(1+ ξ−1

max)
−ξmax Small field of view; the

resolution = 2ξ 2
max target gets lost easily

Same
1

2π2
· ξ 2

max · 1 1 Increased computational load;

amplitude (1+ πξ−1
max)

2ξmax no implicit selection
and same of target; integral estimation
resolution of disparityC( ) fails at

small targets

the loss in the amplitude of the field of view is equal to (using Eq. (1.27))

xmax

ρmax · r fmin
=
√

2

2
· ξmax

ρ0 · aξmax · r fmin
=
√

2

2π

(
1+ ξ−1

max

)−ξmax
. (1.30)

Therefore, the probability of loosing the target increases accordingly.

Same field of view, same resolution, and bigger number of pixels.A Cartesian image of
sizexmax= 2

r fmin
ρ0 · aξmax is used, in order to achieve the samefield of view. Using Eq. (1.27),

xmax is related toξmax as

xmax=
√

2

2π
· ξmax ·

(
1+ πξ−1

max

)ξmax
. (1.31)

Besides, in each of the previous cases, there is no implicit selection of the target. This means
that, by using a global correlation function likeC( ) (Eq. (1.3)), a target occupying a large
portion of the image is needed. If the image is log-polar, a target in the center of the image
could correspond to a larger number of pixels, which improves significantly the estimation
of disparity. A synopsis of this case study is provided in Table 1.

7. EXPERIMENTS

In order to demonstrate the feasibility of the approach we tested the algorithm on a
binocular robotic setup. This consists of five degrees of freedom robot head (Fig. 8a).
The head kinematics allows independent vergence (both cameras can move independently
around a vertical axis) and a common tilt motion. Furthermore, the neck is capable of a tilt
and pan independent motion. However, in the following experiments, only twodf (i.e., the
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FIG. 8. The experimental setup. (a) The 5df robot head. (b) A clown head is moving back and forth in front
of the robot head at different speeds. The amplitude of the movement was 120 cm; the nearest point was at 20 cm
from the cameras.

camera pans) were used to test the algorithm. The robotic setup is equipped with two space-
variant color cameras (20). Experiments were carried out on a standard Windows NT-based
Pentium II 400-MHz machine. The log-polar images were 32× 64 pixels and they were
processed at a video rate (25 frames/s). Actually, the overall computation time for control
cycle was only 10 ms. The limiting factor in this case was the image acquisition process.
The proposed technique was tested under two different experimental conditions under both
controlled and uncontrolled stimulation. An object (the clown head of Fig. 9) was fixed on a
programmable moving slider (Compumotor 3000 motor/drive system) capable of moving a
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FIG. 9. An image sequence of five thumbnails (left image) of the subject, acquired during the experiment,
showing the tracking while the target approaches the system: (a) in cortical plane (original on the left, zoomed-in
on the right), (b) Cartesian reconstructed from the cortical ones, (c) Cartesian format with the same number of
pixels and the same field of view as the ones in (a), (d) Cartesian format with the same number of pixels and the
smaller field of view to the ones in (a), and (e) Cartesian format with bigger number of pixels and the same field
of view as the ones in (a).

small object with speed ranging from 0 to 5 m/s. We then generated different back and forth
motion profiles. In this situation only vergence control was required (no version) to actually
track the moving stimulus. A sequence of log-polar images was recorded while the system
was tracking. This is presented in Fig. 9a (cortical images). It should be noted that the actual
size of the images (32× 64) is the one on the left, while the one on the right is an enlarged
image that we have added for the reader. In Fig. 9b, the Cartesian images reconstructed from
the cortical sequence are presented. The same sequence is presented in Figs. 9c, 9d, and 9e
in Cartesian format. Each of the sequences presented in these figures (9c to 9e) corresponds
to one of the three cases described in the previous section. More specifically Fig. 9c presents
Cartesian images with the same number of pixels (44× 44 ) and the same field of view as
the ones in Fig. 9a. Figure 9d illustrates a Cartesian image sequence with the same number
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FIG. 10. Effect of the quadratic interpolation. The target, in this case, was moving along a sinusoidal trajectory
with fixed frequency. The cameras were still, i.e., the vergence control was not applied. (a) The estimated disparity
without interpolation and (b) the improved final result, after the interpolation.

of pixels (44× 44) as the ones in Fig. 9a, but corresponding to a square area smaller than the
whole image. Finally Fig. 9e shows Cartesian images with same field of view and the same
resolution of the fovea, but with a much larger number of pixels (128× 128). Observing
Figs. 9a and 9e, it becomes obvious that the amount of clutter the system is rejecting, only
by using space variant images. The object was able to move along either a triangular or a
sinusoidal trajectory. Motion amplitude was 1.20 m. The nearest point was at 20 cm in front
of the cameras (Fig. 8b). This corresponded to an angular difference (in term of vergence
angle) of 45◦.

Concerning the closed-loop case, Fig. 10 depicts the effect of the quadratic interpolation.
Figure 10a is the disparity estimation without interpolation; Fig. 10b is the same trace
using the described quadratic interpolation. It is possible to notice the difference in the
smoothness of the estimate (the upper plot is step-wise). The data were obtained using the
setup described by Fig. 8. In this case the cameras were still, and the object was moving
along a sinusoidal trajectory (at a fixed frequency).

Figure 11 presents the closed loop condition where the estimated global disparity is used
to drive vergence control. In this case the control was activated and the trajectory had a
triangular profile. The four plots represent the estimated disparity (Fig. 11a), the fusion index
C(t) (Fig. 11b), the motor command (speed) (Fig. 11c), and the vergence angle (Fig. 11d).
An interesting effect is visible by comparing the disparity plot with the vergence angle:
the biggest error (in module) corresponds to the minimum distance of the slider, whilst
the minimum estimated error corresponds to the maximum distance. Besides, when the
change in direction occurs at the minimum distance there is a relatively big overshoot in the
disparity estimate. On the other hand, when it corresponds to the maximum distance there
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FIG. 11. Vergence control. The object moved along a triangular trajectory at a constant frequency. The
vergence control was activated. (a) The estimated disparity, (b) the fusion indexC(t), (c) the motor command
(speed), and (d) the vergence angle.

is almost no overshoot at all. Nevertheless, by observing the absolute scale of the computed
error we can see that the maximum error was only 0.05 log-polar pixels.

As far as the performance in an unconstrained environment is concerned the behavior of
the robotic head was tested for several prolonged experimental sessions. Its performances
have been reliable, robust, and consistent. The frequency response of the system was prac-
tically flat over the tested range (10−1–2 Hz). Nevertheless, these last experiments were
conducted in a qualitative fashion and, therefore, their significance is limited. What we
can say is that the head proved to be robust to noise in the periphery of its visual field as
well as to noise derived by abrupt modification in light intensity or target object unexpected
movement. While the robustness with respect to peripheral noise was mainly due to log-polar
images, the capability of responding quickly to object modifications both in its dynamic
(speed, directions, trajectory) and in its appearance (shape, position, color, reflectance,
shape, and shades) factors is due to the robustness of the processing itself.
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8. CONCLUSIONS

In this paper we presented a global disparity estimation method and its use in controlling
the vergence angle of a stereoscopic artificial vision system. We were able to extract a
measure of the vergence error by using space variant stereo images. This measurement was
proved to be linear, fast, and robust to environmental changes. Consequently, it has been
used to implement a closed loop vergence control that, through the use of both nonlinear
distribution of CMs and space variant images, achieves accuracy much smaller than one
pixel (typically around 10−1 pixels relatively to image size). Last but not least, we were
able to extract the disparity information at frame rate using a standard hardware platform.
Our claim is that it is possible to efficiently estimate disparity using log-polar images,
which apparently seems not well suited for such computation. Furthermore, in this paper
we showed (i) that disparity contains all useful information in order to control the vergence
angle and (ii) that there is no need to use other cues to estimate the error. Besides, we claim
that log-polar images permit an implicit selection of the central part of the overall scene
that justifies the use of a global estimator.

Experimental results substantiate the above claim. The robotic head control proved to
be robust to noise in the periphery of its visual field as well as from noise derived by
abrupt modification in light intensity (as showed in Section 3) or target object unexpected
movement (as showed in Section 5). Investigation of the integration of the proposed method
with tracking control and saccade-like movements is underway.
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