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In this paper, we propose a new automatic approach to reconstructing 3-D envi-
ronments using an active binocular head. To efficiently store and access the depth
estimates, we propose the use of an inverse polar octree which can transform both
unbounded depth estimates and unbounded estimation errors into a bounded 3-D
space with appropriate resolution. The depth estimates are computed by using the
asymptotic Bayesian estimation method. Estimated depth values are then smoothed
by using discontinuity-preserving Markov random fields. The path of the local mo-
tion required by the asymptotic Bayesian method is determined online automatically
to reduce the ambiguity of stereo matching. Rules for checking the consistency be-
tween the new observation and the previous observations have been developed to
properly update the inverse polar octree. Experimental results showed that the pro-
posed approach is very promising for automatic generation of 3-D models which can
be used for rendering a 3-D scene in a virtual reality system. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In the past few years, virtual reality (VR) has found many applications in different areas,
such as education, business, and entertainment. Because of the rapid growth of VR appli-
cations, automatic generation of 3-D models from images has attracted much attention. To
reconstruct 3-D models from images, many people choose to use the stereo vision tech-
niques. However, it is well known that stereo correspondence is a very difficult problem.
The results of 3-D reconstruction obtained by using automatic stereo matching algorithms
(such as those described in [1]) are still not reliable enough for practical use. Successful
3-D reconstruction systems used at present still must utilize structured light (e.g., laser light
stripe) or impose strong constraints (e.g., the continuous surface constraint) to simplify
the stereo matching problem. Otherwise, human interaction must be introduced into the
reconstruction system to solve the general stereo correspondence problem (e.g., Debevec
et al. [2] and Hung et al. [3]). About one decade ago, Alominos and Badyopadhyay showed
that many computer vision problems which are ill-posed, nonlinear, and unstable for a
passive observer become well-posed, linear, and stable for an active observer [4]. Their
work is based on the assumption that the active vision system is well calibrated so that
accurate camera parameters are always available with respect to any configuration of the
active vision system. However, most of the existing active vision systems are not accurately
calibrated for two main reasons: (1) many vision tasks can be accomplished without having
to reconstruct the 3-D model of a scene [5], and (2) existing calibration techniques devel-
oped for passive vision systems are not suitable for active vision systems. Nevertheless,
since a calibrated active vision system has many advantages over an uncalibrated system,
people are developing calibration techniques for active vision systems according to their
requirements. Reid and Beardsley have developed a method for aligning a pair of stereo
cameras so that their optical axes are parallel [6]. Based on a simplified kinematics model,
McLauchlan and Murray at Oxford used a variable state-dimension filter to recursively
estimate the head/eye orientation relation and the vertical and horizontal effective focal
lengths without having to use a special calibration object [7]. The KTH group developed a
three-stage calibration method, i.e., zoom lens calibration [8, 9], kinematic calibration [10],
and head/eye calibration [11], for their active binocular head. We have also spent many
years developing a four-stage calibration method for our binocular head and have achieved
very accurate calibration results [12]. Based on our well-calibrated binocular head (referred
to as the IIS head), we have the ability to try to solve the 3-D reconstruction problem using
the active vision paradigm. Reconstructing the 3-D environment map using an active vision
system involves the following three main problems:

1. The where-to-look-next problem: The main advantage of an active vision system over a
passive system is that some of the external and internal camera parameters of the active vision
system can be adaptively controlled so that an assigned vision task can be accomplished
in a more efficient and accurate way. In particular, when a very specific vision task, e.g.,
human-made object recognition [13], face recognition [14], mobile robot navigation [15],
and visual pursuing [16], is assigned to an active vision system, the criteria for selecting
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the best next observation configuration for the system are well defined. On the other hand,
if there is no specific goal set for the vision system, then the where-to-look-next problem
will become too subjective so that no generally acknowledged criterion can be found. In
this work, the given vision task is to reconstruct a textured 3-D environment map that is
visually consistent with the observed images. When there is no prior knowledge about the
environment, each viewpoint is of equal importance because we need as many as possible
images to detect and to remove visually inconsistent 3-D data. Therefore, we can simply
choose to use a uniform sampling strategy to acquire images at equally spaced viewpoints.
Notice that determining the next best observation configuration for reconstructing a global
scene is different from determining the best configuration for reconstructing a small 3-D
surface patch because the latter configuration has a more specific goal than the former.

2. Navigation problem: Once the next best viewpoint has been determined, the active
vision system should have the ability to safely navigate itself to the viewpoint. However,
since robot navigation has been extensively studied for decades (refer to [17]) and it is not
the research focus of this work, we will assume that our active vision system is moving in
an obstacle-free environment.

3. Integration of the estimated 3-D data problem: As the active vision system moves to
a new viewpoint and computes new 3-D estimations, we must update the 3-D map so that it
is consistent with the new observations. The main difficulty of data integration is that when
the new observations are inconsistent with the old observations, we must determine which
observations are incorrect even though both the new and old data are estimated using the
same method.

For the VR applications, the virtual 3-D scene can be rendered by computing the shading
of an object given the position of light sources and surface properties of the object. In this
way, the 3-D model of the object must be very accurate because the computed shading
appearance is very sensitive to 3-D noise. On the other hand, when image-based techniques
are used to render a 3-D scene with texture extracted from real images, the quality of the
rendered image is more tolerable of inaccurate 3-D data. Therefore, with image-based ren-
dering techniques, one does not have to reconstruct a very accurate 3-D model in order to
obtain a photo-realistic VR scene [18–20]. Knowing that image-based rendering techniques
do not require accurate 3-D reconstruction and that 3-D reconstruction is, in general, an
ill-posed problem, we do not intend to reconstruct highly accurate 3-D models of the scene.
Instead, our goal is to reconstruct an approximate 3-D model having some associated texture
information so that this approximation model, together with the texture information, can be
used to synthesize images which look similar to the real images when observed from arbi-
trary viewpoints within a prespecified viewing area. If the synthesized image looks different
from the real image when observed from a new point of view, then our goal is to update
the current scene model so that the model will be consistent with all the previous views
the vision system had observed. We hope that the scene model will become more accurate,
as the vision system samples more viewpoints within the specified viewing area. The idea,
which we have proposed independently in [19], of reconstructing a textured 3-D model that
is visually consistent with the observed images is similar to the space carving technique
proposed by Kutulakos and Seitz [20]. They call the reconstructed approximated 3-D model
the photo-consistent shape. In the absence of a priori geometric information, reconstruct-
ing a photo-consistent shape of an object is more feasible than reconstructing its exact
3-D model. The main difference between our approach and the space carving technique
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is that our method is based on stereo vision techniques for 3-D estimation. But the space
carving technique does not directly compute the 3-D data; instead, it simply removes all
non-photo-consistent surface voxels. The advantage of the space carving approach is that
the computation algorithm is very simple and relatively robust. But it will need to use many
images sampled densely in 3-D space in order to generate a visually compelling photo-
consistent shape. On the other hand, if only a handful of calibrated images are available,
then we will have to use stereo vision techniques to reconstruct a 3-D model. However,
since the computed stereo correspondences usually contain some mismatched pairs, it is
then necessary to introduce an error-correction mechanism into the system to update the 3-D
data. In our method, the error-correction mechanism is first to detect visually inconsistent
3-D data and then to reestimate them. In our point of view, our method is kind of a
combination of the surface estimation technique and the space carving technique. In par-
ticular, when one is trying to reconstruct a wide scene, the proposed method can pro-
vide a visually consistent 3-D model with fewer images than the space carving technique
requires.

In addition to the space carving technique, many approaches based on active vision
systems for automatic generation of 3-D models from images have been proposed in the
past decades. Beß et al. used a calibrated active color camera for 3-D reconstruction [21].
Three-dimensional data were estimated from monocular color image sequences by using a
stereo technique which combines the feature-based and correlation-based stereo matching
methods. Disparities obtained from a feature-based stereo were used to guide correlation-
based stereo matching. Maru et al. used a stereo rig, which was mounted on a calibrated
translation stage so that the orientation of the translation stage with respect to the camera
coordinate systems was known; hence, rough depth estimates could be obtained from the
detected optical flow and then used to guide stereo matching [22]. Grosso and Tistarelli
used a binocular head for robot visual guidance [23]. Since the task of visual guidance does
not require accurate 3-D models of the environment, the calibration task can be simplified,
as only a few parameters need to be roughly estimated. In their work, a simple method for
estimating some necessary camera parameters was proposed and methods for estimating
the rough depth value of the environment as well as the time-to-impact were developed.
Ahuja and Abbott studied the 3-D reconstruction problem using an active stereo system
[24]. To reconstruct the surface from stereo images, they argued that the tightly coupled use
of focus, camera vergence, and stereo disparity results in a more powerful and complete
system for surface estimation than when those cues are used individually. In their approach,
aperture setting, focus setting, vergence angle, depth estimates, and the integration of depth
estimates from different cues and different viewpoints can be determined by minimizing a
criterion function with a smoothness constraint. In their experiments, object surfaces were
covered with textured newspapers to make stereo matching and depth from a focusing visual
module provide reliable results. Ours is distinct from theirs in that we have a well-calibrated
active binocular head, and we can apply the active sensing paradigm to simplify the 3-D
reconstruction problem, to achieve more precise stereo matching results, and to integrate
3-D estimates from multiple viewpoints; hence, we are able to deal with the reconstruction
problem of a more complicated environment. Also, instead of applying the active vision
system to reconstruct a narrow scene, our goal is to reconstruct a wide scene. Marchand
and Chaumette have developed an active vision system consisting of a monocular camera
mounting on the end effector of a 6 degrees of freedom Cartesian robot [25]. Their active
vision system was accurately calibrated so that 3-D data can be computed using structure
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from controlled motion methods. Unknown static scenes containing objects of simple shapes
can be automatically explored and reconstructed using images acquired and processed at
nearly video rate. The reconstruction results of simple scenes (several light color objects plus
a black background) were very accurate, but their method was developed for polyhedral
objects and cylinders only. We do not impose such strong constraints on the scenes in
our method; therefore, we do not intend to achieve accuracy comparable to that of their
system.

In this paper, we propose a new approach to reconstructing a model of the 3-D environment
automatically by using a well-calibrated active binocular head [12]. The reconstructed 3-D
points and their gray level values are stored in a volumetric data structure, i.e., the inverse
polar octree (IPO), which will be described in Section 2. An active control scheme has
been used to minimize the ambiguity in stereo matching. The 3-D structure of the scene
is estimated by using the asymptotic Bayesian estimation method [26], which is similar to
the multiple-baseline stereo method [27] except that the asymptotic Bayesian estimation
processes only one image at a time and it also provides the uncertainty information of
the depth estimates. Details of the reconstruction process is described in Section 3. Some
experimental results on reconstructing the 3-D model of complex scenes are presented in
Section 4. Conclusions are given in Section 5.

2. INVERSE POLAR OCTREE

In this work, we chose to use the voxel-based data structure for storing the reconstructed
3-D data because the overhead of integrating noisy 3-D estimations with a voxel-based data
structure is smaller than that with a mesh-based data structure. When the 3-D reconstruction
process is completed, the voxel-based 3-D data can be transformed into a mesh-based
representation for fast rendering. To use the voxel-based 3-D representation, we must solve
the problem of packing the 3-D information contained in the infinite 3-D space into the finite
memory space in a computer. To deal with this problem, we found that the 3-D measurement
error of a stereo vision system is proportional to the distance between the object and the
stereo cameras [28]. This fact suggests that uniform quantization of the 3-D data obtained
by the stereo vision system is inefficient. A better quantization scheme is to have the
resolution of the volumetric representation inversely proportional to the object distance.
However, nonuniform quantization will result in complicated octree representations. Our
solution to this problem is to take an inverse polar transformation of the estimated 3-D data
before quantizing them into voxels. The inverse polar transformation is described in the
following:

1. Transform the 3-D Cartesian coordinates, (x, y, z), of a point P3D to spherical coor-
dinates, (ρ, θ, φ), where ρ is the distance from the origin to point P3D , and θ and φ are the
angles specifying the direction of a unit vector pointing from origin to point P3D .

2. For the 3-D spherical coordinates, (ρ, θ, φ), compute its inverse polar coordinates,
( 1
ρ
, θ, φ).

There are two major advantages to taking the inverse polar transformation. The first ad-
vantage is that, after the transformation, all the surrounding 3-D objects farther than a
minimum distance to the observer, say Rmin, will be enclosed within a sphere with radius

1
Rmin

. In this way, the infinite 3-D world outside a sphere is now mapped into a finite sphere, as
shown in Fig. 1. The second advantage is that, after taking the inverse polar transformation,
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FIG. 1. Inverse polar transform.

we can apply the uniform quantization scheme because the estimation error is now bounded,
which is explained below in more detail.

Let ρ be the distance of an object point away from the observer. Since the 3-D estimation
error is proportional to the object distance, the 3-D estimation error of the object point
is approximately k ρ, where k is a constant determined by the configuration of the stereo
cameras. Therefore, the estimate of the object distance is approximately (1 + k)ρ. Notice
that the estimation error, k ρ, is unbounded because the estimation error will approach
infinity as ρ approaches infinity. However, after the inverse polar transformation, the object
distance is now mapped to 1

ρ(1 + k) . Since the 3-D estimation error is, in general, much
smaller than ρ, i.e., k � 1, we have

1

ρ(1 + k)
≈ 1

ρ
− k

ρ
. (1)

Here, the second term of the right-hand side of (1) is the transformed estimation error, which
is now bounded by k

Rmin
, if ρ > Rmin. If we choose the quantization unit to be k

Rmin
, then

the estimation error will be less than the quantization error for all the object points outside
the sphere of radius Rmin. It is advantageous to have a quantization error larger than the
estimation error when using volumetric representation in 3-D reconstruction, because if
the estimation error is larger than the quantization unit, then there will be many undesired
false voxels that are caused by the estimation noise and are located around the real object
position. As a result, when the quantization unit is smaller than k

Rmin
, we will not only

have to use much larger amounts of memory to store the 3-D data but also will obtain
sparser scattering of 3-D measurement data. Sparsely scattered 3-D data will make the data
integration more difficult; thus it is unwanted.

After we take the inverse polar transformation, 3-D data are stored in an octree according
to the three coordinate components, 1

ρ
, θ , and φ. Let �θ and �φ be the angular resolution of

the octree. The octree is created in the spherical coordinate system to maintain the uniform
angular resolution, as shown in Fig. 2. Two 3-D points with 3-D coordinates (ρ, θ, φ) and
(ρ, θ + �θ, φ + �φ) will be stored at ( 1

ρ
, θ, φ) and ( 1

ρ
, θ + �θ, φ + �φ), respectively.
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FIG. 2. An illustration of the inverse polar octree.

Obviously, the angular resolution of the octree remains unchanged after the inverse polar
transformation and the uniform quantization into an octree.

2.1. Some Practical Issues of Using the Inverse Polar Octree

Notice that the inverse polar transformation is introduced in this work to map an infinite
set

{p ∈ R3, ‖p‖ ≥ Rmin}

into a finite space

{
q ∈ R3, ‖q‖ ≤ 1

Rmin

}
.

Thus we can quantize the finite space and store the reconstructed 3-D information in a
limited memory space of a computer. However, introducing the inverse polar transforma-
tion also brings some problems because it makes the volumetric representation become
viewer-centered. For a viewer-centered representation, when the observer moves to a new
position, the entire 3-D data would have to be transformed to a new center accordingly.
Due to the quantization scheme that we have adopted (the inverse polar octree), 3-D data
at different distances to the center contain different levels of quantization error. When the
observation center jumps to a new point at a long distance far away from the original
center, the nonuniform quantization error may cause the transformation to become more
time-consuming because a voxel in the original octree may be mapped to multiple voxels
in the other octree and vice versa. However, it is rare that a moving observer would change
its viewpoint in this way. In general, the observation center usually moves slowly; thus the
levels of quantization error associated with the 3-D data also change slowly and can be ap-
proximately regarded as constants. In this case, only simple point-to-point transformations
are required in performing the recentering computation. But since the quantization error
does not change evidently, an alternative approach is to use an IPO with a fixed center so
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that we can skip the recentering computation. This approach is especially suitable when the
prespecified viewing area is small and the IPO is centered at the viewing area.

Notice that our goal is to reconstruct a textured 3-D model that is visually consistent
with the images acquired in a prespecified viewing area. Therefore, it is not guaranteed
that images synthesized using the reconstructed model are still serviceable if the specified
points of view are outside the original viewing area. When the synthesized image is not
acceptable, we can simply select another center to reconstruct a new IPO. Consequently,
we will obtain multiple IPOs for a widely spread 3-D scene which can keep the 3-D data
reasonably accurate and reduce the amount of memory required to save an infinitely large
3-D space to a manageable size. The idea of representing 3-D environments using multiple
IPOs is similar to the QuickTime VR technique of Apple, Inc. As in the QuickTime VR
technique, the IPOs can be used to provide panoramic views of a 3-D scene. But they also
can be used to synthesize images when the virtual camera moves around the centers of the
IPOs, which cannot be achieved by using the QuickTime VR technique.

3. AUTOMATIC 3-D RECONSTRUCTION

3.1. Visually Inconsistent Regions

The schematic diagram of our active 3-D reconstruction process is shown in Fig. 3. We
assume that the positions and orientations of the stereo cameras at any configuration of
the binocular head are available for exploring and reconstructing the 3-D environment. In
practice, this requirement can be achieved by using a well-calibrated active binocular head
equipped with accurate position and orientation sensors, such as InterSense IS-900 CT,
Fastrak, or Flock of Birds. That is, the parameters of the stereo cameras on the binocular
head are known at any time instant, based on the kinematic model of the binocular head and
the readings of the position and orientation sensors. Hence, we can adopt the asymptotic
Bayesian estimation method, which assumes the camera parameters are known for each
camera position.

To reconstruct the 3-D environment more efficiently, we do not apply the asymptotic
Bayesian estimation to an image region unless it is necessary, or more precisely, unless it
is a visually inconsistent region (which is defined below). If a set of camera parameters
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FIG. 3. Schematic diagram of the automatic 3-D reconstruction process.
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are specified, we can synthesize images according to the current world model stored in the
IPO by using ray tracing techniques (refer to the Appendix). Next, the synthesized image is
subtracted from the observed image to obtain a difference image. The difference image is
thresholded into binary image format and then filtered by using the morphological opening
to remove noise. The active pixels in the filtered binary image can be grouped into regions
indicating where the depth information is either incorrect or not available. The detected
regions will be referred to as the visually inconsistent regions (VIRs) because the observed
image is visually inconsistent with the synthesized image according to the IPO. At the very
beginning, the IPO contains no valid data. Hence, the whole image is a VIR and must be
processed to estimate 3-D depth as described in the next section. Once some 3-D depth
estimates are stored in the IPO, only the VIRs must be processed.

3.2. Depth Estimation

To estimate the 3-D depth, we first partition the VIRs into small blocks and then assume
that each block in the left image is projected from a 3-D planar patch having a constant
depth. The depth estimation method we used in this work is mainly the asymptotic Bayesian
estimation method proposed by Hung et al. [26], which is adapted for active vision purpose
and is described briefly in the following. At first, a reference image is acquired by using the
left camera at an initial pose. The reference image will also be used in integrating new 3-D
observations into the IPO (refer to Section 3.4); therefore, it is kept in the memory during
the whole 3-D reconstruction process. Suppose that the depth, d, of block P in the VIRs
of the reference image is to be estimated. Let the initial estimate of the reciprocal variance
of d be 	1 = 0, since we do not have any information about d yet. To obtain the correct
stereo correspondence of P in the right image, we first move the left camera locally and
incrementally to compute a rough estimate of the depth of P (the way we determine the path
of the local motion will be described in the next section). Now, suppose that we have obtained
a sequence of images all acquired by using the left camera, denoted by I1, I2, . . . , where
I1 is the reference image of this image sequence and the other images are acquired during
the local camera motion. Since the binocular head is well calibrated, we have the relative
geometric relation (i.e., the relative camera position and orientation) of the image pair
(I1, In), where n ≥ 2. Based on the geometric relation and a given depth estimate d̂, we can
compute, for each pixel in a block P ∈ I1, the corresponding image point in the nth image.
For convenience, let s be a 2-D image point in image block P ∈ I1 and let un(s, d̂) denote its
corresponding image point in the new image, i.e., (the nth image), as shown in Fig. 4. The
depth of the image patch, d , can be refined by minimizing the following objective function,

Jn(d) = 1

2
(d − d̂n−1)t	n−1(d − d̂n−1) + 1

2

∑
s∈P

[In(un(s, d)) − I1(s)]2, (2)

where I1(s) and In(un(s, d)) are the intensity value of pixel s in image 1 and the intensity
value of pixel un(s, d) in image n, respectively, and 	n−1 denotes the reciprocal variance
of the estimated depth d̂n−1 given images 1, 2, . . . , n − 1. The reciprocal variance can be
updated by using the following equation:

	n = 	n−1 + ∂2

∂d2

{
1

2

∑
s∈P

[In(un(s, d)) − I1(s)]2

}∣∣∣∣∣
d=d̂n

. (3)
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FIG. 4. The stereo correspondence of pixel s computed by using the estimated depth d̂ and the relative camera
geometric parameters.

The asymptotic Bayesian process for estimating the depth of an image patch P is summa-
rized in the following.

1. Set 	1 = 0, n = 1, and d1 = ∞.
2. Acquire the reference image I1 using the left camera.
3. Set n = n + 1.
4. Acquire the nth image using the left camera.
5. Compute d̂n by minimizing the error function in (2) using a gradient descent method.
6. Update 	n with (3).
7. Discard image In .
8. Repeat steps 3–7 until the estimation error is satisfactorily small.

More details about the asymptotic Bayesian method can be found in [26].
The local motion and asymptotic Bayesian estimation method can be repeated until we

obtain accurate enough depth estimates; however, recall that the goal of performing local
motion is to get a rough estimate of the depth value for determining stereo correspondences
more accurately. Since the depth estimation error using local motion is proportional to the
length of the effective movement, the local motion can be terminated when the length of
the length of movement is greater than some value. According to our analysis (refer to [29],
50 mm of incremental local motion can reduce the depth uncertainty to such a level that the
search region for stereo correspondence is less than 10 pixels in our setup; i.e.,

|un(s, d̂n) − un(s, dtrue)| ≤ 5, (4)

where dtrue is the true value of the depth of block P . Therefore, once the effective movement
length of the incremental local motion is greater than 50 mm, our system will use the image
taken by the right camera as the new input image of the asymptotic Bayesian estimation
process (i.e., a big jump) and perform an exhaustive search for the minima of (2) along
the epipolar line in the 10-pixel search region centered at uright(s, d̂n). Then, a gradient
descent search is performed to further refine the depth estimate. After the depth estimates
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edge perpendicular to epipolar line
epipolar lines

edge parallel to epipolar lineambiguous stereo correspondence

FIG. 5. Edge parallel to the epipolar line will cause ambiguity in stereo matching.

of all the patches in the visually inconsistent regions are computed with the above process,
Markov random fields can be used to smooth the depth map while preserving the depth
discontinuity [30]. The smoothed 3-D data are integrated into the IPO using the method
described in Section 3.4. The active binocular head then moves to another new station and
the depth estimation procedure repeats for the VIRs until the size of all VIRs are small
enough.

Projection Center
of the K+1st Reference Image

Projection Center
of the kth Reference Image

Optical Axis

Occupied Voxels

kth reference image

K+1st reference image

P3D(K + 1)

P3D(k)

PK+1
2D (K + 1)PK+1

2D (k)

FIG. 6. Geometrically incompatible 3-D data. Notice that P3D(k) is occluded by P3D(K + 1) when observed
from the projection center of the kth reference image.
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FIG. 7. The active binocular head (the IIS head) used in the experiments.

3.3. Path Planning for Local Motion

Having a well-calibrated active binocular head, we are able to control the cameras to
move along a path which can reduce the ambiguity level of stereo matching. Our path
planning method is based on the following observation: when performing stereo matching,
we can determine the stereo correspondence more easily and reliably if the edge orientation
is perpendicular to the epipolar line, as shown in Fig. 5. On the other hand, if the edge
orientation is parallel to the epipolar line, then finding stereo correspondence is an ill-posed
problem. To eliminate the ambiguity in stereo matching, the local motion is selected to
form epipolar lines which are perpendicular to most edges having highly uncertain depth
estimates. The following procedure describes the way we determine the local motion:
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FIG. 8. The distribution of the five points of view used to acquire the images as shown in Fig. 9.

1. Perform Sobel edge detection on the new input image and record the orientations θ j

of each edge pixel j .
2. For each edge pixel j , get its reciprocal variance value, 	 j , determined in the asymp-

totic Bayesian process. Notice that a larger value of 	 j indicates that the depth estimate of
pixel j is more reliable because 1

	 j
is the variance of the depth estimate of pixel j .

3. Compute the average edge orientation weighted by its variance value as follows:

� =
∑

j :	 j >0

( θ j

	 j

)
∑

j :	 j >0

(
1

	 j

) . (5)

Notice that in (5), edge orientations corresponding to depth estimates of higher uncertainty
will be weighted more heavily.
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FIG. 9. Five reference images acquired by the left camera at the five points of view as shown in Fig. 8.

4. Compute the horizontal and vertical motion components, Hmove and Vmove, of the
camera

Hmove = �H cos

(
� + π

2

)
(6)

and

Vmove = �V sin

(
� + π

2

)
, (7)

where �H and �V are two predetermined constants specifying the step size of each
movement.

3.4. Consistency Check for a New 3-D Observation

Suppose that we have moved the active binocular head to K + 1 different stations, that
we have collected K + 1 reference images and the corresponding camera parameters at the
K + 1 stations, that the 3-D data observed at the first K stations have been integrated into
the IPO, and that the 3-D data observed at the (K + 1)st station is to be integrated into the
IPO. Only those new 3-D data which are consistent with the old data were integrated into
the IPO. Rules for checking the consistency are described below.

Suppose a new depth estimate, whose 3-D coordinates are p3D(K + 1), is considered
to be integrated into the IPO. Let pK+1

2D (K + 1) be the image location of p3D(K + 1) on
the (K + 1)st reference image, and let pK+1

2D (k) be the projected 2-D image location of
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(a)

(c) (d) (e)

(b)

FIG. 10. (a) The 3-D data contained in the octree reconstructed at viewpoint A were projected to a plane
parallel to the ground. (b) An image synthesized at viewpoint B using the octree data shown in (a). (c) The observed
image at viewpoint B. (d) The difference image shows the virtually inconsistent regions. (e) An image synthesized
at viewpoint B using the octree data updated by the depth estimates in the visually inconsistent regions of (d).

p3D(K + 1) on the kth reference image. By back-projecting pK+1
2D (k) into a 3-D ray and

computing the first intersection point of the 3-D ray and the occupied voxel in the IPO,
we have p3D(k). We say that the new observation p3D(K + 1) is geometrically compatible
with the kth observation if p3D(k) is not occluded by p3D(K + 1) when observed from the
projection center of the kth reference image (see Fig. 6 for an example of geometrically
incompatible 3-D data). If p3D(K + 1) is geometrically incompatible with the kth reference
image, then we further check if its color (or gray level) is compatible with that of the kth
observation; i.e.,

∣∣IK+1
(

pK+1
2D (K + 1)

) − Ik
(

pK+1
2D (k)

)∣∣ < τC ,

where τC is a given threshold value. If p3D(K + 1) is either geometrically compatible or
color-compatible with the kth reference image, then we say that p3D(K + 1) is compatible
with the kth reference image, since, in either case, adding the 3-D point, p3D(K + 1), into
the IPO will not cause visual inconsistency between reference image K + 1 and k.
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(a)

(b)

FIG. 11. (a) The 3-D data contained in the octree reconstructed at the five viewpoints were projected to a
plane parallel to the ground. (c) The corresponding objects of (a).

If more than two-thirds of the reference images are compatible with the new obser-
vation, then p3D(K + 1) is said to be largely consistent with the previous observations
and is used to update the IPO. If the new observation is not largely consistent with
the previous observations, it is discarded. After a new observation p3D(K + 1) is deter-
mined to be largely consistent with the previous observations, we remove those old 3-D
voxel data which occlude p3D(K + 1) on the projection center of the (K + 1)st reference
image.

Notice that, in the above-mentioned consistency check process, we did not use the
uncertainty information, i.e., 	−1

j , a by-product of the asymptotic Bayesian estimation
method (refer to Section 3.2), of the 3-D estimates. This is because the uncertainty mea-
surement is valid only when the 3-D estimation error is small. When the 3-D estimation
error is small, it is unlikely to fail in the consistency check process. Therefore, we did
not use the uncertainty information in the consistency check. As to the data integra-
tion, even if the estimated 3-D data are largely consistent with the previous observa-
tions, we still cannot ensure that the 3-D data are likely to be very accurate, and hence,
we also ignore the uncertainty information of the 3-D estimates in the data integration
process.
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(a) (b)

(c) (d)

FIG. 12. (a, b) The images synthesized at a virtual viewpoint F , which is located between viewpoints A, B,
and virtual viewpoint G, which is located at the right side of viewpoint C by using the octree data reconstructed
after observations were taken at viewpoint A. (c, d) The images synthesized at virtual viewpoints F and G by
using the octree data reconstructed after observations were taken at viewpoints A–E .

4. EXPERIMENTS

In the experiments, a well-calibrated binocular head [12] as shown in Fig. 7 was used
to acquire stereo image sequences. The binocular head is mounted on an X–Y table which
is used to emulate a mobile robot platform. Two experiments were conducted to test the
proposed active vision algorithm. In the first experiment, the target scene consisted of five
objects. Four of them have textured surfaces, namely, a planar background, a cylinder, a
rectangular pillar, and a box, whereas the other object is a textureless hemisphere. The
relative positions of the five objects and five viewpoints for the 3-D measurement chosen
in advance are illustrated in Fig. 8. The reference images acquired at those five viewpoints
by the left camera are shown in Fig. 9. At each viewpoint, a sequence of local movements
is performed automatically to estimate the 3-D information corresponding to the VIRs by
using the asymptotic Bayesian method. At the very beginning, the inverse polar octree
contained no valid data. Hence, the whole image was visually inconsistent and had to be
processed to estimate 3-D depth. Figure 10a shows a bird’s eye view of the world model
reconstructed at viewpoint A. In Fig. 10a, we can find the contours of the rectangular pillar
and part of the cylinder. When the active binocular head was driven to viewpoint B, an image
was synthesized at viewpoint B according to the world model reconstructed at viewpoint A.
The synthesized image is shown in Fig. 10b, whereas the observed image at viewpoint B is
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FIG. 13. Twenty reference images acquired by the left camera at the 20 viewpoints, A1, A2, etc., and E4,
illustrated in Fig. 14.

shown in Fig. 10c. The VIRs (marked with black pixels) computed based on Figs. 10b and
10c are shown in Fig. 10d. Only the 3-D data of the VIRs needed to be estimated/reestimated
using the asymptotic Bayesian method. The estimation results were then used to update the
world model. Figure 10e shows the synthesized image at viewpoint B rendered by using
the updated world model. Figure 11 shows a bird’s eye view of the reconstructed world
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Object 1

Object 2

Object 3

Object 1 : Bookshelf Object 2 : Cardboard Object 3 : Box

FIG. 14. The relative positions of the objects seen in the scene and the 20 viewpoints, A1, A2, etc., and E4,
used for taking observations.

model after all the images observed at the five viewpoints A–E have been processed.
Figure 12 shows some intermediate and final results in the reconstruction process. Those
images were synthesized at two virtual viewpoints F and G, where virtual viewpoint F is
located between viewpoints A and B, and virtual viewpoint G is located at the right side
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(a) (b) (c)

FIG. 15. (a) Synthesized image. (b) Observed image. (c) Visually inconsistent regions (those regions marked
in black).

of viewpoint C . Figures 12a and 12b show the images synthesized at virtual viewpoints
F and G according to the world model reconstructed using only the observations made
at viewpoint A, respectively. Figures 12c and 12d show the images synthesized according
to the world model reconstructed after all the images acquired at the five viewpoints are
processed. Notice that the reconstructed 3-D model of the scene became more complete as
more and more images were processed.

In the second experiment, we show how a complex scene in our laboratory can be recon-
structed with the active binocular head. First, 20 viewpoints for 3-D reconstruction were
chosen in advance. The reference images acquired by the left camera at the 20 viewpoints
are shown in Fig. 13. The relative position of the objects and the 20 viewpoints are shown

(a)

(b)

(c)

(d)

FIG. 16. (a) A sequence of images acquired when the active camera was moved horizontally. (b) The reciprocal
variance value 	 for each image in (a). (c) Images acquired in a sequence of local camera motions whose path is
determined online. (d) The reciprocal variance values 	 of the horizontal edges increased when the local motion
planner functions.
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(a) (b)

(c) (d)
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object 2

object 3

object 1

object 2

object 3

R∗R∗

FIG. 17. (a) The 3-D data contained in the octree reconstructed at viewpoints A1–A4 were projected to a
plane parallel to the ground. (b) The 3-D data contained in the octree reconstructed at the 12 viewpoints were
projected to a plane parallel to the ground. (c) An image synthesized at a viewpoint, V , located between viewpoints
A and C by using the octree data shown in (a). (d) An image synthesized at the viewpoint, V , by using the octree
data shown in (b).

in Fig. 14, where Object 1 is a bookshelf in the background, Object 2 is a textured card-
board, and Object 3 is a box. At each of the 20 viewpoints, a sequence of local movements
is performed to estimate the depth value of the VIRs by using the asymptotic Bayesian
method. Figure 15 shows typical images of synthesized and observed images, as well as
the corresponding computed VIRs. Figure 16 shows an image sequence (for illustrating
the effect of our local motion planner) acquired along two paths of local motion, a purely
horizontal path (shown in Figs. 16a and 16b) and a sequence of motion determined by the
method described in Section 3.3 (shown in Figs. 16c and 16d). Notice that, in Fig. 16d,
the reciprocal variance value increased from left to right as more and more images were
acquired and processed. Also, the computed local motion drove the camera to move both
vertically and horizontally to reduce the ambiguity of stereo matching. Since the vertical
camera motion could not be generated by the X–Y translation table, we moved the tilt
joint to generate an equivalent vertical camera motion, which was possible (although quite
limited) because the lens center of the camera was located a distance off the rotation axis
of the tilt joint.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 18. Synthesized images from a virtual viewpoint slightly overlooking the scene, where (a)–(h) are
synthesized by using the IPO reconstructed after observations were taken at viewpoints A1, A1–A2, A1–A3,
A1–A4, A1–B4, A1–C4, A1–D4, and A1–E4, respectively.

The 3-D data obtained by using the images taken at viewpoints A1–A4 are shown in
Fig. 17a. Notice that when observed from viewpoints A1–A4, part of the bookshelf, i.e.,
region R∗ marked in this figure, is occluded by Object 3. Figure 17c shows that an image
synthesized at a virtual viewpoint, which is located between viewpoints A and C , will
contain several “holes” (black image regions) because the 3-D information of region R∗

is still not valid. However, after all the images observed at the 20 viewpoints are used
to update the IPO, the 3-D structure becomes more complete, as shown in Fig. 17b, and
the synthesized image based on the updated 3-D structure looks much better (most of
the “holes” have been patched), as shown in Fig. 17d. Notice that during the asymptotic
Bayesian process, constant depth values were assumed for each square image block (refer
to Section 3.2). Next, the estimated depth values were interpolated and smoothed to obtain
smooth 3-D surface, and the side effect of the interpolation process was that many undesired
voxels between Objects 1, 2, and 3 are generated. However, these undesired voxels can be
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(a) (b)

(c) (d)

FIG. 19. (a) The real image captured at a viewpoint, V , which is located between viewpoints A4 and C2.
(b) The synthetic image generated for V by using the reconstructed IPO. (c) The real image captured by another
viewpoint, U , located between viewpoints A3 and B4. (d) The synthetic image generated for U by using the
reconstructed IPO.

eliminated in the consistency check. As shown in Fig. 17b, many undesired voxels originally
found in Fig. 17a have been removed. Figure 18 shows images synthesized at a viewpoint
which is located above the real viewpoints and overlooking the scene. This figure shows that
the reconstructed 3-D information becomes more complete and accurate as more images
observed at different viewpoints were processed.

FIG. 20. The triangular meshes obtained by converting the 3-D data contained in the reconstructed IPO.
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FIG. 21. An image sequence generated by using the texture-mapped triangular meshes.

For testing the reconstruction results, we manually selected two test viewpoints—one was
located between viewpoints A4 and C2 and the other was located between viewpoints A3
and B4—for acquiring test images. Figures 19a and 19c show the acquired test images and
Figs. 19b and 19d show the synthesized images by using the reconstructed 3-D environment
stored in the IPO. Notice that Figs. 19a and 19b and Figs. 19c and 19d look very similar,
which means that the reconstruction results are visually consistent with the real image and
thus can be used in some VR applications. The reconstructed data can also be converted to
3-D meshes for there are hardware graphic accelerators which can render texture-mapped
3-D meshes at video rate. Figure 20 shows the 3-D meshes converted from the data stored
in the IPO rendered at an overlooking viewpoint. Figure 21 shows a sequence of images
synthesized by using the reconstructed textured-mapped 3-D meshes.

5. CONCLUSION

We have presented a new approach to reconstructing the 3-D environment automatically
with an active binocular head. Active vision has been advocated by many researchers, for
example, Bajcsy, Aloimonos, and Ahuja, about a decade ago. However, most active stereo
vision systems have been applied to object tracking and not much progress on 3-D recon-
struction using active stereo has ever been made after Ahuja and Abbott’s work mainly
because calibrating an active binocular head is much more difficult than calibrating a fixed
camera. We have spent many years calibrating our binocular head and have achieved very
accurate calibration results [12]. Based on our well-calibrated binocular head, we have de-
veloped an active stereo vision algorithm which can estimate the 3-D depth automatically,
plan and maneuver a sequence of local movements to reduce the ambiguity in stereo match-
ing, and integrate 3-D data obtained in different points of observation. Real experiments
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have been performed to verify the algorithm proposed in this paper. The experimental results
show that the proposed algorithm is promising.

APPENDIX

The Ray Tracing Method for Synthesizing an Image from the IPO

Let us choose the reference frame of the IPO as the world coordinate system (WCS).
Given a set of intrinsic and extrinsic camera parameters, we can back-project an image
point, say P2D , into a 3-D ray. The back-projected 3-D ray is then transformed into the
WCS and the resulting line equation is given by


 x

y
z


 = P0 + λP1, (A.1)

where P0 is the projection center of the camera measured in the WCS, P1 is the direction
of the 3-D ray, and λ is a positive number. Converting the Cartesian coordinates (x, y, z)
into spherical coordinates, we have (ρ, θ, φ), where

ρ =
√

‖P0‖2 + 2λPt
0 P1 + λ2‖P1‖2. (A.2)

From the above equation, we can derive a representation of the positive number λ as follows:

λ =
−2Pt

0 P1 +
√(

Pt
0 P1

)2 − 4‖P1‖2(‖P0‖2 − ρ2)

2‖P1‖2
. (A.3)

Substituting (A.3) into (A.1), the 3-D line is now parameterized by ρ, namely (x(ρ), y(ρ),
z(ρ)). To search for a surface voxel by using the back-projected 3-D line, the 3-D line is
mapped to a 3-D curve with parameter 1

ρ
in the IPO. Given the the curve parameter 1

ρ
, we

can compute the 3-D Cartesian coordinates of a point on the line (x(ρ), y(ρ), z(ρ)), from
which we can determine θ and φ. If ( 1

ρ
, θ, ρ) is the first voxel intersecting the back-projected

3-D line, then the color data contained in this voxel are used to fill the pixel, i.e., P2D , on
the output image. For each pixel of the output image, the ray tracing procedure is proceeded
to synthesize the output image.
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