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Database search engines are generally used in a one-shot fashion in which a user
provides query information to the system and, in return, the system provides a number
of database instances to the user. A relevance feedback system allows the user to
indicate to the system which of these instances are desirable, or relevant, and which
are not. Based on this feedback, the system modifies its retrieval mechanism in
an attempt to return a more desirable instance set to the user. In this paper, we
present a relevance feedback technique that uses decision trees to learn a common
thread among instances marked relevant. We apply our technique in a preexisting
content-based image retrieval (CBIR) system that is used to access high resolution
computed tomographic images of the human lung. We compare our approach to a
commonly used relevance feedback technique for CBIR, which modifies the weights
of a K nearest neighbor retriever. The results show that our approach achieves better
retrieval as measured in off-line experiments and as judged by a radiologist who is a
lung specialist. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Content-based image retrieval, or CBIR, systems have gained popularity because of their
objective means of assessing image content. Textual annotation, in contrast, is plagued by
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inconsistencies of the human annotator. Perhaps more important, in many domains, text
cannot accurately capture the visual attributes of an image in the user’s mind. In CBIR, the
query is an image that the user presents as an example of what he or she is looking for.
The goal of CBIR is to retrieve images that are visually similar to the query image. To this
end, a CBIR system applies image processing and computer vision algorithms to extract a
vector of features from each of the database images. Typical features might include pixel
color histograms, gray scale histograms, texture features, and edge-content measures. If
the feature vectors are composed of n elements, each vector can be interpreted as a point
in n-dimensional space. CBIR systems rest on the assumption that points in this space
that are proximal to the point represented by the query image’s vector should correspond
to the feature vectors of images that are visually similar to the query. Similarity to the
query is computed using either a default or a user-defined similarity metric. For example,
in the popular k nearest neighbor retrieval method, the vectors with the minimal Euclidean
distance to the query vector are retrieved. (Note that some type of normalization of feature
scales is required prior to this step.)

In the context of image retrieval, an unweighted nearest neighbor retriever has at least
one drawback: it assumes that all features are equally relevant [10]. Some features may be
meaningless to the user or may be highly correlated with other features. Some features may
be very useful for certain queries but may lose significance for other queries [3]. The notion
of “similar” in the mind of the user may fluctuate depending on the query, the history of
retrievals observed, and the user. If there is a significant discrepancy between the similarity
as calculated by the system and the notion of similarity in the user’s mind, the results are
destined to be unsatisfactory [10]. This problem has served as the impetus for what is known
as relevance feedback.

Relevance feedback retrieval systems prompt the user for feedback on retrieval results
and then use this feedback on subsequent retrievals with the goal of increasing retrieval
performance. A typical user-system session is as follows: A user presents an image query
to the system whereupon the system retrieves a fixed number of images using a default
similarity metric. The user then rates each returned result with respect to how useful the
result is for his or her retrieval task at hand. Ratings may be simply “relevant” or “not
relevant” or may have finer gradations of relevancy such as “somewhat relevant,” “not
sure,” and “somewhat irrelevant.” The relevance feedback algorithm uses this feedback
information to select another set of images to retrieve for the user; whether the new and
previous sets are disjoint depends on the particular system. The system’s goal is to effectively
infer which images in the database are of interest to the user based on this feedback. The
user could then rate these images in the second set in a similar way and the process may
iterate indefinitely in this closed-loop fashion.

A relevance feedback retrieval system has a number of design requirements that allow
the system to function in an efficient online manner.

• After each iteration, when a set of images is retrieved, the system must require a rea-
sonable amount of feedback. If the user needs to labor over providing feedback for numerous
images after each iteration, they will tire quickly and not be satisfied with the process.

• The system must produce acceptable results after only a few iterations. If large
numbers of iterations are required, the user will also tire.

• Feature extraction should be completed in a short period of time to prevent user
frustration.
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Reasonable query feature extraction time, feedback per iteration, and number of iterations
are a necessity. Exact bounds on what constitutes “reasonable” are domain and user specific,
but rough bounds are determined by common sense (e.g., rating four images is reasonable,
while rating 40 is not).

In this paper, we present a new relevance feedback retrieval system that uses machine
learning to infer which images in the database would be of most interest to the user at a
particular point in time. Specifically, decision trees are constructed to discover a “common
thread” among those images marked relevant. An empirical evaluation demonstrates (a) how
retrieval performance increases significantly after only one or two iterations, (b) that the
user need only provide feedback on a handful of images, and (c) that the system can be
used in real time.

This paper is divided into the following remaining sections. Section 2 describes existing
work related to relevance feedback in CBIR. Section 3 delves into the intricacies of our
retrieval system at an algorithmic level. In Section 4, using a medical image database, we
compare our system’s performance to that of another recent relevance feedback retrieval
system. Finally, Section 5 summarizes the contributions made in this paper.

2. RELATED WORK

The majority of relevance feedback methods for CBIR employ a weighted nearest neigh-
bor retrieval mechanism. This practice has a pleasant interpretation, because a larger weight
on a feature intuitively signifies that feature has greater relevance. In MARS, Multimedia
Analysis and Retrieval System, [12], a feature’s weight is determined by examining the
feature’s variance across the set of retrieved images marked as relevant by the user. A low
variance indicates that these relevant images are consistent in this feature and that the fea-
ture should be assigned a relatively high weight. A feature whose value across the relevant
images varies significantly is, conversely, given a relatively small weight. Thus, a feature’s
weight is assigned in inverse proportion to the feature’s variance across the images marked
relevant. Documented results of this technique involve experiments where the number of
marked images exceeds 25. It is unclear how this technique would fare given only a handful
of marked images.

The relevance feedback problem has been cast as a vector equation optimization problem
[14]. This is a natural step given the matrix equations describing a weighted distance
function. One goal is to move the query to a position in the feature space away from negative
example instances and toward positive example instances. The procedure involves two steps:
(1) finding the optimal query position and (2) finding the optimal feature weighting for the
new query to maximize precision. The system of equations is constrained, but is transformed
into an unconstrained one through the use of Lagrange multipliers. The solution is then
converted back into a solution for the original problem. This attempts to find an optimal
weighting for the weighted distance function, but any such weighting can only distort the
feature space in the directions of the space’s axes. It cannot, for example, retrieve efficiently
from a bimodal distribution of relevant instances with respect to a useful feature. With
this method, learning multiple, disjoint intervals of relevancy with respect to a feature is
impossible.

A simple weighted distance function is more general than one using uniform weights, but
it still cannot capture interactions between features. With uniform weights, the distributions
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of the features are assumed to be independent. In [4], a relevance feedback system is pre-
sented that can learn diagonal queries, that is, queries where two or more features have
nonzero covariance. The system is able to learn generalized ellipsoids by approximating
covariance matrices to fit the training instances as well as providing a mechanism for move-
ment of the query position. Continuing in this vein, Seidl and Kriegel [15] present a similar
framework for learning generalized distance functions such as ellipsoids. In particular, they
have adapted and elaborated upon much of this theory in terms of color. Color histograms,
with up to hundreds of constituent bins, may be manipulated within this generalized learning
framework. Learning generalized ellipsoids improves upon systems such as MARS, but such
a framework still cannot learn bimodal distributions of relevant instances along a feature.

The PFRL (Probabilistic Feature Relevance Learning) retriever [10] employs a weighted
nearest neighbor method, but the technique used to map user feedback to feature weights
is somewhat different. A feature’s weight is computed by examining the C marked images
closest to the query with respect to only that feature. The higher the frequency of images
marked relevant within this set of images, the higher the weight that is assigned to that
feature. Retrieval precision for this technique has also only been documented for a large
number of images marked per iteration [10]. In Section 4, we illustrate empirically some
of the weaknesses of this method for the domain of high resolution computed tomography
(HRCT) of the lung.

Typically, categorical relevance feedback is provided to a system: an instance may be
marked as either relevant or irrelevant. In [2], Cox et al. recognize that this places an
added burden on the user. The user must attempt to not delineate too many instances as
either relevant or irrelevant—if the positive (negative) feedback is too plentiful, the query
will be too broad (narrow), resulting in less than satisfactory results. Instead, the authors
present a system where comparative feedback is supplied such as, “instance A is more
relevant than instance B.” The problem is then to locate an ideal query that maximally
satisfies these comparative constraints. Large sections of the feature space can be removed
from consideration, which makes the task computationally efficient. Furthermore, database
instances may be categorized using a vantage point tree (similar to a k-d tree) that partitions
the feature space greedily into sections described by the comparative constraints. In addition,
provisions exist for making the trees soft, whereupon they can index data using probabilities
of constraints being valid instead of hard constraints. Unfortunately, a user may waste time
and effort deciding relative relevance among retrievals that, perhaps, should have all been
rated irrelevant.

More recently, support vector machines, or SVMs, have been employed for learning an
effective retrieval strategy. SVMs nonlinearly transform feature vectors into a space such that
the vectors marked relevant can be enclosed in a hypersphere in the new space. By this design,
points that are most interior to the hypersphere should be most relevant. Chen et al. [1]
describe a unique way to control expansion and contraction of the hyperplane boundary via a
parameterized energy function that effectively trades off overfitting and overgeneralization.
Our method, however, selects feature space regions to investigate without the need for
parameters. The SVM framework is further exploited in [22]. Tong and Chang use active
learning to select images to present to the user that are near the current hyperplane boundary
in order to better refine the boundary. This continues until the final iteration, at which point
the images that are most interior to the hyperplane are returned. A drawback of this type of
system is that the user has to toggle between marking marginal images and retrieving the best
images. Our system balances query refinement and retrieval of quality images seamlessly.
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In [25], Zhou and Huang use biased descriminant analysis to address the problem that
while relevant retrievals have common attributes, irrelevant retrievals may be different from
the positive examples in any number of ways. The research proposes a transform to cluster
relevant examples in a new space while avoiding efforts to cluster the negative examples.
It cites this assymetric treatment of the two classes as beneficial to retrieval performance.

Tieu and Viola [21] apply boosting, a technique that combines numerous weak classifiers
to yield a strong one, to learn to efficiently browse an image database. Thousands of low
level visual features are extracted from the database images. Only 20 have their weights
boosted to the degree that they are used by a classifier. The user selects a few examples of
images that he or she is interested in and the system selects 100 negative examples randomly.
Boosting is applied and the resulting classifier is used to generate more examples for the
user to examine. The process repeats until the user is satisfied. It is unclear whether a single
positive example (a query image in our domain) would be sufficient to learn the underlying
concept.

In [6], images in the database are characterized by their color histograms. Each continuous
color frequency bin may be discretized into intervals, thus converting the histograms into
discrete feature vectors. The discretization is governed by a mechanism to minimize the
class entropy in each resultant interval. Weights are assigned to each interval; the greater
the discriminating power, the greater the weight. Initially, a weighted k-nearest neighbor
retrieval is performed that returns a ranked image list. A decision tree is then induced
whose leaves contain a measure of the confidence that a feature space region contains
relevant images. The retrieved images are filtered through the tree and each is then reranked
by the weight in the leaf it is routed to. In contrast, what we will demonstrate is that our
method first induces a decision tree to pool images to be retrieved. We then execute an
unweighted k-nearest neighbor retrieval on the pool using a subset of the available features
to return a ranked image list. We briefly include these details here to delineate differences
between the system in [6] and our own.

3. RELEVANCE FEEDBACK DECISION TREES

We view the task of relevance feedback as a machine learning problem. The view of
this problem as a two class classification problem was first suggested by van Rijsbergen
[23]. Our algorithm, named RFDT (relevance feedback decision tree retriever), endeavors
to classify an arbitrary image into one of two classes: relevant to the user’s needs or not.

At a high level, the system operates as follows: The user provides a query image, which
is automatically labeled relevant because it is the standard of relevance against which other
images in the database will be compared. A nearest neighbor retrieval is invoked to retrieve
the first set of K images—the standard procedure in the absence of any feedback. The user
then marks these K retrieved images as either relevant or irrelevant and these markings,
along with the query (marked relevant), are relayed back to the system as feedback. For
each of the K retrieved images, its relevancy class marking together with its associated
feature vector form the training data. This set is used to train a decision tree to distinguish
relevant from irrelevant images. Next, each database image is classified into one of these
two classes by the tree. Those images that are classified as relevant are pooled together and
the K of them closest to the query in Euclidean distance are the next set to be returned to
the user for perusal. Once again, the user can mark these images providing the system with
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2K + 1 feature vectors with relevancy markings to comprise the next decision tree training
set. The full history—the query plus both user-marked sets—is used. Each tree and thus
each retrieval gets more and more refined with accumulating feedback information for a
particular query. This process can iterate indefinitely until the user is satisfied.

3.1. An Overview of Decision Trees

A decision tree is a method for recursively partitioning a feature space containing data
instances such that, at termination, each partition is populated by instances of single class
value. See [11] for an in-depth presentation. One criterion for making these sequential
cuts in the space orthogonal to the feature axes is based on an information-theoretic con-
cept called entropy [16]. The entropy of a given partitioning of the space is a measure of
the heterogeneity of the class distribution across the partitions. Thus, partitions that are
more purely of one class have a lower entropy. A cut is selected to maximize the cumu-
lative decrease in entropy after the cut has been made. Thus, cuts are added in order to
increase the class purity of the resultant partitions. The partitioning stops when each of the
partitions is populated by instances of a pure class.

For many datasets, after a tree is grown that is consistent with the training data, a pruning
procedure is run to avoid overfitting to the data. A pruned tree will be less consistent with the
specific training data in order to better generalize to other data. We do not prune because we
require the tree to be completely consistent with the training data, which will be elaborated
upon later in this section.

This recursive partitioning can be expressed as a tree data structure. The root of the tree
represents the entire space; if it has children, they each represent the space after being
partitioned by the first cut. The feature index and the value of the feature at the cutting plane
are recorded in the root. Similarly, each of the child nodes represents the two subset spaces
and each can store similar feature information if the corresponding subset spaces are further
subdivided. A leaf node represents one of the final, class-pure partitions; it is labeled with
the class of the data in the partition.

Once a tree has been constructed (or induced), it serves as a predictive model. The tree
uniquely defines a partitioning of the space, with each partition having an associated class.
An unclassified instance can be projected to this partitioned space; it is then labeled with
the class associated with the partition.

3.2. The RFDT Algorithm

On the first iteration, no feedback information has been provided, so the retriever performs
an unweighted K nearest neighbor retrieval using the feature vector of the query and those
of the images populating the database. (Note that the algorithm may be configured to
use all of the features in this calculation, or, alternatively, may only use a subset of the
complete feature set. The benefits of the latter choice are described later in this section.)
From the database, K images are retrieved and displayed for the user. The user then marks
the retrieved images as relevant or irrelevant as he or she sees fit. These feature vectors
are relayed back to the system and the second iteration begins. On the second iteration, the
algorithm induces a decision tree from the K + 1 labeled feature vectors by using C4.5 [11].
This induction may use the same feature subset used in the initial retrieval, or it may use
all of the features. We evaluate these choices in Section 4. Figure 1a provides an example
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FIG. 1. (a) Feedback vector data and (b) the corresponding partitions found by a decision tree.

of two-dimensional feature vector data, where each point represents a user-labeled feature
vector corresponding to an image. The open circles represent vectors marked relevant, the
x’s represent vectors marked irrelevant, and the solid circle represents the query. Figure 1b
illustrates the same space after a decision tree inducer has determined partitions in the
feature space. Note that partitions have complete class purity. (The query is in the same
partition as vectors marked relevant. This does not violate this purity stipulation because the
query is relevant by default.) The C4.5 routine is executed with its default options, except
that we allow leaf nodes to have a minimum of one training instance. This is accomplished
by using the “−m 1” option in C4.5.

Once the tree is formed, we use it to select the next set of K images to present to the user.
To this end, we classify the entire database of feature vectors via the learned tree. That is,
the tree is used to route each database image’s feature vector down to a leaf node. This is
equivalent to projecting the instance into the partitioned space. When an image is routed to
a particular leaf, the unique index of the image in the database is stored in that leaf. Thus,
a leaf has a record of all of the images that have been routed to it. (We will say that images
that have been routed to a node are in that node.) When all instances in the database have
been filtered through the decision tree, the instances contained in the leaves labeled with
class “relevant” are assembled into a list. From this list, the K images closest to the query
are retrieved by executing an unweighted K nearest neighbor retrieval on only this list.
These K are then presented to the user for another round of relevancy marking. On the next
iteration, the retriever’s operation is identical to that of the second iteration, except that now
there are a total of 2K instances labeled with user feedback, plus the query, from which the
system will induce a new decision tree. Thus, each subsequent iteration allows the retriever
to learn from K more images than the previous iteration, as long as database images are
retrieved for the user without replacement. All retrieval experimentation, barring tests of
the system’s earliest incarnation, was performed without replacement; that is, each image
may be retrieved once and only once. (Replacement can both artificially inflate popular
performance metrics as well as frustrate the user with remarkings.) This retrieve–feedback
loop continues until the user becomes satisfied with the result or until the user feels that the
process has exhausted his or her resources for finding relevant images in the database.

There are contingencies for certain scenarios that may arise in the application of the
decision tree. If the list of all the images that are in relevant nodes of the tree has fewer
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than K items, this indicates that the tree is overly specific, or overfitted, to the training
data. The predictive model must be “relaxed” in a way as to allow more images to be
classified as relevant. This is based on the premise that unseen relevant images always exist
in the database. More complex trees describe more specific predictive models, so the system
makes the tree less specific by pruning. Pruning, in this context, collapses the deepest pair
of sibling nodes. They are removed from the tree and their common parent node becomes a
leaf node labeled as relevant. Also, the two image sets that were associated with the siblings
are combined to form the image set of the parent. Note that one of the now deceased nodes
was labeled irrelevant; this node’s images now populate the parent node and are considered
relevant. Thus, the overall number of images classified as relevant must necessarily increase.
At this point, the system again counts the number of images marked relevant in the tree. If
it still less than K , the pruning process is repeated until K or more are available.

Pruning can be executed in a number of ways. The pruning method employed in our
method prunes the deepest sibling node pair. (Strictly speaking, if another node pair exists
at the maximal depth, it may be pruned instead.) The frequency with which pruning must
be executed depends on the dataset and happens more frequently as the number of iterations
grows. After 10 iterations pruning occurred only in 10% of retrievals. Instead of pruning
the deepest node pair, a system could prune the node pair with the fewest number of images
in them or even attempt all possible pruning operations and evaluate each of them by some
criterion. In general, different pruning methods will excel over other methods depending
on the data. It is not our goal to tailor any part of the system to the data we have in any
way. To truly evaluate which pruning method is best in a practical sense would require
experimentation across numerous large datasets and is beyond the scope of this research.

It may be the case that the tree consists of only one node, a condition that occurs when
the tree is pruned down to the root, which will be marked relevant. Note that in this case, the
algorithm was not able to partition the space based on the feedback data in such a way that
K images fell into relevant partitions. The single node must be marked relevant because
its children were just pruned; thus, all remaining instances in the database are members of
the relevant instance pool. At this point, the algorithm will simply return the next-nearest
K images to the user. Without a tree to differentiate relevant from irrelevant, the system
explores outward in all directions by degenerating into a nearest neighbor retriever.

3.3. Configurations Using Feature Subsets

Using all the features for a given retrieval may provide less than optimal results because
some of the features may be noisy, irrelevant, or highly correlated with other features. The
features used by the initial retrieval play the important role of dictating which locales of
the feature space are explored first. Database instances have differing proximities to the
query in different feature subspaces. The features used to construct the RFDT affect where
in the database the system will focus its next retrieval. In the remainder of this section, we
first describe two criteria for selecting a feature subset with which the RFDT retriever will
operate. We then describe how we activate different subsets during different iterations for
a query in order to increase retrieval performance.

We have investigated the following two feature subset selection criteria. They are designed
to work in conjunction with a sequential forward selection (SFS) search [5] wrapped around
the nearest neighbor. We use nearest neighbor because this is the method used by the system
for retrieval. SFS begins with an empty set of features. It then adds a prospective feature
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and performs a set of K nearest neighbor retrievals using each of the instances as the query
once. For each retrieval, it calculates a criterion value, explained below. The average of these
is stored and associated with the feature. This process iterates, each time using a different
prospective feature. The feature whose criterion value average is greatest is permanently
added. The entire algorithm restarts, but now has one feature instead of none. Features are
selected in this way until no feature can be added to increase the previous round’s best
average criterion value.

The best mean accuracy criterion. In browsing databases whose constituents have class
labels, the user may wish to see instances from the database whose classes match that of
the query. This requires a feature set selected such that a nearest neighbor retrieval us-
ing it returns, on average, the greatest number of database instances whose class matches
that of the query. In SFS, we can evaluate a candidate subset using this criterion by per-
forming a one nearest neighbor leave-one-out cross-validated retrieval. In such a scenario,
each database instance is used as a query exactly once as outlined above; if its nearest
neighbor (in the candidate feature subspace) matches its class we tally a one, otherwise
we tally a zero. Eight features, denoted Subset A, were selected by this technique for
our dataset. (Details of our dataset are in the following section). The features chosen are
shown in Table 3, along with the criterion value for the chosen subset. In Table 3 we
show the criterion value for each class. The bias of SFS toward favoring the majority
class is evident from this table. Indeed, the selected feature subset allows retrieval of 80%
precision of the majority class, but achieves 0% precision for classes with 27 or fewer
images.

TABLE 1

Features and Associated Indices

Feature name Indices Feature name Indices

global mean 0 pbr homogeneity 1 74–78
global std 1 pbr homogeneity 2 79–83
global area 2 pbr contrast 84–88
global histogram 3–18 pbr correlation 89–93
global gray min max 19–20 pbr cluster 94–98
global otsu threshold 21 pbr edge 99–106
fissure length 22–23 pbr global gray diff 107–110
fissure centroid 24–25 pbr seg area mean std max 111–113
fissure endpoint 26–29 pbr seg area hist 114–121
fissureorientation 30 pbr seg gray hist 122–137
pbr centroid 31–32 pbr fissure valid 138–140
pbr area 33–34 pbr closest fissure ID 141
pbr gray minmax 35–36 pbr deviation from fissure 142–143
pbr axes 37–38 pbr distance from fissure 144–145
pbr covariancematrix 39–42 pbr orientation from fissure 146
pbr histogram 43–58 pbr bronchial structure 147–153
pbr mean 59 pbr nodules 154–167
pbr std 60 pbr calcification 168–171
pbr orientation 61 pbr honeycombing 172–174
pbr dist from boundary 62–63 pbr small cystic 175–178
pbr energy 64–68 pbr big cystic 179–183
pbr entropy 69–73
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TABLE 2

Subset Selection Criterion Values per Class

Class index Disease name Class frequency Criterion A (%) Criterion B (%)

1 Centrilobular emphysema 654 74.7 80.9
2 Hemorrage 383 43.2 55.6
3 Bronchiectasis 234 59.2 57.7
4 MCTD 135 30.9 58.5
5 Boop 74 5.7 18.9
6 LIP 64 25.0 34.4
7 Lymphangitic carcinomatosis 61 0.0 0.0
8 IPF 58 31.0 43.1
9 Edema 57 0.0 75.4

10 Cyst 37 37.2 21.6
11 Aspergillus 34 8.1 20.6
12 MAI 27 0.0 0.0
13 Alveolar proteinosis 17 0.0 0.0
14 Bronchilitis obliterans 15 0.0 0.0
15 Coccidioidomycosis 15 0.0 0.0
16 Metastatic calcification 15 0.0 0.0
17 Honeycombing 10 0.0 0.0
18 Hypersensitivity pneumonitis 8 0.0 0.0
19 Histoplasmosis 6 0.0 0.0
20 DIP 5 0.0 0.0
21 Asbestosis 4 0.0 0.0
22 Aspergilloma 3 0.0 0.0

The at-least-one-match criterion. For some queries, a nearest neighbor retrieval may
not return any database instances whose class matches that of the query, leaving the user
with no relevant images. Our second feature subset selection criterion tries to maximize the
likelihood that at least one of the n retrieved instances has the same class as the query. If
the user can see as few as one retrieved instance that is relevant, it may give him or her a
foothold for training the RFDT retriever to explore the relevant part of the feature space.
Here, SFS operates exactly like in the best class accuracy case with two differences. First, it
is wrapped around a four nearest neighbor retriever. Second, the tally calculated per instance
is a 1 if one or more retrieved instances matches the class of the current instance. As in
the previous case, these values are summed and divided by the total number of instances to
determine a criterion value for a particular subset. Sixteen features, denoted Subset B, were
selected by this technique for our data. Table 2 shows the mean criterion values per class,
and Table 3 shows the mean criterion values across all classes.

TABLE 3

Feature Subsets and Selection Criteria

Subset name Criterion type Criterion value Resultant subset

Subset A Best mean accuracy 46.4% 2, 3, 6, 8, 10, 12, 13, 20

Subset B At-least-one match 56.1% 0, 3, 4, 5, 7, 8, 9, 13, 14, 19,
21, 22, 62, 105, 187, 198
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3.4. Subsets Used in Our Experiments

In its current incarnation, we allow the algorithm three modes of operation. First, we allow
all of the features to be used in both the initial K nearest neighbor retrieval and all decision
tree inductions on later iterations. As an alternative, we choose one of the two subsets
described above to be used for both the initial retrieval and decision tree induction during
all of the subsequent retrievals. As a third option, we select a feature subset to be used only
by the initial k nearest neighbor retrieval. All subsequent retrievals performed for a given
query in this third mode use decision trees induced from all of the features and retrieve from
the relevant instance pool using all features as well. This hybridized technique is motivated
by the notion that the initial k nearest neighbor retrieval may benefit by using a feature
subset optimized for the entire data set. However, on subsequent retrievals, we want to
provide the decision tree inducer with all of the features. The inducer is thus not limited to
selecting features for splitting from the subset and can create the tree best customized to the
feedback data. Indeed, a subset chosen for the entire dataset will be biased toward retrieval
of classes with greater instance membership and may perform poorly for queries belonging
to minority classes.

3.5. The RFDT + Algorithm

A variation of our original algorithm automatically searches for feature subsets as an
online step to improve retrieval performance from databases whose instances have class
labels. The algorithm is identical to the RFDT algorithm when used in the hybridized mode
with Subset A up to the point where the instances in relevant nodes are pooled and ready for
retrieval. Here, instead of using a nearest neighbor retriever to retrieve from these instances,
SFS is run on this pool to select the feature subset with maximal precision. Next, a nearest
neighbor retrieval is done on the pool, using this subset. Thus, this feature selection attempts
to discover a feature subset that best discriminates the classes with respect to the pooled
relevant instances.

4. EMPIRICAL RESULTS

The performance of the relevance feedback decision tree retrieval algorithm was bench-
marked against that of another recent image retrieval system known as the probabilistic
feature relevance learner, developed by Peng et al. [10]. Details of the image database,
experimental setup, and experimental results are provided in this section.

4.1. The HRCT Image Database

The image database upon which our experiments are based is populated by 1004 HRCT
gray-scale images of human lungs at a resolution of 256 × 256 pixels. An example image is
shown in Fig. 2. Each image contains at least one form of lung disease such as centrilobular
emphysema or bronchiectasis. The database contains images that are diagnosed by a lung
specialist as one of 22 disease classes. (Note that this disease class information is not
used in the retrieval process.) Each image contains one or more subregions delineated by
a radiologist, each one labeled with its disease class. These regions are called pathology-
bearing regions, or PBRs. Image feature extraction is performed local to each PBR as
well as on the entire lung. These two vectors are concatenated to form the full feature
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FIG. 2. An HRCT scan of a human lung.

vector for the PBR [17]. Of the 1916 PBRs, 1406 of them belong to one of four disease
classes: MCTD, bronchiectasis, hemorrhage, and centrilobular emphysema. (Centrilobular
emphysema, occurring in 654 PBRs, is the majority class.) The remaining 18 disease classes
occur in less than 100 PBRs each.

Our feature extraction software extracts 184 features, as given in Table 1. These include
domain independent properties such as gray-scale histogram and texture, and domain spe-
cific properties that relate to PBR geometry, among others [18]. Because these features
have different scales, all feature vectors are normalized to have zero mean and unit standard
deviation before being entered into the database. This normalization is crucial in preventing
certain features from having an initial bias toward being more relevant than others when
being compared with a distance metric. The retrieval algorithms operate on feature vectors,
not, technically, on images. Thus, when we say that an algorithm retrieves an image, we
really mean that it retrieves the vector associated with that image and then presents the user
with the image.

4.2. Experimental Design

Our experiments compare our feedback decision trees retriever to the probabilistic feature
relevance learning (PFRL) using identical operating conditions. PFRL is a weighted K
nearest neighbor retriever that adjusts feature weights based on user feedback and has
been shown to be one of the better retrievers in existence. PFRL is controlled by two
parameters: C , a bias–variance tradeoff, and T , the learning rate. The C parameter may
take integer values between 1 and K − 1, while the T parameter may be set to any positive
real number. Experimentation illustrated that a value of T = 4 optimized the retriever’s
precision with respect to our database. The precision is insensitive to the choice of C ; it was
set to ceiling(K/2) with good results. Our relevance feedback decision tree retriever does
not have parameters, and, therefore, no such optimization steps are necessary.
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Our experimentation is divided into two parts. In the first section, there is no actual human
relevance feedback provided to the system because we simulate feedback information, and
the second section contains data from a trial involving a radiologist. The motivation for
offline experiments is straightforward. User relevance feedback must be made by a human
expert, a radiologist in this domain, but this feedback is expensive in both time and effort.
A person unfamiliar with lung HRCT imagery will not provide useful feedback to the
system and furthermore will be of no use in evaluating a system’s performance. We do,
however, exploit the fact that we have a disease class label for each image. We make
one reasonable assumption about user preferences for the sake of system evaluation: if the
disease class of the query is A, then a typical user would be most interested in seeing images
that are also diagnosed as having disease A. Thus, for the offline experiments, if an image
matches the disease class of the query, it is considered relevant; otherwise, it is considered
irrelevant.

The ability of the system to return duplicate images during feedback iterations for a
given query is a parameter in our experimentation. Initial simulated user results retrieved
images with replacement: one image could surface multiple times during the retrievals for
a query. This practice is common with systems developed elsewhere [10] which led us to
follow suit to enable a consistent comparison of our system to these others. Unfortunately,
allowance of these repeated retrievals has the potential to overinflate precision measure-
ments. Furthermore, in the human user scenario, it wastes the user’s time because he or she
needs to view and provide feedback on the same images multiple times. This repetition was
prevented in all but the earliest simulated user experiments and was prevented in the human
user experiments.

Our database contains 1916 feature vectors extracted from the image set, each corre-
sponding to a PBR. (There are, on average, one to two PBR’s per image.) A group of
images often may be from the same patient. (HRCT scans of different cross-sections of the
lung are called slices.) It is important to note that in the evaluation trial, our retrieval system
returns images that have some similarity to the query but are not from the same patient as
the query. All experiments prevent retrieval of images whose source patient matches the
query patient.

In our experiments we present results for K = 4 and K = 10. We argue that fewer than
four marked images per retrieval will degrade the performance due to insufficient feedback
and that more than 10 iterations would be unrealistic in terms of the satisfaction of the
user. We call the initial retrieval an iteration, even though in strict language an iteration is
a repetition. While substantial research [10, 13] has demonstrated the efficacy of systems
that routinely use K > 10, we feel that marking such a large number of images per retrieval
is an excessive burden for the user. We evaluate the systems over 10 iterations, which is an
upper bound on a plausible number of iterations expected in practice.

4.2.1. Simulated user experiments. In these experiments, each retriever was run 1916
times, once for each PBR in the database. For a given query, we recorded the retrieval
precision, which we computed to be the fraction of retrievals whose class matches that of
the query. The simulated experiments are divided into two subgroups: those in which we
allow repeated retrieved images and those in which we do not. The work allowing repeated
retrieved images predates the work allowing different feature subset configurations; it is
run using Subset A for both initial and subsequent retrievals. The experiments preventing
repeated retrievals is given a more thorough treatment. It was operated in the three modes
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outlined in the previous chapter: using all features all the time, using a feature subset all
the time, and using a subset for the initial retrieval but all features thereafter. We present
experiments with both Subset A and B in the second two modes.

4.2.2. Human user experiments. Because our domain is comprised of HRCT images of
the lung, the retrieval quality can only be assessed accurately by an expert in this domain: a
physician who specializes in thoracic radiology. Such a specialist performed clinical trials
of our system remotely via ASSERT, a Web-based interface for browsing and retrieval from
our image data [19].

Given a query, the radiologist provided four rounds of iterative relevance feedback. She
could elect to rate each retrieved image as either “Strongly Agree,” “Agree,” “Not Sure,”
“Disagree,” or “Strongly Disagree.” Note that the current incarnations of the retrievers
compared only handle binary relevance feedback; thus, “Strongly Agree” and “Agree” were
assigned to “relevant” and the remaining selections were assigned to “irrelevant” during
communication of the ratings to the retrievers.

The experiment was divided into two phases. In the first phase, 19 images were selected
at random from the database to be used as queries. For each query, either RFDT or PFRL
was selected as the retriever pseudo-randomly; the selection keyed off of a character in
the image filename. The retriever type was hidden at all times from the radiologist, thus
making the experiment single-blind. There was no need to “pad” extra time into the (faster)
PFRL retriever because retrieval time overhead associated with the Web interface was great
enough to make the retrieval times indistinguishable by a human. In the second phase, the
same 19 queries were presented, but the keying was complemented—each query that used
RFDT in the first phase now used PFRL and vice versa, providing feedback data for each
and every query by both retrievers. During both phases, K was set to four. The radiologist
did not have enough time to evaluate 19 queries with K = 10. For each round of relevance
feedback, the frequency with which the radiologist provided each of the five ratings was
logged.

4.3. Experimental Results

The results of the experiments where repeated retrievals are allowed are displayed in
Fig. 3 for K = 4 and K = 10. Note that, for both values of K , the retrieval precision on the

FIG. 3. Mean retrieval precision with repeated retrievals allowed for (a) K = 4 and (b) K = 10.
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first iteration is identical for PFRL and RFDT because both default to a simple unweighted
K nearest neighbor retrieval.

The oscillatory behavior of the mean precision of the PFRL retriever with respect to
iteration indicates that the weights that it is storing are oscillating as well. This could have
been dampened somewhat by decreasing the learning rate T , but we chose T to be the value
that produced the best mean precision results on this domain. The accumulation of knowl-
edge by the RFDT retriever is evidenced by the asymptotic behavior of its precision curve.
Conversely, the PFRL system only uses current knowledge—the current set of retrieved
images—to alter its next retrieval technique.

In the remainder of the experiments we do not permit repeated retrievals per query.
Here we introduce a statistic more useful than precision for evaluating image retrieval: the
cumulative sum of unique relevant images viewed up to and including iteration i . (Note
that, in the no repetition case, this is a straightforward summing of the first through i th
precisions with a scale factor K .) If we wanted to calculate cumulative recall, we need
only divide these cumulative sums by the total number of relevant images in the database.
Finding the total number of relevant images in a large database is, however, impractical.
Imagine a person trying to retrieve 20 images of birds from a large database, like the Web. A
Web feedback search engine may index thousands of bird images which would be marked
relevant, but finding all of the relevant images through iteration would take hours per query.
Even if calculating recall was less expensive, it would not have utility in our evaluation. We
measure systems in their ability to retrieve the greatest number of relevant images in the
fewest number of iterations.

Table 4 provides a summary of performance for K = 4. Note that the RFDT retriever is
able to retrieve more relevant images after 10 iterations in all modes of retrieval operation.
Note that the initial retrieval’s mean relevant image count (the initial precision, scaled) is
highest when using all the features. This is counterintuitive, because Subset A was designed
to increase this number. A closer examination provides some insight. Our feature subset
selection was wrapped around a 1 nearest neighbor retriever, but here K = 4. Due to the
design of the subset selection criterion, in a 1 nearest neighbor case (K = 1), performance
would necessarily increase, or at least stay the same, as compared to a 1 nearest neighbor
retrieval experiment using all of the features. Unfortunately, no guarantees are made about
other values of K —we are applying one criterion for subset selection and using the system
in a way inconsistent with that criterion.

Subset B was designed to not necessarily increase initial precision, but to hopefully, in the
end, allow more relevant images to be discovered by giving the retriever the most cases where

TABLE 4

Cumulative Retrieval Results with K = 4

After 10 iterations

Retrieval mode After 1 iteration PFRL RFDT

All features 2.2 17.9 21.3
Subset A features 1.9 15.0 20.6
A/All hybrid 1.9 16.6 21.3
Subset B 1.7 11.1 18.6
B/All hybrid 1.7 15.4 21.2
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TABLE 5

Cumulative Retrieval Results with K = 10

After 10 iterations

Retrieval mode After 1 iteration PFRL RFDT

All features 5.1 46.2 50.5
Subset A features 4.5 38.5 49.4
A/All hybrid 4.5 43.9 50.5
Subset B 4.1 30.2 42.9
B/All hybrid 4.1 43.3 50.4

at least one image in the retrieved set is relevant. There is simply little evidence that, given
this feature set and this image domain, the at-least-one subset selection provides a benefit.

Both retrievers do their respective best when using all of the features which indicates
that, at least in this framework, feature subset selection integrated into relevance feedback
CBIR techniques does not improve performance. Table 5 shows similar results for K = 10.
There is no evidence that using K = 4 is causing learning deficiencies for either retriever
besides the obvious fact that with K = 10, more potentially relevant images can be viewed
in as many iterations.

Figure 4a shows the precision per iteration in the K = 4 case. The precision curves do
not arc upward nearly as steeply because repeated retrievals are not allowed. We can now
see that the RFDT retriever consistently averages over two relevant images per retrieval
(50% precision) across the iterations while the PFRL retriever is unable to keep finding
relevant images at that rate. Immediately after the first feedback session, however, the
PFRL retriever does excel, as given by the spike at iteration number two. Figure 4b shows
the cumulative relevant images found at a given iteration. Graphs for K = 10 show similar
trends [8].

The RFDT+ algorithm was used to retrieve from the data in offline trials with K = 10. Re-
call that RFDT+uses Subset A for the initial retrieval. We therefore compare its performance

FIG. 4. Using all features, performance of PFRL, RFDT for K = 4. (a) Mean precision per iteration;
(b) cumulative relevant retrievals.
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FIG. 5. Using all features, performance of PFRL, RFDT, RFDT+ for K = 10. (a) Mean precision per iteration;
(b) cumulative relevant retrievals.

to the RFDT and PFRL retrievers in the cases where they use Subset A for the initial re-
trieval. Figure 5 shows the per iteration and the cumulative precision. Note that there is some
benefit to using a feature subset tailored to a particular relevant instance pool for retrieval
from that pool. More relevant images are uncovered in the first three retrievals than any
other retriever, but the regular RFDT retriever performs slightly better retrieval during later
iterations. The RFDT+ retriever discovers more relevant instances earlier, so fewer exist
later.

Because the disease class distribution of our database is skewed, retrieval precision with
respect to each class is not uniform. We report the retrieval results by class in Table 6 for
K = 4. In 10 of the classes which constitute approximately 10% of the database’s images,

TABLE 6

Per Class Retrieval Precision: Feature Subset A Modes with K = 4

Full set Subset A A/Full hybrid

Class Frequency PFRL base % RFDT �% PFRL �% RFDT �% PFRL �% RFDT �%

1 654 82.5 +4.0 −14.3 −2.0 −3.0 +3.0
2 383 35.5 +15.8 −4.0 +19.3 −4.3 +16.3
3 234 43.3 +13.8 +0.5 +18.5 −2.3 +14.3
4 135 20.8 +13.5 −7.0 +16.0 −3.5 +13.8
5 74 1.3 +9.5 0.0 +6.0 0.0 +9.3
6 64 11.3 +12.8 −5.0 +9.3 +0.8 +13.0
7 61 0.5 +3.5 −0.5 +6.0 −0.5 +3.0
8 58 38.5 −8.3 −2.0 −4.5 −1.0 −7.5
9 57 27.3 +13.8 −27.3 −17.5 −27.3 +12.0

10 37 10.5 +7.3 −3.3 +9.8 −2.0 +8.0
11 34 6.3 +13.0 −5.0 +2.0 −3.5 +11.3
12 27 0.0 0.0 0.0 0.0 0.0 0.0
13 17 0.0 0.0 0.0 0.0 0.0 0.0
14 15 0.0 +0.3 0.0 0.0 0.0 +0.3

15–22 66 0.0 0.0 0.0 0.0 0.0 0.0
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neither of the two retrievers was ever able to return even one relevant (same class as query)
image. We lack the necessary features at this time to differentiate these minority classes from
the majority classes. This result may be partially dependent on our SFS feature selection
method, which attempts to select features with respect to overall classification accuracy,
not mean class accuracy. For this reason, SFS tends to be biased toward selecting features
that best distinguish the majority class from other classes. With K = 10, the base K nearest
neighbor mean retrieval precision for the majority class is 73.7%. (Results for the K = 10
case closely mimic the results for the K = 4 case; a table for K = 10 is omitted for the sake
of brevity.) PFRL has a mean precision of 82.4% on this class after 10 iterations and RFDT
has a mean precision of 97.3% on this class after 10 iterations. Note that 100% retrieval is
often difficult to attain and in some cases is theoretically impossible. For instance, if K is
greater than the total population of images that are from the same class as the query, then
precision cannot be perfect. This situation arises with skewed class distributions in which
minority classes have few instances.

Notice that the RFDT retriever outperforms the PFRL for all but one class when using all
of the features. (It is speculative to conclude that PFRL would surely outperform RFDT on
this class with a larger database that has equal class distributions, thus rectifying any data
sparseness effect that may be intervening here.) From this, we conclude that RFDT is not
earning its precision through majority class retrieval while ignoring minority classes. In the
next pair of columns, the majority class gets most hurt in absolute numbers by requiring the
retrievers to use Subset A. PFRL relevancy percentages all decrease except for one class,
while RFDT has a balance of losses and gains. This is also true for performances with the
hybrid case, where the retrievers use Subset A for the first retrieval and all features for
subsequent retrievals.

Figure 6 plots the results for the human user experiments. These cumulative statistics are
averages across all 19 queries. Higher values on plots a and b and lower values on plots d
and e characterize a superior retriever. RFDT retrieves more “Strongly Agree” rated images
as well as fewer images in the “Disagree” and “Strongly Disagree” categories, but it does
not retrieve as many images as PFRL that are rated “Agree.” Recall that the retrievers do
not use feedback that is this finely graded. To each of the retrievers, either of the first two
ratings are considered relevant, and any of the latter three are considered irrelevant. If we
lump the statistics into these coarser numbers, we find that the RFDT retriever accumulated
a mean of 6.84 relevant images and 9.16 irrelevant images after all iterations. The PFRL
retriever retrieves 6.52 relevant images and 9.48 irrelevant images. Thus, the RFDT retriever
outperforms PFRL when the ratings are thresholded in accordance with how the retrievers
threshold the feedback information themselves.

The results are less dramatic for this trial than for the offline experiments. This is at-
tributable to the problem that for some images neither retriever is able to improve upon the
initial incorrect results (this happens because several of our classes are sufficiently under-
represented that the features used for the initial retrieval are not relevant to these classes, as
was discussed in Section 4.3).

A point which applies to all experimentation is that both retrievers are sufficiently fast
for online implementation. On a Sun Ultra 1, the RFDT retriever takes approximately
1–2 s to perform a retrieval on average while the PFRL retriever takes approximately
300 ms. It should be noted that the speed of the RFDT retriever could be increased by
using a data structure that allows for faster access than the simple linear search employed
here.
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FIG. 6. Images rated (a) “Strongly Agree,” (b) “Agree,” (c) “Not Sure,” (d) “Disagree,” and (e) “Strongly
Disagree.”

5. CONCLUSION AND DISCUSSION

In this paper, we have presented a retrieval system called RFDT that improves its perfor-
mance by inducing decision trees from user relevance feedback information. The decision
trees are used to classify database instances into either class “relevant” or “irrelevant,” and
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a nearest neighbor retriever is used to return a ranked retrieval from the relevant pool to the
user. This work has shown that using feature subsets for a query’s initial or later retrievals
provides, at best, modest performance gains on our medical image database. However, use
of the RFDT+ algorithm, which performs an online sequential forward features selection
just prior to retrieval from the relevant pool, provides small precision gains on the same data.
In addition, the system retrieves any given image from the database at most once during
a retrieval session. This practice, which is common in the more recent literature, prevents
any ambiguity in evaluating retrieval precision across iterations.

Our system maintains a log of all of the feedback information and uses all of it in its model
induction for a given retrieval iteration. Our system’s use of this explicit data has proven more
effective in practice than the implicit encoding that exists in feature weighting schemes. We
have demonstrated that this long-term memory improves performance significantly with
respect to a competing system that has no such faculty. Our system is novel in that it can
take advantage of a database in which the database instances have class labels; the RFDT+
version of the retriever performs online SFS to enhance performance in this scenario. In
all operating modes, our system remains competitively efficient with respect to space and
computational time constraints.

There exist a number of open research issues not only in content-based image retrieval,
but in information retrieval in general. As an example, retrieval in skewed class distributions
is difficult because machine learning techniques often have an inductive bias that favors
retrieval of the majority class. We have examined the systems’ performances with respect
to class, but that was purely to confirm that this bias existed for our data. A system that can
adapt to the adverse environment created by a skewed class distribution would be a major
breakthrough. Another issue concerns feature space exploration. Many retrieval systems
take the conservative approach of exhausting all images in a locale of the feature space
before looking elsewhere, but this may lead to suboptimal results. A gold mine of relevant
instances could a short distance away in the feature space, but the overly conservative
retriever would find them much later or not at all. The random retriever would not suffer
from the same ill as the conservative retriever, but the random retriever is, clearly, far
from optimal. Successful retrievers of tomorrow will need to develop policies that balance
searching in tried and true areas with exploration beyond the frontier of the familiar.
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