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Hua, Yingbo, Xiang, Yong, Chen, Tianping, Abed-Meraim, Karim, and
Miao, Yongfeng, A New Look at the Power Method for Fast Subspace
Tracking, Digital Signal Processing 9 (1999), 297-314.

A class of fast subspace tracking methods such as the Oja method, the
projection approximation subspace tracking (PAST) method, and the
novel information criterion (NIC) method can be viewed as power-based
methods. Unlike many non-power-based methods such as the Given’s
rotation based URV updating method and the operator restriction
algorithm, the power-based methods with arbitrary initial conditions are
convergent to the principal subspace of a vector sequence under a mild
assumption. This paper elaborates on a natural version of the power
method. The natural power method is shown to have the fastest conver-
gence rate among the power-based methods. Three types of implementa-
tions of the natural power method are presented in detail, which require
respectively O(n?p), O(np?), and O(np) flops of computation at each
iteration (update), where n is the dimension of the vector sequence and p
is the dimension of the principal subspace. All of the three implementa-
tions are shown to be globally convergent under a mild assumption. The
O(np) implementation of the natural power method is shown to be
superior to the O(np) equivalent of the Oja, PAST, and NIC methods. Like
all power-based methods, the natural power method can be easily
modified via subspace deflation to track the principal components and,
hence, the rank of the principal subspace. ©1999 Academic Press

1. INTRODUCTION
—

Fast estimation and tracking of the principal subspace (or/and principal
components) of a sequence of random vectors is a classic problem which is
encountered widely in areas such as data compression, data filtering, param-
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eter estimation, pattern recognition, and neural analysis. In particular, it is
important in the area of wireless communications, e.g., [16,17,24].

For this problem, the conventional solutions are available in the 1990 survey
paper [1]. The merger of signal processing and neural networks in the early
1990s [2] brought much attention to a method originated by Oja [3] and applied
by many others [4]. The Oja method requires only O(np) flops of computation at
each iteration (update), where n is the dimension of the vector sequence and p is
the dimension of the desired principal subspace. Thorough analyses [5—6] of
the Oja method also showed that the Oja method with an arbitrarily small step
size (and some mild condition) is globally convergent. However, the conver-
gence speed of its digital implementation, due to the requirement of small step
size, is very slow in comparison to many existing numerical methods. If the step
size is not small enough, the Oja method diverges.

The Oja method can also be viewed [7,8] as an approximation of gradient
descent of a mean square error (MSE) function. Following the gradient descent
idea, faster subspace tracking methods have recently been developed, among
which are the projection approximation subspace tracking (PAST) method [8]
and the novel information criterion (NIC) method [9]. These two methods can
both be implemented using only O(np) flops at each iteration. The PAST
method was developed from the same MSE function as used for the Oja method,
except that a “projection approximation” was applied. The PAST method
converges much faster than the Oja method, although the former does not
generally converge to an orthogonal basis of the principal subspace. The NIC
method is another gradient-based method. The criterion used by the NIC
method is unique and different from the MSE function, but it has all the desired
properties needed for principal subspace estimation. The NIC method turns out
to be a robust generalization of the PAST method. As shown in Appendix B of
this paper, the three methods: Oja, PAST, and NIC, can all be viewed as some
heuristic variations of a classic method for subspace computation, known as the
power method [10]. These methods will be referred to as power-based methods.

It is important to mention that there exist many non-power-based subspace
tracking methods, which include the Given’s rotation based URV updating
method by Stewart [20], the operator restriction algorithm (OPERA) by
MacInnes [13], and the maximum likelihood adaptive subspace estimation
(MALASE) by Riou and Chonavel [12]. The URV method is now a well-known
subspace tracking method, which requires O(n?) flops at each iteration. The
OPERA is one of the latest, which needs O(np?) flops at each iteration. The
MALASE! appears to be the fastest non-power-based method, which needs
O(np) flops at each iteration. Unlike the power-based methods, however, all of
these methods require proper initializations or otherwise they do not converge.
Other numerous non-power-based methods can be found in [12-13].

In this paper, we focus on a natural version of the power method and discuss
its implementations with varied computational complexities. Like Oja, PAST,
and NIC, the natural power method can be implemented with linear complexity
of computation, i.e., O(np). Furthermore, the natural power method has the

1 MALASE is flawed, as discussed later.




fastest convergence rate. In contrast to the non-power-based methods, such as
OPERA, the natural power method not only has the minimum computational
requirement but it also has a global convergence property.

The concept and implementations of the natural power method are high-
lighted in this paper and presented in detail in Section 2. A global and
exponential convergence property of the natural power method is proven in
Appendix A. A link of the power method to the Oja, PAST, and NIC methods is
discussed in Appendix B. The natural power method is further modified in
Appendix C for principal component tracking. The performance of the natural
power method is illustrated in Section 3.

2. THE NATURAL POWER METHOD
—

The data under consideration are a sequence of n X 1 random vectors: [x(k)).
The covariance matrix of the sequence is denoted by C = E[x(k)x(%)?]. The
principal subspace spanned by the sequence, of dimension p < n, is defined to
be the span of the p principal eigenvectors of the covariance matrix. It is known
that the first principal eigenvector of the covariance matrix can be obtained by
the classic power method as

w(i + 1) = Cw(), (1)

where the n X 1 weight vector w(i) is the estimate of the first principal
eigenvector at the ith iteration. The norm of the weight vector needs to be
scaled during the iterations to prevent it from becoming too large or too small. A
natural choice of the scaling can be done as

w(i + 1) = Cw(i)(wH(i)C2w(i)) "2, (2)

where the scaling (wH(:)C? w(i))~2 guarantees that w(i + 1) has norm one. It
is known that under a weak condition, the weight vector of (1) converges
exponentially to the desired vector (up to a scalar). The convergence rate is
governed by the ratio of the first and second largest eigenvalues of the
covariance matrix. In tracking applications, one can simply replace the
covariance matrix in (2) by its recursive version, i.e., at the ( + 1)th iteration,

CGi + 1) =aC@) + xG + Dx( + D, 3)

where C(i) is the sample covariance matrix using the data available up to time
I, and « is a forgetting factor chosen between zero and one. The algorithm (2) is
referred to as the natural power method for computing the first principal
component.

For computing a principal subspace of dimension p, one can use a natural
generalization of (2) as

WG + 1) = CG + DWEOWHG)C?(@ + W) 12, 4)
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where W(i) is a n X p matrix, and the square root inverse of the matrix
WH(G)C2 W(i) is defined by the eigenvalue decomposition of the matrix with its
eigenvalues replaced by their square root inverses. It is easy to show that if the
initial weight matrix W(0) satisfies WH(0)C?W(0) > 0 (positive definite), or
equivalently WHZ(0)CW(0) > 0, then W(i) remains orthonormal;i.e.,

WHGHOWE) =1, (5)

where i > 0. The algorithm (4) is referred to as the basic form of the natural
power method for subspace tracking.

A global and exponential convergence property of the natural power method
is shown in Appendix A. In Appendix B, the power method (1) is shown to be the
essence in all of the Oja, PAST, and NIC methods. The rest of this section is
focused on digital implementations of the natural power method. These
implementations are in great contrast to the analog (differential equations)
methods shown in [15]. The analog methods would require analog computers,
or otherwise their digital implementations would be too slow, due to the
requirement of fine discretization.

2.1. O(n®p) Implementation—NP1

The direct implementation of (4) requires n?p flops to compute C(i + 1)W(@),
about 1 np? additional flops to compute WH(7)C2(i + 1)W(i) (which is conjugate
symmetric), O(p?) additional flops to compute the inverse square root in (4) (by
computing the eigendecomposition and taking the inverse square roots of the
eigenvalues), and a further np? flops to complete (4). The above approach needs
O(n?p) + O(np?) + O(p3) flops.

Alternatively, one can apply the QR factorization of the product C(i + 1)W(),

CG@+ DWGE) =QGE + DRGE + 1), (6)

where Q@i + 1) is orthonormal and R(i + 1) is upper (or lower) triangular.
Using (6) in (4) yields

WG + 1) = QG + DHG + 1), (7
where
HG + 1) =RG + DREG + DRG + 1)) v2, (8)

It is easy to verify that H( + 1) is a unitary matrix, and hence, W@ + 1) and
Q@ + 1) are equivalent for subspace estimation. Therefore, the direct implemen-
tation of the natural power method (4) is equivalent (up to a unitary rotation) to
the well-known QR power method [10]:

Ct + 1QGE) = QG + DRGE + 1). 9)

This algorithm requires n2p to compute the product on the left side of (9) and
O(np?) additional flops [1] to compute the QR factorization on the right side.
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Each of (4) and (9) guarantees the orthogonality of the weight matrix at each
iteration.

2.2. O(np?) Implementation—NP2

To reduce the complexity of the natural power method, we consider (using (3)):
CGE + DWG) = aCOWE) + xG + DxHG + DWGE). 10)

The first term in (10) does not contain any information carried in the new vector
x(i + 1) while the second term does. Furthermore, the first term needs many
more flops than the second term. This motivates the idea that the first term
should be approximated by some past information to save the computational
complexity. A simple choice of approximation is

COW@E) =~ CAHWGE - 1) (11)

which is clearly valid if the weight matrix W(i) is slowly varying with i. (Note
that the approximation of (11) can be generalized by post-multiplying the right
side of (11) by such a matrix E(i) that minimizes |W(i) — WG — 1) EG)|. This
generalized approximation is used in the bi-iteration method [25]. But for very
fast implementations of the natural power method, E(i) can be replaced by the
identify matrix as shown in the sequel of this paper.) With the approximation
(11) in (10), the product C(i + 1)W(i) requires only 3np flops to update at each
iteration. The approximation (11) also follows from the “projection approxima-
tion” WH()x(k) ~ WH(E — 1)x(k) for alli =k — 1 as proposed in [8].

It is important to note that the approximation (11) is justifiable by the
natural power method (4) but not by the QR power method (9). The reasons are
as follows.

“Projection approximation” justifiable by the natural power method. As-
sume that x(i) is stationary and o = 1. One can write that for large 7, (1/( + 1))
CG + 1) = U2,UY + U,3,UY, where the first term consists of the principal
components, namely, U, is the (orthonormal) principal-eigenvector matrix of
C(@ + 1). According to the discussion in Appendix A for large i,

WG@) = U, TG),

where T(7) is a unitary matrix, and hence,

1
1 CG + DW@) = U,3,TG)

1
(WHGCG + 1)°W(@)) 12 = P TGS 'TG)

and hence, from (4), Wi + 1) = W(7). The above discussion also shows why the
algorithm (17) shown later is asymptotically equivalent to (4).
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“Projection approximation” not justifiable by the QR power method. Con-
sider the desired situation Q(i) = U;S(i), where S(i) is a unitary matrix. Then,
for large i, CG + 1DQG) = U2;SG) + PG + 1), where PG + 1) is small
perturbation matrix. By applying the QR factorization (9), we have Qi + 1) =
U;SG + 1), where S + 1) is a unitary matrix that is rotationally not only
affected by the small matrix PG + 1) but also significantly by Z; unless the
latter is proportional (in scalar) to the identity matrix. Therefore, (11) cannot be
applied to the QR power method.

To continue the discussion of the natural power method, we now define
Y@ + 1) & CG + 1)W(@). Then, with the approximation (11), (10) becomes

Y@ + 1) = aYG) + x@ + Dy G + 1), (12)
where
yi@ + 1) = WH(x@E + 1). (13)
Let ZG + 1) A YH( + 1Y@ + 1). It then follows that
ZG + 1) = o®ZG) + 2zG + Dy + 1)
+yG + D26 + 1) + vG + DyG + Dy?G + 1) (14)
with
z(G + 1) = o YH@)x(@ + 1) (15)
v@ + 1) = xHG@ + Dx@ + 1). (16)

Note that like Y(i + 1), the matrix Z(i + 1) also requires only O(np) flops to
update at each iteration according to (14). The natural power method (4) now
becomes

Wi+ 1D=YG+DZ G+ 1). a7

The above implementation has reduced the complexity to O(np?) + O(p?) flops,
which is linear in n. Like (4) and (9), (17) also guarantees the orthogonality of
the weight matrix at each iteration.

It is important to note that (17) is asymptotically equivalent to (4), provided
that x(7) is wide-sense stationary and « is one.

2.3. O(np) Implementation—NP3

To further reduce the complexity of the natural power method, we need to
accommodate asymmetric square root inverse to be applied to (17). We now
write

1
Z7V + 1) = — (ZY)(I + bal + ab” + yaaZ" )2 (18)




where the dependence of the vectors on the index i + 1 is dropped for
convenience, and

1 1
a=_ Z 20y + 1) b = o Z7 12z + 1). (19)

Since ba + ab¥ + yaa¥ is conjugate symmetric and of rank 2, we can write
I + ba” + ab” + yaa = I + \,e;el’ + \e.el, (20)

where e; (orthonormal) and \; (real) can be easily computed from the eigende-
composition of a 2 X 2 matrix as follows. Let [e; ;] = [a b]T, where Tisa 2 X 2
matrix. Using this in (20) leads to RT = Tdiag(\; ), where Ris a 2 X 2 matrix
defined by

R = {[a b]¥[a b]| ![a b]®(bal + ab® + yaa)[a b]

and T is now the eigenvector matrix of R. It is easy to verify that the
computational complexity of (20) is negligible in comparison to O(np) when n is
large.

With (20), an asymmetric square root inverse of Z(i + 1) is

1
712 + 1) = - I — meel — reel1Z712(), (21)

where 1, = 1 — 1/\/\; + 1. The asymmetric square root inverse is valid in the
sense that

Z12G + DZG + DZ 2"+ 1) =1L (22)

The asymmetric square root inverse of Z(i + 1) differs from the symmetric
square root inverse of Z(i + 1) by a unitary rotation; i.e., the symmetric
square root inverse premultiplied by any unitary matrix still satisfies (22).
This unitary rotation tends to weaken the assumption (11). However, unlike
the case of the QR power method, this unitary rotation is a slightly rotated
version of the identity matrix when x( + 1)x#(; + 1) is much smaller than
aC@). If « is close to one and i is large, this rotation is negligible. This is the
reason why the algorithm (24) shown later is asymptotically equivalent to (17)
and (4).
For analytical convenience, we now use a variation of (17) as

WG +1)=YG + DZ %G + 1) (23)

which is equivalent to (17) if the symmetric square-root-inverse is used. When
an asymmetric square-root-inverse is used, (23) differs from (17) by a postmul-
tiplied unitary rotation.




With the expression (21), we can now write (23) as
. . H, . 1
WG + 1) = (aY@) + xy)Z 2 () — 1e.el — 1ye.el] "
. H H 'H H H 1
= W(l)[I - T1€1€e7 — 72e2e2] + Xy [I - T1€1€7 — T2e2e2] & , (24)

where the dependence of all vectors on i + 1 is dropped for convenience, and
y = Z72()y. (25)

The expression (24) provides an algorithm which does not involve any
matrix—matrix multiplication and in fact requires only O(np) flops of com-
putation at each iteration. Furthermore, if an exact (symmetric or asym-
metric) square root inverse of the initial matrix Z(0) of full rank is used, the
algorithm (24) guarantees the orthogonality of the weight matrix at each
iteration.

It is important to emphasize that (24) is asymptotically equivalent to (17) and
(4), provided that x(i) is wide-sense stationary and « is equal to one.

3. PERFORMANCE ILLUSTRATION
—

In this section, we will compare the NP3 of the natural power method with
three other power-based methods (Oja, PAST, and NIC) and two non-power-
based methods (MALASE and OPERA). The two non-power-based methods
have a complexity linear in n. We now assume that the data vector x(%) satisfies
the model

x(k) = As(k) + n(k),

where s(k) is a p X 1 signal vector and n(k) is a n X 1 white Gaussian noise
vector. We further assume that p = 2, n = 10, and

oA

with

cos — sin —

6 6
oo |
—sin - cos &

6 6




The signal vector consists of two independent (randomly selected) Gaussian
moving-average processes of order 2. The variances of the two processes are 1.2
and 1, respectively. The element of the noise vector has a variance ¢2 = 0.01,
which corresponds to SNR 2 10 log;¢(1/02) = 20dB.2

The performance of each method is measured by the subspace error and the
orthogonality error that are defined

(T — WEXWEAW(E) WEYP,|
\p
I — WEEWE)|

% :

where P, is the exact orthogonal projection matrix onto the principal subspace
of x(k). In all the examples shown below, we used o« = 0.99, C(0) = vI, where y =
10 and W(0) = random matrix.

Figure 1 compares the performances of the three implementations of the
natural power methods: NP1, NP2, and NP3. Figures 1(a)—(c) (the left column)
show the subspace tracking errors of NP1, NP2, and NP3 for 50 independent
trials. Figure 1(d) shows the averaged tracking error of NP1, NP2, and NP3.
Figures 1(e)—(h) (the right column) show the orthogonality errors. As expected,
the three versions of the natural power method are all convergent with
arbitrary initializations. The NP1 and NP2 guarantee the orthogonality at
each iteration. The NP3 yields an orthogonal basis asympototically with
arbitrary initializations. Note that, as discussed before, the NP3 also guaran-
tees the orthogonality at each iteration if the initial matrix Z(0) is properly
chosen.

Figure 2 compares the PAST, Oja (step size 0.0001), NIC (step size 0.8), and
NP3. In terms of the subspace error, the PAST, NIC, and NP3 have similar
convergence rates, and the Oja method has a much slower rate. In terms of the
orthogonality error, the NP3 method outperforms all others, especially when
the matrix W(%) is nearly orthogonal.

Figure 3 compares the NP3, OPERA [13], and MALASE [12] (step size 0.01).
Due to the arbitrary initializations, OPERA and MALASE fail completely
(although simulations in [12,13] show that OPERA and MALASE are locally
convergent). It is important to note that as shown in Fig. 3, MALASE in fact
yields a constant subspace (easy to prove by using (9) in [12]). MALASE only
slightly (not visible from the figure) alters the orthogonality of the basis matrix
of the principal subspace. Therefore, despite its O(np) computational efficiency,
MALASE is flawed!

As reported in [13], OPERA (in O(np?)) has been tested against many other
methods (including PAST). Provided that the initial basis of the principal
subspace is “close” to the exact one, OPERA was found to be among the most

ERRORgyg(k) = 20log,

ERRORogrg(k) = 20log;,

2 This is a reference with respect to one of the two sources. A more meaningful SNR is not
necessary.
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FIG.1. Performance comparison of NP-1, NP-2, and NP-3.

robust against noise and more robust than PAST—a power-based method. In
fact, it is not surprising that OPERA and some other non-power-based methods
[23] are “locally” more robust against noise than PAST and other power-based
methods. This is because the non-power-based methods are more constrained
than the power-based methods, by the old data structure. This is also a reason
why the non-power-based methods fail when the initializations are not
accurate enough or there is a large sudden change to the subspace structure of
the data.

4. FINAL REMARKS

The power method for subspace tracking has been revisited in this paper.
Like other power-based methods, the natural power method has a very
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attractive global convergence property important for subspace tracking. The
implementation NP3 of the natural power method shown in this paper is as
competitive as any fast subspace tracking method as the NP3 only needs O(np)
flops at each iteration. Furthermore, the NP3 is guaranteed to be globally
convergent which is a property not shared by many non-power-based methods.
The natural power method can be easily modified for tracking principal
components by using the subspace deflation technique. Such an algorithm is

given in Appendix C.
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APPENDIX A: CONVERGENCE PROPERTY

This appendix proves that if (a) the covariance matrix C remains constant,
(b) the pth and (p + 1)th eigenvalues of the covariance matrix are distinct, and
(c) the initial weight matrix W(0) meets a mild condition, then the natural
power method (4) globally and exponentially converges to the principal
subspace. The condition (a) is achievable asymptotically in the tracking
context. Assuming that the vector sequence x(i) is wide sense stationary and
the forgetting factor o is one, the recursive equation (3) implies that C(i)
converges to iC, where the factor i has no effect on (4). The condition (b) is
satisfied in practice with probability one. The condition (c) will be specified
later, which is also satisfied with probability one if the initial matrix is
randomly selected.




Denote the eigendecomposition of the covariance matrix C as

2

C:[U1U2|: E
2

} (U, U,l¥, (A1)

where the first p principal components are labeled with the subscript “1,” and
the rest with the subscript “2.” Define a new coordinate system for the weight
matrix W():

[U, U,l7W(@) = (A2)

Uffwu)] - [Ml(i)}
UIWG)| | M)

Applying (A2), (4) becomes equivalent to

[ 3 } [ Ml(i)} _
= G(), (A3)
2

[Ml(i +1)
M, (@)

MG + 2)

where

\H

Gl — M, (@)
@) = M, (i)

E% MI(L) )1/2
32 [ M,()|)

It follows from (5) and (A2) that
M;G)EM;G) + MyG)EM,G) =1. (A4)

What we need to show now is that the (n — p) X p matrix My(i) converges to
zero, which then immediately implies that the p X p matrix M;(i) converges to a
unitary matrix and, hence, W(i) converges to U; postmultiplied by a unitary
matrix.

Assume that the p X p matrix M;(0) is a nonsingular matrix, which is the
condition (c) mentioned previously and can be satisfied with probability one by
a randomly chosen W(0). This implies that M,(0) = TM;(0) for some matrix T.
Then, from (A3), we can write

M,(1) = 3,M,(0)G(0)
= 3,TM,(0)G(0)
= 3, T3, 'S, M,(0)G(0)
= 3,TS; M, (1)

and, in general,

M,(i) = SLTS ;M (D). (A5)




With the assumption that the first p eigenvalues of C are strictly larger than
the others (i.e., the condition (b)), (A5) together with (A4) implies that My(i)
converges to zero and is asymptotically in the order of (0,.1/0,,)', where o, and
0,+1 (<0,) are the pth and (p + 1)th largest eigenvalues of C. We have now
established a global and exponential convergence property of the natural power
method. This is a great advantage of the natural power method over many
other methods.

Based on the convergence proof of the natural power method, it is not difficult
to see that the concept of the power method (1) can lead to many forms that are
all convergent to the principal subspace. In fact, replacing the matrix C2 in (4)
by C leads to the algorithm:

W@ + 1) = CG + DWEHOWHG)CGE + W) Y2,

It can be shown that this algorithm converges to U;2?V, where V is a unitary
matrix. Furthermore, the square-rooted matrix (W#(;)C2W())~2 in (4) can be
replaced by any positive definite matrix so long as the norm of the weight
matrix W(i) remains bounded between two positive numbers.

APPENDIX B: OTHER POWER-BASED METHODS
—

This appendix shows that the power method (1) is the essence of all three
methods: Oja, PAST, and NIC.

The Oja method. A heuristic variation of the power method (1) for tracking
the first principal component is

w(i +1) = w (@) + n[Cw() — wi)wH(@)Cw()]. (B1)

The first term on the right side is the previous estimate of the principal
eigenvector, which is kept as a memory of the history. The first term in the
brackets contains the desired information according to the power method (1).
The second term in the brackets is simply the previous estimate with a scalar
adjustment w#(;)Cw(i) so that the two terms in the brackets are on a “same”
scale. The whole term in the brackets is the desired “new” information. This
term is first “properly” scaled by the step size n and then added to the previous
estimate to obtain the current estimate. If the previous estimate is already the
desired eigenvector with norm one, the “new” information is zero, and hence, no
further iteration is necessary. The step size ) controls the balance between the
history and the new information. With the covariance matrix C replaced by its
instantaneous estimate x( + 1)x( + 1) (corresponding to a = 01in (3)), (B1) is
in fact the original Oja method [3].

The Oja method [11] for computing the principal subspace with a predeter-
mined rank p is simply the matrix version of (B1), obtained by replacing the n X
1 weight vector w(i) by a n X p weight matrix W(); i.e.,

WG +1) = W) + n[CW@E) — WEWHG)CWE)]. (B2)
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With an approximation similar to (11), (B2) can be implemented using only
O(np) flops. The Oja method can also be viewed [7-8] as a gradient descent
iteration of the MSE function,

Juse(W) = El|x(k) — WWHx(E)|?]
=tr(C) — trQWHCW — WECWWHW), (B3)

with the approximation that the weight matrix is orthonormal. It is shown in
[6-6] that if the step size is arbitrarily small, the weight matrix of (B2) is
globally convergent to an orthonormal basis of the principal subspace. For
digital implementation, however, the Oja method converges very slowly due to
the fact that only a very small step size is allowed. A larger step size would
make the Oja method divergent.

The PAST method. Another heuristic variation of the power method (1) is
w(i + 1) = Cw(@)(WH({@)Cw(@)) (B4)

where the inverse factor (similar to the scaling factor used for the Oja method)
ensures that the weight vector is “properly” scaled. When the weight vector is
the desired eigenvector (up to some scalar), the norm of the weight vector
oscillates from one iteration to the next unless the previous weight vector has
norm one. Nevertheless, this scaling prevents the norm of the weight vector
from growing to infinity or shrinking to zero. For subspace tracking, the weight
vector w(i) is replaced by the weight matrix W(); i.e.,

W@ + 1) = CWGE)(WHG)CW(G)) . (B5)

This is what we call the batch version of the PAST method. It is easy to show
that the original PAST method [8] directly follows from (B5) with the
approximation (11). The original PAST method is an algorithm of O(np) flops
complexity.

The PAST method was originally developed by a gradient descent iteration of
the MSE function with the projection approximation. With the same mild
conditions as for the natural power method, the PAST method exponentially
converges to the principal subspace. But the PAST method does not generally
converge to an orthogonal basis of the principal subspace. An example is shown
below. With the new coordinate system (A2), (B5) is equivalent to

[Ml(i +1) B [21 HMl(i)} ([ M, [3, } Ml(i)D1 B6)
M,G + 1) 2] | Mp@@)] \| My(i) 2] | My(d)
If 3, = 0, for example, then (B6) leads to

MG + 1) = (M,@)")! My_i +1)=0 (B7)

which implies that, as i increases, the matrix M;(i) oscillates between two
matrices unless it is already a unitary matrix.




The NIC method. Following the same idea as shown in (B4) and incorporat-
ing some leakage factor (or memory of the history), one obtains

w(i+1) =01 - pBw@) + BCwE))(WHEH)Cw()) 1, (B8)

where the leakage factor B is between (0, 1). This leakage prevents the
oscillation associated with the PAST method from happening (a proof of which
is available in [14]). The matrix version of (B8), i.e.

Wi +1)=(@1-pBWG3E) + BCWEOWEGHCW@E)) 1, (B9)

is simply the batch version of the NIC method presented in [9]. With
approximation (11), the NIC method can be easily implemented using only
O(np) flops at each iteration [9].

It is worth mentioning that the NIC method was originally based on the
gradient ascend iteration of the criterion (NIC):

Jric(W) = tr[log(WHCW)] — ¢(WHW). (B10)

The properties of this criterion are discussed at length in [9]. In particular, this
criterion has only one local maximum which is also global. At the global
maximum, the weight matrix is orthonormal and spans the principal subspace.
The leakage factor B is the same as the step size required for scaling the
gradient of the NIC. The NIC method is shown in [9] to be globally convergent
to an orthonormal basis of the principal subspace when the step size is
arbitrarily small. While simulations have suggested that the NIC method
converges to the desired basis for all values of B chosen between (0, 1), a
rigorous proof of this property is still under investigation [14].

APPENDIX C: TRACKING THE PRINCIPAL COMPONENTS
—

This section derives an algorithm for tracking the principal components of a
sequence of random vectors by using the natural power method. Denote by
w,,(k) the estimate of the mth principal eigenvector at time k. Following the
concept of the natural power method (2) and the subspace deflation technique
[4], we can write

Wk + 1) = C,(k + Dw,,(k) (C.1)
w,(k + 1) =W,k + D/ |W,(k + 1), (C.2)

where

C,(k+1)=aC,k) +xk + Dx(k + DI — W, (B)W,(R)H)  (C.3)
W, (k) = [wyk) - w,_ (k). (C.4)
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Applying the approximation w, (k) = C,,(k)w,, (k), (C.1) becomes

W,k + 1) = aw, (k) + x(k + 1)(g,(k + 1) — y,(k + Ve, (k), (C.4)

where
gnlk + 1) =x(k + 1)¥w,,(k) (C.5)
Vb +1) =W, (R)ix(k + 1) (C.6)
c,(k) =W, (k)w,, (k). (C.7)

Equations (C.2) and (C.4)—(C.7) should be run successively for all desired
components (m = 1, 2, .. .) at each iteration k.

The eigenvalues (up to a common scalar) of the covariance matrix C of the
sequence x(k) can be updated as follows. From (C.2), one can write

Aok + 1) = w,(R)EC,(k + Dw, (k) = w,,(R)W,,(k + 1). (C.8)

Using (C.4) in (C.8), applying the approximation \,(k) = w,,(k)¥w, (k) and
assuming that ¢,,(k) = W,,(k)¥ w,,(k) is small, one can replace (C.8) by

Mok + 1) = an, (k) + |g, (B + 1|2 (C.9)

It is easy to prove that under a mild condition and o = 1, the above algorithm
(for large k) exponentially converges to the eigenvectors and eigenvalues of 2C.
Not surprisingly, our simulations confirmed that this algorithm converges
much faster than the APEX method [4] that is based on the Oja method (B.1).
Similar to what is shown in [21], the above method can be used with any
eigenvalue-based detection methods [22] for tracking the rank of the principal
subspace. The above method has a similar performance as PASTd [21].
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