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We prove existence and uniqueness of equilibrium for a general class of two-
player bidding games. We apply our results to the first price auction, the combi-
nation of first and second price auctions, the war of attrition, the all pay auction,
as well as combinations of the latter two auction forms. We also treat the first
price auction without risk neutrality. Our results deal with the asymmetric, affili-
ated common values environment. In the case where signals are independent our
results apply to all equilibria. When signals are not independent, our uniqueness
results hold in the class of nondecreasing strategy equilibria. Journal of Economic
Literature Classification Number: D44. © 2000 Academic Press

1. INTRODUCTION

We study a general model of bidding games. This accommodates
most of the auction forms studied in the literature, more exotic ones
such as the winner paying a combination of his and the loser’s bid, and
games of timing like the war-of-attrition. Our setup can also be used in
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some examples of auctions with externalities a’ la Jehiel and Moldovanu
(1997).

This paper makes three contributions. The first is to address the ques-
tion of uniqueness of equilibrium in auctions with interdependent values and
a reserve price: this is important because reserve prices are commonly used
in auctions, and it is well known that revenue can be increased by an ap-
propriate choice of a reserve price.

The interdependence of valuations complicates the question of unique-
ness of equilibrium in auctions (even without a reserve price), because the
expected value of the object to bidder 1 conditional on winning depends
on how aggressive bidder 2 is in his bidding. If bidder 2 is very aggres-
sive, the winner’s curse is particularly strong because bidder 1 wins only if
bidder 2’s signal is quite low. This makes bidder 1 optimally respond by
being cautious in his bidding. Conversely, if bidder 2 is very cautious in
his bidding, bidder 1 responds by being aggressive. Milgrom (1981) shows
that this phenomenon generates a continuum of equilibria in undominated
strategies in the second price auction, in sharp contrast with the domi-
nance solvability of the second price auction in a world with private values.
Common values introduce a similar problem in the treatment of reserve
prices. Equilibrium bidding strategies are described by a system of differ-
ential equations representing the first-order conditions, coupled with initial
conditions representing the types of players who bid at the reserve price.
In auctions with private values, these initial conditions are uniquely deter-
mined by an indifference condition between entering and not entering the
auction, and reserve prices add no serious complications to the analysis. In
contrast, common value elements introduce a multiplicity of admissible ini-
tial conditions, which under certain conditions can be ranked by relative
aggressiveness of the entry decision—a type of bidder 1 will find it more
appealing to enter when a large fraction of types of player 2 stay out, since
this increases type 1’s payoff of winning against an opponent who stays out.
This gives rise to a multiplicity of admissible initial conditions and there-
fore conceivably many equilibria. Indeed, a similar intuition underlies a
multiplicity result for the war of attrition [Nalebuff and Riley (1985)].

We show that for a wide class of auction games this multiplicity of initial
conditions does not translate into a multiplicity of equilibria. This is because
in most auctions, at equilibrium the highest types of both players must bid
the same finite amount (otherwise one of them would gain by reducing his
bid). This “final condition” is precisely the property that fails in the war of
attrition, where bidding is unbounded, but for all auctions where bidding is
bounded we prove that this property guarantees uniqueness of equilibrium.
The lesson we draw from this is that bidding games that are “uniqueness
challenged,” like the war of attrition or the second price auction, are really
knife-edge cases in a large class of mechanisms. A small perturbation in
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the mechanism suffices to restore uniqueness. Our uniqueness results apply
to all equilibria in the case where signals are independent (but still an
element of common value exists). When signals are not independent, we
prove uniqueness in the class of nondecreasing strategy equilibria.

While the “final condition” is helpful in the proof of uniqueness of
equilibrium, it is an additional constraint to meet in proving existence of
equilibrium. Our proof of existence of equilibrium is the second contri-
bution of the paper. In the literature on the existence of equilibrium in
discontinuous games [e.g., Dasgupta and Maskin (1986); Reny (1997)]
auctions have proved hard to treat in a general and direct fashion. Our
technique is constructive and follows easily from the reasoning that proves
uniqueness.

The third contribution has a more technical nature. This paper presents
a unified approach to characterizing the equilibrium set of a large class
of bidding games. The ideas behind this approach are quite natural, and
formalize considerations of “relative toughness” that are fundamental to
strategic reasoning in all auction games. Due to this generality, we are able
to understand exactly which features are necessary to obtain certain desir-
able properties of equilibrium strategies, such as continuity or differentia-
bility. In this connection, it is worth remarking that the regularity analysis
developed in the Appendix applies to all common auction forms, and is not
limited to the model with reserve prices.

We treat the asymmetric case, which is of interest because it has been
used to model bidding rings in an n-bidder symmetric auction with collu-
sion, or to capture informational or technological differences among bid-
ders. A limitation of our analysis is the restriction to two players: while
this assumption is appropriate for some of the games we treat, like the
war of attrition, or for defense procurement auctions where two compet-
ing consortia are frequent, further research is necessary in the n-bidders
model.

1.1. Related Literature

Milgrom and Weber (1982) introduced the affiliation concept in auctions
and studied symmetric first price, second price and English auctions. Mil-
grom and Weber discuss reserve prices but do not characterize the equilib-
rium set of the auctions they consider: they focus on symmetric equilibria.
Krishna and Morgan (1997) extended this work to consider symmetric war
of attritions and all-pay auctions: they too focus on symmetric equilibria.
Our environment is similar to that discussed in these two papers but we
do not restrict to symmetric bidders or symmetric equilibria, and we also
extend the analysis to other games.
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There is a number of papers that have attempted a characterization of
the equilibrium set for specific asymmetric auction games. None of the fol-
lowing papers treats the combination of common values and reserve price.

(1) First price auction. The first example of nonexistence of equi-
librium in two-players first price auctions is in Milgrom and Weber (1985)
(footnote 9, p. 625). Lebrun (1997) and Bajari (1996) prove existence of
equilibrium in first price auctions with independent private values. Maskin
and Riley (1996a) prove existence of equilibrium both for the case in which
values are common but signals are independent and for the case in which
signals are affiliated but values are private; they do not consider a reserve
price. Bajari (1996), Lebrun (1994), and Maskin and Riley (1996b) prove
uniqueness of equilibrium with independent private values. Maskin and
Riley (1996a, b) allow for risk aversion. None of these papers treats the
combination of reserve price and common values.

(2) War of attrition. Nalebuff and Riley (1985) showed that there is
a continuum of equilibria in the war of attrition with independent private
values. Still in the independent private values setup, Fudenberg and Tirole
(1986) assume that in addition to a positive reserve price, some types of
each of the two players will “stay in” forever in any equilibrium. They
showed that adding this final condition yields uniqueness of equilibrium,
because equilibria are ordered in terms of “relative toughness”: we borrow
this term from them, and extend their intuition to a much larger class of
games.

(3) All-pay auctions. Amman and Leininger (1996) prove existence
and uniqueness of equilibrium for a class of two bidders all-pay auctions
with independent private values. This work is closer to ours because their
analysis applies to a class of auctions instead of only one, but it does not
cover common values.

(4) Second price and English auction. As mentioned above, Milgrom
(1981) shows that in the second price auction with two bidders there is a
continuum of equilibria. Bickchandani and Riley (1991) give conditions for
uniqueness in the second price auction with more than two bidders, and
extend Milgrom’s analysis to show multiplicity in the English auction with
n bidders.

(5) Existence. Athey (1997) independently proves existence of pure-
strategy equilibria in a class of n-players games. Her setup is similar to
ours in that she concentrates on games where each player’s payoff satis-
fies a single crossing condition which is the same as our condition QM.
Athey’s methodology relies on a continuity assumption that rules out a re-
serve price.

The novel features of our paper are the following: We study the affiliated
interdependent values environment; we allow for reserve prices, something
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that is straightforward in the private values case but presents the difficulties
mentioned before in an environment where players’ valuations may depend
on the signals of their opponents; and we analyze a large class of games
together. The last feature is attractive because it unifies the literature by
explaining what aspects of the games yield uniqueness and what conditions
fail when there is multiplicity. Indeed it turns out that both in the second
price auction and in the war of attrition, which have been shown in the lit-
erature to exhibit multiple equilibria, the winning bidders’ payoff is weakly,
but not strictly decreasing in his own bid. This paper shows that “strict de-
creasingness” guarantees uniqueness of the equilibrium.

1.2. Structure of the Paper

In section 2 we introduce the model, some definitions and the main as-
sumptions. We present the concepts of affiliation and quasimonotonicity,
and relate the two; these afford the unifying language allowing us to treat
our very general model of a bidding game. Section 3 deals with the ques-
tion of uniqueness. For the analysis of section 3 we assume that strategies
are regular in the sense that they can be represented by Lipschitz differen-
tial equations and initial conditions: the Appendix gives conditions under
which this assumption is legitimate. Section 4 contains our existence result.
Section 5 applies our analysis to prove existence and uniqueness of equi-
librium for auctions such as: First price, combinations of first price and
second price, all-pay auction, combinations of all-pay auction and war of
attrition and a first price without risk-neutrality. The Appendix proves the
regularity of equilibrium strategies. It first shows that, in the case of inde-
pendence, strategies have to be monotonic. It then proceeds to prove that
monotone equilibrium strategies have to be continuous, strictly increasing,
differentiable, and Lipschitz.

2. SETUP AND DEFINITIONS

2.1. Affiliation and Quasimonotonicity

Here we define the concept of affiliation introduced by Milgrom and
Weber (1982), and the concept of quasimonotonicity [closely related to the
single-crossing property used in Milgrom and Shannon (1994) and Athey
(1995, 1997)]. We also present a well-known lemma that links the two con-
cepts.

Definition 1. Two random variables 2i and 2j with joint density f are
said to be affiliated if

θ′i ≥ θi and θ′j ≥ θj ⇒ f �θ′i; θ′j�f �θi; θj� ≥ f �θ′i; θj�f �θi; θ′j�:
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The property that we introduce next has been used by Milgrom and
Shannon (1994) and Athey (1995), but was given no name there; so we use
the terminology introduced in Karamardian and Schaible (1990):

Definition 2. We say that a real function Q�θ� is quasimonotone in
θ if

Q�θ� > 0⇒ Q�θ′� ≥ 0 for all θ′ > θ:

We say that a real function Q�·� is strictly quasimonotone if Q is quasi-
monotone and is almost everywhere different from 0.

Quasimonotonicity requires that a function only changes sign once, and
then from negative to positive, as its argument increases. Quasimono-
tonicity is instrumental in defining the single-crossing property: A function
u�a; θ�: �2 → � is said to have the single-crossing property if, for any
given a′ > a, u�a′; θ� − u�a; θ� is quasimonotone in θ [see Milgrom and
Shannon (1994)].

The next lemma connects quasimonotonicity and affiliation (references
can be found in Athey, 1995).

Lemma 1. Suppose that Q�θj� is quasimonotone in θj , that 2i, 2j are
affiliated and

∫
Q�θj�fj�θj � θi�dθj = 0: Then

∫
Q�θj�fj�θj � θ′i�dθj ≥ 0 for

θ′i ≥ θi.

2.2. Payoffs

The payoff function for each player i is

πWi �bi; bj; θi; θj�Ibj<bi + πLi �bi; bj; θi; θj�Ibj>bi
+ 1

2

[
πWi �bi; bj; θi; θj� + πLi �bi; bj; θi; θj�

]
Ibi=bj (1)

Types are modeled as random variables 2i�i = 1; 2� with joint density
f �θ1; θ2� on �θ1; θ1� × �θ2; θ2�. Without loss of generality, we can linearly
rescale signals so that both players have the same lower and upper element
of the support, i.e. θ1 = θ2 = θ and θ1 = θ2 = θ.

We will denote the distribution of types of player j conditional on type
i being θi by fj�· � θi�: We posit that a reserve price r exists, such that a
positive mass of types of each player bids under r. If a player bids below
r, he will be “held out of the auction” and will receive 0 payoff. When a
player i bids at or above, and his opponent bids below, r the player receives
πWi �bi; r; θi; θj�.

There is no difficulty in interpreting the functions πWi �bi; bj; θi; θj� and
πLi �bi; bj; θi; θj� as expected values of more primitive objects, conditional
on θi and θj: This interpretation allows us to subsume, for example, the
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“general affiliated model” presented in Milgrom and Weber (1982). Fol-
lowing are examples of payoff functions we will be concerned with: an ob-
ject of value Vi�θi; θj� ≥ 0 is for sale according to one of the following
mechanisms:

Example 1. First Price Auction: πWi �bi; bj; θi; θj� = Vi�θi; θj� − bi and
πLi �bi; bj; θi; θj� = 0: e

Example 2. All-Pay Auction: πWi �bi; bj; θi; θj� = Vi�θi; θj� − bi and
πLi �bi; bj; θi; θj� = −bi: e

Example 3. War of Attrition: πWi �bi; bj; θi; θj� = Vi�θi; θj� − bj and
πLi �bi; bj; θi; θj� = −bi: e

Example 4. Combination of First and Second Price Auction: πWi �bi; bj;
θi; θj� = Vi�θi; θj� − �αbi + �1 − α�bj� and πLi �bi; bj; θi; θj� = 0 with α ∈
�0; 1�: e

Example 5. Combination of All-Pay Auction and War of Attrition:
πWi �bi; bj; θi; θj� = Vi�θi; θj� − �αbi + �1 − α�bj� and πLi �bi; bj; θi; θj� =
−bi with α ∈ �0; 1�: e

Example 6. First Price Auction with risk aversion: πWi �bi; bj; θi; θj� =
ui�Vi�θi; θj� − bi� where ui�·� is strictly increasing, strictly concave and dif-
ferentiable, and πLi �bi; bj; θi; θj� = 0: e

Since we are concerned with the common-values aspect of bidding games,
we posit that Vi�θi; θj� is strictly increasing in both arguments.

2.3. Strategies

Pure strategies are measurable functions bi: �θ; θ� → �−∞;+∞�:
The profits to player θi from playing b when his opponent’s strategy is

bj�·� will be

5i�θi; b; bj� =



∫
θj x bj�θj�<b

πWi �b; bj�θj� ∨ r; θi; θj�fj�θj � θi�dθj

+
∫
θj x bj�θj�>b

πLi �b; bj�θj�; θi; θj�fj�θj � θi�dθj

+1
2

∫
θj x bj�θj�=b

[
πWi �b; b; θi; θj� + πLi �b; b; θi; θj�

]
· fj�θj � θi�dθj for b ≥ r

0 for b < r



90 lizzeri and persico

We call regular strategies those pure strategies that are nondecreasing on
the whole range, and for bids strictly above r are continuous, strictly in-
creasing, differentiable and Lipschitz continuous.

We now define mixed strategies, using the concept of behavioural strat-
egy. Let B be the class of Borel subsets of the real line, and let A ∈ B. The
function ηj: B× �θ; θ� → �0; 1� is a behavioural strategy for player j if

1. ηj�·; θj�: B→ �0; 1� is a probability measure ∀θj ∈ �θ; θ�.
2. ηj�A; ·�: �θ; θ� → �0; 1� is measurable.

Definition 3. A behavioural strategy ηj�·; ·� is nondecreasing if when-
ever θ′j > θj , every element of the support of ηj�·; θ′j� is greater or equal
than every element of the support of ηj�·; θj�.

Let T ∈ B ∩ �θ; θ�. Then we can define

µj�A;T � θi� x=
∫
T
ηj�A;θj�fj�θj � θi�dθj

to be the probability measure on the space of actions and types of player j
induced by the behavioural strategy ηj , in θi’s opinion. Analogously, we
define

µj�A;T � x=
∫
T
ηj�A;θj�fj�θj�dθj:

Now, we can also denote

µj�A � θi� x= µj
(
A; �θ; θ� � θi

)
;

the marginal distribution of bids induced by the strategy ηj in θi’s opinion,
and similarly

µj�A� x= µj
(
A; �θ; θ�):

The payoff to type θi of bidding b ≥ r when his opponent plays according
to ηj is

5i�θi; b; ηj�

=
∫
�−∞; b�×�θ; θ�

πWi �b; s ∨ r; θi; θj�µj�ds; dθj � θi�

+
∫
�b;+∞�×�θ; θ�

πLi �b; s; θi; θj� µj�ds; dθj � θi�

+ 1
2

∫
�b�×�θ; θ�

[
πWi �b; s ∨ r; θi; θj� + πLi �b; s; θi; θj�

]
µj�ds; dθj � θi�:

Denote Bj = sup�b: b ∈ support�µj�·���,1 and let B = B1 ∨ B2. Hence, B is
the maximum bid that any of the players will ever play.

1 In the case of pure strategies, this definition reduces to Bj = supθj bj�θj�:
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2.4. Assumptions

We now introduce and motivate the key assumptions used in the paper.
The first two assumptions specify the statistical structure of the model.

A 1. f �·; ·� is of class C1 and f �θ1; θ2� > 0 on �θ; θ� × �θ; θ�.
A 2. 21, 22 are affiliated.

Assumption A2 imposes a monotone structure on conditional expecta-
tions. Next come assumptions on the payoff functions, i.e. the rules of the
game.

A 3. 5i�θ; b; ηj� < 0 for all i; b ≥ r; ηj .
Assumption A3 is a requirement on the reserve price r: It ensures that

there is a set of types of both players that does not find it convenient to bid
actively, no matter what their opponent does. Any condition that guarantees
this is sufficient for our results, and this assumption is reasonable when the
auctioneer sets a reserve price. In a first price auction, all-pay auction and
war of attrition, it means that the expected value of the object conditional
on being the lowest type is less than the reserve price.

A 4. πWi �bi; bj; θi; θj� and πLi �bi; bj; θi; θj� are continuously differen-
tiable.

A 5. πLi �bi; bj; θi; θj� is nonpositive.

A 6. πWi �bi, bj , θi, θj� is strictly increasing in θi and θjy moreover
πLi �bi; bj; θi; θj� is nondecreasing in θi.

Assumption A6 says that being a high type is good for your payoff, and
it is better to win against a high than against a low type: this is an essential
feature of the common value model.

A 7. πWi �bi; bj; θi; θj� is strictly decreasing in bi and there is a bi such that
πWi �bi; bj; θi; θj� < 0 for any choice of bj; θi; θjy moreover, πLi �bi; bj; θi; θj�
is nonincreasing in bi and does not depend on bj .

Assumption A7 says that, conditional on winning (or losing) the object,
bidding less is always preferred and that there is a maximum bid at which
even winning is unprofitable. The payoff when losing does not depend on
the winning bid. The first part of assumption A7 is crucial to the interpreta-
tion of this paper: indeed, both in the second-price auction and in the war
of attrition πWi fails to be strictly decreasing in bi: This has the consequence
that both mechanisms are “uniqueness challenged.”
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A 8. πWi �bi; bj; θi; θj�Iθj<ψj + πLi �bi; bj; θi; θj�Iθj>ψj is quasimonotone
in θj .

Assumption A8 will be used in Proposition 1 to characterize the set
of admissible initial conditions; the lowest actively bidding types. Since
πWi �bi; bj; θi; θj� is increasing in θj (by A6), assumption A8 is verified
whenever πLi �bi; bj; θi; θj� is 0.

All assumptions pertaining to the “rules of the game” are verified in
examples 1–6, with the exception of A7 which fails in example 3: we will
later expand on the significance of this observation.

For expositional purposes, the results of the next section rely on the
assumption that strategies are regular and on an additional requirement on
the first-order conditions (condition (QM) in section 3.3). In the Appendix
we give sufficient conditions for behavioural strategy equilibria to be in
regular strategies. Condition (QM) is proved to hold for all regular strategy
equilibria in each game we consider in section 5.

3. UNIQUENESS

We are aiming at a characterization of equilibrium inverse bidding func-
tions as the solution to a system of differential equations plus a set of initial
conditions.

Assume bi, bj: �θ; θ� → < are regular equilibrium strategies, hence
strictly increasing whenever the bid is higher than r: we can define the
inverse bidding functions φi�·� as

φi: �r; Bi� → �θ; θ�; φi�·� = b−1
i �·�: (2)

Let the initial conditions θ0
i be defined by

θ0
i = lim

b↓r
φi�b�: (3)

In view of A3, θ0
i > θ.

Because regular strategies are Lipschitz, a unique trajectory originates
from each initial condition [see Hirsch and Smale (1974), p. 162]; so to
prove uniqueness of equilibrium it suffices to show that there cannot be two
equilibria starting from two different initial conditions. This result stems
from the examination of the inverse bidding functions, as represented in
Figure 1, and proceeds in three steps.
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3.1. The “Relative Toughness” Logic of the Uniqueness Result

The first step (initial conditions) is making sure that the possible ini-
tial conditions are ordered in terms of relative toughness: This is done in
subsection 3.2. The idea is that winning against a high type is better, so
when many types of player 2 are staying out of the auction it pays even for
a relatively low type of player 1 to enter, since he will be winning against
high types of the opponent; thus a very aggressive behaviour on the part of
player i corresponds to an accommodating behaviour by player j. In terms
of Figure 1, if two pairs of initial conditions �θ 0

1 ; θ
0
2 � and �θ̂ 0

1 ; θ̂
0
2 � are candi-

date for being part of two (coexisting) equilibria and θ 0
1 < θ̂

0
1 , then θ 0

2 > θ̂
0
2 ;

graphically, one pair is “nested” into the other.
The second step (final condition) is that, whenever the payoff conditional

on winning is decreasing in one’s own bid, there is a “final condition” to
be met by an equilibrium, in that the highest types of both players must
bid the same amount. This is because otherwise it would be convenient for
one of them to decrease his bid (this reasoning assumes that the highest
bidder bids a finite amount, and assumption A7 above guarantees this).
In terms of Figure 1, in each equilibrium the trajectories departing from
the initial conditions must meet at the endpoint (recall we are dealing with
regular, hence strictly increasing, strategies), although this endpoint may be
different for different equilibria.

The third step (no crossing) concludes the proof by noting that for two
equilibria to coexist what would have to happen is that, for at least one
player, the trajectories describing the two equilibria must cross [this is best
understood by looking at Figure 1: for φ̂1�·� to meet φ̂2�·� at the endpoint—
step 2 earlier—given the way in which initial conditions are nested (step 1)
it has to be that either φ̂1�·� crosses φ1�·� or φ̂2�·� crosses φ2�·�]. But
subsection 3.3 rules this out, again resorting to an argument of relative
toughness. Take the lowest bid at which there is a crossing (b∗ in Figure 1),

FIG. 1. Inverse bidding functions.
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and consider the opponent in the “φ equilibrium” [type φ1�b∗�] of the
player whose trajectories cross: in the “φ̂ equilibrium” this type could—by
bidding b∗—be facing the same opponent he was bidding against in the
“φ equilibrium,” who bids the same as in the “φ equilibrium,” but on the
margin is less aggressive. Yet type φ1�b∗� chooses to play less aggressively
than in the “φ equilibrium” (he bids less), which is inconsistent with relative
toughness because he should be behaving more aggressively.

This shows that there cannot be two equilibria in regular strategies.

3.2. Initial Conditions

This subsection characterizes the set of possible initial conditions for
equilibrium inverse bidding functions. In Lemma 2 we find the locus of
points (curves) in the space of types, that are possible initial conditions;
Propositions 1 and 2 give conditions under which these curves are nega-
tively sloped, or in other words they are ranked by “relative toughness.”
The concept of “relative toughness” is formalized as “0 substitutes” in Def-
inition 4.

Let us characterize the pair �θ0
1; θ

0
2� defined in (3). Define

Hr
i �ψi;ψj� x=

∫ ψj
−∞

πWi �r; r; ψi; θj�fj�θj � ψi�dθj

+
∫ +∞
ψj

πLi
(
r; bj�θj�; ψi; θj

)
fj�θj � ψi�dθj: (4)

Under A7, this expression does not depend on the equilibrium strategy
bj�·�. This is the expected payoff of a player ψi who plays r + ε for ε
arbitrarily small, when the opponent’s highest type bidding r is ψj .

Lemma 2. Assume A3, A4, and A7. An equilibrium pair �θ0
1; θ

0
2� satisfies

Hr
i �θ0

i ; θ
0
j � ≥ 0 for all i; j and equality holds for i, j or both. (5)

Proof. First, observe that in equilibrium it must be true that

Hr
i �θ0

i ; θ
0
j � ≥ 0 for i 6= j; i; j = 1; 2: (6)

Indeed, suppose this was not the case for type θ0
i , say, i.e. the first inequality

in (6) does not hold; then there would be a θ′i slightly greater than θ0
i who,

by definition of θ0
i is bidding actively, and by A4 is getting an expected

payoff arbitrarily close to Hr
i �θ0

i ; θ
0
j �, which would be negative. But this

cannot be, since then θ′i would better off not bidding.
Let us now observe, to finish the proof, that in equilibrium it cannot be

that both inequalities in (6) hold strictly. If this was the case, by A3 there
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would exist types θ̃1 < θ0
1 and θ̃2 < θ0

2 whose bid is equal to r in view of
nondecreasing strategies (bidding below r gives 0 payoff). This implies that
there would be a mass of player 1 types and a mass of player 2 types both
bidding r, and this is impossible in a nondecreasing strategies equilibrium,
because one of the two players will find it profitable to deviate.

Remark. The previous result rules out the possibility that players tie at
r with positive probability. It is possible that Hr

i �θ0
i ; θ

0
j � > 0 for some i; and

thus that a mass of types of one of the players bids r (see Lemma 3 and
the discussion preceding it). This cannot happen for bids bigger than r; as
proved in Lemma 6 of the Appendix.

We now define the notion of 0 substitutes, which formalizes our intuition
of “relative aggressiveness”: the idea is that given a function of two vari-
ables that has value of 0 at some point, increasing one variable requires
a decrease in the other in order to keep the level of the function at 0. In
other words, the level curves of the function at 0 are negatively sloped.

Definition 4. Given a function F�x; y�:<2 → <, we say that x is a 0
substitute of y in F when

F�x; y� = 0 = F�x̂; ŷ� and x̂ > x imply ŷ < y:

Our objective is now to show that the level curves Hr
i �ψi;ψj� = 0 are

negatively sloped, or equivalently that H is increasing in its argument at 0;
this is the import of the next two propositions.

Notice that H is obtained integrating the expression in A8 with respect
to the distribution of types of player j conditional on ψi. So it is easy to
understand why assumption A8 is important for H to be increasing in ψi: as
player i’s type increases, along with a positive effect on the payoff functions
πi, he becomes more optimistic about his opponent’s type distribution (this
effect is of course absent when types are independent). This entails a higher
probability of losing with a given bid. When losing is costly (which A8 rules
out), this negative effect may offset the previous positive one.

Proposition 1. Assume A5, A6, A7, and, either A2 and A8, or that 2i,
2j are independent. Then ψj is a 0 substitute of ψi in Hr

i �ψi;ψj�.
Proof. It is sufficient to show that H is strictly quasimonotone in ψi

and in ψj , since this means that the level curves H = 0 have negative
slope in the ψi × ψj plane. To prove that H is strictly quasimonotone in
ψi observe that by A6 the π terms in (4) are strictly increasing in ψi, so
it suffices to show that the change in the probability term fj�· � ψi�; as ψi
increases does not reduce the expression. If 2i; 2j are independent there is
no change, while under affiliation the change is nonnegative if A8 is verified
(see Lemma 1 in section 2.1).
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Second, to prove that H is strictly quasimonotone in ψj it suffices to
show that when H = 0, then its derivative with respect to ψj is positive, i.e.
πWi �r; r; ψi; ψj� − πLi �r; r; ψi; ψj� > 0. Since πLi ≤ 0 by A5, for Hr

i �ψi;ψj�
to equal 0 it has to be that

∫ ψj
−∞ π

W
i �r; r; ψi; θj�fj�θj � ψi�dθj > 0 whence,

since πWi is increasing in θj by A6, πWi �r; r; ψi; ψj � > 0 > πLi �r; r; ψi; ψj�:

The above proposition, while completely satisfactory in the case of inde-
pendent signals, has limited applicability when signals are not independent
because of A8. This assumption rules out games where the loser pays, like
the war of attrition or the all-pay auction, and the difficulty arising in those
cases has been explained. It is nonetheless possible to give quite general
conditions under which we can analyze those games: this is done in the
next proposition.

Proposition 2. Assume A2, and that the payoff in (1) can be written as:[
Vi�θi; θj� − CWi �bi; bj�

]
Ibj<bi − CLi �bi�Ibi<bj ;

where V is increasing in both arguments, Vi�θi; θj�fj�θj�θi� is increasing in θi;
CWi �bi; bj� is strictly increasing in bi; C

L
i is nonnegative, CWi �r; r� ≥ CLi �r� ≥

0. Then ψj is a 0 substitute of ψi in Hr
i �ψi;ψj�.2

Proof. Again, it suffices to show that Hr
i �ψi;ψj� is strictly quasimono-

tone in ψi and in ψj . Hi is strictly quasimonotone in ψj by the same argu-
ment as in Proposition 1. Under the assumptions above we have:

Hr
i �ψi;ψj� =

∫ ψj
−∞

Vi�ψi; θj�fj�θj�ψi�dθj
− (Cwi �r; r� − Cli �r�)F�ψj � ψi� − Cli �r�

Because Vi�ψi; θj�fj�θj � ψi� is increasing in ψi the integral is increasing
in ψi. By affiliation, F�ψj � ψi�decreases in ψi so that the second term
increases in ψi.

Lemma 2 above told us that the possible initial conditions for equilib-
rium inverse bidding functions lie on the “North-East envelope” of the level
curves Hr

i �ψi;ψj� = 0 (the thick line in Figure 2). Note that the level curve
Hr

1�ψ1; ψ2� = 0 will cross the perimeter of the �θ; θ�2 square somewhere
in the interior of the top edge, because by assumption A3 type θ strictly

2 The assumption that Vi�θi; θj�fj�θj � θi� is increasing in θi is a special case (the case
of α = 1) of assumption A9 (introduced in section 5). Because assumption A9 holds for
α′ if it holds for any α < α′, the condition that guarantees that the Nort-East envelope is
negatively sloped is weaker than the condition that guarantees that there exists an equilibrium
in nondecreasing strategies.
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FIG. 2. North-East envelope. The possible initial conditions lie on the thickened line.

prefers not to bid, hence Hr
1�θ;ψ2� < 0 for all ψ2: Similarly, the curve

Hr
2�ψ2; ψ1� = 0 will cross the perimeter of the �θ; θ�2 square somewhere

in the interior of the right edge. Propositions 1 and 2 gave sufficient con-
ditions for the level curves to have negative slope. As a consequence, the
North-East envelope itself will have negative slope, i.e. the possible initial
conditions are ranked by “relative toughness.”

3.3. No crossing

This subsection contains two results: The first verifies that φi is a 0 sub-
stitute of φ′j in the first order conditions for player i; the second uses this
property to guarantee that trajectories starting on the North-East envelope
cannot cross.

At a Nash equilibrium, the first order conditions must be verified, hence

FOCi
(
φ′j�b�; φj�b�; θi; b

) x= ∂

∂b
5i
(
θi; b; bj�·�

)∣∣∣∣
b=bi�θi�

= 0 for i = 1; 2:

(7)

Next is a condition that is not given on primitives. It is a standard require-
ment used to guarantee the existence of equilibria in increasing strategies,
and as such is verified in all—to the best of our knowledge—cases of known
auction games that display equilibria in increasing strategies. In section 5
we show that (QM) holds for all equilibria in regular strategies of all the
games we consider.

(QM) The functions FOCi�φ′j�b�, φj�b�; θi; b� are quasimonotone
in θi:

This condition is equivalent to the Single Crossing Condition 2.2 in Athey
(1997).
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Proposition 3. Assume A4, A7. If condition (QM) is verified, θi is a
0 substitute of φ′j�b� in FOCi�φ′j�b�; φj�b�; θi; b�.

Proof. Since differentiability is guaranteed by A4 together with the fact
that strategies are regular, we can write

FOCi
(
φ′j�b�; φj�b�; θi; b

)
= ∂

∂b
5i�θi; b; bj�·��

∣∣∣∣
b=bi�θi�

= φ′j�b�fj�φj�b� � θi�
[
πWi �b; b; θi; φj�b�� − πLi �b; b; θi; φj�b��

]
+
∫ φj�b�
−∞

∂

∂b
πWi �b; bj�θj� ∨ r; θi; θj�dfj�θj � θi�

+
∫ +∞
φj�b�

∂

∂b
πLi
(
b; bj�θj�; θi; θj

)
dfj�θj � θi�: (8)

To check that θi is a 0 substitute of φ′j�b�, take θ̂i > θi and φ̂′j�b� such
that FOCi�φ̂′j�b�; φj�b�; θ̂i; b� = FOCi�φ′j�b�; φj�b�; θi; b� = 0: We need
to show that φ̂′j�b� < φ′j�b�.

Since the above expression equals 0 at �θi;φ′j�b��, condition (QM) guar-
antees that increasing θi to θ̂i makes it positive. Also, observe that the last
line in expression (8) is negative at �θ̂i; φ′j�b�� by A7, and so the coefficient
of φ′j�b� must be positive for the expression to be positive at �θ̂i; φ′j�b��.
Since FOCi must be 0 at �θ̂i; φ̂′j�b�� it has to be that φ̂′j�b� < φ′j�b�.

A version of this remarkable property was found to hold in Fudenberg
and Tirole (1986) in a war-of-attrition with independent private values.

Setting θi = φi�b�, we can rewrite (8) as a system of differential equa-
tions,

FOCi
(
φ′j�b�; φj�b�; φi�b�; b

) = 0 for i = 1; 2: (9)

This system, together with a pair of initial conditions, will describe each
equilibrium pair of trajectories (φ1�b�; φ2�b��: Take two pairs of initial
conditions θ0 and θ̂0 on the North-East envelope, and let φ�·� and φ̂�·�
denote the trajectories starting from these initial conditions and described
by the system of differential equations (9).

Proposition 4 (No crossing). Suppose φi�b� is a 0 substitute of φ′j�b� in
FOCi for all i; b. Then for all i, φi�·� and φ̂i�·� cannot cross.

Proof. Given two trajectories φi�·� and φ̂i�·� starting from θ0 and θ̂0, let
b∗ be the lowest bid at which φi�·� = φ̂i�·� for some i. Assume without loss
of generality that for b < b∗ we have φ̂1�b� > φ1�b� and hence (since initial
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conditions lie on the North-East envelope) φ̂2�b� < φ2�b�. Suppose by
contradiction that φ̂2�b∗� = φ2�b∗�: it cannot be that also φ̂1�b∗� = φ1�b∗�
since otherwise integrating backwards the two trajectories would coincide
forever (here we use Lipschitz continuity). So it must be that φ̂1�b∗� >
φ1�b∗� and, by 0 substitutes, φ̂′2�b∗� < φ′2�b∗�. But this contradicts the fact
that φ̂2 crosses φ2 from below at b∗.

4. EXISTENCE

In order to prove existence, it is not enough to show that a solution
to the system of differential equations exists. Indeed, the final condition
has to be met: Equilibrium strategies must also “arrive together.” In other
words, an equilibrium, besides solving (2) and (9) for a suitable set of ini-
tial conditions, must have the property that φ1�b� = θ and φ2�b� = θ for
the same b. So the idea of the proof, as executed in Proposition 5, is very
simple; start on the upper-left corner of the North-East envelope, and con-
sider the trajectories originating from there and described by (9). By the
choice of the initial conditions, the first trajectory to “arrive” will be φ2�·�:
Now move along the North-East envelope, down towards the lower-right
corner: There, the first trajectory to arrive will be φ1�·�: In between there
must be a pair of initial conditions on the North-East envelope where the
two trajectories arrive together, and this will be our equilibrium.

In order to make this reasoning go through, however, we first need to
check that all points on the North-East envelope are “acceptable” initial
conditions for the equilibrium we want to construct. We will call candidate
initial conditions for some trajectories, a pair θ0

1, θ0
2 such that: all types

below them are happy not to bid above r, whenever the bidding above r
is described by those trajectories; and all types above them are earning
nonnegative revenues.

Lemma 3. Let φi�·�; φj�·� be a pair of trajectories solving (9). Assume
condition (QM) holds and that for all i; Hr

i �ψi;ψj� is quasimonotone in ψi.
Then all points of the North-East envelope of the level curves Hr

1 = 0, Hr
2 = 0

are candidate initial conditions for the trajectories φi�·�, φj�·�.
Proof. If we write φi�θ0

1; θ
0
2; b� to denote the trajectory solving (2)

and (9), we can define

b
(
θ0

1; θ
0
2

) x= min
{
b:φ1

(
θ0

1; θ
0
2; b

) = θ or φ2
(
θ0

1; θ
0
2; b

) = θ}:
The function b�θ0

1; θ
0
2� may be seen as the “hitting time” of the first,

among the two trajectories starting from �θ0
1; θ

0
2�, to reach the upper bound

of its range.
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For a given pair θ0
1; θ

0
2, let us consider a type θ′i < θ0

i : Choose any b ∈
�r; b�θ0

1; θ
0
2�� and a θi > θ

0
i so that bi�θi� = b. By quasimonotonicity of the

first order conditions in θi [here we use (QM)], the derivative of θ′i’s payoff
at b is negative so this type does not want to bid b.

Consider on the other hand a type θ′i > θ
0
i : This type can bid r and guar-

antee himself an expected payoff of Hr
i �θ′1; θ0

2� which—since Hr
i is quasi-

monotone in its arguments—is greater than Hr
i �θ0

1; θ
0
2� ≥ 0:

Proposition 5. An equilibrium exists, and is described by (9) and (5) if:

• condition (QM) holds, and

• for all i, Hr
i �ψi;ψj� is quasimonotone in ψi.

Proof. First, it is clear that the function b�θ0
1; θ

0
2� defined in the proof

of Lemma 3 is continuous, since the functions φi�θ0
1; θ

0
2; b� are continuous

in their first two arguments [see Hirsch and Smale (1974)].
Our problem, in view of Lemma 3, reduces to finding a pair of initial

conditions �θ0
1; θ

0
2� on the North-East envelope such that

φ1
(
θ0

1; θ
0
2; b�θ0

1; θ
0
2�
) = θ and φ2

(
θ0

1; θ
0
2; b�θ0

1; θ
0
2�
) = θ:

So, consider the function

I
(
θ0

1; θ
0
2

) x= [θ−φ1
(
θ0

1; θ
0
2; b�θ0

1; θ
0
2�
)]+ [φ2

(
θ0

1; θ
0
2; b�θ0

1; θ
0
2�
)− θ]:

We are looking for zeros of this function lying on the North-East enve-
lope.

Observe that, for points on the North-East envelope with θ0
1 close enough

to θ, I�θ0
1; θ

0
2� is negative, since φ′2 < ∞ and φ′1 > 0. For points on the

North-East envelope with θ0
2 close enough to θ, I�θ0

1; θ
0
2� is positive, rea-

soning symmetrically.
Also, it is clear that I�·; ·� is a continuous function, because of continu-

ity of trajectories with respect to initial conditions [see Hirsch and Smale
(1974)].

But then, there is a point �θ̃0
1; θ̃

0
2� on the North-East envelope such that

I
(
θ̃0

1; θ̃
0
2

) = 0:

Then �θ̃0
1; θ̃

0
2� satisfies (5), and together with (3) and (9) characterizes an

equilibrium for the auction. To see this, consider that in view of Lemma 3
above, our assumptions guarantee that all points of the North-East enve-
lope of the level curves Hr

1 = 0, Hr
2 = 0 are candidate initial conditions for

the trajectories φi�·�, φj�·�. So all types below �θ̃0
1; θ̃

0
2� are happy to play at

or below r, and all types above earn nonnegative profits, and are therefore
happy to bid a positive amount. And since condition (QM) holds, bidding
according to (9) represents their best response.
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5. APPLICATIONS

We show how the results developed in the preceding two sections yield
results about uniqueness and existence of equilibrium in several bidding
games. It must be clear that many more auction games could be exam-
ined using the same technology. The following theorem applies to a wide
class of games, including almost all the examples we have presented, under
the assumption of independent signals. Throughout this section we do not
restrict to pure strategy equilibria.

Theorem 1. Suppose θ1, θ2 are independent. Then for the games of Ex-
amples 1, 2, 4, and 5 satisfying A1 and A3, an equilibrium exists and is unique.
This equilibrium is in pure strategies and is characterized by (9) and (5).

Proof.

(1) Regularity of strategies: because of Lemma 4, all equilibrium be-
havioural strategies are nondecreasing, by Lemma 5 and its corollaries
in Appendix A.2 the equilibrium is in nondecreasing pure strategies; by
Lemma 6 these strategies are strictly increasing, and differentiable in view
of Lemma 7. Appendix A.5 shows that equilibrium trajectories satisfy the
Lipschitz condition.

(2) (QM) The general expression for the first-order conditions is
equation (8), and we need to check whether increasing θi makes this value
grow bigger than 0. In the games of examples 1, 2, 4, and 5, πLi �b; bj; θi; θj�
is independent of θi; and �∂/∂b�πWi �b; bj�θj�; θi; θj� is nondecreasing in
θi; thus the first-order conditions of expression (8) are increasing (hence,
quasimonotone) in θi:

(3) The North-East envelope is well defined since A7 is verified. The
Hi functions are strictly quasimonotone in view of Proposition 1, hence the
North-East envelope is negatively sloped.

(4) No crossing: since condition (QM) is verified Proposition 4 holds.

Because A7 is verified, a final condition exists and so the discussion in
section 3.1 implies that the equilibrium is unique. Moreover, in view of
point (1) earlier, it is the unique equilibrium in behavioural strategies.

As for the existence part, all the assumptions of Proposition 5 are met,
and therefore an equilibrium in pure strategies exists and is characterized
by (9) and (5).

It is interesting to notice that neither the second price auction nor the
war of attrition (Example 3) are treated by the above theorem. This is
because both fail to meet A7. The second price auction is known to exhibit a
continuum of equilibria in the case of common values [see Milgrom (1981);



102 lizzeri and persico

Bikchandani and Riley (1991)], although our methods do not apply to that
setting. They do apply to the war of attrition, and it turns out that there
equilibria display unbounded bidding; so the final condition, whereby the
highest types of both players must bid the same amount, fails. In this case
we have a continuum of equilibria, each starting from a different point on
the North-East envelope. The easiest way to see this is to consider again
the benchmark case of independence, considered by Nalebuff and Riley
(1985) in the private-values case:

Theorem 2. In the war of attrition (Example 3) with independent signals
there is a continuum of equilibria (in regular strategies).

Proof. In order to prove our claim, we will construct the equilibria.
Consider the set of points on the North-East envelope of the curves

Hr
i �ψi;ψj� = P�θj ≤ ψj�E

(
Vi�ψi; θj� � θj ≤ ψj

)− r:
Once again these have negative slope, hence the North-East envelope will
have the familiar appearance of Figure 2. The expression for the first-order
conditions (9) is

φ′j�b�Vi
(
φi�b�; φj�b�

)
fj�φj�b�� −

[
1− Fj�φj�b��

] = 0 (10)

which is easily seen to satisfy condition (QM); therefore all the points on
the North-East envelope are candidate initial conditions and all trajectories
starting on the North-East envelope and described by (10) are candidate
equilibria. In the other auction forms we disposed of this multiplicity mak-
ing use of a final condition: No such procedure is allowed here, because
any trajectory pair described by equation (10) displays unbounded bidding.
To see this, rewrite (10) as follows:

1
Vi�φi�b�; φj�b��

= φ′j�b�
fj�φj�b��

1− Fj�φj�b��
= ∂

∂b

[− log�1− Fj�φj�b��
]
:

Integrating with respect to b up to c we obtain∫ c
r

1
Vi�φi�s�; φj�s��

ds = − log�1− Fj�φj�c�� + constant:

Suppose now, by contradiction, that bj�·� were bounded, that is bj�θj� <
K < ∞. Then necessarily Fj�φj�K�� = 1 whence, evaluating the last ex-
pression at c = K, the RHS is infinite while the LHS is not; this is the
contradiction.

We therefore conclude that all trajectories starting from the North-East
envelope and described by equation (10) constitute equilibria for the war
of attrition.
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Thus, we see how A7 is crucial to guarantee uniqueness of equilibrium.
Notice that restoring even a minimal amount of “strict decreasingness,” like
in Examples 4 and 5, suffices to recover uniqueness.

Theorem 3. Assume that the games of examples 1, 4, and 6 satisfy A1,
A2, and A3. Then an equilibrium for these games exists, and is unique in the
class of nondecreasing strategy equilibria. This equilibrium is in pure strategies
and is characterized by (9) and (5).

Proof. Let us first assume an equilibrium in nondecreasing behavioural
strategies exists, and check

(1) Regularity of strategies: because of Lemma 5 and its corollar-
ies in Appendix A.2 the equilibrium is in nondecreasing pure strategies; by
Lemma 6 these strategies are strictly increasing, and differentiable in view
of Lemma 7. Proposition 6 in Appendix A.5 applies since Hr

i is quasimono-
tone [see point (2) below], and shows that equilibrium trajectories satisfy
the Lipschitz condition.

(2) (QM) In the case of any auction where the loser pays nothing
and the derivative with respect to bi of πWi is independent of bj , θi, and θj ,
expression (8) reduces to[

φ′j�b�πWi �b; b; θi; φj�b�� +
Fj�φj�b� � θi�
fj�φj�b� � θi�

∂

∂b
πWi �b; bj�θj�; θi; θj�

]
×fj�φj�b� � θi� = 0:

The term in brackets is increasing in θi since πWi is increasing by A6,
�∂/∂b�πWi is negative by A7 and �Fj�φj � θi�/fj�φj � θi�� is decreasing in
θi because of affiliation; this proves quasimonotonicity. This takes care of
examples 1 and 4.

For example 6, expression (8) reduces to[
φ′j�b�u

(
V �θi;φj�b�

)− b)− ∫ φj�b�
−∞

u′
(
V �θi;φj�b��− b

) fj�θj � θi�
fj�φj�b� � θi�

dθj

]
×fj�φj�b� � θi� = 0:

The term in brackets is strictly increasing in θi; since u is concave and
�fj�θj � θi�/fj�φj�b� � θi�� is nonincreasing in θi for θj < φj due to affilia-
tion. This yields quasimonotonicity of the first-order conditions.

(3) The North-East envelope is well defined since A7 is verified. The
Hi are strictly quasimonotone in view of Proposition 1 (observe that in this
case A8 is verified, in view of the discussion preceding Proposition 1), and
thus the North-East envelope is negatively sloped.
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(4) No crossing: condition (QM) is verified and therefore Proposi-
tion 4 holds.

Because A7 is verified, a final condition exists and so the discussion in
section 3.1 implies that the equilibrium is unique. Moreover, in view of
point (1) earlier, it is the unique equilibrium in nondecreasing behavioural
strategies.

As for the existence part, all the assumptions of Proposition 5 are met,
and therefore an equilibrium in pure strategies exists and is characterized
by (9) and (5).

In auctions where the loser pays, affiliation is not a sufficient condition
for the existence of equilibria in nondecreasing strategies because affilia-
tion does not guarantee that condition QM is satisfied in such games. The
following assumption is imposed to guarantee that in these games condi-
tion QM holds and that therefore we get existence of equilibria in non-
decreasing strategies. The assumption reduces to the assumptions made in
Krishna-Morgan (1997) for the war of attrition and the all-pay auction. It
is clearly satisfied if the signals are independent.

A 9. The expression Kα�θi, θj� x= Vi�θi; θj��fj�θj � θi�/1− �1− α�Fj ·
�θj�θi�� is nondecreasing in θi.

Theorem 4. Assume that the games of Examples 2 and 5 satisfy A1, A2,
A3, and A9. Then an equilibrium for these games exists and is unique in the
class of nondecreasing strategy equilibria. This equilibrium is in pure strategies
and is characterized by (9) and (5).

Proof. The proof is the same as the one of Theorem 3 except for:

• Point (3) of the above proof: here we make reference to Proposi-
tion 2 to establish that the North-East envelope is well defined and nega-
tively sloped. To see that the assumptions of that proposition are verified,
observe that, if Kα�θi; θj� is increasing in θi, then Vi�θi; θj�fj�θj�θi� is in-
creasing in θi.

• Verifying (QM): In the all-pay auction, expression (8) simplifies to

φ′j�b�V �θi;φj�b��fj�φj�b� � θi� − 1 = 0;

which is quasimonotone (indeed, increasing) in θi if V �θi;φj�fj�φj � θi� is
increasing in θi. It is possible to see that, for a mechanism where winner
and loser pay the same combination of the winner’s and loser’s bid, the
same condition guarantees an equilibrium in increasing strategies. In the
war of attrition, expression (8) simplifies to[

φ′j�b�V �θi;φj�b��
fj�φj�b� � θi�

1− Fj�φj�b� � θi�
− 1

](
1− Fj�φj�b� � θi�

) = 0;
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which is quasimonotone if V �θi, φj��fj�φj � θi� / �1 − Fj �φj � θi��� is in-
creasing in θi . Of these two conditions, the latter is more demanding
than the former, and they have been proposed by Krishna and Morgan
in (1997). For the combination of war of attrition and all-pay auction pre-
sented in Example 5, the relevant condition is that V �θi;φj��fj�φj � θi�/
�1− �1− α�Fj�φj � θi��� be increasing in θi:

APPENDIX: REGULARITY OF EQUILIBRIUM STRATEGIES

This section provides sufficient conditions for regularity of equilibrium
strategies. The assumptions required are fairly general. Reserve prices are
not necessary except for the proof of the Lipschitz condition in Proposi-
tion 6.

The structure of this section is sequential, in that an increasing level of
regularity is proved. Except for the case of independence we only discuss
the class of equilibria in nondecreasing behavioural strategies.

A.1. Independence

Here we prove that, if signals are independent, all equilibria in be-
havioural strategies are nondecreasing. Together with the subsequent re-
sults, this will yield a complete characterization of the equilibrium set for
this case. We assume that the payoff functions πi�bi; bj; θi; θj� are addi-
tively separable in bi and θi.

A 10. πi�bi; bj; θi; θj� = ρi�bi; bj; θj� + σi�bj; θi; θj�:
Lemma 4. Assume A1, A3, A6, A7, and A10. Suppose 2i, 2j are inde-

pendent. Then equilibrium behavioural strategies are nondecreasing.

Proof. We will prove that, if some type θi wins the object with some
(nonzero) probability, then all types greater than θi will bid at least as
much. By contradiction, suppose bi ≥ r, and

θ′i > θi but support�ηi�·; θ′i�� 3 b′ < b ∈ support�ηi�·; θi��:
Optimality of the bidding function ηi�·� implies

5�θi; b; ηj� ≥ 5�θi; b′; ηj�
and

5�θ′i; b′; ηj� ≥ 5�θ′i; b; ηj�:
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Switching the LHS with the RHS in the first inequality, and adding the
second one gives

5�θ′i; b′; ηj� −5�θi; b′; ηj� ≥ 5�θ′i; b; ηj� −5�θi; b; ηj�:
This inequality may be rewritten as∫
�−∞; b′�×�θ; θ�

[
πWi �b′; s ∨ r; θ′i; θj� − πWi �b′; s ∨ r; θi; θj�

]
µj�ds; dθj�

+
∫
�b′;+∞�×�θ; θ�

[
πLi �b′; s; θ′i; θj� − πLi �b′; s; θi; θj�

]
µj�ds; dθj�

+ 1
2

∫
�b′�×�θ; θ�

[
πWi �b′; s ∨ r; θ′i; θj� − πWi �b′; s ∨ r; θi; θj�

+ πLi �b′; s; θ′i; θj� − πLi �b′; s; θi; θj�
]
µj�ds; dθj�

≥
∫
�−∞; b�×�θ; θ�

[
πWi �b; s ∨ r; θ′i; θj� − πWi �b; s ∨ r; θi; θj�

]
µj�ds; dθj�

+
∫
�b;+∞�×�θ;θ�

[
πLi �b; s; θ′i; θj� − πLi �b; s; θi; θj�

]
µj�ds; dθj�

+ 1
2

∫
�b�×�θ;θ�

[
πWi �b; s ∨ r; θ′i; θj� − πWi �b; s ∨ r; θi; θj�

+ πLi �b; s; θ′i; θj� − πLi �b; s; θi; θj�
]
µj�ds; dθj�:

Because of the separability assumption, the arguments inside the integrals
do not depend on type i’s bid, and recalling that b′ < b, the above is
equivalent to

0 ≥
∫
�b′; b�×�θ; θ�

[
πWi �b; s ∨ r; θ′i; θj� − πWi �b; s ∨ r; θi; θj�

]
µj�ds; dθj�

+
∫
�b′; b�×�θ; θ�

[
πLi �b; s; θ′i; θj� − πLi �b; s; θi; θj�

]
µj�ds; dθj�

+ 1
2

∫
�b�×�θ; θ�

[
πWi �b; s ∨ r; θ′i; θj� − πWi �b; s ∨ r; θi; θj�

+ πLi �b; s; θ′i; θj� − πLi �b; s; θi; θj�
]
µj�ds; dθj�

+ 1
2

∫
�b′�×�θ; θ�

[
πWi �b; s ∨ r; θ′i; θj� − πWi �b; s ∨ r; θi; θj�

+ πLi �b; s; θ′i; θj� − πLi �b; s; θi; θj�
]
µj�ds; dθj�:

But by A6 the arguments of the integrals are strictly positive. To reach
a contradiction, it is enough to prove that at least one the supports of
integration on the RHS has nonzero µj measure. This follows from the
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fact that, were it not so, type θi would strictly prefer to lower his bid to
b′ (A7), winning with the same probability (which is nonzero by A3) and
lowering his payment. Thus, the RHS is strictly positive.

A.2. Continuity

This lemma and the following corollaries show that an equilibrium in
nondecreasing behavioural strategies is in pure strategies that are continu-
ous and nondecreasing.

Lemma 5. Assume A1, A3, and A7. Consider any open interval �α;β� ⊂
�r; B�.3 Then, in a nondecreasing strategies equilibrium, µj��α;β�� > 0 ∀j.

Proof. Suppose not. Then there is an open interval �α;β� such that
either

(I) µi��α;β�� > 0 but µj��α;β�� = 0 for some i 6= j.
or

(II) µi��α;β�� = 0 for all i.

Case (I): Let b ∈ �α;β� be a bid that is played by some θi; then player
θi prefers bidding �b+ α�/2 to bidding b. The reason for this can be easily
seen: The payoff to this player is:∫

�−∞; b�×�θ; θ�
πWi �b; s ∨ r; θi; θj�dµj�ds; dθj � θi�

+
∫
�b;∞�×�θ; θ�

πLi �b; s ∨ r; θi; θj�dµj�ds; dθj � θi�: (11)

By lowering b to �b+ α�/2 he only changes the limits of integration on
a set of zero µj measure and by assumption A7 and A3, the integrand
of the first term strictly increases and that of the second does not fall.
Contradiction.

Case (II): Let �γ; δ� be the largest open interval containing �α;β� such
that µi�γ; δ� = 0∀i. We must distinguish three subcases:

(i) µi��δ�� > 0 and µj��δ�� = 0, i.e. there is a mass at δ in the
distribution of player i’s bids.

If this is the case, it must be true that there exists a positive measure of
types of player i bidding δ with positive probability. But any such type will
prefer to bid �δ+ γ�/2 for the same reason as earlier. Contradiction.

(ii) µ1��δ�� ∨ µ2��δ�� = 0:

3 Recall that B was defined as the supremum of all bids ever played in equilibrium.
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By definition of δ, for all ζ > δ for both i’s, there is a positive mass of
types bidding in �ζ; δ�. However, picking ζ arbitrarily close to δ we can
make this mass arbitrarily small. Hence, any such type that bids �γ + δ�/2
instead changes the limits of integration in (11) by a negligible mass but
increases the integrands by a nonnegligible amount. Contradiction.

(iii) µ1��δ�� ∧ µ2��δ�� > 0, i.e. both players have a mass at δ.

This cannot happen. To see this, notice that the payoff from bidding δ
minus the payoff from bidding δ− ε converges as ε converges to zero, to

1
2

∫
�δ�×�θ; θ�

(
πWi �δ; δ; θi; θj� − πLi �δ; δ; θi; θj�

)
dµj

The payoff from bidding δ + ε minus the payoff from bidding δ also
converges to the above expression as ε converges to zero. Since types who
bid δ do not wish to bid δ+ ε for any ε, the increase in payoff from bidding
δ instead of δ− ε is infinitesimal. But the increase in payoff from bidding
�γ+ δ�/2 instead of δ− ε is nonnegligible. Thus, it is better to bid �γ+ δ�/2
instead of δ. Contradiction.

We have exhausted all possible cases, and we have therefore proved the
lemma.

Remarks. 1. The above Lemma extends to all intervals with positive
Lebesgue measure, observing that any such interval contains an open in-
terval.

2. Lemma 5 implies, in particular, Bi = Bj .
3. Lemma 5 implies that, in equilibrium, bidding starts at, or just

above, r.4

4. The war of attrition does not satisfy assumption A7. However it is
easy to see that Lemma 5 would still hold if we assumed that πL is strictly
decreasing in by so the war of attrition also satisfies the above Lemma.

Corollary 1. Assume A1, A3, and A7. Then an equilibrium in nonde-
creasing strategies must be in pure strategies.

Proof. By the definition of nondecreasing strategies, if there was one
type of a player playing a nonpure strategy, then all types above and below
him could not include the interior of the support of that type’s strategy in
their support. Thus, there would be a set of bids which is played with 0
probability, contradicting Lemma 5.

4 This is not true for every bidding game, for example, in the symmetric equilibrium of
the second price auction there is a gap between r and the first active bids. The second price
auction does not satisfy assumption A7.
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We define b−1
i �·� to be the (set-valued) inverse correspondence associated

to bi�·�.
Corollary 2. Assume A1, A3, A7, and that equilibrium strategies are

nondecreasing. Then equilibrium strategies bi�·� are continuous on b−1
i �r; B�.

Proof. Observe that, by Corollary 1, we can restrict attention to pure
strategies. Then the statement follows immediately from the assumption
that strategies are nondecreasing, coupled with Lemma 5.

A.3. Strictly Increasing

This section gives conditions under which a nondecreasing pure strategy
is strictly increasing for the types that bid above r: An implication of this
is that it cannot be that a mass of types of any bidder will ever bid at any
amount b > r: To this end we need to introduce an assumption that is
satisfied in all our examples.

A 11. πLi �bi; bj; θi; θj� is nonincreasing in θj .

Lemma 6. Assume A1, A3, A4, A6, A7, A11, and that equilibrium strate-
gies bi�·� are nondecreasing. Then equilibrium strategies are strictly increasing
on �b−1

i �r�; θ�.
Proof. Suppose not. Then there is a b ∈ �r; B� such that P�bj�θj� = b �

θi� > 0 for every θi. If this is the case, we will show that no type of player
i will want to bid in �b − ε; b� for some small ε, and this will contradict
Lemma 5.

In view of Corollary 1 above, equilibrium strategies are pure; hence the
payoff to some θi; ε who bids b− ε is:

5
(
b− ε; θi;ε; bj�·�

)
=
∫
�θj x �b−ε>bj�θj���

πWi
(
b− ε; bj�θj�; θi; ε; θj

)
dfj�θj � θi; ε�

+
∫
�θj x �b−ε<bj�θj��

πLi �b− ε; bj�θj�; θi; ε; θj�dfj�θj � θi; ε�

+ 1
2

∫
�θj x b−ε=bj�θj��

[
πWi �b− ε; bj�θj�; θi; ε; θj�

+ πLi �b− ε; bj�θj�; θi; ε; θj�
]
dfj�θj � θi; ε�:

As ε goes to zero, b − ε converges to b− and θi; ε to some θi , and the
payoff converges to:

5�b−; θi; bj�·�� =
∫
�θj x �b−>bj�θj���

πWi �b; bj�θj�; θi; θj�dfj�θj � θi�;

+
∫
�θj x �b−<bj�θj��

πLi �b; bj�θj�; θi; θj�dfj�θj � θi�;
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where we have replaced b− ε with b inside the integrals (although not in
the supports), since by A4 the payoff is continuous. Since all types θi; ε were
happy to bid b− ε, and did not want to decrease their bid to b− 2ε, taking
the limit it has to be true that

πWi
(
b; b; θi; b

−1
j �b−�

)− πLi (b; b; θi; b−1
j �b−�

) ≥ 0: (12)

Observe now that type θi − ε , who by construction bids less than b; as ε
goes to 0 should prefer to bid slightly above b: Indeed he would be gaining

5
(
b+; θi; bj�·�

)−5(b−; θi; bj�·�)
=
∫ b−1

j �b+�

b−1
j �b−�

[
πWi �b; b; θi; θj� − πLi �b; b; θi; θj�

]
dfj�θj � θi�; (13)

and the above expression is just the integral of (12), as θj increases from
b−1
j �b−� upwards. But the integrand of (13) is nonnegative at the lower

bound of the integral by (12), and is strictly increasing in θj by A6 and
A11; thus, the integrand in expression (13) is positive over the domain of
integration, and expression (13) is positive too. So type θi − ε will never
want to bid b− ε for ε small enough, and this contradicts Lemma 5.

A.4. Differentiability

Lemma 7. Assume A1, A3, A4, A6, A7, A11, and that equilibrium strate-
gies bi�·� are strictly increasing. Then equilibrium inverse bidding functions are
everywhere differentiable in the interior of their domain.

Proof. Abusing notation, let πW �bi; bj�θj�; θi; θj� be denoted by πW �bi;
θi; θj�, and similarly for πL.

Fix any θi ∈ �θ0
i ; θi�, consider any increasing sequence �θni � ↑ θi; let

bni x= bi�θni �, bi x= bi�θi�. Continuity of bi�·� (Corollary 2) implies bni ↑ bi.
Because types θni prefer to bid bni rather than bi, we can write∫ φj�bni �
θ

πW
(
bni ; θ

n
i ; θj

)
fj�θj � θni �dθj +

∫ θ
φj�bni �

πL�bni ; θni ; θj�fj�θj � θni �dθj

≥
∫ φj�bi�
θ

πW �bi; θni ; θj�fj�θj � θni �dθj

+
∫ θ
φj�bi�

πL�bi; θni ; θj�fj�θj � θni �dθj:

Subtracting from both sides the expression∫ φj�bni �
θ

πW �bi; θni ; θj�fj�θj � θni �dθj +
∫ θ
φj�bni �

πL�bi; θni ; θj�fj�θj � θni �dθj;
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we obtain∫ φj�bni �
θ

[
πW �bni ; θni ; θj� − πW �bi; θni ; θj�

]
fj�θj � θni �dθj

+
∫ θ
φj�bni �

[
πL�bni ; θni ; θj� − πL�bi; θni ; θj�

]
fj�θj � θni �dθj

≥
∫ φj�bi�
φj�bni �

πW �bi; θni ; θj�fj�θj � θni �dθj

−
∫ φj�bi�
φj�bni �

πL�bi; θni ; θj�fj�θj � θni �dθj:

Dividing both sides by bi − bni , and taking limsup yields∫ φj�bi�
θ

− ∂

∂bi
πW �bi; θi; θj�fj�θj � θi�dθj

+
∫ θ
φj�bi�
− ∂

∂bi
πL�bi; θi; θj�fj�θj � θi�dθj

≥ lim sup
n→∞

∫ φj�bi�
φj�bni �

[
πW �bi; θni ; θj� − πL�bi; θni ; θj�

]
× fj�θj � θni �dθj

1
bi − bni

:

The RHS, by continuity of πW − πL in θi; θj , can be replaced by[
πW �bi; θi; φj�bi�� − πL�bi; θi; φj�bi��

]
fj�φj�bi� � θi�

× lim sup
n→∞

∫ φj�bi�
φj�bni �

dθj
1

bi − bni
:

Therefore,

lim sup
bni ↑bi

φj�bi� −φj�bni �
bi − bni

≤
∫ φj �bi�
θ − ∂

∂bi
πW �bi; θi; θj�fj�θj � θi�dθj+

∫ θ
φj �bi� −

∂
∂bi
πL�bi; θi; θj�fj�θj � θi�dθj[

πW �bi; θi; φj�bi�� − πL�bi; θi; φj�bi��
]
fj�φj�bi� � θi�

:

A symmetric reasoning leads to

lim inf
bni ↑bi

φj�bi� −φj�bni �
bi − bni

≥
∫ φj �bi�
θ − ∂

∂bi
πW �bi; θi; θj�fj�θj � θi�dθj+

∫ θ
φj �bi� −

∂
∂bi
πL�bi; θi; θj�fj�θj � θi�dθj[

πW �bi; θi; φj�bi��−πL�bi; θi; φj�bi��
]
fj�φj�bi� � θi�

:
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Because the same exercise can be carried out choosing a decreasing se-
quence �θni � ↓ θi, we conclude that φj�·� is differentiable everywhere inside
its domain.

A.5. Lipschitz Condition

Equilibrium trajectories are described by the following system of first-
order conditions
φ′j�b�

=
∫ φj �b�
θ − ∂

∂b
πWi �b; bj�θj�; φi; θj�fj�θj � φi�dθj +

∫ θ
φj �b� −

∂
∂b
πLi �b; bj�θj�; φi; θj�fj�θj � φi�dθj

�πWi �b; b;φi;φj�b�� − πLi �b; b;φi;φj�b���fj�φj�b� � φi�

(14)

In order to show that the trajectories described by (14) are Lipschitz con-
tinuous, we need to show that the denominator of (14) is bounded away
from 0. When A1 holds, it suffices to check that the terms in brackets is
bounded away from 0. Thus, trajectories in the war of attrition and all-pay
auctions are easily seen to be Lipschitz. Furthermore, all auctions where
the price paid when winning and losing are linear (though not necessarily
convex) combinations of the winner’s and loser’s bid have Lipschitz trajec-
tories for the same reason, provided that the value of the object is strictly
positive.

The next assumption imposes that one would prefer the opponent to bid
low when one is winning but to bid high when one is losing. It is satisfied by
the war of attrition, all-pay auction and combinations of the two because for
these games πLi is independent of bj . It is clearly satisfied by combinations
of first price and second-price auctions.

A 12. πWi �bi; bj; θi; θj� is nonincreasing in bj and πLi �bi; bj; θi; θj� is
nondecreasing in bj .

Proposition 6. Assume A1, A6, A11, A5, A12, and that condition (QM)
holds. Suppose further that Hr

i �ψi;ψj� is quasimonotone in ψi. Then the sys-
tem of equilibrium trajectories described by (14) is Lipschitz on �r; b�θ0

1; θ
0
2��.

Proof. We need to prove that �πWi �b; b;φi;φj�b�� − πLi �b; b;φi;
φj�b��� > k > 0. So, let us write the following chain of inequalities

P�θj ≤ φj�b� � θi = φi�
[
πWi �b; b;φi;φj�b�� − πLi �b; b;φi;φj�b�� + ε

]
[since πWi �b; b;φi;φj�b�� − πLi �b; b;φi;φj�b�� is increasing in θj by A6],

> P�θj ≤ φj�b� � θi = φi�
× E (πWi �b; b; θi; θj� − πLi �b; b; θi; θj�∣∣θi = φi; θj ≤ φj�b�)
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[since we are adding a nonpositive quantity by A5],

≥ P�θj ≤ φj�b� � θi = φi�
× E (πWi �b; b; θi; θj� − πLi �b; b; θi; θj�∣∣θi = φi; θj ≤ φj�b�)
+ E (πLi �b; b; θi; θj�∣∣θi = φi; θj ≤ φj�b�)
= P�θj ≤ φj�b� � θi = φi�E

(
πWi �b; b; θi; θj�

∣∣θi = φi; θj ≤ φj�b�)
+ P�θj ≥ φj�b� � θi = φi�E

(
πLi �b; b; θi; θj�

∣∣θi = φi; θj ≤ φj�b�)
[since πLi is decreasing in θj by A11],

≥ P�θj ≤ φj�b� � θi = φi�E
(
πWi �b; b; θi; θj�

∣∣θi = φi; θj ≤ φj�b�)
+ P�θj ≥ φj�b� � θi = φi�E

(
πLi �b; b; θi; θj�

∣∣θi = φi; θj ≥ φj�b�)
[in view of A12]

≥ P�θj ≤ φj�b� � θi = φi�
× E (πWi �b; bj�θj�; θi; θj�∣∣θi = φi; θj ≤ φj�b�)
+ P�θj ≥ φj�b� � θi = φi�
× E (πLi �b; bj�θj�; θi; θj�∣∣θi = φi; θj ≥ φj�b�) :

Since the above expression is the payoff for a type φi bidding b, this is
greater than the payoff for a type φi bidding just above r (condition (QM)).
This latter quantity is greater than 0 because Hr

i �ψi;ψj� is quasimonotone
in ψi:

In reference to our use of this lemma in our existence proof, notice that
we have not made use of the equilibrium assumption in the proof of the
lemma.
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