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Modica and Rustichini [1994] provided a logic for reasoning about knowledge
where agents may be unaware of certain propositions. However, their origi-
nal approach had the unpleasant property that nontrivial unawareness was
incompatible with partitional information structures. More recently, Modica
and Rustichini [1999] have provided an approach that allows for nontrivial
unawareness in partitional information structures. Here it is shown that their
approach can be viewed as a special case of a general approach to unaware-
ness considered by Fagin and Halpern [1988]. Journal of Economic Literature
Classification Numbers: D80, D83.

1. INTRODUCTION

The standard approach to reasoning about knowledge [Fagin, Halpern,
Moses, and Vardi 1995] implicitly assumes that agents are (commonly
known to be) aware of all the relevant propositions. However, in decision
theory under uncertainty, we must often deal with unforeseen contingencies.
(See [Dekel, Lipman, and Rusticchini 1998] for a discussion of issues related
to unforeseen contingencies and further references.) Thus, we would like to
be able to model agents who are not necessarily aware of all the relevant
propositions.

In the economics literature, an initial attempt to do this was made by
Modica and Rustichini [1994] (MR from now on). They provided a logic
where awareness was defined in terms of knowledge. An agent was aware of
p if he either knew p or knew he did not know p. Unfortunately, the original
MR approach had the unpleasant property that nontrivial unawareness
was incompatible with partitional information structures. More recently
[1999], MR provided an approach that allows for nontrivial unawareness in
partitional information structures.

* Supported in part by NSF under grant IRI-96-25901.

1



2 HALPERN

As MR observe, in the Artificial Intelligence/Computer Science litera-
ture, Fagin and Halpern [1988] (FH from now on) had earlier introduced
a model of knowledge and unawareness. However, in this model, unaware-
ness is introduced as a separate modal operator, independent of knowledge,
rather than being defined in terms of knowledge. Nevertheless, as I show
here, by making some assumptions on the connection between knowledge
and awareness (assumptions that are actually discussed explicitly by FH),
the MR definition becomes a special case of the FH definition.

The rest of this paper is organized as follows. In the next section, I
briefly review the FH definitions and in Section 3, I briefly review the
MR definitions. The fact that the MR definitions can be viewed as a
special case of the FH definitions is proved in Section 4. In Section 5,
complete axiomatizations are provided for the FH notions of knowledge
and (un)awareness. I do not give much in the way of motivation here for
the FH and MR definitions here; I would encourage the reader to consult
the original papers for details.

2. THE FH DEFINITIONS

The intuition behind the FH approach is that there is implicit knowledge—
the notion traditionally considered in the AI and economics literature—
where agents are aware of all propositions and can do perfect reasoning with
respect to these propositions, and explicit knowledge which, roughly speak-
ing, is intended to capture those conclusions of which agents are explicitly
aware. Explicit knowledge implies implicit knowledge, but the converse
does not hold in general.

To capture this intuition, FH start with a set Φ = {p, q, . . .} of primi-
tive propositions, and build more complicated formulas by closing under
the propositional connectives ∧ and ¬ and the modal operators K (for
implicit knowledge), X (for explicit knowledge) and A (for awareness).1

Let LKXA(Φ) denote the resulting language; let LXA(Φ), (resp., LKA(Φ);
LK(Φ); LX(Φ)) denote the sublanguages of LKXA(Φ) where the only
modal operators are X and A (resp., K and A; K; X). I typically omit
the parenthesized Φ if it does not play an important role. As usual, ϕ ∨ ψ
is taken to be an abbreviation for ¬(¬ϕ ∧ ¬ψ) and ϕ ⇒ ψ taken to be an
abbreviation for ¬ϕ ∨ ψ.

An awareness structure is a tuple M = (S, ρ,K,A), where S is a set of
states or possible worlds, ρ associates with each primitive proposition p ∈ Φ

1In [Fagin and Halpern 1988], L and B are used for implicit and explicit knowledge,
respectively. I am following the notation of [Fagin, Halpern, Moses, and Vardi 1995]
here. For consistency with MR, I consider only the single-agent case here, although in
fact, FH consider the multiagent case.
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an event ρ(p) ⊆ S (intuitively, ρ(p) is the set of states where p is true),2

K is a binary relation on S, and A associates with each state s ∈ S a set
A(s) of formulas. Intuitively, the formulas in A(s) are the formulas that
the agent is aware of at state s. The binary relation K describes the agent’s
possibility relation; if (s, t) ∈ K then in state s the agent considers state
t possible. If K is an equivalence relation, then (S,K) gives us the stan-
dard partitional model, familiar in the economics literature. By defining
K(s) = {t : (s, t) ∈ K}, we can view K as defining what his been called a
possibility correspondence in the economics literature [Geanakoplos 1989],
i.e., a function from states to sets of states. An awareness structure is re-
flexive (resp., reflexive and transitive; partitional) if K is reflexive (resp.,
reflexive and transitive; an equivalence relation). Let M (resp., Mr; Mrt;
Mrst) denote the class of all (resp., reflexive; reflexive and transitive; par-
titional) awareness structures.

The awareness function A gives awareness structures a syntactic com-
ponent. A(s) can be arbitrary (although I shall shortly consider some
restrictions on it). In general, it is possible for both ϕ and ¬ϕ to be in
A(s), for only one of ϕ and ¬ϕ to be in A(s), or for neither ϕ nor ¬ϕ to be
in A(s). It is also possible, for example, that ϕ ∧ ψ is in A(s) but neither
ψ nor ϕ is in A(s).

I write (M, s) |=FH ϕ if ϕ is true at state s in awareness structure
M . (The subscript FH is used to distinguish this definition from the one
given by MR, described in the next section.) The truth relation |=FH is
defined inductively. The definition in the case of primitive propositions,
conjunctions, negations, and for formulas Kϕ is standard. The definition
for Aϕ just says that Aϕ is true at s exactly if ϕ is one of the formulas in
A(s) (i.e., the formulas that the agent is aware of at state s). Finally, Xϕ
is defined as Kϕ ∧Aϕ: the agent explicitly knows ϕ exactly if he is aware
of ϕ and implicitly knows ϕ. You cannot have explicit knowledge about
formulas of which you are not aware.

(M, s) |=FH p (for p ∈ Φ) iff s ∈ ρ(p)
(M, s) |=FH ϕ ∧ ψ iff both (M, s) |=FH ϕ and (M, s) |=FH ψ

(M, s) |=FH ¬ϕ iff (M, s) 6|=FH ϕ

(M, s) |=FH Kϕ iff (M, t) |=FH ϕ for all t ∈ K(s)
(M, s) |=FH Aϕ iff ϕ ∈ A(s)
(M, s) |=FH Xϕ iff (M, s) |=FH Aϕ and (M, s) |=FH Kϕ.

It is easy to see that LKA is equivalent in expressive power to LKXA. Since
X is definable in terms ofK and A, it does not add anything in the presence

2I follow MR in using ρ for this component rather than π, as used in [Fagin and
Halpern 1988; Fagin, Halpern, Moses, and Vardi 1995]. In general, the notation used
here is a compromise between that of FH and MR.
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of these two other operators. However, I focus here on the sublanguages
LX and LXA, where the X operator clearly plays a nontrivial role.

What exactly does awareness mean and what should the relationship
between knowledge and awareness be? MR have one particular interpreta-
tion in mind, which leads them to define Aϕ as Xϕ∨X¬Xϕ.3 Given their
assumptions about the X operator a number of properties of awareness
follow, such as the fact that an agent is aware of ϕ iff she is aware of ¬ϕ.
In FH, awareness is taken as a primitive notion, open to a number of inter-
pretations. The appropriate application depends on the application. One
possible interpretation is certainly that suggested by MR, but it might also
be reasonable to consider a “computational” notion of awareness, where
awareness of ϕ corresponds to “being able to compute the truth of ϕ (per-
haps within some time or space bounds)”. Such an interpretation leads
to a resource-bounded notion of knowledge. Under this interpretation, an
agent may not be aware of tautologies, for example, and the agent may
be aware of ϕ without being aware of ¬ϕ (adding a negation may be just
enough to make the formula too long for the agent to deal with).

Of course, once we have a concrete interpretation in mind, it will suggest
some restrictions onA (or, equivalently, some axioms that awareness should
satisfy). Some typical restrictions on A considered by FH include the
following.

• Awareness is closed under subformulas if ϕ ∈ A(s) and ψ is a subfor-
mula of ϕ, then ψ ∈ A(s). Note that this makes sense if we are reasoning
about a computer program that will never compute the truth of a formula
unless it has computed the truth of all its subformulas. But it is also easy
to imagine a program that knows that ϕ ∨ ¬ϕ is true without needing to
compute the truth of ϕ. Note that if an agent’s awareness is closed under
subformulas, then the agent’s knowledge is closed under implication. More
precisely, it is easy to check that (Xϕ ∧X(ϕ ⇒ ψ)) ⇒ Xψ is valid if the
agent’s awareness is closed under implication. This suggests that taking
awareness to be closed under implication is inappropriate to the extent that
one is thinking in terms of a computational notion of awareness.

• Awareness is generated by primitive propositions if, at each state s,
there is some subset Φ(s) ⊆ Φ of primitive propositions such that A(s)
consists of exactly those formulas that mention only primitive propositions
that appear in Φ(s). This seems much in the spirit of MR’s intuition for
awareness. Note that if awareness is generated by primitive propositions,
then it is closed under subformulas.

3MR actually write Kϕ ∨K¬Kϕ, but their K acts more like the explicit knowledge
operator X of this paper.
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• An agent is self-reflective if ϕ ∈ A(s) implies Aϕ ∈ A(s). This corre-
sponds to the axiom Aϕ⇒ AAϕ. Again, note that if awareness is generated
by primitive propositions, then an agent will be self-reflective in this sense.
• An agent knows which formulas he is aware of if (s, t) ∈ K, then

A(s) = A(t). This corresponds to the axioms Aϕ ⇒ KAϕ and ¬Aϕ ⇒
K¬Aϕ: that is, if the agent is aware of ϕ, then she knows it and if she is
not aware of ϕ, she knows that too.

If awareness is generated by primitive propositions, then it is character-
ized by MR’s definition; that is, Aϕ can be viewed as an abbreviation of
Xϕ ∨ (¬Xϕ ∧X¬Xϕ).

Lemma 2.1. If M is a partitional awareness structure where awareness
is generated by primitive propositions, then

M |=FH Aϕ⇔ (Xϕ ∨ (¬Xϕ ∧X¬Xϕ)).

Proof. Suppose (M, s) |=FH Aϕ. Clearly we have (M, s) |=FH Kϕ
or (M, s) |=FH ¬Kϕ. If (M, s) |=FH Kϕ, then it is immediate from the
definition that (M, s) |=FH Xϕ. If (M, s) |=FH ¬Kϕ, then it is imme-
diate from the definition that (M, s) |=FH ¬Xϕ. Moreover, since we are
restricting to partitional models, by negative introspection we have that
(M, s) |=FH K¬Kϕ. Thus, for all t ∈ K(s), we have (M, t) |=FH ¬Kϕ,
and hence (M, t) |=FH ¬Xϕ It follows that (M, s) |=FH K¬Xϕ. Since
awareness is generated by primitive propositions in M and the same prim-
itive propositions appear in both ϕ and ¬Xϕ, from (M, s) |=FH Aϕ it
follows that (M, s) |=FH A¬Xϕ. Thus, if (M, s) |=FH ¬Kϕ, we must have
(M, s) |=FH X¬Xϕ. We have just shown that if (M, s) |=FH Aϕ, then
(M, s) |=FH Xϕ ∨ (¬Xϕ ∧X¬Xϕ).

The converse is even easier. Clearly if (M, s) |=FH Xϕ, by definition,
(M, s) |=FH Aϕ. Since awareness is generated by primitive propositions,
from (M, s) |=FH X¬Xϕ it also follows that (M, s) |=FH Aϕ. This com-
pletes the proof.

Thus, if we restrict to partitional awareness structures where awareness
is generated by primitive propositions, we can define A in terms ofX as MR
do. That is, LXA is equivalent in expressive power to LX . An even stronger
connection between the definitions of FH and MR is given in Section 4. To
state it, I need to review the definitions of MR’s semantic structures.

3. THE MR DEFINITIONS
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MR also start with a set Φ of primitive propositions, and then close off
under the modal operatorX.4 They give semantics to formulas in LX using
generalized standard models (GSMs). A GSM is a tuple M = (S, S′, ρ,P, π)
whose components satisfy the following conditions:

• S, as before, is a set of states.
• S′ is also a set of states; moreover S′ = ∪Ψ⊆ΦS

′
Ψ, where the sets

S′Ψ are disjoint. Intuitively, the agent is aware of only the formulas with
propositions in Ψ at the states in S′Ψ.
• ρ(p), as before, is a subset of S, for each p ∈ Φ.
• P is a generalized possibility correspondence; P(s) is a subset of S′ for

each s ∈ S.
• π is a projection from S to S′ (i.e., an onto map from S to S′) such

that (1) if π(s) = π(t) ∈ S′Ψ then (a) s and t agree on the truth values of
all primitive propositions in Ψ, that is, s ∈ ρ(p) iff t ∈ ρ(p) for all p ∈ Ψ
and (b) P(s) = P(t) and (2) if π(s) ∈ S′Ψ then P(s) ⊆ S′Ψ.

We can extend P to a map P∗ defined on S ∪ S′ as follows: if s′ ∈ S′ and
π(s) = s′, define P∗(s′) = P(s). Condition 1(b) on π guarantees that this
extension is well defined. A GSM is reflexive (resp., reflexive and transitive;
partitional) if P∗ restricted to S′ is reflexive (resp., reflexive and transitive;
partitional). Similarly, we can extend ρ to a map ρ∗ defined on S ∪ S′ by
defining ρ∗(p) = ρ(p) ∪ ∪Ψ⊆Φ{s′ ∈ S′Ψ : p ∈ Ψ, π−1(s′) ⊆ ρ(p)}. That is,
if s′ ∈ SΨ, then s′ ∈ ρ(p) iff p ∈ Ψ and s ∈ ρ(p) for some (and hence, by
condition 1(a), all) s ∈ S such that π(s) = s′.

We can now define a satisfaction relation |=MR on GSMs. States in both
S and S′ are allowed on the left-hand side of |=MR, but they are treated
differently in the case of negation:5

(M, s) |=MR p (for p ∈ Φ) iff s ∈ ρ∗(p)
(M, s) |=MR ϕ ∧ ψ iff both (M, s) |=MR ϕ and (M, s) |=MR ψ
(M, s) |=MR ¬ϕ iff (M, s) 6|=MR ϕ and either s ∈ S or s ∈ S′Ψ and

ϕ ∈ LX(Ψ)
(M, s) |=MR Xϕ iff (M, t) |=MR ϕ for all t ∈ P∗(s).

MR extend the definition of |= to LXA by taking Aϕ to be an abbreviation
for Xϕ ∨X¬X¬ϕ.

The following simple lemma, which will be of use in the proof of the main
result, casts some light on the connection between the states s and π(s).

4MR use lower case k and a for knowledge and unawareness. I am using upper case
for consistency with the notation of FH and explicit knowledge (X) rather than implicit
knowledge (K), since the notion of knowledge in [Modica and Rustichini 1999] is closer
to FH’s explicit knowledge. MR also have an operator 3, but since 3ϕ is defined as an
abbreviation for ¬X¬ϕ ∧Aϕ, I ignore 3 here, with no loss of generality.

5My presentation is slightly different from that of MR, but is easily seen to be
equivalent.
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Lemma 3.1. Given a GSM M = (S, S′, ρ,P, π) and s ∈ S such that
π(s) ∈ S′Ψ, then (a) if ϕ ∈ LX(Ψ), then (M, s) |=MR ϕ iff (M,π(s)) |=MR

ϕ and (b) if ϕ /∈ LX(Ψ), then (M,π(s)) 6|=MR ϕ.

Proof. A straightforward induction on the structure of ϕ; left to the
reader.

4. RELATING GSMS AND AWARENESS STRUCTURES

Awareness (resp., an awareness structure M) is said to be propositionally
determined if it (resp., the awareness function in M) is generated by prim-
itive propositions and the agent knows what formulas he is aware of. In
this section, I prove that partitional GSMs and propositionally determined
awareness structures are equivalent in a strong sense. Assume that we are
working over a fixed set Φ of primitive propositions.

Theorem 4.1.

(a)Given a propositionally determined awareness structure M = (S, ρ,K,A)
there is a GSM M ′ = (S, S′, ρ,P, π) such that for all formulas ϕ ∈ LX(Φ),
we have

(M, s) |=FH ϕ iff (M ′, s) |=MR ϕ.

Moreover, if M is reflexive (resp., reflexive and transitive, partitional), then
so is M ′.

(b)Given a GSM M = (S, S′, ρ,P, π), there is a propositionally deter-
mined awareness structure M ′ = (S, ρ,K,A) such that for all formulas
ϕ ∈ LX(Φ), we have

(M, s) |=MR ϕ iff (M ′, s) |=FH ϕ.

Moreover, if M is reflexive (resp., reflexive and transitive, partitional), then
so is M ′.

Proof. For part (a), given a propositional awareness structure M =
(S, ρ,K,A), for each state s ∈ S, define Ψ(s) = A(s) ∩ Φ. Let S′ = S
be a disjoint copy of S (where s′ ∈ S′ is the copy of s ∈ S), let S′Ψ =
{s′ ∈ S′ : Ψ(s) = Ψ}, let P(s) = {t′ : (s, t) ∈ K}, and let π(s) = s′.
Let M ′ = (S, S′, ρ,P, π). Since M is propositionally determined, it follows
that if π(s) ∈ S′Ψ, then P(s) ⊆ S′Ψ. Thus, M ′ is a GSM. Moreover, it is
immediate that M ′ is reflexive (resp., reflexive and transitive, partitional)
if M is.



8 HALPERN

I now show by induction on the structure of formulas that for all states
s ∈ S and formulas ϕ ∈ LX(Φ), we have

(M, s) |=FH ϕ iff (M ′, s) |=MR ϕ.

If ϕ is the primitive proposition p, this is immediate from the definitions.
If ϕ is of the form ϕ1 ∧ ϕ2 or ¬ϕ′, then it follows immediately from the
induction hypothesis. Now suppose that ϕ is of the form Xϕ′. Let Φϕ

consist of all the primitive propositions that appear in ϕ. Then we have
(M, s) |=FH Xϕ′ iff (M, t) |=FH ϕ′ for all t ∈ K(s) and (since aware-
ness in M is propositionally determined) Φϕ ⊆ A(s). By the induction
hypothesis, the latter condition is true iff (M, t) |=MR ϕ′ for all t ∈ K(s)
and π(s) ∈ S′Ψ for some Ψ ⊇ Φϕ. By Lemma 3.1, it follows that this is
true iff (M,π(t)) |=MR ϕ′ for all t ∈ K(s). But this, in turn, is true iff
(M, s) |=MR Xϕ′.

For part (b), given a GSM M = (S, S′, ρ,P, π), where S′ = ∪ΨS
′
Ψ, define

an awareness structure M ′ = (S, ρ,K,A), where A(s) is generated by the
primitive propositions in Ψ if π(s) ∈ S′Ψ and K(s) = {t : π(t) ∈ P(s)}.
Since (s, t) ∈ K and π(s) ∈ S′Ψ implies that π(t) ∈ S′Ψ, it easily follows that
M ′ is a propositionally determined awareness structure. Moreover, M ′ is
reflexive (resp., reflexive and transitive, partitional) if M is.

I now prove by induction on the structure of ϕ that (M, s) |= ϕ iff
(M ′, s) |= ϕ for all states s ∈ S. Again, the argument is immediate in the
case that ϕ is a primitive proposition, conjunction, or negation. Finally, the
argument in the case of Xϕ′ is essentially identical to that given in part
(a).

Theorem 4.1 shows that, in a precise sense, GSMs and propositionally de-
termined awareness structures are equivalent, at least as far as the language
LX is concerned.6 This equivalence does not extend to the language LXA

in general. In GSMs, Aϕ is, by definition, equivalent to Xϕ ∨X¬Xϕ. By
Lemma 2.1, this equivalence holds as well in partitional awareness struc-
tures, but it does not hold in general. That is, in partitional awareness
structures, Theorem 4.1 holds, not just for the language LX , but for the
language LXA as well. However, in general, Theorem 4.1 holds only for the
language LX .

5. AXIOMATIZING AWARENESS STRUCTURES

The axioms that characterize awareness structures depend on three things:
(1) the choice of language, (2) the assumptions made about the K operator,

6For simplicity, this theorem was proved for only four different assumptions about the
possibility correspondence. However, the proof itself clearly shows that the equivalence
continues for much more general assumptions about the possibility correspondence.
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and (3) the assumptions made about awareness. I discuss axiomatizations
with respect to some of the assumptions I have made in this paper. Some
of the results, as noted below, are taken from [Fagin, Halpern, Moses, and
Vardi 1995, Section 9.5].

Since the notion of axiomatization of a logic is somewhat different from
the standard notion of axiomatizing an operator familiar in the economics
literature, I now briefly review the relevant definitions. An axiom sys-
tem AX consists of a collection of axioms and inference rules. An axiom
is a formula, and an inference rule has the form “from ϕ1, . . . , ϕk infer ψ,”
where ϕ1, . . . , ϕk, ψ are formulas. Typically (and, in particular, in this pa-
per), the axioms are all instances of axiom schemes. Thus, for example,
an axiom scheme such as Kiϕ⇒ ϕ defines an infinite collection of axioms,
one for each choice of ϕ. A proof in AX consists of a sequence of formulas,
each of which is either an axiom in AX or follows by an application of an
inference rule. A proof is said to be a proof of the formula ϕ if the last
formula in the proof is ϕ. We say ϕ is provable in AX, and write AX ` ϕ,
if there is a proof of ϕ in AX; similarly, we say that ϕ is consistent with
AX if ¬ϕ is not provable in AX.

Given a class M′ of (awareness) structures, a formula ϕ is valid in M′

if (M, s) |= ϕ for every structure M ∈ M′ and state s in M . An axiom
system AX is said to be sound for a language L with respect to a class
M′ of structures if every formula in L provable in AX is valid with respect
to every structure in M′. The system AX is complete for L with respect
to M′ if every formula in L that is valid in M′ is provable in AX. We
think of AX as characterizing the class M′ if it provides a sound and
complete axiomatization of that class. Soundness and completeness provide
a connection between the syntactic notion of provability and the semantic
notion of validity.

5.1. Axiomatizing the language LK : a review
I begin with a review of standard axiomatizations for the language LK ,

since they form the basis of the axiomatizations with awareness.
Consider the following axioms:

Prop. All substitution instances of tautologies of propositional calculus
K. (Kϕ ∧K(ϕ⇒ ψ)) ⇒ Kψ, (Distribution Axiom)
T. Kϕ⇒ ϕ, (Knowledge Axiom)
4. Kϕ⇒ KKϕ, (Positive Introspection Axiom)
5. ¬Kϕ⇒ K¬Kϕ, (Negative Introspection Axiom)
MP. From ϕ and ϕ⇒ ψ infer ψ (Modus ponens)
Gen. From ϕ infer Kϕ (Knowledge Generalization)

The system with axioms and rules Prop, K, MP, and Gen has been
called K. If we add T to K, we get the axiom system T; if we add 4 to T,
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we get S4; if we add 5 to S4, we get S5. (Many other systems can also be
formed [Chellas 1980]; these are the four I focus on here.) The following
result is well known (see, for example, [Chellas 1980; Fagin, Halpern, Moses,
and Vardi 1995] for proofs.)

Theorem 5.1. For formulas in the language LK :

(a)K is a sound and complete axiomatization with respect to M,
(c)T is a sound and complete axiomatization with respect to Mr,
(c)S4 is a sound and complete axiomatization with respect to Mrt,
(d)S5 is a sound and complete axiomatization with respect to Mrst.

While the axiomatizations above are the standard ones discussed in the
literature, there are a number of equivalent formulations that will turn out
to be useful for characterizing awareness. Consider the following rules of
inference:

RK. From ϕ1∧ . . .∧ϕn ⇒ ψ infer Kϕ1∧ . . .∧Kϕn ⇒ Kψ (n ≥ 0). (The
special case where n = 0 is just Gen.)

RK4. From ϕ1 ∧ . . .∧ϕn ∧Kσ ⇒ ψ infer Kϕ1 ∧ . . .∧Kϕn ∧Kσ ⇒ Kψ
(n ≥ 0).

RK5. From ϕ1∧ . . .∧ϕn∧Kσ∧¬Kτ ⇒ ψ infer Kϕ1∧ . . .∧Kϕn∧Kσ∧
¬Kτ ⇒ Kψ (n ≥ 0).

The following result is easy to prove (very similar results are proved in
[Chellas 1980]).

Proposition 5.1.

(a)K is equivalent to the system {Prop,MP,RK}.
(b)T is equivalent to the system {Prop,MP,RK, T}.
(c)S4 is equivalent to the system {Prop,MP,RK4, T}.
(d)S5 is equivalent to the system {Prop,MP,RK5, T}.

5.2. Axiomatizing LKXA

Axiomatizing LKXA (with no assumptions on awareness) is easy.7 The
only axiom we need add to the basic axioms for K is

A0. Xϕ ≡ Kϕ ∧Aϕ.

7Most of the material in this section is essentially in [Fagin, Halpern, Moses, and
Vardi 1995, Section 9.5], although no theorems are stated there.
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Axiomatizing the notions of awareness that I have been considering is
also easy. Consider the following axioms.

A1. A(ϕ ∧ ψ) ⇒ Aϕ ∧Aψ.
A2. A¬ϕ⇒ Aϕ.
A3. AXϕ⇒ Aϕ.
A4. AAϕ⇒ Aϕ.
A5. AKϕ⇒ Aϕ.
A6. Aϕ⇒ A¬ϕ
A7. Aϕ ∧Aψ ⇒ A(ϕ ∧ ψ).
A8. Aϕ⇒ AXϕ.
A9. Aϕ⇒ AAϕ.
A10. Aϕ⇒ AKϕ.
A11. Aϕ⇒ KAϕ.
A12. ¬Aϕ⇒ K¬Aϕ.

I said earlier that awareness being closed under subformulas corresponded
to A1–A5, awareness being generated by primitive propositions corresponded
to A1–A10, self-reflective agents were characterized by A9, and knowledge
of awareness corresponded to A10 and A11. I now make this precise. Let
C1 = {A1, . . . , A5}, let C2 = C1 ∪ {A6, . . . , A10}, let C3 = {A9}, and let
C4 = {A11, A12}. I use the superscripts csub, gpp, sr, and ka to restrict to
awareness structures where awareness is closed under subformulas, aware-
ness is generated by primitive propositions, the agent is self-reflective, and
the agent knows which formulas he is aware of, respectively. Thus, for
example, Mrst,csub,ka consists of partitional awareness structures where
awareness is closed under subformulas and the agent knows which formulas
he is aware of.

Theorem 5.2. Let C be a (possibly empty) subset of {C1, C2, C3, C4} and
let C be the corresponding subset of {csub, gpp,sr,ka}. For formulas in the
language LKXA

(a)K ∪{A0} ∪ C is a sound and complete axiomatization with respect to
MC ,

(b)T ∪{A0} ∪ C is a sound and complete axiomatization with respect to
Mr,C ,

(c)S4 ∪{A0}∪ C is a sound and complete axiomatization with respect to
Mrt,C ,

(d)S5 ∪{A0}∪C is a sound and complete axiomatization with respect to
Mrst,C .
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Proof. A straightforward modification of the proof of Theorem 5.1; I
omit details here.

5.3. Axiomatizing LXA

Perhaps the most interesting issues arise in providing an axiomatization
for LXA. This forces us to consider the properties of explicit knowledge di-
rectly, without being able to take the indirect route through implicit knowl-
edge and awareness provided by A0. The interplay between assumptions
about awareness and axioms for explicit knowledge is far more significant
here than for the language LKXA. To start with, consider propositionally
determined awareness.

Let the axioms KX , TX , and 4X be identical to K, T, and 4, respectively,
except that K is replaced by X. We get 5X and GenX by replacing K by
X in 5 in Gen and, in addition, relativizing to awareness. More precisely:

5X . ¬Xϕ ∧A¬Xϕ⇒ X¬Xϕ.
GenX . From ϕ infer Aϕ⇒ Xϕ.

The analogous relativization to awareness is unnecessary in the case of
KX and 4X , given the restriction to propositionally determined awareness.
For example, in the case of K, we would have

K′
X . Xϕ ∧X(ϕ⇒ ψ) ∧Aψ ⇒ Xψ.

However, if awareness is generated by primitive propositions, then Aψ fol-
lows from A(ϕ ∧ ψ) (which in turn follows from X(ϕ ∧ ψ)).

What happens to the axiom A0 that characterizedX and the axioms A1–
A12 that characterize propositionally determined awareness in the context
of the language LXA, where there is no K operator? Clearly, A0 becomes

A0X . Xϕ⇒ Aϕ.

A1–A4 and A6–A9 remain unchanged, since they do not mention the K
operator, while A5 and A10 disappear; they are unnecessary, since K is
not in the language. A11 changes to A11X , which is the result of replacing
K by X. This is clearly sound in propositionally determined awareness
structures. Finally, A12 disappears: if the agent is not aware of ϕ, then
the agent cannot be aware of ¬Aϕ, and thus cannot explicitly know that
he is unaware of ϕ.

My completeness proofs use one additional rule of inference, which says
that certain formulas should be irrelevant in a proof.

Irr. If no primitive propositions in ϕ appear in ψ, then from ¬Aϕ ⇒ ψ
infer ψ.8

8This is an instance of a more general inference rule which is essentially the analogue of
a well-known result in first-order logic called Craig’s Interpolation Lemma [Craig 1957].
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I strongly suspect that Irr is unnecessary and follows from the other axioms
and inference rules I have stated. However, I have not been able to prove
this.

Let KX consist of Prop, MP, KX , GenX , A0X , A1–A4, A6–A9, A11,
and Irr; TX , S4X , and S5X are obtained by successively adding TX , 4X ,
and 5X to KX .

Theorem 5.3. For formulas in the language LXA:

(a)KX is a sound and complete axiomatization with respect to Mgpp,ka ,
(c)TX is a sound and complete axiomatization with respect to Mr ,gpp,ka ,
(c)S4X is a sound and complete axiomatization with respect toMrt,gpp,ka ,
(d)S5X is a sound and complete axiomatization with respect toMrst,gpp,ka .

Proof. I just sketch the proof of part (a) here, and then indicate how it
can be modified to prove (b)–(d). For soundness, observe that all the
axioms are valid and all the inference rules preserve validity. For ex-
ample, in the case GenX , if ϕ is valid in M, then it is easy to check
that Aϕ ⇒ Xϕ is valid. In the case of Irr, suppose that ¬Aϕ ⇒ ψ
is valid. Suppose that, by way of contradiction, ψ is not valid. Then
there is a structure M = (S, ρ,K,A) ∈ Mgpp,ka and state s in M such
that (M, s) |= ¬ψ. Now let M ′ = (S, ρ,K,A′) be the structure where
all components agree with M except possibly A′ and A′(t) = A(t) − {θ :
θ and ϕ have a primitive proposition in common}. It is easy to check that
M ′ ∈ Mgpp,ka . Moreover, an easy induction on the structure of θ shows
that for every formula σ that does not have any primitive propositions
in common with ϕ and for every state t ∈ S, we have (M, t) |= σ iff
(M ′, t) |= σ. In particular, (M ′, s) |= ¬ψ. Moreover, by construction,
(M ′, s) |= ¬Aϕ. But this contradicts the validity of ¬Aϕ ⇒ ψ. Thus, it
must be the case that ψ is valid, as desired. Now an easy induction on
the length of proofs shows that every formula ϕ provable in KX is valid in
Mgpp,ka .

To prove completeness, it clearly suffices to show that every formula ϕ
that is satisfiable in Mgpp,ka (i.e., every formula ϕ such that M, s |= ϕ
for some M ∈ Mgpp,ka) is KX -consistent. The proof of this uses the idea
of canonical structures. This approach was introduced in the economics
literature by Aumann [1999], although the basic idea is well known in the

Craig’s Interpolation Lemma says that if ϕ and ψ are formulas in first-order logic and
ϕ ⇒ ψ is provable, then there is a formula θ which involves only symbols that appear
in both ϕ and ψ such that both ϕ ⇒ θ and θ ⇒ ψ are provable. It follows that if ϕ
and ψ have no symbols in common and ϕ ⇒ ψ is provable, then either ¬ϕ is provable
or ψ is provable. The analogue to the general Craig Interpolation Lemma holds for the
language LKXA, but proving it is beyond the scope of this paper.
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modal logic community, and seems to have been introduced independently
by Kaplan [1966], Makinson [1966], and Lemmon and/or Scott [Lemmon
1977].

Given an axiom system AX, a formula ϕ is AX-consistent if ¬ϕ is not
provable in AX. A finite set of formulas is AX-consistent if their conjunction
is; an infinite set of formulas is AX-consistent if every finite subset of its
formulas is. Finally, F is a maximal AX-consistent set of formulas if F is
AX-consistent and every strict superset of F is not AX-consistent.

Define the canonical KX model M c = (Sc, ρc,Kc,Ac) as follows:

• Sc consists of all maximal KX -consistent sets of formulas (thus, each
state in Sc is a set of formulas);
• ρc(p) = {s ∈ Sc : p ∈ s} for each p ∈ Φ;
• (s, t) ∈ Kc iff {ϕ : Xϕ ∈ s} ∪ {Ap : Ap ∈ s, p ∈ Φ} ∪ {¬Ap : ¬Ap ∈

s, p ∈ Φ} ⊆ t;
• A(s) = {ϕ : Aϕ ∈ s}.

Observe that it follows from A1–A4 and A6–A9 that awareness in M c is
generated by primitive propositions. Moreover, the construction of Kc and
A6–A9 guarantees that the agent knows which formulas he is aware of in
M c. Thus, M c is propositionally determined.

I now show that ϕ ∈ s iff (M c, s) |= ϕ, by induction on the structure of
ϕ (where primitive propositions and formulas of the form Aϕ′ are treated
as being “structurally simpler” than all other formulas). If ϕ is a primitive
proposition or of the form Aϕ′, then this is immediate from the definition. If
ϕ is a conjunction or a negation, it follows easily from standard properties of
maximal consistent sets (in particular, the facts if F is a maximal consistent
set, then ϕ∧ψ ∈ F iff both ϕ ∈ F and ψ ∈ F and that ¬ϕ ∈ F iff ϕ /∈ F ).
Finally, suppose that ϕ is of the form Xϕ′.

If Xϕ′ ∈ s, then since s is a maximal KX -consistent set, it follows
from A0X that Aϕ′ ∈ s. Moreover, by construction of K, if (s, t) ∈ Kc,
then ϕ′ ∈ t. By the induction hypothesis, it follows that (M c, s) |= Aϕ′

and (M c, t) |= ϕ′ for all t such that (s, t) ∈ Kc. Thus, (M c, s) |= Xϕ′.
Conversely, suppose that (M c, s) |= Xϕ′. The key step in showing that
Xϕ′ ∈ s is provided by the following claim.

Claim: Let F1 = {ψ : Xψ ∈ s}, let F2 = {Ap : Ap ∈ s, p ∈ Φ},
and let F3 = {¬Ap : ¬Ap ∈ s, p ∈ Φ}. If Xϕ′ /∈ s and Aϕ′ ∈ s, then
{¬ϕ′} ∪ F1 ∪ F2 ∪ F3 is KX -consistent.

Suppose that the claim is false. Then there are three finite set of formulas
F ′

1 ⊆ F1, F ′
2 ⊆ F2, and F ′

3 ⊆ F3 such that {¬ϕ′} ∪ F ′
1 ∪ F ′

2 ∪ F ′
3 is KX -

inconsistent. This means that

KX ` (∧F ′
1) ∧ (∧F ′

2) ∧ (∧F ′
3) ⇒ ϕ′.
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Since Aϕ′ ∈ s, if ¬Ap ∈ F ′
3 then p does not appear in ϕ′. (For otherwise s

would be inconsistent, using A6–A9.) Similarly, since Xψ ∈ s (and hence
Aψ ∈ s) for each formula ψ ∈ F ′

1, if ¬Ap ∈ F ′
3 then p does not appear in ψ.

Of course, it is also immediate that if ¬Ap ∈ F ′
3, then p does not appear in

any formula in F ′
2. By straightforward propositional reasoning (Prop and

MP), it is immediate that (ϕ∧ψ) ⇒ θ is equivalent to ψ ⇒ (ϕ⇒ θ). Thus,
if F ′

3 = {¬Ap1, . . . ,¬Apk}, we have that

KX ` ¬Ap1 ⇒ (¬Ap2 ⇒ (. . .⇒ (¬Apk ⇒ ((∧F ′
1) ∧ (∧F ′

2) ⇒ ϕ′)) . . .)).

Now applying Irr repeatedly, it follows that

KX ` (∧F ′
1) ∧ (∧F ′

2) ⇒ ϕ′.

Thus, by GenX , it follows that

KX ` A((∧F ′
1) ∧ (∧F ′

2) ⇒ ϕ′) ⇒ X((∧F ′
1) ∧ (∧F ′

2)∧ ⇒ ϕ′). (1)

It is easy to see using A1–A4, A6–A9, and A0X and the fact that all the
formulas in F ′

2 have the form Ap for some p ∈ Φ that

KX ` ((∧θ∈F ′
1
Xθ) ∧ (∧F ′

2) ∧Aϕ′) ⇒ A((∧F ′
1) ∧ (∧F ′

2) ⇒ ϕ′). (2)

Using A11X , it is immediate that

KX ` (∧F ′
2) ⇒ ∧θ∈F2Xθ. (3)

Using axiom KX , Prop, and MP, we get that

KX ` X((∧F ′
1) ∧ (∧F ′

2) ⇒ ϕ′) ⇒ (X((∧F ′
1) ∧ (∧F ′

2)) ⇒ Xϕ′). (4)

A standard argument using KX and GenX shows that, for arbitrary for-
mulas ψ1 and ψ2, we have

KX ` (Xψ1 ∧Xψ2) ⇔ X(ψ1 ∧ ψ2). (5)

Putting together (1)–(5), it follows that

KX ` ((∧θ∈F ′
1
Xθ) ∧ (∧F ′

2) ∧Aϕ′) ⇒ Xϕ′. (6)

By construction, for each formula θ ∈ F ′
1, Xθ ∈ s. Moreover, each

formula in F ′
2 is in s and, by assumption, Aϕ′ ∈ s. Thus, since s is a

maximal consistent set, it follows that Xϕ′ ∈ s. But this contradicts the
assumption that Xϕ′ /∈ s, and proves claim.
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Now to prove completeness, suppose that (M, s) |= Xϕ′. This means
that (M, s) |= Aϕ′, so by the induction hypothesis, Aϕ′ ∈ s. Suppose, by
way of contradiction, that Xϕ′ /∈ s. Then, by the claim, {¬ϕ′} ∪ F1 ∪
F2 ∪ F3 is KX -consistent. Thus, there must be a maximal KX -consistent
set t ⊇ {¬ϕ′} ∪ F1 ∪ F2 ∪ F3. By construction, (s, t) ∈ Kc. By the
induction hypothesis, (M c, t) |= ¬ϕ′. But this contradicts the assumption
that (M c, s) |= Xϕ′. Thus, it must be the case that Xϕ′ ∈ s, as desired.
This completes the completeness proof in the case if KX .

The modifications required to deal with Mr, Mrt, and Mrst are stan-
dard. Indeed, all that needs to be done to convert the completeness proof
for KX to one for TX (resp., S4X , S5X) is to build the canonical model us-
ing maximal TX - (resp., S4X -, S5X -) consistent sets of formulas as states
and to observe that the Kc relation must be reflexive (resp., reflexive and
transitive, an equivalence relation). I leave the straightforward details to
the reader.

MR provide an axiomatization they call U for the language LXA which
they prove to be sound and complete for partitional GSMs. From Theo-
rem 4.1, it follows immediately that S5X and U are equivalent, so S5X

is a sound and complete axiomatization for partitional GSMs and U is a
sound and complete axiomatization for partitional propositionally deter-
mined awareness structures. That is, S5X provides an alternate axiom-
atization of (un)awareness in partitional GSMs. Note that it does not
follow, however, that KX (resp., TX , S4X) is a sound and complete ax-
iomatization for the language LXA for GSMs (resp., reflexive, reflexive and
transitive) GSMs. This is because, as I observed earlier, the definition of
A differs between GSMs and awareness structures in the non-partitional
case.

What happens if we relax the assumption that awareness is proposition-
ally determined? For ease of exposition, I continue to assume that the
agent knows what formulas he is aware of. (It is possible to obtain axiom-
atizations if we drop this assumption, but they are uglier.) In this case, we
need to use K′

X rather than KX . However, it does not seem that K′
X and

GenX suffice to get completeness. However, the following generalization of
RK does suffice:

RKX . From ϕ1 ∧ . . . ∧ ϕn ⇒ ψ infer Xϕ1 ∧ . . . ∧Xϕn ∧Aψ ⇒ Xψ.

In the case of the K operator, Proposition 5.1 says that (in the presence
of Prop and MP) RK is equivalent to K and Gen. With awareness, clearly
GenX is just RKX in the special case that n = 0 and KX follows imme-
diately from RKX in the case that n = 2, since (ϕ ∧ (ϕ ⇒ ψ)) ⇒ ψ is a
propositional tautology, as is the fact that ϕ1 ∧ ϕ2 ⇒ ψ is equivalent to
ϕ1 ⇒ (ϕ2 ⇒ ψ), for all choices of ϕ1, ϕ2, and ψ. However, RKX does not
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seem to follow from in general from KX and GenX . To understand why,
consider why RK follows from K and Gen in the case that n = 2. Using
Prop, from ϕ1 ∧ ϕ2 ⇒ ψ we can conclude ϕ1 ⇒ (ϕ2 ⇒ ψ). (The two
formulas are propositionally equivalent.) Now applying Gen, we can con-
clude K(ϕ1 ⇒ (ϕ2 ⇒ ψ)). Now two applications of the axiom K together
propositional reasoning (Prop and MP) given us Kϕ1 ⇒ K(ϕ2 ⇒ ψ) and
then Kϕ1 ⇒ (Kϕ2 ⇒ Kψ), which is equivalent to (Kϕ1 ∧Kϕ2) ⇒ Kψ.
This reasoning breaks down if we replace K by X. The problem is that
we cannot apply GenX to conclude X(ϕ1 ⇒ (ϕ2 ⇒ ψ), since there is no
reason to believe that A(ϕ1 ⇒ (ϕ2 ⇒ ψ)) holds, even if Xϕ1 and Xϕ2

and Aψ hold. (We can draw this conclusion if awareness is propositionally
generated and, indeed, in the presence of Prop and MP, RKX is equivalent
to KX and GenX .)

We must generalize RKX still further in the presence of knowledge of
awareness, as follows:

RK+
X . From ϕ1 ∧ . . . ∧ ϕn ∧ Aτ1 ∧ . . . ∧ Aτk ∧ ¬Aτ ′1 ∧ . . . ∧ ¬Aτ ′k′ ⇒ ψ

infer Xϕ1 ∧ . . .∧Xϕn ∧Aτ1 ∧ . . .∧Aτk ∧¬Aτ ′1 ∧ . . .∧¬Aτ ′k′ ∧Aψ ⇒ Xψ.

Again, RK+
X seems strictly stronger that RKX and the obvious extensions

of A11 and A12, which are

A11′X . Aϕ ∧AAϕ⇒ XAϕ.
A12′X . ¬Aϕ ∧A¬Aϕ⇒ X¬Aϕ.

While A11′X and A12′X are easily seen to follow from RK+
X (in the presence

of Prop and MP), the converse does not seem to hold.
In this spirit of RK+

X , consider the following axioms and rules:

RK4+
X . From ϕ1 ∧ . . .∧ϕn ∧Xσ1 ∧ . . .∧Xσm ∧Aτ1 ∧ . . .∧Aτk ∧¬Aτ ′1 ∧

. . . ∧ ¬Aτ ′k′ ⇒ ψ infer Xϕ1 ∧ . . . ∧Xϕn ∧Xσ1 ∧ . . . ∧Xσm ∧ Aτ1 ∧ . . . ∧
Aτk ∧ ¬Aτ ′1 ∧ . . . ∧ ¬Aτ ′k′ ∧Aψ ⇒ Xψ.

RK5X . From ϕ1 ∧ . . .∧ϕn ∧Xσ1 ∧ . . .∧Xσm ∧Aτ1 ∧ . . .∧Aτk ∧¬Aτ ′1 ∧
. . . ∧ ¬Aτ ′k′ ⇒ ψ infer Xϕ1 ∧ . . . ∧Xϕn ∧Xσ1 ∧ . . . ∧Xσm ∧ Aτ1 ∧ . . . ∧
Aτk ∧ ¬Aτ ′1 ∧ . . . ∧ ¬Aτ ′k′ ∧Aψ ⇒ Xψ.

Let C′1 = {A1, . . . , A4}, let C′2 = C′1 ∪ {A6, . . . , A9}, and let C3 = {A9}.

Theorem 5.4. Let C be a (possibly empty) subset of {C′1, C′2, C′3} and
let C be the corresponding subset of {csub, gpp,sr}. For formulas in the
language LXA

(a){Prop, MP, RK+
X , A0X} ∪ C is a sound and complete axiomatization

with respect to MC,ra.
(b){Prop, MP, RK+

X , TX , A0X} ∪ C is a sound and complete axiomati-
zation with respect to Mr,C,ra,
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(c){Prop, MP, RK4+
X , TX , A0X} ∪ C is a sound and complete axioma-

tization with respect to Mrt,C,ra,
(d){Prop, MP, RK5+

X , TX , A0X} ∪ C is a sound and complete axioma-
tization with respect to Mrst,C,ra.

Note that this means that we can replace KX and GenX (resp., KX ,
GenX , and 4X ; KX , GenX , 4X , and 5X) by RK+

X (resp., RK4+
X ; RK55

X)
to get an axiomatization equivalent to KX and TX (resp., S4X ; S5X).

6. DISCUSSION

I have shown that GSMs can be viewed as a special case of awareness
structures in a precise sense. The advantage of thinking in terms of aware-
ness structures is that we can then consider other notions of awareness, not
just ones generated by primitive propositions. For example, as observed
by FH, it is possible to consider more computationally oriented notions
of awareness (see [Fagin, Halpern, Moses, and Vardi 1995, Chapter 10]
for more discussion of this issue). The problem is then to come up with
interesting notions of awareness that have enough structure to allow for in-
teresting mathematical analysis. I believe it should also be possible to use
awareness structures to allow for natural reasoning about awareness and
lack of it (so that an agent can reason, for example, about the possibility
that she is unaware of certain features that another may be aware of). I
am currently working on modeling such reasoning.

References

Aumann, R. J. (1999). Interactive epistemology I: knowledge. Interna-
tional Journal of Game Theory 28 (3), 263–301.

Chellas, B. F. (1980). Modal Logic. Cambridge, U.K.: Cambridge Uni-
versity Press.

Craig, W. (1957). Linear reasoning. A new form of the Herbrand-Gentzen
Theorem. Journal of Symbolic Logic 22 (3), 250–268.

Dekel, E., B. Lipman, and A. Rusticchini (1998). Recent developments
in modeling unforeseen contingencies. European Economic Review 42,
523–542.

Fagin, R. and J. Y. Halpern (1988). Belief, awareness, and limited rea-
soning. Artificial Intelligence 34, 39–76.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995). Reasoning
about Knowledge. Cambridge, Mass.: MIT Press.

Geanakoplos, J. (1989). Game theory without partitions, and applica-
tions to speculation and consensus. Cowles Foundation Discussion
Paper #914, Yale University.



SEMANTICS FOR UNAWARENESS 19

Kaplan, D. (1966). Review of “A semantical analysis of modal logic I:
normal modal propositional calculi”. Journal of Symbolic Logic 31,
120–122.

Lemmon, E. J. (1977). The “Lemmon Notes”: An Introduction to Modal
Logic. Oxford, U.K.: Basil Blackwell. Written in collaboration with
Dana Scott; edited by Krister Segerberg. American Philosophical
Quarterly Monograph Series. Monograph No. 11.

Makinson, D. (1966). On some completeness theorems in modal logic.
Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik 12, 379–384.

Modica, S. and A. Rustichini (1994). Awareness and partitional informa-
tion structures. Theory and Decision 37, 107–124.

Modica, S. and A. Rustichini (1999). Unawareness and partitional infor-
mation structures. Games and Economic Behavior 27 (2), 265–298.


