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Abstract

In the prisoners’ dilemma game, the only evolutionarily stable strategy is
defection, even though mutual cooperation yields a higher payoff.
Building on a paper by Robson (1990), we introduce mutants who have
the ability to send a (costly) signal, i.e., the “secret handshake,” before
each round of the game and to condition their actions on whether or not
they observe the same signal from their opponent. A population playing
the strategy “always defect” is vulnerable to secret handshake mutants
who cooperate when they meet other secret handshakers and defect against
other opponents. However, these secret handshakers are in turn vulnerable
to a second round of mutants who imitate the secret handshake and then
defect against all opponents. But now a new group of secret handshakers
with a different secret handshake can arise. Thus, play can cycle between
cooperation and defection. We study the dynamics of that cycling. We
show that in the limit, as the probability of mutation goes to zero,
cooperation occurs on average half the time. Using simulations to study
the implications of our model when the mutation probability 1s larger than
zero, we find that it is possible for cooperation to be sustained for long
periods. In general, cooperation is favored when mutual cooperation has a
large payoff advantage over mutual defection, and when the payoff
advantage of unilateral defection is small. Surprisingly, however, there are
cases where an increased payoff to unilateral defection actually raises the
level of cooperation. Journal of Economic Literature Classification
Numbers: C70, C72, D60.
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1. Introduction

In the context of evolutionary games, an evolutionarily stable strategy (ESS) 1s
one that has a higher average payoff than any other strategy against any population where
most of the population plays the ESS, and the rest plays the other strategy. That 1s, a
population playing an ESS can repel “invaders” playing any other strategy, since the
invaders will achieve a lower payoff and be driven to extinction under any payoff
monotone dynamics. Evolutionary stability does not guarantee efficiency. A game may
have multiple ESS's, each with a different payoff. If a low payoff ESS is played, the
definition of ESS means that play will stay there — players are trapped in an inefficient
equilibrium.

Signaling can provide a way out of this dilemma. Robson (1990) demonstrates
that if one ESS of a game yields a higher payoff than another, then a population playing
the inefficient ESS can be successfully invaded by a mutant who has the ability to send a
signal (the "secret handshake") before the game is played. (Signaling of this kind that is
costless is usually referred to as “cheap talk.”) When a mutant observes the signal from
its opponent, it knows that it is facing another mutant. The mutant plays the high payoff
ESS when it meets another mutant; against the original population, it matches the low
payoff ESS played by its opponent. Thus, the mutant gets a higher average payoff than
the original population, so any ESS that is not Pareto efficient cannot survive.

Robson (1990) also shows that if the type of mutation that he proposes is allowed,
any payoff outcome that does not come from an ESS cannot survive. In the prisoners’
dilemma, for example, mutual cooperation is not sustainable, because mutual defection
(even though it gives a lower payoff than mutual cooperation) is the only ESS. The
argument is as follows: Although a population playing the strategy “always defect” is
vulnerable to a round of signaling mutants who cooperate with each other and defect
against the rest of the population, those mutants are themselves vulnerable to a second
round of mutants. The new mutants imitate the secret handshake of the old mutants, but
defect against every opponent. When matched with a new mutant, an old mutant is
tricked into cooperating while its opponent defects and receives the worst possible
payoff. Selection then drives out the first round of mutants, leaving a mixture of the

original population and the second round of mutants. Some of the players send the phony



signal, but every player defects every time, so everyone gets the ESS payoff. Thus,
cooperation, the efficient outcome, can be attained only temporarily.

Robson (1990) ends his analysis there. But what if a third mutant is introduced,
one that has a new secret handshake that the second mutant cannot imitate? Then the
newest mutant would thrive, until a fourth mutant that imitates the new secret handshake
arises and drives out the third mutant. Now, though, the population 1s vulnerable to yet
another mutant with yet another secret handshake, and so on. Play can cycle between
defecting and cooperating, never reaching a stable state. In this paper, we study the
dynamics of that constant cycling. We show that in the limit, as the probability of
mutation goes to zero, cooperation occurs on average half the time. We use simulations to
study the dynamics when the mutation probability is larger than zero, with an emphasis
on determining what values of the parameters lead to increased cooperation. We find that
in the framework of our model it is possible for cooperation to be sustained for long
periods. For a wide range of parameter values, on average (over time) a significant
fraction of the population cooperates. In general, cooperation is favored when mutual
cooperation has a large payoff advantage over mutual defection, and when the payoff
advantage of unilateral defection is small. Surprisingly, however, we show that in some
cases an increased payoff to unilateral defection can actually raise the level of
cooperation.

Robson (1990) examines biological evolution, but the model can just as easily be
used to describe a social process. In a population where people are engaged in an
interaction that can be modeled as a prisoners’ dilemma, a group of them can find a way
to cooperate among themselves when everyone else is defecting. They identify

' If members of another group

themselves to each other by giving a “secret handshake.”
learn to imitate the secret handshake, though, and trick the secret handshakers into
cooperating while they defect, then the handshakers are at a disadvantage. But a new and

different secret handshake will again allow cooperation to thrive.

" Frank (1987) suggests that facial expression, tone of voice, posture, or other physical characteristics can

serve as signals.



There are examples of signaling and imitation in repeated interactions in both
biology and economics. The North American monarch butterfly feeds on milkweeds,
which contain chemicals that are poisonous to birds. Any bird that makes the mistake of
eating such a butterfly vomits. The monarch uses the brightly colored patterns on its
wings to signal potential predators that it is unpalatable. But other, perfectly edible
butterflies, like the viceroy butterfly, live in the same habitats and exhibit very similar
patterns on their own wings. By imitating the appearance of the monarch, the viceroy
increases its own chances of survival (Owen, 1980). A variety of other insects, as well as
certain mammals, plants, birds, snakes, fish, and amphibians, are also natural signal
mimics (Wickler, 1968).

In the realm of human economic behavior, the wearing of particular fashions of
clothing can act as a signal to other members of the population. New fashion signals are
repeatedly developed as the old ones become widely imitated. Pesendorfer (1995)
models people as engaging in a “dating game,” in which they strive to match themselves
with high-quality mates. He argues that the upper stratum of society wears the latest
fashions to differentiate itself from the lower classes. They abandon the fashion for a
new one as soon as the lower strata adopt the old one. To illustrate his point, he quotes
an observer of 18th century Paris: “nothing makes noble persons despise the gilded
costume so much as to see it on the bodies of the lowest men in the world... So the upper
classes had to invent new ‘gilded costumes,” or new distinctive signs, whatever they
might be, every time complaining that ‘things have changed indeed, and the new clothes
being worn by the bourgeois, both men and women, cannot be distinguished from those
of persons of quality” ” (M. de Paulmy, 1774 p. 220, as quoted in Pesendorfer (1995)).

Another example of signaling and imitation in human interaction 1s the
counterfeiting of paper money. The intricate designs on a bill are intended to signal
economic agents that the bill represents real wealth and is not just a scrap of paper.
Counterfeiters learn to copy the designs, though, and manufacture fake money that is
indistinguishable from the real thing. Now the issuers of the money must invent a new
design, with microfilaments or color-changing inks or other features that are more
difficult to copy. The goal of the issuers is to continually come up with new designs for

their money before the old ones are too widely counterfeited.



The problem faced by professors in trying to write questions for an exam is
another example of signaling and imitation in human interaction. Utility-maximizing
professors are tempted to reuse questions from exams given in previous years by
changing a few words or numbers, either to save time and effort or because the old
questions are the best for measuring students' comprehension. But some students can
prepare by memorizing how to solve problems that have shown up on earlier exams,
rather than by studying and learning the material. Then, when they recognize a similar
question on their own exam, they can write down the solution without thinking. The
students who memorize have an advantage over the students who study and try to solve
the problem during the exam period, and professors cannot use the exam to accurately
evaluate students. However, professors can counter by writing questions that seem
similar to ones that the students have memorized, but in fact have a different solution.
That is, modified questions mimic the characteristic form of the memorized question.
The students who memorized copy down the old, wrong answer, and the ones who
studied work to solve the new problem. The memorizers are thwarted. Eventually,
though, students will learn to recognize the modified question, and the process starts
again.

None of these examples fit exact/y the model that is described in this paper. They
do demonstrate, however, that similar cycles of signaling and imitation actually take
place, and that examining the dynamics of the cycling can provide insight into real-life
interactions.

We focus on the prisoners’ dilemma because of its broad applications in economic
modeling. Versions of the prisoners’ dilemma have been used to model interactions as
diverse as international politics (Muller-Furstenberger and Stephan, 1997, Cohen, 1994,
Hillman, 1989; Kimenyi, 1988, Majeski, 1984), development of social norms (Bicchieri
et al, 1997), the provision of public goods (Okada and Sakakibara, 1991; Hillier, 1989;
Hirshleifer, 1986), family interaction (Linster, 1998), duopoly (Rosenthal and Spady,
1989 Conybeare, 1987). animal behavior (Tullock, 1994, Maynard Smith, 1982), and, of
course, criminal legal strategy (Ashenfelter and Bloom, 1990). In addition, there is a
large literature on evolution in the repeated prisoners’ dilemma. The goal of much of that

literature (Guttman, 1996: Ockenfels, 1993; Bergstrom and Stark, 1993; Nachbar, 1992;



Fudenberg and Maskin, 1990; Axelrod 1984) has been to find ways that cooperation can
survive, despite not being an ESS. Fudenberg and Maskin (1990), for example, show that
if players use strategies of finite complexity and make mistakes with positive probability,
then in the repeated prisoners’ dilemma cooperation actually is evolutionarily stable. The
literature on cheap talk in games has also focused on equilibrium selection. Using
arguments similar to those of Robson (1990), papers by Kim and Sobel (1995) and
Matsui (1991) have shown that pre-play communication leads to the efficient
equilibrium, if one exists, because inefficient outcomes can be destabilized by drift.
Bhaskar (1998) obtains a similar result by relying on noisy communication rather than
drift.

The rest of the paper is organized as follows: Section 2 presents the model,
Section 3 describes the cycle of play, Section 4 reports the analytic and simulation

results, and Section 5 concludes.

2. The Model

There is an infinite population of players. In each period, players are randomly
paired to play the symmetric 2x2 game G, below. G is a prisoners' dilemma where,
without loss of generality, the payoff to cooperating (strategy C) when one's opponent

defects (strategy D) is normalized to one:

D
G C X 1
D y z

where v > x >z > 1. Defection is the only ESS of the prisoners' dilemma, and (D,D) 1s
also the only Nash Equilibrium.

In the standard evolutionary model, the players are divided into different types.
Each type plays a different strategy, so a player's type is synonymous with the strategy
that it plays. The growth rate of each type depends on its evolutionary fitness, which is
measured by its average payoff against the population. Under the replicator dynamics (in

fact, under any payoff monotone dynamics), the population share of the type that defects



converges to 100 percent, as long as there are some defectors in the initial population.
Cooperating types are always driven out of the population by defectors.

However, if the game is modified to allow for a mutant with the ability to give a
secret handshake after being matched with an opponent but before playing G, and if the
mutant can condition its play on whether or not it observes the secret handshake from its
opponent, then an allowable strategy is to cooperate against other mutants and to defect
against the rest of the population. Call that strategy S. We assume that there is a small
cost, ¢ > 0, incurred by a player giving the secret handshake. The second round of
mutants is the imitators. They give the secret handshake before playing G (also at cost c),
but then defect regardless of their opponent.” Call that strategy M. The next round of
mutants will use a new secret handshake and will not be fooled by the imitators. But the
next round will imitate that new secret handshake, and so on. Rather than adding infinite
numbers of &', M', S". M", ..., it is simpler to set up the game with play switching
between two payoff regimes. In one, the imitators successfully mimic the secret
handshake. In the other, there is a new secret handshake, and the imitators are still using
the old one. To model the game this way, we make the simplifying assumption that there
is at most one group of secret handshakers at a time, all using the same secret handshake.
Similarly, not more than one secret handshake is being imitated in each period. Allowing
multiple secret handshakes to exist at the same time would not change the limiting
results, and we believe that it would have little effect on the game’s dynamics when the
mutation probability 1s greater than zero.

The first payoff regime represents the situation where both the secret handshakers
and the imitators have entered. Two type S players matched together achieve the payoff
to mutual cooperation, x, at a cost of ¢, for a net payoff of x — ¢. Against an imitator, a
type S player is tricked into cooperating in the face of defection, and gets payoff 1 — c:
the imitator receives payoff y — ¢. Two imitators matched together get z — ¢ from mutual
defection, as does an imitator or secret handshake paired with a defector. Defectors

receive payoff z against any type of opponent. Call this regime GI.

* We make the cost of imitating cqual to the cost of signaling in order to simplify the exposition. The
qualitative results do not change if the costs are allowed to differ. Frank (1987) discusses the relative costs
of signaling and imitation.



In G/, the imitators will drive out the secret handshakers. But then a new round of
mutants with a different secret handshake will arise. They will not be fooled by the
imitators. That situation is represented by the second payoff regime, GII. In GII, secret
handshakers still get payoff x — ¢ from cooperating with each other, but now they defect
and get z — ¢ against both defectors and imitators. Defectors receive payoff z against
every opponent, and imitators get z — ¢ against every opponent. Now the imitators are at
a disadvantage, since in regime G// strategy D dominates strategy M.

The two regimes are shown below:

D S M

D z z z
Gl: S Z-C X-C 1-c
M z-C y-C z-C

D S M

D z z z
Gll : S z-C X-C z-C
M zZ-C 2-C zZ-C

The strategy C has been removed, since it is driven out by D under any monotone

.3
dynamics.

Fitness and Dynamics Within Regimes:

At any time there are potentially three types of players in the population,
corresponding to the strategies that they play: D, S, and M. Let the fraction of the
population made up of players of type i in period ¢ be denoted o', for i € {D, S, M}. Let
the average payoff of strategy i at time ¢ be denoted 7', and let the average payoff of the
whole population be denoted 7 Natural selection proceeds according to the replicator
dynamics. Under the replicator dynamics, the rate of growth of each type is proportional
to the ratio of its average payoff to the population average payoff. In terms of population

shares, that relationship implies that ¢',.; = (7', /7,) d%.

* For the same reason, we set the probability that a mutant who plays the strategy C re-cnters the population

cqual to zero. That assumption should have no qualitative effects on the dynamics of the model.



In regime G/, the average payoffs ( 7) to the types are as follows:

2=z

7= diz—c) + x—c) + (1 -¢)
=z + fx+ M- ¢,

72 = (d i+ M) z—c) + Sy -c)
= (d'+ o)z + o’y — c,and

s S 8 VY
7z,=o[;7zpf+azfz[+o‘,7r,.

The resulting population dynamics are
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In regime G//, the average payoffs are

7, = (it ) z~c) + Fx—c)
= (d+ ")z + P - ¢,
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and the dynamics are
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In regime G/, the imitators mimic the right secret handshake. Consequently, the
secret handshakers are at a disadvantage. In fact, strategy M dominates strategy S — the
imitators do better against secret handshakers and other imitators, and get the same
payoff against defectors. How well the secret handshakers fare relative to defectors
depends on how many imitators and secret handshakers are in the population. The secret
handshake does better against itself, getting the mutual cooperation payoff x instead of
the mutual defection payoff z, but it does worse against imitators, because it cooperates
against the imitators’ defection and gets payoff 1 instead of defecting and getting z. Also,
the secret handshakers pay a cost ¢ against every opponent. Thus, the higher the fraction
of type S in the population and the lower the fraction of type M, the better the secret
handshakers do compared to the defectors. A large gain from mutual cooperation (x — z),
a small payoff to mutual defection (z), and a low cost of signaling (c) also favor the secret
handshakers. Overall, the fitness of type § is higher than the fitness of type D if and only
if (x—z)o% >(z—-1)c", + ¢. The imitators’ fitness relative to the defectors also depends
on the population share of the secret handshakers. Against defectors and other imitators,
imitators get the same mutual defection payoff z as the defectors, but against secret
handshakers they trick their opponents and receive the reward of betrayal, v. Balancing
that advantage is the fact that the imitators must also pay cost ¢ against every opponent.
Thus, a large fraction of type S in the population, a high value of a defector’s bonus from
having a trusting opponent (y — z), and a low cost of signaling (¢) favor the imitators.
Overall, the imitators have a higher fitness than the defectors if and only if (v —z)o’, >c.

In regime G//, the secret handshakers have the upper hand. Now the imitators are
using the wrong secret handshake, and strategy S dominates strategy A/ — the imitators’
advantage came from tricking the secret handshakers, which they can no longer do. Now
they get the same payoff z as the defectors against every opponent while having to pay
the cost ¢. The success of secret handshakers relative to defectors depends on the
population share of the handshakers, as mentioned before. The secret handshakers’
average payoff is higher than the defectors’ if and only if (x - z)o’, >¢.

Since all the payoffs are greater than zero, o', = 0 only if &, = 0. That is, once a

type is in the population, it can never die out. Even the population share of a strategy that

10



is strictly dominated will only approach zero asymptotically. However, extinction of
types is crucial in the way that evolution is modeled here. This problem is avoided with
the assumption that if o', < k, then &' drops immediately to zero, where the threshold
value k is between zero and one. Once the proportion of a type in the population drops

below the threshold value, the type dies out.

Mutation and Switching Between Regimes:

The mutation process and the rules for switching between payoff regimes are as
follows: Play begins in regime G/ with a population made up entirely of defectors. In
any period when the population share of one of the strategies is zero, there is a
probability p that a mutant group arises that plays that strategy.® Imitator mutants can
enter only if there are secret handshakers to imitate. For ease of exposition, we let the
initial population share of an entering mutant be equal to the threshold value k. After a
secret handshake mutation, play shifts to regime G//, where the new secret handshake
cannot be imitated by any type M players that may be in the populationS. (The first time
the secret handshakers enter, of course, there will not be any type M players. Later on,
there may be.) After an imitation mutation, play switches to regime G/ — the new
imitators are copying the right secret handshake. The introduction of defectors will not
affect whether the imitators are mimicking the correct secret handshake or an obsolete
one, so play remains in whichever regime it was in before the defection mutation.

Mutation probabilities for the different types are independent of each other. A

secret handshake mutation and an imitation mutation cannot occur in the same period,

* We assume that the probability of 4 mutation is the same for cach type: p. We also assume that p is
constant across periods - — mimicking secret handshakes or inventing new ones becomes neither easier nor
harder. Extensions of this paper might relax those assumptions. For example, a type's mutation probability
in a given period might depend on the payofT that it would receive if it entered the current population.
Alternatively, the size of a mutation might be random, so the probability of a sustainable secret handshake
mutation would depend on the threshold value .

® Immediately after the type S mutation, the secret handshakers' population share is 4, so their fitness as
measured by average payoff isky + (1 — &)z — ¢. To survive, they must have a higher fitness than the Nash
equilibrium payoff z earned by the defectors. That means that the threshold value & must be greater than
¢/(x — z) — the greater the proportion of type S in the population, the morc often secret handshakers are
paired together and enjoy the higher payoff of mutual cooperation. If 4 is less than this minimum size, then
cach wave of type S mutants will immediately be driven out by the defectors, who do not have to pay the
cost ¢. In the rest of the paper. therefore, we assume thatk is large enough (or ¢ is small enough) that & >
c/(x - 2).
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since secret handshakers must be in the population for an imitator mutant to arise.
However, it is possible for secret handshakers and defectors to enter at the same time if
imitators make up the whole population, or for defectors and imitators to do so if secret
handshakers have a 100 percent population share. If secret handshakers and defectors
enter together, each gets an initial population share of &, leaving 1 — 2k for the imitators.
Play switches to regime G/I with a new secret handshake. When defector and imitator
mutants arise at the same time, they both get share k, and play switches to regime G/.

The mutation and regime-switching processes are summarized here:

e If &’ = 0, then with probability p a secret handshake (S) mutation occurs in the next
period. If such a mutation does occur, then o=k, = - /’()o‘Dr cand oV, =
(1 - k)o", . After the mutation, play is in regime G/I.

e If ¢/, =0and &’ > k. then with probability p an imitation (M) mutation occurs in the
next period. If such a mutation does occur, then o=k, = (1 = k) o, , and
o’.1=(1—k)o', . After the mutation, play is in regime GI.

o If &, =0, then with probability p a defection (D) mutation occurs in the next period.
If such a mutation does occur, then o, =k, ¢’.; = (1 - k)o’; , and ol =(1 -

k)o', . The regime does not change after a defection mutation. ¢

Note that when a mutant enters, its share & of the population is taken from the other types

in proportion to their own population shares.

3. Cycle of Play

Play begins in payoff regime GI with a population made up entirely of defectors.

Every period there is a probability p that a secret handshake mutant will enter. The

% If a secret handshake mutation and a defection mutation both occur after period 7, then ¢’ =k,
., =k, and o¥,.; = 1 — 2k. Play switches to regime GI/ If a defection mutation and an imitation
mutation both occur after period t, then =k, 0", =k and ¢, =1 - 2k Play switches to regime
GI. Itis not possible for a secret handshake mutation and an imitation mutation to occur in the same
period.

12



expected time until the mutation occurs is 1/p. When it does occur, play shifts to regime
GII, and the secret handshakers begin to drive out the defectors. As the population share
of type S increases, so does its fitness advantage over the defectors.

In every period after the secret handshakers enter, there is a probability p that an
imitator mutant emerges to take advantage of them. The expected time from the §
mutation to the M mutation is again 1/p. If p is small (and 1/p is large), the imitation
mutation will most likely occur after the defectors have been driven to extinction. (It is
possible, in fact, that the defectors will die out and arise again via mutation before the
imitator mutant enters. However, a defector mutant in a population of secret handshakers
will immediately be driven out again.) After the mutation, play shifts back to regime GI,
and the imitators will grow at the expense of the tricked secret handshakers.

When p is small, the population share of the secret handshakers will probably
shrink to zero before the next mutant enters. If it does, then the entering mutant can be
either a defector or a secret handshake. (The probability that both types enter at the same
time can be ignored for small values of p.) If a secret handshake emerges first, with a
new secret handshake, play will switch to regime G//. Now the handshakers have the
advantage and will drive out the imitators. The situation will be the same as before the
imitators entered — a population of secret handshakers in payoff regime G/I. On the
other hand. if a defector mutant enters before the secret handshakers, then play will
remain in regime G/. With no secret handshakers in the population, the defectors will
drive out the imitators. That process will lead to a population of defectors in regime G/,
which is just the way the game began.

To sum up: Assume that p is small, so that the expected time between mutations 1s
large relative to the time required for natural selection in each payoff regime to reach a
steady state. (Of course, that state is not a steady state of the game, since mutants can
enter, but only of the regime.) Then secret handshakers will enter the initial population
of defectors and drive them out. Defector mutants may reemerge, but they will

immediately die out again. Eventually (after about 1/p periods), imitators will arise and
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drive out the secret handshakers. The population of imitators is vulnerable to two kinds
of mutants, so the expected time until the imitators are overthrown is only about 1/(2p). 7

If a defection mutation occurs first, the imitators will be driven to extinction, and
the cycle of play starts again from the beginning. If the secret handshakers emerge first,
they will drive out the imitators, and play will pick up at the point in the cycle just before
the imitation mutation. Thus, each type spends part of the time with a 100 percent
population share and most of the rest of the time with a zero share. The secret
handshakers spend twice as much time as the imitators with a 100 percent share, because
the expected time until the secret handshakers get driven out (1/p) is twice as long as the
expected time until the imitators are replaced (1/(2p)). The secret handshakers also have
twice the time of the defectors at 100 percent -— half the time the cycle of play skips
over the defectors from the imitators directly back to the secret handshakers. When p is
small. therefore, the average population share over time of type S will be roughly 1/2, as
the secret handshakers have a 100 percent population share half of the time and a zero
percent share the other half. The average shares of types D and M will be roughly 1/4
each. That result is formalized in Proposition 1.

Let 77 denote the average population share over time after 7 periods of strategy i,

fori e {D,S, M}. Let 7 denote the limit of 77 as T goes to infinity.

Proposition 1. Let the mutation probability p converge to zero with everything else
fixed, and let k be greater than ¢/(x — z). Then ¢ converges to 1/2, 7 converges to 1/4,
and 7 converges to 1/4.

Proof. After a mutant enters, it takes time for the dynamics of the regime to reach a new
steady state. As p —> 0, the probability that another mutant enters before a steady state
has been reached falls to zero, and the ratio of the number of periods spent getting to
regime steady states to the number spent in regime steady states also goes to zero. It is
therefore possible to treat transitions between steady states as if they took place

instantaneously.

7 Precisely, the limiting expected time as p shrinks relative to the speed of natural selection is 1/(2p -p).
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Play cycles among three regime steady states: a population of defectors in payoff
regime G/ (State D), a population of secret handshakers in regime GII (State S), and a
population of imitators in regime G/ (State M). In State D, there is no probability of an
imitation mutation, since there are no secret handshakers to imitate. Only type S can
enter, which it does with probability p in each period. Once the mutation occurs, play
switches to regime G//, the secret handshakers drive out the defectors, and State S'is
reached. In State .S, either an imitation mutation or a defection mutation can occur, each
with probability p per period. If defectors enter, they are immediately driven out, so play
stays in State .S When imitators enter, play switches to regime G/, the imitators drive out
the secret handshakers, and State M is reached. In State AJ, either a type S or a type D
mutant may enter, each with independent probability p of entry per period. The
probability that a defector mutant enters in a given period without a secret handshake
entering is p(1 — p). If it does, play stays in regime GI. The defectors will drive out the
imitators, and State D is reached again. The probability in each period that a secret
handshake enters, with or without a defector mutant, is p. If it does, play switches to
regime GII. The secret handshakers drive out the other types, and play reaches State .S

That cycle of play can be modeled as a Markov chain, with transition matrix

D S M

Dy 1-p p 0

R=5 0 1-p p
M p(l-p) p (1-p)°

The entry in column i of row ; is the probability that play will move to State 7 in the next
period, starting from State j, for i, j € {D, S, M }. Each state is accessible from every
other state, and the probability of staying in the same state from one period to the next is
positive for all states; that is, the Markov chain is indecomposable and aperiodic.
Therefore, the chain is ergodic. (See, for example, Shiryaev (1996).)

A stationary distribution #p) = ["(p) ' (p) o"(p)] of the chain is a relative
frequency distribution such that gp)R = #p). An ergodic Markov chain has a unique
stationary distribution, and the stationary distribution is the limit distribution. That is,

o'(p) is the limiting fraction of time spent in State i, which is also the limiting average
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1-p 1 1
22-p) 2°2(2-p)

population share of type i, 7. For this chain, ¢(p) = { } Asp = 0,

therefore. 7° — 1/4, £ —>1/2, and /4. u

As ¢ approaches zero, the fitness cost of sending a signal (true or imitated)
becomes negligible. The fitness of defectors declines relative to the fitness of the other
two types. When ¢ is very small, the defectors can drive out imitators in payoff regime
GI only very slowly. Instead, when a defection mutation occurs in a population of
imitators, the two type still have almost the same fitness. The share of type D remains
close to the entry share k until a new secret handshake emerges and drives out both
defectors and imitators. Then the secret handshakers will thrive until another imitation
mutation occurs. In this case, the imitators are vulnerable only to secret handshake
mutations, and the defectors never get a turn to have a 100 percent population share
(except at the beginning of the game). Thus, approximately half of the time will be spent
with imitators as the whole population, and half with secret handshakers as the whole

population, as Proposition 2 demonstrates.

Proposition 2. Let the mutation probability p be close to zero, and let the cost of

signaling ¢ converge to zero with everything else fixed. Then 7’ converges to k/4, .

converges to 1/2, and M converges to 12 - Kk/4. More precisely,
lim | lim | . li li
1 m (7D> 257 1 m (r“) :l, and m 1m (r‘”) :l_ﬁ. I
p—>0lc—>0 4 p—>0ic—>0 2 p—>0c—>0 2 4

lim lim
both p and the threshold value k converge to zero, then (T ) =0,

p.k—>0c—0
I li . li li
m m (T‘\) :l’ and m m (f”) _1
p.k—0lc—>0 2 p.k—0c—0 2

Proof. Let p be small enough that the ratio of time spent getting to regime steady states
to time spent in regime steady states is close to zero. When ¢ is close enough to zero, & is
greater than ¢/(x — z), and cooperation is viable. As ¢ decreases, the defectors drive out
imitators in payoff regime G/ more and more slowly. As ¢ — 0 with p fixed, they drive

out the imitators so slowly that the expected share of defectors is still very close to &

16



when the secret handshake mutation occurs and play moves to State S. Play still cycles
among three states, as in the proof of Proposition 1, but State [ is no longer a steady
state with a population of defectors. Instead, it is an almost-steady state in regime G/
where the population share of the defectors is & and the share of the imitators is 1 — 4.
Now the limiting time average population share of the imitators is the limiting

fraction of time spent in State M, plus (1 — k) times the limiting fraction of time spent in

2-k—-(1- N .
State D 7' = o'(p) + (1 - k) (p) = /2((2( )k)p . The limiting average population
-P
share of the defectors is & times the limiting proportion of periods spent in State L.
k(1- o )
M = kdP(p) = 2((7‘5% The limiting average share of the secret handshakers is the

same as before: 7' = o'(p) = 1/2.
When p — 0, the limit of (7, 7, 7 ) as ¢ — 0 is (k/4, 1/2, 1/2 — k/4). When
both p —> 0 and k — 0, the limit of (7, 2, 7/ )as¢ > 01is (0, 1/2,1/2). W

When p is not small, the cycle of play is more complicated. As the expected time
between mutations shrinks, a greater portion of time is spent away from the steady states
of the regimes. Consequently, the rates of convergence to regime steady states and the
dynamics away from the steady states, which depend on the parameters of the game,
become more important. A large p also means that the chance of two mutants entering
together is significant. That event further complicates the cycle of play. Calculating the
average population shares over time of the different types analytically becomes difficult.
For that reason, we use computer simulations to explore what parameter values lead to
cooperation — that is, a large population share for the secret handshakers.* Anything
that increases the payoff of the secret handshakers relative to the defectors and imitators
will increase the average population share of the secret handshakers. The greater the gain
from mutual cooperation (x — z) is, and the smaller the gain from betrayal (y — x) and the

mutual defection payoff (2) are, all else equal, the higher will be the average share of the

¥ The computer code is available from the authors upon request.
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handshakers. The effect of reducing the cost of signaling ¢ is ambiguous. A lower cost

improves the fitness of the secret handshakers, but it also improves the imitators' fitness.

4. Simulation Results

Computer simulations were run using different values of the parameters of the

game. [Each simulation ran for ten million periods. The initial conditions are a
population of defectors playing in payoff regime G/. (The number of periods is so great,
though, that the initial conditions should have very little effect on the time average
population shares.) Table Al in the Appendix presents the average populations shares of
the three types from simulations using every combination of the following parameter
values: (x -z, v—x,z—1)e {0.1, 1, 10} > ¢ e {0.1,0.01,0.001}, k € {0.05,0.011}, and
p € {0.1,0.001, 0.00001}. Those combinations yield 27 different parameterizations of
the prisoners’ dilemma G. Combinations where the threshold level & is less than the
minimum value for cooperation to be viable, ¢/(x — z), are omitted. The results are
summarized below.

Proposition 1 predicts that as the mutation probability p shrinks to zero, the
average population shares of defectors, secret handshakers, and imitators tend toward 1/4,
1/2, and 1/4, respectively. For each parameterization of G, the simulations suggest that a
value of 0.00001 for p is near enough to zero for the population shares to be very close to

their limiting values. Table 1 shows the convergence toward 1/4, 1/2, 1/4 as p shrinks for

two representative £armes.

Average Percent Population Shares over Time of D, S, M

3

1

4

2

x-z=1y-x=12z-1=1

G:

1.2

1

1.2

1.1

x-z=01y-x=10 z-1=01
k=0.05,¢c = 0.001

p=0.1 137,62 p=0.1 3,26.71

p=0.01 146,53 p=0.01 2,35,64
p=0.001 24849 p=0.001 446,50
p=0.0001 11,50,39 p=0.0001 19,50,32
p=0.00001 23,50,27 p=0.00001 25,51,24

Table 1




For larger values of p, factors that increase the relative payoff of the secret
handshakers should also increase their average population share. The simulations
indicate that they do. In the first prisoners’ dilemma in Table 2, the gain from mutual
cooperation is large (x — z = 10) compared to the gain from betrayal (y — x = 0.1) and the
mutual defection payoff (z = 1.1). The secret handshakers have a big payoff advantage,
enabling them to drive out other types quickly in payoff regime GI/ and to be driven out
slowly in regime G/. Thus, their average population share 1s high. In the next two
prisoners’ dilemmas in Table 2, the payoff advantage of the secret handshakers declines,

and so do their average population shares.

Average Percent Population Shares over Time of D, S, M

k = 0.05, c = 0.001
G: 11.1 1 G: 3 1 G: 11.1 1
11.2 1.1 4 2 211 11
x-z2=10 y-x=01 z-1=01 x-z=1y-x=12z-1=1 x-z=01y-x=10 z-1=1
p=0.1 0,65,35 p=0.1 1,37,62 p=0.1 4,24,73
p=0.001 3,62,45 p=0.001 2,48,49 p=0.001 2,35,63
p=0.00001 26,49,25 p=0.00001 23,50,27 p=0.00001 12,4741
Table 2

Table 2 also demonstrates that the effect of a falling mutation probability on the
prevalence of cooperation varies with the relative payoffs; an expanded version of Table
2 is presented in Graph 1°. When the secret handshakers’ payoff advantage is large, they
do well away from steady states. The result is that for small values of p, the secret
handshakers’ average population share is greater than 1/2. As p shrinks, an increasing
proportion of time is spent in steady states, and their average share declines toward 1/2.
When their payoff advantage is small, on the other hand, the secret handshakers do
poorly away from steady states, so the average population share of type S increases from
less than 1/2 up to 1/2 as p falls to zero. Thus, whether a change in mutation probability

affects the level of cooperation positively or negatively depends on the payoff matrix.

’ The small non-monotonicities in Graph 1 are the result of sampling variation, which can be a factor even
with ten million periods when thie mutation probability p is very close to zero.
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=1 x=11.1y=11.2

— & —7=2 x=3y=4
-- - - z=11 x=11.1 y=21.1

share of secret
handshakers

Time average population

1 01 0.01 0.001 0.0001  0.00001
Mutation probability p

One surprising result is that in a few cases an increase in the gain from betrayal,
which lowers the payoff advantage of the secret handshakers, actually raises their average
population share. The share of type S when p = 0.1 in the first parameterization of G in
Table 3, where y — x = 1, is 1 percent. When y — x increases to 10 in the second
parameterization, the share of the secret handshakers rises to 10 percent. The reason for
this counterintuitive result lies in the dynamics of payoff regime G/. In G/, the imitators’
fitness edge over the defectors comes from taking advantage of fooled secret
handshakers. For a given set of parameter values, if the share of type S in the population
is too small, then the defectors have a higher fitness than the imitators, as explained in
“Fitness and Dynamics Within Regimes” in Section 2. In the first two parameterizations
in Table 3, the gain from mutual cooperation (x — z) is only 0.1, so when secret
handshakers enter the initial population of defectors, their share grows slowly. When the
mutation probability p is high, then, the imitator mutants enter when there are still very
few secret handshakers in the population. Consequently, the defectors drive out the other
two types, and their average population share is close to one. If the gain from betrayal
increases, as in the second parameterization in Table 3, the payoff advantage of the
imitators grows. Now the imitator mutants will triumph, and the defectors’ lock on the
population is broken. A decrease in p (which increases the expected time between

mutations) or an increase in the gain from mutual cooperation (as in the third
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parameterization) will increase the expected share of the secret handshakers when the

imitators enter, and thus also keep the defectors from dominating the population forever.

Average Percent Population Shares over Time of D, S, M

G: 21

1

3.1

2

x-z=01y-x=012z-1=1

k =0.011, ¢ = 0.001

G: 2.1

1

12.1

2

x-z=01y-x=10 z-1=1

1

2

x-z=1y-x=12z-1=1

p=0.1 99,11 p=0.1 2,10,89 p=0.1 1,18,81

p=0.001 2,29,69 p=0.001 1,29,69 p=0.001 1,46,54

p=0.00001 25,43,32 p=0.00001 23,48,30 p=0.00001 24,46,29
Table 3

When the signaling cost ¢ shrinks to zero and the value of p is small, Proposition

2 predicts that the time average population shares of types D, §, and M will be

approximately k/4, 1/2, and 1/2 — k/4, respectively. Table 4 demonstrates the result, using

the same two representative parameterizations of the prisoners’ dilemma as Table 1.

Average Percent Population Shares over Time of D, S, M

3

1

4

2

x-z=1y-x=12z-1=1
k=0.05, p = 0.00001

c=0.001
¢=0.0001
¢=0.00001
c=0.000001
¢=0.0000001

23,50,27

6,47,47

2,48,51

1,48,51

1,45,53

G:

1.2

1

11.2

11

x-z2=01y-x=10 z-1=0A1

c=0.001
¢=0.0001
¢=0.00001
¢=0.000001
¢=0.0000001

25,61,24

12,49,39

2,48,50

2,48,50

1,49,49

Table 4

Finally, Table 5 shows the relationship between average population shares over

time and the proportion of periods in which each type makes up more than 90 percent of

the population, for a representative parameterization of G. The results for other

parameterizations are similar. The two fractions are positively related. As the mutation

probability p declines, the fraction of time spent in steady states increases, and the two
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numbers become almost identical. That result illustrates the conclusion that as p goes to

zero, time spent in regime steady states determines average population shares.

Average Percent Population Shares over Time of D, S, M
(Percent of Time Spent with Over 90% of the Population for D, S, M)

G:
2 x-z=1y-x=12z-1=1
k=0.05 k=0.011
c: 0.01 0.001 0.01 0.001
p=0.1 2,37,61 1,37,62 99,1,0 1,18,81
(0,17,22) (0,17,35) (100,0,0) (0,10,73)
p=0.001 15,48,37 2,48,49 17,44,39 1,46,54
(9,47,29) (0,48,44) (0,45,53) (12,43,33)
p=0.00001 24,51,24 23,50,27 22,51,27 24,46,29
(24,51,24) (20,50,24) (21,51,27) (22,46,27)
Table 5

5. Conclusion

In our model, cooperation cannot be sustained forever. A population of secret
handshakers is always vulnerable to invasion by mutants who imitate the handshake and
then defect. But just as the aristocrats found new “gilded costumes” when the old ones
were imitated, new generations of mutants with new secret handshakes will rise up. The
prevalent strategy in the population alternates endlessly between cooperation and

defection, and extended periods of cooperation recur forever.
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