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Given n agents with who wish to divide m commodities, consider the n-person
noncooperative game with strategies consisting of concave increasing utility
functions, and whose outcomes are the relative utilitarian solution. Any constrained
equal-income competitive equilibrium allocation for the true utilities is shown to
ba a Nash equilibrium outcome for the noncooperative game. Conditions are pre-
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1. INTRODUCTION

When solution concepts make predictions on the basis of unobservable
information, agents will have incentives to distort their private information.
This paper adds to a literature that studies the robustness of axiomatic
bargaining models to strategic misrepresentation of preference information.

The paper identifies what outcomes can be expected if a social plan-
ner selects an allocation that maximizes a weighted average of the agents’
reported utility functions. It studies a particular distortion game. There is a
fixed quantity of a finite number of commodities. Players’ strategies consist
of utility functions defined over these commodities. Given the reported util-
ity functions, the social planner provides an allocation that maximizes the
weighted sum of reported preferences according to the relative utilitarian
solution. (In this solution, an agent’s weight is equal to the inverse of his
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maximum utility gain.) Motivation for this solution and axiomatic deriva-
tions for it have been provided in recent work by Dhillon and Mertens
(1999) and Segal (2000). If reports are limited to continuous, increasing
concave functions, then any constrained equal-income competitive allo-
cation for the true preferences (i.e., a constrained equilibrium allocation
reached when agents have equal initial endowments) is an equilibrium allo-
cation to the distortion game. This paper also provides conditions under
which constrained equal-income competitive allocations are the only allo-
cations that arise in pure-strategy equilibria of the distortion game. In equi-
librium, agents report that their marginal utility is constant and equal to the
price that supports the competitive equilibrium for quantities within the
equal-income budget set and that their marginal utility is zero otherwise.

In earlier work, (Sobel, 1981) I studied the distortion game induced by
a class of bargaining game solutions that satisfy axioms of Pareto opti-
mality, symmetry, independence of equivalent utility representations, and
midpoint domination. The first three axioms are familiar. The fourth axiom
requires that the bargaining solution of an n-player game gives each player
a utility that exceeds the disagreement utility by at least one-nth of the
difference between his largest feasible utility and his disagreement utility.
I showed that the Nash bargaining solution and the Kalai–Smorodinsky
solution satisfy these four assumptions. I also showed that any constrained
equal-income competitive allocation for the true utilities is an equilibrium
payoff for the distortion game derived from one of these bargaining game
solutions, and that if players are restricted to reporting linear strategies,
then the constrained equal-income competitive allocations are the only
pure-strategy Nash equilibria of the distortion game in two-player games.
The relative utilitarian solution fails to satisfy the midpoint domination
axiom. Nevertheless, it is still true that any constrained equal-income com-
petitive allocation for the true utility functions is an equilibrium allocation
for the distortion game. Furthermore, if players are restricted to truncated
linear reports, then the only pure-strategy Nash equilibrium allocations of
a modification of the distortion game are the constrained equal-income
competitive allocations in two-player games.

Other authors have studied distortion games and established related
results. Crawford and Varian (1979) studied the distortion game derived
from the Nash bargaining solution when there is only one commodity. They
showed that it is a dominant strategy to report a linear utility function. The
model predicts equal division of the commodity.

Thomson (1984, 1988) characterized Nash equilibria for the distortion
game derived from performance correspondences that yield individu-
ally rational and Pareto-efficient outcomes. Thomson (1988) found that
if reported utility functions must be twice continuously differentiable
and concave, and have transferable utility, then the Nash equilibria for
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the distortion game derived from the Shapley value with fixed initial
endowments are exactly the constrained competitive allocations with
respect to those endowments. Thomson (1984) generalized this result to
an environment with transferable utility to a broader class of performance
correspondences. Thomson (1987) identified a class of performance cor-
respondences for which equilibrium outcomes of the distortion game are
equal-income Walrasian equilibria for the reported preferences.

Kibris (1998) studied the distortion game derived from performance cor-
respondences that for given initial endowments, lead to individually rational
and Pareto-efficient allocations. He showed that in private good economies,
constrained Walrasian allocations are equilibria to the distortion game, and
that these equilibria can be supported by linear strategies.2 Because the rel-
ative utilitarian solution fails to be individually rational, Kibris’s theorem
does not apply in the setting of this paper. Nor does the result generalize.
Equilibrium strategies will not be linear for the distortion game derived
from the relative utilitarian solution.

Kurz (1977, 1980) studied the distortion game derived from his model
of tax determination in an exchange economy. Regardless of the true pref-
erences of the agents, the distortion game has a dominant strategy equi-
librium that yields a Pareto-efficient outcome. Mas-Colell (1980) presented
analogous results in his study of the manipulability of the Shapley value in
an economy with an infinite number of agents of a finite number of types.

This paper provides three lessons. First, the distortion game can be
viewed as another way to implement the constrained Walrasian correspon-
dence. This point is minor, given the existence of many other procedures
that do the same thing. Second, the paper generalizes the results of Sobel
and Thomson. The generalization may be surprising, because in contrast
to the earlier results, equilibrium strategies are necessarily nonlinear, and
dominant strategy equilibria do not arise even in the one-dimensional case.
The results extend the message of previous work that differences between
solution concepts may disappear when one takes into account the infor-
mational advantages that bargainers have over social planners. Third, the
equilibria of the distortion game predict a particular qualitative behavior
for the players. In the bargaining solutions considered in this paper and
earlier work, weight is given to a player’s valuation of the last unit that
he could receive. It is to a player’s advantage to claim that his marginal
unit is as valuable as possible. Because reports are limited to concave func-
tions, equilibrium reports tend to be linear to maximize the marginal utility
of marginal units. The earlier papers emphasized the importance of linear
strategies. For the case of the relative utilitarian solution, it is advantageous

2Kibris (1998) provided related results for public-good environments.
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for agents to claim to be uninterested in units that they will not receive.
This creates a role for truncated linear reports in which agents report that
anything they receive beyond their equilibrium allocation is worthless to
them.

The third lesson is the most important one. Although the assumption that
the planner ignores the strategic behavior of agents when determining insti-
tutional rules is unrealistically naive, real agents are nevertheless placed in
situations in which utilitarian considerations determine outcomes. Although
the assumption that agents respond optimally to institutional constraints is
unrealistically sophisticated, real agents do respond strategically to their
environments. My analysis provides conditions under which utilitarian con-
siderations will induce bargainers to behave in a systematic, extreme way.
Bargainers, like the fox in Aesop’s fable, treat what they cannot have as
“sour grapes” that are not worth having while maximizing the importance
of every unit that they do receive.

I should emphasize that this paper does not ask the conventional imple-
mentation question. Given a cooperative solution concept, it is custom-
ary to ask whether there exists a procedure that implements it. Miyagawa
(1999) showed that a family of bargaining solutions, including the rela-
tive utilitarian solution, and solutions of Nash and Kalai–Smorodinsky,
cannot be implemented in Nash equilibria because they fail the mono-
tonicity condition shown by Maskin (1999) to be necessary for Nash imple-
mentation. Miyagawa also presented a simple mechanism that provides a
subgame-perfect implementation of these solutions.

Section 2 formally describes the distortion game, and Section 3 intro-
duces the relative utilitarian solution. Section 4 briefly describes the results
for the special case of two agents and one commodity. Section 5 presents
the main results. Section 6 attempts to reconcile the results with earlier
findings. Section 6 introduces a one-parameter family of bargaining solu-
tions, which includes the relative utilitarian solution, the Nash bargaining
solution, and the Kalai–Smorodinsky solution. Each of these games has the
property that constrained equal-income competitive allocations are equi-
librium outcomes of the distortion game, but results differ as to whether
equilibria are supported by linear or truncated linear strategies.

2. DEFINITIONS AND NOTATION

Consider n agents with utility functions who are to divide a bundle of m
commodities. Let �m denote the m− 1 dimensional simplex and let ek ∈ �m
be the unit vector in the kth direction. Let a ≡ �a� � � � � a�� An outcome will
be an element of the set

T =
{
x=�x1�����xn�∈Rnm �xi∈Rm for i=1�����n� and 0≤

n∑
i=1

xi≤1
}
�
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where agent i receives xi. The true utility function of player i is denoted
by ui. These functions are assumed to be concave and strictly increasing.
The players report utilities that are restricted to lie in the class �, where
� comprises those functions U � Rm → 
0� 1� such that (i) U is con-
tinuous, increasing, and concave in Rm and (ii) U is normalized so that
U�0� = 0 and U�1� = 1. The class of admissible utilities should include
those functions that are credible representations of the agents’ true pref-
erences. Condition (i) is a regularity assumption on the range of potential
players. The concavity assumption means that the agents cannot pretend
to have increasing marginal utility. In Section 4 I discuss the implications
of relaxing the assumption. To guarantee existence of equilibrium, � must
be permitted to include functions that are not strictly increasing. Since the
solution to the bargaining problem studied in this paper is independent of
affine transformations, condition (ii) is not essential.

The distortion game is played by each agent revealing a utility function in
�. Let Ui denote the utility function revealed by player i. Given the report
U = �U1� � � � � Un�, a set of outcomes B�U� is selected. B�U� is the set
of allocations that give rise to a bargaining solution determined by utility
functions U . In Section 3 I discuss the particular bargaining solution that
is the focus of this paper. However, to define the distortion game, it is only
necessary that B�U� be a nonempty subset of T for any admissible reported
utilities.

If B�U� is single-valued, then all elements of the definition of the dis-
tortion game would be in place. Players would be restricted to admissible
strategies and, denoting the ith component of B�U� by Bi�U�, the payoff
to player i would be ui�Bi�U��. Although it is typical to assume that the
bargaining solution selects a unique utility for each player, there is no rea-
son to believe that there will be a unique allocation associated with these
utilities. B�U� typically will not be single valued, so it is necessary to spec-
ify how to make a selection from the bargaining solution. I assume that
agents have the right to select their most preferred outcome in B�·�. This
assumption leads to the following definition.

Definition 2.1. �U∗�x∗� = ��U∗
1 � � � � � U

∗
n�; �x∗1� � � � � x∗n�� is an equilib-

rium for the distortion game determined by B if and only if x∗ ∈ B�U∗� and
for each i, �U∗

i � x
∗
i � solves max ui�xi� subject to xi ∈ �Bi�Ui�U∗

−i� � Ui ∈ ��.

The definition implies that for equilibrium reports U∗, there exists an
allocation x∗ ∈ B�U∗� such that x∗i solves max ui�xi� subject to xi ∈ Bi�U∗��
That is, players’ true preferences can agree on a most preferred allocation
in B�U∗�� Implicit in the definition is the assumption that players have
complete information. In particular, players must know their opponents’
true utility function.
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By expanding the strategy sets of the agents, it is possible to show that
the assumption that agents can select their most preferred outcome in B�U�
can be made without loss of generality. In earlier work (Sobel, 1981), my
strategy sets of the distortion game consisted of both reported preferences
and tie-breaking rules that make unique selections from the correspon-
dence B. That paper introduced a class of tie-breaking rules, essentially
possible allocations, and showed that in equilibrium agents will select their
most preferred outcome in B� An equilibrium for the distortion game cor-
responds to a Nash equilibrium of an extended game in which each agent
reports a tie-breaking rule as well as a utility function. Consequently, there
is no loss in generality (and some gain in simplicity) in using Definition
2.1.3 Thomson (1984) adopted this definition.

Bargaining solutions uniquely determine the utilities of agents according
to the agents’ reported preferences. One might think that players would be
indifferent between all of the allocations in B�U�� However, unless an agent
reports his true utility function, there is no reason to expect that he would
be indifferent over all elements in the bargaining solution according to his
true preferences. In the equilibria described in Section 5, B�U� consists of
a budget hyperplane, and agents generally will not be indifferent over the
elements in B.

In what follows, I prove that the Nash equilibrium outcomes in the dis-
tortion game correspond to certain competitive outcomes.

Definition 2.2. A constrained equal-income competitive equilibrium
(EICE) is a pair, �p∗� x∗�, where p∗ ∈ �m, x∗ ∈ T , and x∗i solves

max ui�xi� subject to p∗ · xi ≤
1
n
p∗ · 1 and 0 ≤ xi ≤ 1�

In an exchange economy, an equal-income competitive equilibrium is a
competitive equilibrium to the economy in which agents have equal ini-
tial endowments. In a constrained equal-income competitive equilibrium,
agents’ demands are restricted to be both in their budget set and feasible
relative to the total resources of the economy. The constraint that agent
i’s demand xi satisfy 0 ≤ xi ≤ 1 is not placed on (unconstrained) equal-
income competitive equilibria.4 Any equal-income competitive equilibrium
is a constrained equal-income competitive equilibrium, and, provided that

3To interpret the results of this paper as implementation theorems, one should return to
the formulation in Sobel (1981) and assume that the strategies in the distortion game are both
utility functions and tie-breaking rules.

4Hurwicz, Maskin, and Postlewaite (1995) introduced the concept of constrained competi-
tive equilibrium. This is the smallest extension of the competitive correspondence that can be
implemented in Nash strategies.
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preferences are convex, any interior constrained equal-income competi-
tive equilibrium is an equal-income competitive equilibrium. I call x∗ in
the definition of EICE a competitive allocation. I concentrate on the con-
strained competitive allocations rather than the unconstrained allocations,
because the former set turns out to be the one related to the equilibrium
outcomes of distortion games.

3. THE RELATIVE UTILITARIAN SOLUTION

This paper studies the distortion game induced by the relative utilitarian
solution proposed by Cao (1982), Dhillon and Mertens (1999), Karni and
Safra (1996), Karni (1998), and Segal (2000). Cao’s approach focused on a
bargaining problem. The other authors presented the functional form that
I describe later for social-choice problems. This section presents additional
detail on bargaining games. The discussion in this section is a bit more gen-
eral than needed for the main results in Section 5. I include the additional
detail to contrast this paper with earlier work and analyze the more general
games in Section 6.

A bargaining game is described by a pair �S� d�, where, (i) d = �d1� � � �,
dn� ∈ Rn and (ii) S ⊂ Rn is compact, convex, and contains d as well as
some point s > d.

The set S is normally interpreted as the set of feasible utility payoffs to
the players. A point s ∈ S can be achieved if all players agree to it. In case
of agreement, player i receives si� If the players are unable to agree, then
the outcome d, called the disagreement outcome, is the result.

In this paper the reported utilities U = �U1� � � � � Un� with each Ui ∈ �
determine the set S. That is,

S = S�U� = {
s = �s1� � � � � sn� � si = Ui�xi� for some x ∈ T}�

The disagreement outcome will always be taken to be 0 = U�0�.
When the functions Ui are admissible, the set S is compact and convex,

and contains a point s > 0. In fact, the ith unit vector ei ∈ S for i = 1� � � � � n
and �n ⊂ S.

Beginning with Nash (1950), axiomatic bargaining theory has focused
on solutions to bargaining games. A quasi-solution is a nonempty-valued
correspondence f , defined on the class of all bargaining games with
f �S� d� = �f1�S� d�� � � � � fn�S� d�� ⊂ S for all pairs �S� d�. f is a solution if
it is single valued. Nash characterized his bargaining solution in terms of
four axioms, three of which are relevant here.

Axiom 1 (Pareto efficiency). If f �S� d� = x and y ≥ x, then either y = x
or y /∈ S.
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Axiom 2 (independence of equivalent utility representations). If �S� d�
and (S′, d′) are bargaining games such that

S′ = {
s′ = �s′1� � � � � s′n� � s′i = aisi + bi for s = �s1� � � � � sn� ∈ S

}
and

d′ = (
a1d1 + b1� � � � � andn + bn

)
�

where ai > 0 for all i, then

f �S′� d′� = �a1f1�S� d� + b1� � � � � anfn�S� d� + bn��
Axiom 3 (symmetry). If �S� d� is a symmetric game [i.e., s = �s1� � � � � sn�

∈ S if and only if �sπ�1�� � � � � sπ�n�� ∈ S for any permutation π], then fi�S� d�
is independent of i�

Given a bargaining game �S� d�, let s̄i ≡ max�si � s = �s1� � � � � sn� � s ∈ S�
be player i’s maximum utility. The relative utilitarian quasi-solution con-
sists!of{

s∗ = �s∗1� � � � � s∗n� � s∗ solves max
n∑
i=1

(
si

s̄i − di

)
subject to

s = �s1� � � � � sn� ∈ S
}
� (1)

Because (1) may contain more than one point, it defines a quasi-solution
rather than a solution. It is apparent that the relative utilitarian quasi-
solution is invariant with respect to equivalent utility representations and is
Pareto efficient with respect to the reported utilities.

I say that a game is 0− 1 normalized if d = 0 and s̄i = 1 for i = 1� � � � � n.5

A bargaining set obtained when players report utility functions in the class
� must be 0 − 1 normalized. Note that if �S� d� is 0 − 1 normalized, then
(1) simplifies to

{
s∗ = �s∗1� � � � � s∗n� � s∗ solves max

n∑
i=1

si subject to

s = �s1� � � � � sn� ∈ S
}
� (2)

One forms a relative-utilitarian solution by making a selection from (1).
Working with symmetric relative-utilitarian solutions is convenient. Thus
in what follows, assume that the social planner makes a selection from (1)

5The relative utilitarian quasi-solution is invariant with respect to equivalent utility
representations. Any game can be taken to be 0 − 1 normalized without loss of generality
by taking a positive affine transformation of utility functions that maps agent i’s disagreement
payoff to 0 and agent i’s maximum payoff to 1.
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whenever (1) contains more than one point. The selection can be arbi-
trary, although when S is symmetric, it makes sense to assume that the
selection is symmetric. Denote the selection by RI�S�� Any symmetric
relative-utilitarian solution plainly satisfies the symmetry axiom.

Admissible reported utilities U = �U1� � � � � Un� determine a set S�U� of
feasible utilities with respect to the reported preferences. The social planner
will select an allocation according to the relative utilitarian solution. This
selection determines the set B�U� of resource allocations that give rise to
the relative utilitarian solution,

B�U� = {
x = �x1� � � � � xn� ∈ T � (U1�x1�� � � � � Un�xn�

) = RI
(
S�U�)}�

It follows that x∗ ∈ B�U� if and only if x∗ solves

max
n∑
i=1

Ui�xi� subject to x = �x1� � � � � xn� ∈ T� (3)

In the equilibria described in Sections 4 and 5, agents report utility func-
tions that are not necessarily strictly increasing. This creates the possibility
that there exist x and y ∈ B�U� such that

∑n
i=1 yi <

∑n
i=1 xi� that is, both x

and y solve the planner’s optimization problem, but y does so using strictly
less of each commodity. When this situation arises, the social planner might
restrict attention to allocations that are resource conserving,

B∗�U� =
{
x ∈ B�U� � if

n∑
i=1

yi ≤
n∑
i=1

xi� then y /∈ B�U� or y = x

}
�

If all of the reported utilities are strictly increasing, then B∗�U� = B�U�� In
general, B∗�U� ⊆ B�U�� B∗�U� comprises the allocations that give rise to
utilities that solve the social planner’s problem without wasting resources.
The distortion game determined by a relative utilitarian solution B�·� is
called the relative utilitarian distortion game. The corresponding game deter-
mined by B∗�U� is called the resource-conserving relative utilitarian distortion
game.

Sobel (1981) described equilibria of distortion games for bargaining
solutions that satisfy Axioms 1, 2, and 3, as well as Axiom 4.

Axiom 4 (midpoint domination). fi�S� d� ≥ 1
n�s̄i−di� for all i�

If �S� d� is 0 − 1 normalized, then Axiom 4 becomes fi�S� d� ≥ 1/n for
all i. I (Sobel, 1981) introduced Axiom 4 under the name symmetric mono-
tonicity. Thomson (1994) called it “midpoint domination.”

I also demonstrated that any bargaining solution for a two-person game
that is risk dominant (see Roth, 1979) satisfies Axiom 4. It follows from
Roth (1979) that the Nash and Kalai–Smorodinsky bargaining solutions
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satisfy Axiom 4. On the other hand, the relative utilitarian solution does
not satisfy midpoint domination. For instance, let

S = {
s = �s1� s2� � s1 ∈ 
0� 1� and s2 ∈ 
0� 1 − as1�

}
�

When a ∈ �0� 1� the solution to max s1 + s2 subject to �s1� s2� ∈ S is
�1� 1 − a�. For a > 0�5� player 2 receives utility less than 0�5�

The example demonstrates that my earlier theorem (Sobel, 1981)
does not apply to the relative utilitarian solution. Nevertheless, as I now
demonstrate, the qualitative conclusions of the earlier work do apply.

4. THE ONE-COMMODITY CASE

To get an intuition for the results, consider the special case with two
players and one commodity. With only one commodity, all strictly mono-
tonic preferences are ordinally equivalent. Given the symmetry of the game,
one would expect equal division to be the only equilibrium outcome of the
distortion game. This conjecture is correct. Each agent can guarantee at
least one-half of the commodity by reporting the utility function U∗�x� =
min
2x� 1�� This utility function is concave, continuous, and increasing. Fur-
thermore, a player who reports this utility must receive at least one-half. To
see this, note that under U∗�·�, the agent asserts that the marginal utility of
each x < 0�5 is 2. If the solution is to give the other player more than one-
half, then the other player’s reported marginal utility must be greater than
or equal to 2 for each of the first 1 − x > 0�5 units. This is not consistent
with monotonicity and the restriction that U�1� = 1. Because each player
can guarantee at least half of the commodity, the equilibrium must give
each player at least half. Hence in equilibrium, both agents must receive
exactly half.

The one-commodity case provides several lessons. First, the outcome of
the game is efficient with respect to the true preferences. (Indeed, it is the
unique EICE.) Second, equilibrium strategies of the agents are not linear,
and the equilibrium is not a dominant strategy equilibrium. Note that if
one agent reported the linear utility function U�x� = x, then for any ε > 0
the opponent could respond with the function V �x� = min
�1 + ε�x� 1� and
obtain almost the entire unit of the commodity (the share 1/�1+ ε)). Third,
the equilibrium strategies are not strictly increasing. Equilibria would not
exist if players were restricted to strictly increasing strategies. Agents could
guarantee arbitrarily close to one-half by playing continuous approxima-
tions to U∗�·�. Hence in equilibrium, both players must receive one-half.
However, given any continuous strategy of one player, it is possible for
the other player to obtain strictly more than one-half by choosing a better
approximation to U∗�·�� Fourth, although the equilibrium strategies are not
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linear, they are linear when restricted to x ≤ 0�5, the quantities that the
agent consumes in equilibrium. When making a claim for a marginal unit,
it is in the bargainers’ interest to claim that the marginal unit is as valu-
able as possible to them. They deny any interest in units that they are not
going to receive and report nondecreasing marginal utility over the units
that they do receive. These observations generalize to the case of more
than one commodity.

Although agents lack strictly dominant strategies in the one-commodity
model, when players are restricted to truncated linear strategies, the equi-
librium strategies are the only strategies that satisfy iterated deletion of
weakly dominated strategies, provided that the selection from the rela-
tive utilitarian correspondence is symmetric. Limit players to strategies in
the set � = �U�x� = min
ax� 1� for a ≥ 1�� This restriction is plausible
because given any U ∈ �� a player always has a best response in � . Let
Xb = �min
ax� 1� ∈ � � 2 ≥ a ≥ b�. Suppose that agent i uses strategies
in Xb� Player j �= i receives less than one-half when he uses min
ax� 1� for
a < b or a > 2� If a = b, then the player receives exactly one-half when the
other player uses the same strategy (by symmetry) and strictly less against
any other strategy in Xb� On the other hand, the strategy U∗ guarantees
that agent j receives x = 0�5� Consequently, U∗�·� is the only strategy that
survives iterative deletion of weakly dominated strategies. The same argu-
ment applies when there are n > 2 players; each agent uses the function
min
nx� 1� in this case.

The one-commodity case also provides a clear indication of the impor-
tance of the assumption that agents’ reports are concave functions. Assume
instead that agents could report arbitrary monotonic functions and that
agent 1 reports 
x�, where 
·� is the greatest integer function.6 A solution
to the problem

max
x� + V �1 − x� subject to x ∈ 
0� 1� (4)

is to give agent 1 everything for all V ∈ �. (Given agent 1’s report, the value
of the objective function in (4) can be no greater than 1; this upper bound
is attained if player 1 receives everything.) An equilibrium in which all play-
ers report “all-or-nothing” preferences exists whenever arbitrary monotonic
reports are permitted.7

6The greatest integer function is not continuous. Best replies generally would not exist if
agents could report arbitrary (nonconcave) continuous utility functions. Continuous approxi-
mations to 
·� would be approximate best replies.

7When reports do not need to be concave, it is natural to permit the bargaining solution
to randomize. Symmetry suggests that the solution to the bargaining problem when all agents
report “all-or-nothing” preferences is to give everything to a randomly selected player.
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5. THE GENERAL CASE

When more than one commodity exists, agents may not have the same
ordinal preferences. It may not be efficient to split each unit equally. In
this section I demonstrate that the equilibrium outcomes of the distortion
game are still efficient in the general setting.

For p ∈ �m, let L�z�p� ≡ min
np · z� 1�. Given V ∈ �,

lim
h→0+


V �z� − V �z − hek��/h
exists; let D−

k V �z� denote the limit. When V �·� is differentiable at x, Dk�z�
is a partial derivative, generally a one-sided partial derivative. Let ∇V �z� =
�D−

1 �z�� � � � �D−
m�z��. Because V �0� = 0 and V is concave,

V �z� ≥ ∇V �z� · z for all z ≥ 0� (5)

Lemma 5.1. If player j reports the truncated utility L�·�p�� then for all
admissible U−j , if x = �x1� � � � � xn� ∈ B�L�·�p��U−j�, then np · xj ≥ 1�

Lemma 5.1 is a special case of Lemma 6.1, which I state and prove in
Section 6. The lemma establishes that using a truncated linear report, a
player can guarantee an allocation that is at least as good as equal division
according to the reported preferences. If players are restricted to reported
preferences of the form L�z�p� for p ∈ �m, then the result is particularly
easy to understand. In this case, equal division yields the maximum value
of the relative-utilitarian social welfare function. Hence any allocation in
B�·� for truncated linear reports must give each agent utility 1 with respect
to his reported preference. This is the conclusion of the lemma. The actual
proof is a bit more involved, because agents are not limited to truncated
linear reports.

Theorem 5.1. If �p∗� x∗� is an EICE for the true preferences, then
�L�·�p∗�� � � � � L�·�p∗��x∗� is a Nash equilibrium for the relative utilitarian
distortion game.

Proof. Assume that all players except player i use the strategy L�·�p∗�.
Assume that player i selects the strategy V . Denote the resulting allocation
by x = �x1� � � � � xn�. It follows from Lemma 5.1 that for all i �= j� np∗·
xj ≥ 1. Because x ∈ T� np∗ · xi ≤ 1. It follows that the maximum utility that
player i could receive in response to his opponents’ strategies is

max ui�xi� subject to np∗ · xi ≤ 1 and 0 ≤ xi ≤ 1� (6)

Because �p∗� x∗� is an EICE, x∗i solves (6). Because

x∗ ∈ B�L�·�p∗�� � � � � L�·�p∗��
it follows that this is a Nash equilibrium for player i to report L�·� p∗� and
obtain the EICE allocation.
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The theorem demonstrates that any EICE allocation is a Nash equi-
librium of the distortion game. The lemma guarantees that if each agent
reports the same truncated linear strategy L�·� p∗�, then the set of solu-
tions to the planner’s problem comprises the entire budget hyperplane with
normal p∗ through equal division. If p∗ supports an EICE, then all play-
ers can agree on a most preferred outcome in the set of allocations that
maximize the relative utilitarian objective function. Consequently, an EICE
allocation is an equilibrium of the distortion game.

A curious aspect of the equilibrium strategies supports an EICE allo-
cation. The value of the social planner’s optimization problem is equal
to n, the maximum feasible value. Even though there is conflict over the
goods, the equilibrium allocation provides each agent utility 1 (accord-
ing to reported preferences). If the social planner were naive enough to
believe that the reported preferences were honest representations of the
agent’s motives, then he or she would be delighted to know that every
agent received his maximum utility.

In the one-commodity case, the equilibrium allocation was unique.
Because there may be multiple ECIE allocations, the uniqueness property
will not carry over into the many-commodity case. The best that one might
hope for is that the only equilibrium allocations are the EICE allocations.
This result fails to hold, as the next example demonstrates. The example is
a modification of an example that I gave in earlier work (Sobel, 1981).

Example 5.1. In a two-consumer, two-commodity model, let u1�x1� x2�
= x

5/6
1 x

1/6
2 � u2�x1� x2� = x

1/2
1 x

1/2
2 �U1�x1� x2� = min
�5x1 + 3x2�/4� 1��

and U2�x1� x2� = x
1/2
1 x

1/2
2 . For i = 1 and 2, ui and Ui ∈ �. Routine

computation shows that �U1�U2� x
∗� is a Nash equilibrium for the dis-

tortion game. The allocation x∗ gives agent 1 �3/5� 1/3� and agent 2
�2/5� 2/3�. In this example, the unique EICE for the true preferences is
�p∗� y∗� = ��2/3� 1/3�� �5/8� 1/4�� [Here y∗ is player 1’s allocation in the
equilibrium. Player 2 receives 1− y∗ = �3/8� 3/4��� Computation shows that
the player 1 prefers the inefficient outcome x∗ to the EICE. Also, player 2
is worse off at the Nash equilibrium even though he is reporting his true
utility function.

In earlier work (Sobel, 1981) I showed that in two-player games, the only
equilibrium allocations of distortion games derived from bargaining solu-
tions satisfying Axioms 1–4 are EICE allocations provided that agents are
restricted to linear strategies. This restriction makes no sense in the present
context, because linear strategies do not support the equilibria described in
Theorem 5.1. It does suggest that a partial converse to Theorem 5.2 holds
if players are limited to truncated linear strategies. Even this result fails to
hold, as the next example demonstrates.
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Example 5.2. In a two-consumer, two-commodity model, let u1�x11� x12�
= x

2/3
11 x

1/3
12 � u2�x21� x22� = x

1/3
21 x

2/3
22 �U1�x11� x12� = min
2�x11 + 2x12�/3� 1��

and U2�x21� x22� = min
2�2x21 + x22�/3� 1�� For i = 1 and 2, ui ∈ �. Let
the allocation x∗ give both agents �1/2� 1/2�� A computation shows that
�U1�U2� x

∗� is a Nash equilibrium for the distortion game. Lemma 5.1
implies that an upper bound to the utility that agent 1 can attain is the value
of max u1�x11� x12� subject to 2�2x11 + x12�/3 ≤ 1 [because the lemma guar-
antees that player 2’s allocation satisfies 2�221 + x22�/3 ≥ 1] and similarly
that the upper bound for player 2 is the value of max u2�x21� x22� subject
to 2�x21 + 2x22�/3 ≤ 1. For the reported preferences �U1�U2��

B�U1�U2� =
{�x11� x12� x21� x22� ∈ T � 2�x11 + 2x12�/3 ≥ 1 and

2�2x21 + x22�/3 ≥ 1
}
�

For the true preferences, both agents agree that x∗ is the best allocation
in B�U1�U2�� It is apparent that the allocation x∗ is not efficient. The
only EICE in this example is p = �1/2� 1/2�, �x11� x12� = �2/3� 1/3� and
�x21� x22� = �1/3� 2/3��

In the example, B�U� contains allocations that are not resource conserv-
ing. All of the endowment need not be used to attain the maximum in the
social planner’s utility function. This suggests the possibility that the ineffi-
cient equilibrium would disappear if the planner used a resource-conserving
selection from the set of maximizing allocations.

Imposing the additional requirement that the solution be resource con-
serving shrinks the set of allocations. The planner allocates the minimum
quantity of resources needed to maximize the relative utilitarian objective
function. For the reported preferences

B∗�U1�U2� =
{(

0�
3
4
� s�

3
2
− 2s

)
� s ∈

(
5
8
�

3
4

)}

∪
{(

3
2
− 2t� t�

3
4
� 0

)
� t ∈

(
5
8
�

3
4

)}
�

x∗ /∈ B∗�U1�U2�, and the agents have conflicting preferences over alloca-
tions in B∗�U1�U2�. Agent 1 prefers the allocation �x11� x12� = �1/4� 5/8�
and �x21� x22� = �3/4� 0�, whereas agent 2 prefers the allocation �x11� x12� =
�0� 3/4� and �x21� x22� = �5/8� 1/4�.

The two examples suggest that a partial converse to Theorem 5.1 requires
both a restriction on strategies and a selection from the set of maximizing
allocations. The following theorems provide the results.

Theorem 5.2. Let n = 2. If �L�·�p1�� L�·�p2��x∗� is a Nash equilibrium
for the resource-conserving relative-utilitarian distortion game, then x∗ is an
EICE allocation.
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The idea of the proof is to show that if both players use truncated linear
strategies, then they must both use the same truncated linear strategy. From
this observation, it is clear that outcome must be an EICE.

Proof. It follows from Lemma 5.1 that for all i� 2pi · x∗i ≥ 1� Let j �= i.
Because x∗ ∈ T� 2pj · x∗i ≤ 1. It follows that the maximum utility that player
i could receive in response to his opponent’s strategy is

max ui�xi� subject to 2pj · xi ≤ 1 and 0 ≤ xi ≤ 1� (7)

Player i can indeed achieve this payoff by imitating player j and using the
strategy L�·�pj�� It follows from monotonicity of ui�·� that 2pj · x∗i = 1.
Thus the resource-conserving condition implies that pi = pj , for otherwise
the planner would solve (3) with an allocation x∗ such that 2pj · x∗i < 1� It
follows that in equilibrium, pi = pj� Consequently, (7) implies that x∗ is
an EICE allocation.

I conjecture that Theorem 5.2 holds when n > 2� Kibris (1998) demon-
strated that Theorem 5.2 would hold for n ≥ 2 if players’ true utility func-
tions satisfied a boundary condition (so that indifference curves do not
intersect the boundary of the Edgeworth box).

There are two justifications for the restriction to truncated linear strate-
gies. From the stand-point of implementation, the planner can make what-
ever restrictions on strategies needed to guarantee desirable outcomes.
From the stand-point of the agents’ strategic behavior, it is possible to show
that even when there are no restrictions on admissible reports (other than
continuity, monotonicity, and concavity), agents always have a truncated
linear best response.

6. RECONCILIATION

Earlier results demonstrate that the Nash equilibria of distortion games
derived from admissible bargaining games are EICE allocations and that in
these equilibria, players report linear utility functions. This paper studies
the distortion game derived from a bargaining game that fails to satisfy the
assumption of midpoint domination. Nonetheless, the Nash equilibria of
distortion games are EICE allocations. Equilibrium reports are nonlinear
but are piecewise linear. There is no logical contradiction here. The relative
utilitarian solution does not satisfy my assumptions in the earlier paper
(Sobel, 1981).

It may be instructive to reflect more on the sense in which the current
results generalize the earlier results. First, the restriction to linear strategies
in the earlier work is not always necessary. For the distortion game derived
from the Nash bargaining solution, one can support the same outcomes



manipulation and utilitarianism 211

as equilibria by using piecewise linear reports of the kind introduced in
this paper. Second, although the relative utilitarian solution fails midpoint
domination, it does not fail midpoint domination if players are restricted
to truncated linear strategies that are used to support equilibria. This is
essentially the conclusion of Lemma 5.1.

To make these points formally, consider a family of bargaining solutions.
For s = �s1� � � � � sn� and a ≤ 1, let W �s� a� = �∑n

i=1 1/nsai �1/a.8 Let �S� d�
be 0 − 1 normalized. For a < 1, W �·� a� is strictly concave and generates a
bargaining solution

f �S� a� = {
s∗ = �s∗1� � � � � s∗n� � s∗ solves maxW �s� a� subject to s ∈ S}�

Of course, W �s� 1� is the utilitarian objective function. Because W �s� 0� =
�&ni=1si�1/n and lima→−∞W �s� a� = min�s1� � � � � sn�, f �S� 0� corresponds
to the Nash bargaining solution and f �S� −∞� corresponds to the Kalai–
Smorodinsky solution. Increases in a tend to make W �·� more like the
utilitarian solution, whereas decreases in a make the solution more sensi-
tive to the relative welfare of agent who receives the lowest (normalized)
utility.

Because the family of bargaining solutions is defined as solutions to opti-
mization problems, one might be tempted to conclude that they all satisfy
Nash’s independence of irrelevant alternatives axiom. In fact, only f �S� 0�
(the Nash bargaining solution) satisfies this axiom. The possible confusion
arises because I have defined the solution for 0 − 1 normalized bargaining
games. In general, changing the maximum utility available to a bargainer
will change that bargainer’s weight in W �·�, leading to the possible violation
of the independence of irrelevant alternatives axiom.

Imagine a family of distortion games that varies with the parameter a.
For a ≤ 0� one can show that the bargaining solutions satisfy the midpoint
domination axiom. Hence earlier results (Sobel, 1981) can be used to
characterize the solution to the distortion game. For a ≥ 0, Lemma 5.1
continues to hold. Hence the results from the previous section apply. In all
cases, EICE allocations are equilibria of the distortion game. In the case
of solutions with nonnegative parameter a, these equilibria are supported
by truncated linear strategies. When a is nonpositive, the equilibrium is
supported by linear strategies. Curiously, the Nash bargaining solution is
the only one in which both types of strategy support the equilibrium.

Lemma 6.1. If player j reports the truncated utility L�·�p�� then for all
admissible U−j , if x = �x1� � � � � xn� ∈ B�L�·�p��U−j� a� and a > 0, then
np · xj ≥ 1�

8When a = 0, define W �s� 0� = lima→0 W �s� a� = �&n
i=1si� 1

n .
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Proof. Assume that player j uses the strategy L�·�p�� Suppose
that if player i selected the strategy V , then the allocation would be
x = �x1� � � � � xn�. To obtain a contradiction, assume that

np · xj < 1� (8)

Because x must maximize

max
n∑
i=1


Ui�xi��a subject to x = �x1� � � � � xn� ∈ T�

for the reported preferences,
[
np · �xj + h�

]a + [
V �xi − h�

]a ≤ [
np · xj

]a + [
V �xi�

]a (9)

for all 0 ≤ h ≤ xi� By (9), the partial derivative of 
np · xj�a + 
V �xi��a in
the direction of ek must be less than or equal to 0 whenever xik > 0� It
follows that npk ≤ D−

k V �xi� whenever xik > 0� consequently,

a
[
np · xj

]a−1
npkxik ≤ a 
V �xi��a−1D−

k V �xi�xik for all k�

Summing this inequality over k yields, for all i �= j�

[
np · xj

]a−1
np · xi ≤

[
V �xi�

]a−1∇V �xi� · xi� (10)

It follows from (5), (10), and 1 ≥ V �x� that for all i �= j,

np · xi ≤
[
np · xj

]1−a
� (11)

Because a < 1, (8) and (11) imply

np · xi ≤ 1� (12)

Because
∑n
i=1 xi = 1 and p ∈ �m� summing (12) over all i contradicts (8)

and establishes the lemma.

Lemma 6.1 demonstrates that when a > 0, the crucial lemma from
Section 5 continues to hold. One can establish the same result for the
Nash bargaining solution (a = 0� directly or through a limiting argument.
Lemma 6.1 states that a player can obtain an allocation at least as good as
a 1/nth share of each commodity according to his reported preferences,
provided that his reported preferences are in an appropriate class. It would
be interesting to find a condition on bargaining solutions that would imply
the conclusion of Lemma 6.1.

Lemma 6.2. When a < 0, f �S� a� satisfies Axiom 4 (midpoint domination).
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Proof. Let S ⊂ Rn be a 0 − 1 normalized compact convex set. When
a < 0, maximizing W �·� a� is equivalent to minimizing

∑n
i=1 s

a
i . Therefore,

it suffices to show that if s∗ = �s∗1� � � � � s∗n� solves

min
n∑
i=1

sai subject to s ∈ S� (13)

then s∗i ≥ 1/n for all i. Without loss of generality, assume that s∗1 =
min�s∗1� � � � � s∗n�. Define the function ϕ�s1� = max�λ � �s1� λs−1� ∈ S�.
Because S is 0 − 1 normalized and convex, ϕ is a real-valued, decreasing
concave function satisfying ϕ�s∗1� = 1� ϕ�1� ≥ 0� and �s1� ϕ�s1�s−1� ∈ S for
all s1 ∈ 
0� 1�. Because s∗ solves (13), s∗1 must solve

min
{
sa1 +

n∑
i=2


ϕ�s1�si�a
}

subject to s1 ∈ 
s∗1� 1�� (14)

Differentiating the objective function in (14) and using a < 0, it follows
that

�s∗1�a−1 + ϕ′�s∗1�ϕ�s∗1�a−1
n∑
i=2

�s∗1�a ≤ 0� (15)

where ϕ′�s∗1� = limh→0+
ϕ�s∗1 + h� − ϕ�s∗1��/h. Because ϕ�·� is concave,

ϕ′�s1� ≥
ϕ�1� − ϕ�s1�

1 − s1
� (16)

Substituting (16) into (15) yields

�1 − s∗1��s∗1�a−1 + [
ϕ�1� − ϕ�s∗1�

]
ϕ�s∗1�a−1

n∑
i=2

�s∗1�a ≤ 0� (17)

Because ϕ�s∗1� = 1 and ϕ�1� ≥ 0� (17) implies that �s∗1�a−1 ≤ ∑n
i=1�s∗i �a or

1
s∗1

≤
n∑
i=1

[
s∗i
s∗1

]a
≤ n� (18)

where the second inequality in (18) follows from a < 0 and s∗1 =
min�s∗1� � � � � s∗n�.

As in the case of Lemma 6.1, Lemma 6.2 also holds for the Nash bar-
gaining solution (a = 0�. Combining Lemmas 6.1 and 6.2, one obtains a
generalization of Theorem 5.1.

Theorem 6.1. If �p∗� x∗� is an EICE for the true preferences, then x∗ is a
Nash equilibrium allocation for the distortion game determined by the solution
f �·� a�. If a ∈ 
0� 1�, then it is an equilibrium strategy for all players to report
the truncated linear utility function L�·�p∗�. If a ≤ 0, then it is an equilibrium
strategy for all players to report the linear utility function U�y� = p∗ · y�
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Proof. When a ∈ 
0� 1�, result follows from Lemma 6.1 and the same
argument used to establish Theorem 5.1. When a ≤ 0, the result follows
from Lemma 6.2 and Sobel (1981).

The family of bargaining solutions shares the property that agents want
to act as if the marginal unit that they are allocated is valuable. The optimal
manipulation always involves claiming that the first units allocated add the
minimum possible utility (subject to the concavity constraint). Strategies
differ as to how agents should represent their utility for what they do not
receive in equilibrium. Utilitarian solutions (a > 0� induce agents to claim
that the units that they do not receive are worthless. Denying an interest in
these units permits agents to exaggerate their interest for the units that
they actually receive. Eqalitarian solutions (a < 0� favor an agent who
appears to be getting a small utility relative to the maximum available utility
for that agent. Consequently, it is in the interest of an agent faced with
an egalitarian planner to report preferences in a way that exaggerate his
maximum utility relative to the utility that he receives. This force creates
an incentive to report linear preferences.
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