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Starting Small and Commitment
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Abstract

I study a model of a long-term partnership with two-sided incomplete information.
The partners jointly determine the stakes of their relationship and individually decide
whether to cooperate with or betray each other over time. I characterize the extremal
— interim incentive efficient — equilibria. In these equilibria, the partners generally
“start small,” with the level of interaction growing over time. The types of players
separate quickly. Further, cooperation between “good” types is viable regardless
of how pessimistic the players are about each other initially. The quick nature of
separation in an extremal equilibrium contrasts with the outcome selected by a strong
renegotiation criterion (as studied in Watson [11]). Jowrnal of Economic Literature

Classification Numbers: C72, C73, D74.

At the beginning of a long-term relationship, prospective partners may be dubious about
each others’ motives. To optimally encourage cooperation at low risk, the parties balance
the opportunity for high returns with the possibility that one agent will take advantage
of the other. Often the best way to structure the relationship involves “starting small,”
whereby the stakes of the relationship grow over time.

I study the phenomenon of gradualism, or “starting small,” by analyzing a class of dy-
namic games with variable stakes. These games model a dynamic partnership in which (a)
the two partners can jointly choose from among a variety of projects (levels of interaction)
over time and (b) the partners also individually decide whether to cooperate at every in-
stant. There is two-sided incomplete information about each partner’s incentive to behave
opportunistically, an act which injures the other party. While “high” types generally prefer
to cooperate over time as long as their partners cooperate, “low” types have an incentive
to betray their partner’s trust. Interacting at a low level is less risky than at a high level
because small stakes limit the detrimental consequences of opportunistic behavior. The

*Department of Economics, UC San Diego and Cowles Foundation, Yale University. Internet:
http://weber.ucsd.edu/~jwatson/. 1 appreciate the remarks of Vince Crawford, David Kreps, George
Mailath, Darwin Neher, Clara Ponsati, Larry Samuelson, Joel Sobel, and numerous seminar participants.
This project has been supported by grants from the National Science Foundation (SBR-9422196 and SBR-
9630270).



players’ incentives to cooperate or betray depend on how the stakes change over time. In
particular, although low types favor betrayal, they may prefer delaying such an action if
the stakes rise quickly enough.

My analysis of this strategic setting is divided between the current paper and a compan-
ion paper (Watson [11]). Both papers characterize equilibrium regimes in the partnership.
An equilibrium regime is a specification of (a) how the stakes change over time and (b)
an equilibrium in the players’ decisions to cooperate or betray. These papers both demon-
strate that cooperation between high types is viable, regardless of the players’ initial beliefs
about each other, as long as the relationship starts small enough.! Beyond the viability
issue, the two papers focus on different genera of equilibrium regimes. Watson [11] char-
acterizes a regime that is selected by a strong renegotiation condition. The present paper
characterizes optimal regimes when the players have greater ability to commit to the way
the stakes change over time.

Specifically, the present paper characterizes regimes that are interim incentive efficient
(ITE). Such regimes are Pareto superior in the class of equilibrium regimes, treating different
player-types separately. IIE regimes are shown to be “Q-regimes” (“Q” stands for “quick”),
which are identified by two important properties. First, the relationship generally starts
small. Second, separation of the types is concentrated on two points in time: at the
beginning of the relationship and right when the level reaches its maximum.

In a Q-regime, two-sided incomplete information is resolved at time zero, when the low
type of player 1 betrays with probability one and a weakly greater mass of the low type
of player 2 also betrays. (At the outset of the game, player 1 is weakly more pessimistic
about player 2 than is player 2 about player 1.) Then there is a period of time when
neither player betrays with positive probability and the level of the relationship gradually
rises. Just when the level reaches its maximum, the low type of player 2 betrays with
his residual probability mass. Conditional on cooperation through this time, the players
cooperate thereafter at the highest level of interaction.

I further analyze two special cases. First, I examine the symmetric case, where the
players are equally pessimistic about each other at the beginning of the game. In this
setting, the low and high types of both players separate completely in the first instant of
interaction. The separation is achieved by the low types betraying with probability one.
After the high types are made known, the level of the relationship rises for awhile before
settling at its maximum. Second, I examine the one-sided case, where player 1 is known to
be a high type. In this setting, the level of the relationship rises gradually over time and
the low type of player 2 waits until the maximum level is reached before betraying. Under
non-symmetric, two-sided incomplete information, IIE regimes generally share the features
of both the symmetric and one-sided cases.

On a technical level, this paper offers a novel analysis of partnerships with two-sided
incomplete information. The exercise delivers definitive conclusions in an inherently chal-

IThis was first reported in Watson [10]. The present paper reports a version of the analysis on optimal
regimes found in Watson [10].



lenging game-theoretic setting.? By design, my model focuses on how agents change the
structure of their relationship and renegotiate due to revelation of information. Renegoti-
ation in off-equilibrium path contingencies is not at issue.

The presentation begins in the following section with the description of the model. Some
useful properties of equilibrium are developed in Section 2. Section 3 characterizes the set
of interim incentive efficient regimes. Section 4 discusses the special cases noted above.
The issue of renegotiation is discussed in Section 5. Section 6 concludes. The Appendix
contains the formal proofs. Some related literature is discussed in the companion paper,
Watson [11].

1 Dynamic Games with Variable Stakes

I consider a continuous-time model of a partnership between two agents. The model is
the same as that of Watson [11], except here a more narrow class of games is studied for
technical simplicity.®> There is a level function « : [0,00) — [0, 1] specifying how the stakes
of the partnership change over time (which runs from zero to infinity). At time ¢ € [0, 00),
a(t) is the level of the relationship.? Prior to time zero, the players jointly select and
commit to the function a. I restrict attention to level functions that specify a positive
level at some time. It will not be important how the selection of « is modeled, so I shall
consider a exogenous for now. Issues regarding negotiation of, and commitment to, the
level function are studied in Section 5.

Given the level function, the players interact over time in a prisoners’ dilemma-like
setting called the partnership game. At every instant of time, the players individually
choose whether to continue cooperating or to take a selfish action that ends the partnership.
In referring to selfish behavior, I use the terms “betray” and “quit.” A player’s strategy
specifies when (if ever) the player will betray the other, ending the game. Cooperation
entails a flow payoff z;a(t) to player i at time ¢. The selfish action at ¢ brings about
terminal payoffs. Player i’s terminal payoff at ¢ is z;«(t) if player ¢ betrays the other player
at this time, y;a(t) if player i’s opponent betrays at ¢, and zero if both players betray at ¢.
The numbers z;, x;, and y; are private information to the players, as discussed below.

To better understand the specification of payoffs, suppose the players cooperate until
t, at which time the game ends due to betrayal by one or both players. Let t = oo for the
case of perpetual cooperation. Then player i’s payoff in the game is given by

t
/ zia(s)e " ds + gia(t)e ™,
0

2Generally, it is difficult to characterize equilibria, much less obtain cutting results, in models with
two-sided incomplete information.

3Here I examine the class of dynamic games with variable stakes that are linear with respect to the
stakes. In Watson [11] I study a more general class of games.

4For concreteness, think of a(t) as the number of projects on which the players have agreed to work at
time ¢.



Cooperate Betray

Cooperate zalr, zalr y,a, X.a

Betray X, Y,a 0,0

Figure 1: An example with constant level over time.

where g; = x; if player ¢ alone betrayed at ¢, g; = y; if player j (i’s opponent) alone betrayed
at t, and g; = 0 if both players betrayed at ¢. Note that the level determines the scale of
the cooperative flow and terminal payoffs at each moment of time; a low level implies that
the benefits of ongoing cooperation, as well as the values due to betrayal, are small; a high
level implies the opposite.

The players have private information about their flow and terminal payoff functions.
Each player is of two possible types, low (L) and high (H). The low type has payoff
parameters z, z, y; the high type has parameters z, 7, . For i € {1,2} and K € {L,H},
“iK” denotes player i of type K. The ex ante probability that player ¢ is the high type is
p;, which is common knowledge. Assume that p; > ps. The model is otherwise symmetric,
in that players of the same type K € {L, H} have the same payoff parameters z, y, and z.
As stipulated below, I associate with the high type a greater incentive to cooperate over
time relative to the low type.

Before specifying how the types are assumed to differ, I make some assumptions common
to the two types. I wish to study a setting in which the partners can benefit from long-term
cooperation, each may have a short-term incentive to betray the other, and a player suffers
if the other betrays him. These properties are captured by:

Assumption 1 z,2,7,Z> 0, y,7 < 0.

Note that games with variable stakes are similar to wars of attrition in that they are played
in continuous time and end when one or both players decides to quit.?

I next turn to distinctions between the high and low types, in particular regarding the
incentive to cooperate in the partnership game. To develop intuition, take the example of
a level function specifying a(t) = a for all ¢ and any a € (0,1]. The matrix in Figure 1
depicts the payoffs when the players are constrained to choose between betraying now or
cooperating forever. Note that [;° z;ae "*ds = z;a/r. As the figure indicates, perpetual
cooperation can be sustained in the game only if z;/r > x; and 2z5/r > x9. Betrayal is the
dominant choice for player i if z;/r < z;.

Evaluating incentives for games with non-constant level functions is more complicated
than for those with constant level functions. In particular, if « rises over time then player ¢

5There are two substantive differences between these classes of games. First, in wars of attrition a player
generally prefers that his opponent quit, while in the games studied here players may wish to cooperate
perpetually. The second difference is that games with variable stakes include a level function, which the
players jointly determine.



may be willing to cooperate for awhile even if z;/r < z;. Delaying betrayal can be optimal
if the betrayal payoff rises fast enough over time to overcome discounting. However, since
the level is bounded, this player must eventually prefer quitting. The following lemma from
Watson [11] makes this formal.

Lemma 1 Suppose x; > z;/r. Take any level function o such that a(t) > 0 for some
t. There are times T, S € [0,00), with T < S, such that the following holds regardless of
player j’s strategy. Conditional on reaching time T in the game, payoff-maximizing player
must quit prior to time S with probability one.

I define the low and high types so that only the high types may have the incentive to
cooperate perpetually in the partnership game.

Assumption 2 T <Z/r, z=0<z, andz +y < 0.

This assumption yields the interesting class of games in which the low type players must
eventually betray in every equilibrium. The high types would like to establish long-term
cooperation with each other, but private information makes building the relationship diffi-
cult. Cooperation entails a risk if one’s opponent may betray, since y < 0. The assumption
z = 0 < z is stronger than is necessary (z > z/r would do), but it greatly simplifies some
of the analysis.® The inequality x + y < 0, which is required for one of the components of
the analysis, means no value is created between the low types from betrayal.

Equilibrium

A level function and a strategy profile for the partnership game shall be denoted a
regime. If the strategy profile is an equilibrium in the partnership game then I call the
regime an equilibrium regime. Obviously, regardless of «, there is always an equilibrium in
which both types of both players betray at t = 0. Thus, every level function is associated
with at least one equilibrium regime. However, I shall look for more interesting cooperative
equilibria, where the partnership is viable between two high types. More precisely, I restrict
attention to equilibria in which the high types cooperate perpetually. I assume the high
types adopt a strategy of never betraying, subject to establishing later that this strategy is
rational.” The low type players will betray at some point, but they may have an incentive
to cooperate for a stretch of time before betraying. An important component of the analysis
involves demonstrating that cooperative equilibria exist.

Each low type has a strategy defined by a cumulative distribution function F', where
F(t) is the probability that this player betrays at or before time t. Since the low type
must quit with probability one in bounded time, F(s) = 1 for some time s. Assuming the
high types cooperate perpetually, if player j of low type plays strategy F} then player i
effectively faces the strategy defined by (1 — p;)F;. We can then associate the low type’s

6Those interested in a more general treatment of the basic model are invited to read Watson [10, 11].
I therefore rule out regimes in which the high types cooperate perpetually with positive probability
and quit with positive probability.



strategy F; with the function ; = p; + (1 —p;)(1 — F}), where 6,(¢) is the probability that
player i’s opponent cooperates through time ¢. It will be easiest to work with the function
0; directly, with the understanding that 6, is weakly decreasing and continuous from the
right, 8,(t) > p; for all ¢, and 6;(s) = p; for some s.

2 Cooperative Equilibrium Regimes

In this section, I study cooperative equilibrium in the partnership game for an arbitrary
level function « and initial beliefs p; and py. I assume 6; is continuously differentiable,
except perhaps on a closed set of measure zero. I also assume that « has well-defined
right- and left-hand limits and is differentiable except on a closed set of measure zero. The
assumptions on « are relaxed in subsequent sections.

For a useful benchmark, consider the partnership game with «(t) = 1 for all ¢. Obvi-
ously, with this level function, a low type has no incentive to delay betraying his partner,
regardless of the partner’s strategy. Therefore every equilibrium involves the low type
players betraying at the beginning of the game. Next assess the high types’ incentive to
cooperate. Suppose player jH cooperates perpetually. If player iH is inclined to betray,
the best time to do so is at ¢t = 0. Player ¢H obtains p,T by quitting at the beginning
of the game and (1 — p;)¥ + p,;Z/r from cooperating perpetually. Thus, cooperation by
the high types is an equilibrium if and only if (1 — p;)y + p;Z/r > piT, for i = 1,2. This
condition simplifies to p; > 7/[z/r — T — 7| € (0,1). Observe that, in this constant «(t)
case, incomplete information denies any hope of cooperation between high types if either
p1 Or po is small.

Next I derive equilibrium conditions for more general level functions, where the low
types may cooperate for some time before quitting. It is helpful to start by recognizing
how a player’s payoff depends on the level function, the time at which this player plans to
quit, and the opponent’s quit distribution. To be precise, if player ¢ plans to quit at time
t then her expected payoff is

t T
/0 zia(s)e™"0,(s)ds + Tlij?— ; yia(s)e " [—dO;(s)] + ziau(t)e " 0,(2). (1)
The first integral is the expected payoff of cooperation with player j, the second integral is
the expected (negative) payoff arising because of the chance that player j will quit before
time ¢, and the last term is player i’s expected instantaneous payoff from quitting at ¢.
The functions 6; and 6y define an equilibrium if the strategy F; of the low type of player ¢
is a best response to 6;, for 7 = 1,2, and the strategy of cooperating perpetually is a best
response for the high type players.

Conditions Regarding Low Types

I shall examine how the low types’ betrayal distribution relates to the level function
in equilibrium. There may be times at which 6; is discontinuous and intervals in which



0; is continuously decreasing, reflecting atoms and continuous phases in the low types’
betrayal distributions. In fact, in both cases, the level function « constrains equilibrium
strategies in a precise and easily identified way. Some additional notation will be helpful in
demonstrating the connection. For all ¢ > 0, define o () and " (¢) as the directional limits
of a at t from the left and the right, respectively.® T use the convention that o (0) = 0.
Define 0; (¢) analogously, with 0; (0) = 1, for i = 1, 2.

Consider first the implications of player ¢L weakly preferring to quit at some time t¢.
Let q; = 0,(t)/0; (t) denote the probability that player j cooperates at ¢, conditional on j
cooperating prior to t. Note that ¢; = 1 if §; is continuous at ¢. Conditional on reaching ¢,
player iL’s normalized expected payoff from quitting at ¢ is g;za(t).? If iL waits until just
after ¢ to quit, her expected payoff can be made arbitrarily close to (1 —q;)ya(t)+qza™ (t).
Thus, given that he weakly prefers to quit at ¢, it must be that

giza(t) > (1 — g;)ya(t) + gza™(1). (2)
Defining Do) = "
gz — (1—q)y’

the inequality becomes a(t) > a*(t)D(g;). This condition holds as an equality if player iL
is indifferent between betraying at ¢ and at times after, but arbitrarily close to, t.

If player i L quits just before time ¢ then her payoff (conditional on player j cooperating
before t) is arbitrarily close to za (t), so the weak preference to wait until ¢ implies

ga(t) = a (t). (3)

As above, this condition holds as an equality if player ¢L is indifferent between betraying
at t and just before t.

Next consider the implications of player :L quitting at a positive rate over an interval of
time where « is continuous. In particular, suppose that « is continuous at some ¢ > 0 and
0i(t) < 0. It must be that 0, (t) = 0;(t), for otherwise the continuity of a and the payoff
parameters contradicts inequality (3). Thus the quit distribution of player i’s opponent has
no mass point at ¢. Since player iL plans to betray at a positive rate in a neighborhood of
t, this player must be indifferent between quitting at any time in the neighborhood. Using
the low type’s payoff parameters in expression (1), and recalling that z = 0, his expected
payoff from planning to betray at time w is

/Ow ya(s)e " [=dh;(s)] + za(w)e™™0;(w),

which must be constant in the neighborhood of ¢. Taking the derivative with respect to w,
evaluating it at w = ¢, and rearranging terms yields:

zd (t) — rza(t) — Zﬁ 8 ly — z]a(t) = 0. (4)

8For t > 0, a=(t) = lim,_,,— a(s). For t > 0, a™(t) = lim,_+ a(s).
9Recall that players earn a terminal payoff of zero if they quit at the same time.
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The left side of this equation is the value at t of player iL waiting before quitting, relative
to quitting at t. This value must be zero if player iL is indifferent. The first two terms
are the increase in the betrayal payoff from changes in the level and the decrease in the
betrayal payoff due to discounting. Remember that the cooperative flow payoff for the low
type is zero. The last term is the potential loss if the opponent quits before player ¢ quits,
times the rate that the opponent quits conditional on reaching ¢ (the hazard rate of the
opponent’s quit distribution).

In equilibrium, a must gradually rise in any interval in which a player quits at a positive
rate. To see this, note that the last term on the left side of (4) is nonpositive. Observe
that o must rise enough to offset discounting in order for the low type to be indifferent.
Furthermore, if the opponent betrays at a positive rate then o must rise even faster in
order for the low type to be indifferent between quitting and waiting. That is, the “prize”
of betrayal in the future must be large enough to counter the chance that the opponent
will betray first.

Phases of Equilibrium Regimes

Other general properties of equilibrium regimes can be derived. Given 6;, define T; =
min{t > 0 | 6;,(t) = p;} as the time by which the low type of player i betrays with
probability one.!" T shall pay special attention to regimes with continuous level functions.
As the following lemma from Watson [11] establishes, these regimes have a three-phase
structure in equilibrium.

Lemma 2 Consider any level function « that is continuous at everyt > 0. Suppose 61 and
0y define a cooperative equilibrium in the partnership game. Then Ty < Ty and 05(T7) <
0,(T1). Furthermore, 0,(t) = 6(t) for all t < Ty and these functions are continuous on
(O7T1)'

To interpret Lemma 2, remember that p; > ps. The three phases of a cooperative equi-
librium regime are [0,7}], [T1,Tz], and [Ty, 00). In the first phase the low types behave
symmetrically, betraying with the same probability over time. This phase ends when the
probability mass on the low type of player 1 has “run out” (when 6;(t) = p;) and, condi-
tional on cooperation, the updated probability that player 1 is the high type equals one. In
the second phase, only the low type of player 2 quits with positive probability. Just after
T,, the updated probability that player 2 is the high type has reached one as well. The
high types cooperate through the third phase, where only they remain.

The proof of Lemma 2 builds on the following intuition about the incentives of the low
types. Suppose there is an interval of time (perhaps a point) in which player 1 betrays
with higher probability than does player 2, and also suppose that player 2 betrays later in
the game with positive probability. Note that player 2 is willing to quit later even though
there is a chance that player 1 will quit in the interval. Since player 1 is at less risk in
the interval, he should strictly prefer to wait, which contradicts that he quits with positive
probability in the interval.

10T his is well-defined since 6; is right-continuous.



Figure 2: Equilibrium regimes.

Examples and Existence

It is not difficult to construct a variety of different equilibrium regimes. For example,
consider a setting with one-sided incomplete information, where p; = 1. For every T' > 0,
define ar to be the continuous function satisfying a(t) = 1 for all ¢ > T and o/,.(t) /o (t) =
r for all t € (0,T). This differential condition is equation (4) for the case in which 0} = 0.
If the high types cooperate perpetually, such a level function makes player 2L indifferent
between betraying at all times from 0 to 7. Any quit distribution satisfying 62(T") = po
characterizes an equilibrium, as long as player 1H weakly prefers to cooperate perpetually.
(Obviously, player 2H prefers to cooperate.) In fact, take any s such that 6,(7") = po for
some T". One can show that there is a number 7" > T” such that, for every T' > T”, the
regime defined by 6, and ar is an equilibrium. Figure 2(a) illustrates this class of regimes.

Equilibria of the same flavor can be constructed for games with two-sided incomplete
information. For example, consider a symmetric game, where p; = py. Look for a symmetric
equilibrium by taking any differentiable §; = 65 and, for T" such that 0;(T") = py, selecting
a to satisfy (4) for all ¢ € (0,7)). As in the one-sided case, one can prove that this is
an equilibrium if the level starts small enough (so that 7" is large enough). There are
also symmetric equilibria with atoms in the low types’ quit distribution. Such equilibria
generally involve discontinuities in <, because inequalities (2) and (3) must hold where
0, = 0, is discontinuous. In addition, & may be non-monotone before or after the low types
betray. Figure 2(b) shows an example.

As the examples confirm, a cooperative equilibrium regime always exists.



Theorem 1 Regardless of p1 > 0 and py > 0, there is a cooperative equilibrium regime.

Given the example with constant o discussed at the beginning of this section, Theorem 1
reveals the value of starting small. In the fixed a case, the partnership is not viable when
the players are initially very pessimistic about one another. However, cooperation between
two high type players can always be sustained if the players start small enough in their
relationship.

3 Incentive Efficient Regimes

The examples indicate there is a plethora of equilibrium regimes. However, to the extent
that the players jointly determine the regime, it seems reasonable to expect them to settle
on one that is interim incentive efficient (abbreviated ITE). An equilibrium regime is interim
incentive efficient if, within the class of equilibrium regimes, there is no way of making one
type of one player better off without making another player-type worse off. In this section
I characterize the IIE regimes. I constrain attention to cooperative regimes whose level
functions are continuous at positive times.

I shall prove that ITE regimes have two noteworthy properties. First, they entail starting
small, which should come as no surprise given the discussion following Theorem 1 in the
previous section. Second, and more significant, IIE regimes involve betrayal by low types
that is concentrated on two times: at the beginning of the relationship and just as the level
reaches its maximum. In other words, betrayal occurs quickly and is lumpy over time.

To state the result, a bit more notation and terminology is useful. Given an equilibrium
regime defined by «, 6, and 6., let the function v;; : R, — R associate with every time in
the game the equilibrium continuation payoff for player iH, for ¢ = 1,2. That is, v;y(t) is
the continuation payoff for player i H from time ¢, conditional on reaching this time in the
game (neither player betraying prior to t). I use the convention that the continuation value
at t is evaluated before the parties interact at this time; thus, v;z reflects any mass point
in the betrayal distribution of player i’s opponent at t. Let v;;, be defined analogously.!!
Further, define by ©;4(t) the payoff player i H would obtain at time ¢ if he were to betray
at this time; we have ;7 (t) = Ta(t)0;(t)/0; ().

For any interval of time M C R, I say a regime has mazimal delay on M if for t,t' € M,
O5(t) < 05 (') implies viy(s) = 01(s) for every s € M with s > t. In words, if betrayal
occurs in M by time ¢ then the high type of player 1 is indifferent between quitting and
cooperating after ¢ until the right endpoint of M. In this case, the mass of player 2L’s quit
distribution on M is pushed as close to the right endpoint of M as is possible while still
maintaining player 1H’s incentive to cooperate. I feature the following type of equilibrium.

HNote that, since the high types cooperate perpetually, v; is continuous wherever 6; is continuous; the
function is everywhere left continuous and has well-defined right-hand limits. Where « is continuous, v;1,
has well-defined right- and left-hand limits.

10



Figure 3: Q-regime.

Definition 1 A Q-regime is a cooperative equilibrium regime in which (a) 01(0) = py (so
Ty =0); (b) a(t) = min{«(0)e™/D(p1), 1} for allt > 0; and (c) with T = inf{t | a(t) = 1},
the regime has mazimal delay on (0,T).

Here, ) stands for “quick” (referring to the nature of betrayal by the low types). A
Q-regime is pictured in Figure 3. Note that the entire mass of quitting by player 1 is
concentrated at time zero, along with at least the same mass of quitting by player 2 (who
has a weakly greater chance of being a low type). The remainder of player 2L’s betrayal
mass occurs at T'. Thus, if 65(0) > ps then Ty, = T'; otherwise, Ty = T} = 0. The level
of the relationship jumps up just after £ = 0 and then gradually rises until 7', after which
it stays at its maximum. The discontinuity at ¢ = 0 makes the low types weakly prefer
to quit at this time. The gradual rise after time zero obeys o'/a = r, which coincides
with equation (4) for 65 = 0. Observe that the class of Q-regimes is parameterized by the
numbers a(0) € [0, 1] and 65(0) € [p2, p1].

Here is the main result of this paper.

Theorem 2 Among the class of cooperative regimes whose level functions are continuous
on (0,00), every interim incentive efficient regime is a Q-regime. Furthermore, there exists
an interim incentive efficient regime.

The proof of this theorem has several complicated components, which I attempt to
summarize in more intuitive form here. The general idea is to start with an arbitrary
regime and show how it can be transformed into a Q-regime, improving the payoffs of

11
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Figure 4: Shifting probability mass in the first phase.

all player-types in the process. The proof first establishes that efficiency requires a to
eventually reach the maximum level (one) and remain there forever. Further, defining
S = min{s | a(s) = 1}, it must be that player 2L is indifferent between quitting at every
time between zero and S. Otherwise, one can raise « at times where player 2L strictly
prefers not to quit, forming a new equilibrium that all player-types prefer (player 1 H strictly
$0).'% T show that the indifference condition implies that equation (4) holds on the interval
(0,77). The proof then addresses separately the first two phases of an equilibrium regime
(that is, [0,7}) and [T}, T3]).

On the first phase, I show that it is optimal to shift toward time zero the probability
mass of quitting by the low types. The following heuristic argument provides the intuition
behind this claim. Suppose one starts with an equilibrium regime in which a section of
the first phase of interaction is described by the solid lines in Figure 4. In this region, the
low types quit with positive probability between s’ and s’ + A. Note that §; = 0, = 6 in
the first phase of the equilibrium. Dividing equation (4) by « and integrating reveals that
a(t) = e™0(t)’c for an open set containing [s,s’ + A], where b = (z — y)/z and ¢ is a
constant.

Consider another equilibrium regime constructed by shifting the betrayal mass on
(s',s" + A) to instead occur on (s,s + A). The rest of the regime remains the same.
The new regime is represented by the lines with dashed highlights. It is not difficult to

12This step is simplified by the assumption z = 0. Under this assumption, the incentives of the low types
are preserved when the level function is modified at times where the low types strictly prefer not to quit.
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verify that the low types are indifferent between the old and new regimes. However, the
high types strictly prefer the new regime. To see this, first observe that the component of
the high types’ payoff due to betrayal by the low types is the same under the two regimes.
This is because, although betrayal occurs earlier in the new regime, it occurs at a lower
level which exactly offsets the change in discounting between s and s’.!* The difference
between the two regimes, in terms of the high types’ expected payoff, thus amounts to the
difference on the interval (s + A, s).

Cooperation occurs on the interval (s + A, s’) in both the new and old regimes. The
old regime has a higher probability of cooperation here (since the betrayal mass under
consideration occurs after this interval), but cooperation occurs at a lower level. Relative
to the old regime, the level under the new regime is higher by the multiplicative factor
0(s' + A)t/0(s")°, where 0 is given by the old regime. The probability of cooperation
over the interval in the new regime is lower than in the old regime by the multiplicative
factor O(s' + A)/0(s"). Putting these factors together, the ratio of high types’ payoff from
the interval (s + A, s’) in the two regimes is (s’ + A)'=?/0(s')'". Since 1 — b = y/z < 0
and 0(s' + A) < 6(s'), the high types like the new regime better.

In short, shifting probability mass forward in the first phase of interaction is preferred
because the reduced probability of cooperation in the interim is more than offset by the gain
of cooperation at a higher level. Thus, ITE regimes must have the first phase of interaction
occur arbitrarily quickly. Of course, there is a difference between “arbitrarily quickly”
associated with (i) the limiting payoff of a sequence of continuous #* and (ii) the payoff of
the limiting 6, which has a mass point at time zero. I show that, given z +y < 0, the latter
is preferred by the players.!* The intuition behind this last claim has to do with whether it
is better to have signaling occur in several small stages or one big stage. Times of quitting
by low types can be interpreted as signaling stages, where high types send a signal of their
type by not quitting. Multiple stages of signaling may be valued if the signaling technology
creates value. This would be the case if  +y > 0, meaning betrayal between low types
yields a surplus.

The final component of the proof involves showing that the betrayal mass of player 2L
in the second phase of interaction is optimally shifted later in time. Note that o//a = r
between 77 and the time S at which « reaches one. This follows from the facts that
player 1L does not quit in this interval of time and player 2L is indifferent here. Delaying
the betrayal of player 2L in this interval does not alter the payoff of this player-type.
However, it does increase the payoff of player 1H. Player 1H obtains the same negative
payoff from the cheating event, since changes in the timing are exactly offset by changes in
the level. But this player enjoys a higher probability of cooperation in the interim.

13This follows from the a(t) = e™0(t)~bc identity.
4This is why I allow the level function to be discontinuous at t = 0; efficiency demands it.
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4 Two Special Cases

Recall that Q-regimes are parameterized by the numbers o’ = «(0) € [0,1] and 6§ =
05(0) € [p2,p1]. Theorem 2 establishes that IIE regimes are Q-regimes, but it does not
indicate the values a® and 60 precisely or how they relate to the payoffs of the player-
types. To further characterize the set of IIE regimes and generate simple comparative
statics conclusions, it is helpful to examine two important special cases of the model: the
symmetric case and the one-sided case.

Consider first the symmetric case, distinguished by p; = ps = p. Under symmetry, we
obviously have 6;(0) = 65(0) in any Q-regime. Therefore 69 = py and so Ty = T} = 0.
IIE regimes are thus symmetric and are characterized by the number a®. To learn how o
relates to the payoffs of the players, consider maximizing the welfare function wSY™(m) =
mug + (1 — m)ur, where uy is the equilibrium expected payoft of the high types and uy,
is the same for the low types. Let agym(m, p) denote the initial level characterizing the

sym

regime that maximizes w over all equilibrium regimes.

Lemma 3 agym(m,p) is weakly decreasing in m and weakly increasing in p. Also, m =1
implies T' > 0.

Equilibria that favor the high types have lower initial levels; the initial level is also lower
when players are more pessimistic about each other. Remember that T" defines the time in
the regime at which « first reaches one. Note that T' > 0 means the level of the relationship
rises gradually even after time zero, where both low type players quit with probability one.

Next consider the one-sided case, distinguished by p; = 1. In this setting, there is
maximum delay from the beginning of the game, so player 2L only quits at ¢t = 0 if a° is
large.

Lemma 4 In the one-sided case, every incentive efficient regime has mazimum delay on

[0,T], where T = inf{t | a(t) = 1}.

Regarding the players’ preferences over I1E regimes, note that players 1L, 2H and 2L fancy
o as large as possible; player 1H is more cautious and generally prefers starting small.
Consider a welfare function w°®(m) = muiy + (1 — m)usy, where u;y is the equilibrium
expected payoff of player iH. Let adpe(m,ps) denote the initial level characterizing the
regime that maximizes w°™® over all equilibrium regimes.

Lemma 5 o%,,.(m,p) is weakly decreasing in m and weakly increasing in p. Also, m =1
implies T' > 0.

5 Negotiation and Commitment

The level function « is interpreted as jointly selected by the players. However, in the
analysis thus far I have treated a as exogenous. In this section, I address whether ITE
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regimes would result from negotiation between the players before the partnership game
begins. I also comment on the issue of renegotiation by the players in the course of play.

Initial Selection of the Level Function

Consider the joint selection of « prior to play of the partnership game. There are
three natural settings in which negotiation may take place: (a) the players determine
the level function before obtaining their private information (ex ante), (b) the players
negotiate the level function with the knowledge of their own types (interim), and (c) the
players select a ex ante but then can alter « after learning their own types. Some of the
relevant issues in contracting with asymmetric information have been studied for general
mechanism design problems.?® The notion of “durability” — advanced by Holmstrém and
Myerson (1983) and Crawford (1985)) — provides a way of assessing whether a mechanism
survives renegotiation once players obtain private information (case (c)) and it provides a
consistency criterion for a mechanism to arise from initial interim negotiation (case (b)).
Crawford (1985) proves that interim incentive efficient mechanisms are durable in that
there is a reasonable model of negotiation that supports these regimes as contracted in
equilibrium. The regimes identified in the previous section here are IIE. Thus, they are
supported by a reasonable model of negotiation between the players.

Renegotiation in the Course of Play

I have focused in this paper on commitment to the level function initially selected by
the players. Watson [11] concentrates on renegotiation and studies a particular strong
renegotiation criterion. I wish to point out, though, that there is a sense in which the
regimes identified in the present paper are also renegotiation-proof. Consider the follow-
ing notion of renegotiation-proofness, which is a dynamic version of Maskin and Tirole’s
(1992) “weak renegotiation-proofness.” Suppose some « has been set by contract and the
partnership game begins. At some time s (s may equal zero) play is temporarily suspended
and player ¢ has the option of suggesting an alternative level function & that will be in
effect for the remainder of the game. If & # « then player j decides whether to accept
or reject this new level function. If player j accepts & then play continues with this level
function; otherwise, play resumes with «. Call this renegotiation phase and the ensuing
partnership game from s the “renegotiation game.” The original level function « is weakly
renegotiation-proof if there exists an equilibrium in the renegotiation game in which both
types of player i suggest level function a.1®

It is not difficult to see that optimal Q-regimes are weakly renegotiation-proof. This is
because player j may learn about player i on the basis of player ¢’s suggested level function
at time s. Take a Q-regime with level function a and I will construct an equilibrium in

15Standard references include Holmstrém and Myerson (1983), Myerson (1983), and Crawford (1985),
and more recent work includes Maskin and Tirole (1990,1992) and Cramton and Palfrey (1995).

16Maskin and Tirole (1992) also define “strongly renegotiation-proof” contracts as those that are rene-
gotiated in no equilibrium of the renegotiation game. In the partnership game, no regimes are strongly
renegotiation-proof.
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which the level function is not renegotiated at s. Prescribe that at time s both types of
player i suggest continuing with . When « is suggested, then, player j’s belief about i’s
type does not change and we assume that play resumes with the high types cooperating
perpetually. Suppose further that if player ¢ suggests any other level function then j’s
conditional belief about player i’s type puts probability one on the low type. (Player j
believes that player i is the low type trying to fool him.) In this case, player j either
accepts or rejects & and both players quit immediately as the partnership game resumes.
(When one player is known to be the low type, the best equilibrium involves both players
quitting immediately.) Given these beliefs, player i has no incentive to suggest a level
function other than o and so the original contract on « is not renegotiated. Furthermore,
one obtains the same conclusion with other renegotiation procedures, such as ones in which
the players simultaneously offer new contracts.

The difference between the renegotiation criterion in Watson [11] and the one discussed
above hinges on the whether beliefs about types can be altered contingent on messages sent
in the renegotiation game. In Watson [11], beliefs are not allowed to change directly due
to play in the message game, while here the beliefs may be influenced so. The freedom to
design beliefs in an equilibrium implies that, in the present context, the players have better
ability to commit to their initial selection of c. This commitment has two manifestations.
First, it allows the players to engineer their relationship so that simultaneous betrayal
by the low types occurs rapidly in the first phase of equilibrium, with the level function
gradually rising afterward. Without commitment, the players would hasten the rise of the
level once they became confident of each others’ types. Second, commitment allows the
players to push “residual” betrayal by player 2L as far into the future as is possible, even
though player 1H may wish to change this plan once the time comes. Watson [11] shows
that, without this commitment, the G-regime is selected; this regime features gradual rise of
the level and gradual separation of types throughout the first two phases of equilibrium. "

6 Conclusion

The class of games with variable stakes permits a tractable treatment of the partnership
problem, leading to intuitive results on the nature of starting small and the manner in
which the players learn about one another. Possible extensions of the model include (a)
incorporating a multi-dimensional “level” parameter and (b) enlarging the scope for sig-
naling between the players by including other signaling technologies. Both extensions are
worthwhile pursuits; both present some challenging technical problems. Extension (b) is
attempted in a preliminary and limited way in Watson [10]. Regarding (a), I simply note
that the present analysis relies heavily on symmetries between the types of different players

"The reader is referred to Watson [11] for the details. On a technical note, in Watson [11], my stated
assumptions include z > 0. However, one can verify that all of the analysis goes through with z = 0,
as I assume here. Also, the other paper makes the additional regularity assumptions 7/y > Z/rz and

(z+y)Z/rz > —y(Z/rz —7/y), which are satisfied for § great enough in magnitude.
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and with the way the level affects the payoffs of the players. In the least, the present paper
and Watson [11] together provide a reasonably complete analysis of a class of partnership
problems, which highlights the virtue of starting small.*®

18Rauch and Watson [8] offer a complementary analysis of starting small in an environment with sym-
metric information and joint uncertainty.
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A Proofs

Proof of Lemma 1

This is proved in Watson [11], where the same Lemma appears as Lemma 1. Although
z > 0 is assumed in Watson [11], none of the analysis is altered when z = 0. Q.E.D

Proof of Lemma 2

This is proved in Watson [11], where the same Lemma also appears as Lemma 2. Q.E.D
Proof of Theorem 1

This is an immediate consequence of Lemma 3 in Watson [11]. Q.E.D.

Proof of Theorem 2

Note that, by Lemma 2, any equilibrium regime satisfying (b) of the definition of a
Q-regime is fully characterized by («, 6;), with the understanding that #; = max{6s,p1}. I
begin by proving the following result.

Lemma 6 Take as given a cooperative equilibrium regime (e, 02) for which «v is continuous
on (0,00). Then there exists a Q-regime (&, 63) in which the expected payoff of every player-
type weakly exceeds that of (o, 0s).

I prove the lemma in four steps. I shall focus on the case in which T, > 0. The case of
T, = 0 is simpler, requiring just part of steps 1 and 4.

Step 1. Claim: For the regime («, 0), 01 is continuous on (0,T;]. To prove this claim,
suppose it does not hold and let ¢ € (0,77] be such that 67 () > 0;(t). (Remember that
0 is right-continuous.) From Lemma 2, we know that 65 (t) > 6.(t) as well, so player 2L
quits with positive probability at ¢. But then inequality (3) must hold, implying that « is
discontinuous at ¢, which is a contradiction.

Step 2. 1 next define a new equilibrium regime, based on (v, ). Let al be defined by:
(i) @(0) = a(0), (ii) a(t)z = vor(t) for all t € (0,T%] (where vy, is the continuation value
function associated with (o, 65)), (iii) &(t) = min{1, a(Ty)e" ™)} for all t > T,. We have
a(t) € [0,1] for part (ii) since vor(t) € [0,z]. Furthermore, from step 1 we know vy, is
continuous on (0,77), which implies & is continuous on this interval. In fact, one can easily
verify that & is continuous on (0, 00).

Note that & is defined so that, first, &(t) = «(t) where the low type quit with positive
probability in the original regime and, second, & is set to make player 2L indifferent ev-
erywhere else (until & = 1). It should be obvious that, because z = 0, the incentives of
players 1L and 2L are the same under (&,6;) as they are under («,6s). That is, for the
low types, (&,6s) is incentive compatible. It is also not difficult to show that players 1H
and 2H have no incentive to quit under (&, 6;); at times where low types quit, the high
types’ value of cooperating is weakly greater relative to the value of quitting; at other
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times, the high types strictly prefer to wait. Therefore, (&, 6s) is a cooperative equilibrium
regime. By construction, every player-type fairs weakly better under (&, 6;) than under

(a,92).

Step 3. 1 define yet another regime by modifying (&, 6s). This modification involves
shifting the probability mass for which the low types quit in (0,7}) to a mass point at time
zero. The new regime shall be denoted (@, 0).

I begin the construction with some general analysis. Take any cooperative equilibrium
regime (3, 1) and suppose these functions are continuous on [0, s), with p(s) > p;. Here u
directly defines the cooperation distribution for player 2L and max{u, p;} defines the same
for player 1L. Further suppose the low types are indifferent between quitting at every time
in [0, s). Then, using equation (4), we have

, 1;(t) B
zf3'(t) — rzf(t) — 1) ly —z]B(t) = 0.
Integrating, we obtain
B(t) = e"u(t) e ()

forallt € (0, s), where b = (z—y)/z and ¢ = 3(s)e " p(s)~*. Further, using inequality (2)
and low type indifference, we have

3(0) = ¢ "D(q)c, (6)

where ¢ = 11(0). Equations (5) and (6) define 3 as a function of y; they represent conditions
from the incentives of the low types.

I next use the relationship of equations (5) and (6) to write & as a function of 6, for
the regime (&, 6s). The expected payoff of both players 1H and 2H on the interval [0,77)
(that is, not including the payoff from time 7}) is

3(1 — ¢)a(0) + /0 Y saltye ot dt + /0 N alte T (0 (),

where § = 0; = 0, on [0,77) and ¢ = 6(0). Substituting for & using (5) and (6), and using
c=a(Ty)e ™ (Ty) ! we obtain

c{yu —)D(q)g " + /0 200 tdt — / " ye(t)bef(t)dt}.

0

Evaluating the second integral and combining the terms containing ¢, this becomes

ofala - ap@rt + s+ [ s s @)@

Here 1 write b where it simplifies the expression; otherwise I have substituted its value
(z —y)/z. Note that 1 —b = y/z.
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Next I examine H’s payoff on [0, T}) for modified versions of regime (&, 65). Specifically,
I look at a regime (3, pu) constructed to satisfy equations (5) and (6) on [0,7}) and also to
be equivalent to (&, 6;) on [T7,00). Such a regime is consistent with rationality of the low
types, as the analysis above establishes. Let (3, u) be defined by a parameter m € [0, 1],
such that p(t) = mby(t) + (1 — m)b;5 (T1) for every ¢ € [0,71). The level function 3 is
then defined by (5) and (6). Observe that the regime is exactly (&, 02) when m = 1; as m
decreases, “quitting” probability mass is shifted from the interval (0,7}) to a mass point
at time zero.

Rewriting expression (7) for regime (3, 1), we see that the expected payoff of the high
types in the interval of time [0,7}) is ¢(A + B + C'), where

A=7(1-q)D(q)q " +7¢*x/y,

5= Y S m0s(t) + (1 — m)oz (7)),

C = —7(z/y)0~ (T)¥*,
c=B(T)e™Mp (1) = a(Ty)e ™0, (Ty)

and
0 = u(0) = m3(0) + (1 — m)0y (1),

I shall demonstrate that the regime specified by m = 0 is an equilibrium and that each
player-type prefers it to the one specified by m = 1, in terms of expected payoffs.

To prove the regime with m = 0 is an equilibrium, I only need to demonstrate that the
high types do not wish to quit at ¢ = 0. (The preferences of the low types were addressed
above; the high types’ preferences from T} are captured in the original regime (&, 6,); and
by construction, the high types do not wish to quit on (0,7}).) We know (&,6:) is an
equilibrium and the component of the high types’ payoffs from T; are independent of m.
Also note that Zq'=D(q)c is the high types’ payoff from quitting at the beginning of the
game. It is sufficient to show that E = ¢(A+B+C)—Zq'~°D(q)c is decreasing as a function
of m. Let F = A—q'" *D(q). We have dE/dm = c¢(dF/dq)dq/dm + cdB/dm + c¢dC/dm.
Note that ¢ is not a function of m, dg/dm > 0, dC/dm = 0, and dB/dm < 0 since
y < 0. Thus, I must establish that dF'/dg < 0. Taking the derivative and performing some
algebraic manipulation, we find that dF/dq has the same sign as (z + y)[D(¢q) — D(q)],
where @

PO= =
Recall that z +y < 0 is assumed. Thus, we obtain the desired conclusion under the
condition D(g) > D(q), which simplifies to —7/Z > —y/z.

In fact, the regime with m = 0 is also an equilibrium in the case in which D(q) < D(q).
To see this, recall that D(q) is defined so that the low type is indifferent between quitting
at ¢t = 0 and just after this time; D(q) is a scaling factor on the relation between the level
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at zero and just after zero. We can compute the corresponding scaling factor for the high
types; it is D(q). Thus, if the level is scaled according to D(q), then the high type player is
indifferent between quitting at zero and just after this time. When D(q) < D(q) and D(q)
is used to scale the level, the high type strictly prefers waiting to quitting at ¢ = 0.

Next I prove that all player-types fair weakly better under the regime with m = 0 than
they do if m = 1. To demonstrate that the high types prefer the m = 0 regime, I need to
show that dA/dq < 0. Taking the derivative and performing some algebraic manipulation,
we find that dA/dq has the same sign as z + y, which is nonpositive given Assumption 2.
To see that the low types prefer the m = 0 regime, note that the payoff of the low types as
a function of ¢ is

/ED(q)cz.

We require the derivative of this expression with respect to g to be nonpositive. Evaluating
the derivative, we find that it has the same sign as z + y, which is indeed nonpositive.
Let (@,0,) denote the regime specified by m = 0. To be precise, ,(t) = 65 (T}) for
every t € [0,T1); Oa(t) = O5(t) for every t € [Ty, 00); a(t) = e, (T1) °c for all ¢ € (0,T;];
a(t) = a(t) for all t € [T1,00); and @(0) = D(65 (T1))05 (T1) c. Recall that this proof
formally covers the case in which 77 > 0. If T} = 0 then this entire step is not required.

Step 4. Define T = min{t | @(t) = 1}. The final step involves constructing a new
regime by modifying (@, ) to delay as much as possible the quit mass of player 2L in the
interval [T, T]. Let T; and T be the times that define the phases of regime (@, f,). We
have T, = 0 and T's = T,. By the construction of (@, 52), we know player 2L is indifferent
between quitting at all times in [0,T]. Tt is not difficult to see that there is a unique regime
(&,0y) satisfying: (i) & =@ (for all ¢); (ii) 62(0) = 2(0); and (iii) the regime has maximal
delay on (T3,T) = (0, 7).

The regime (&, ég) is an equilibrium by construction. In addition, it is the case that
6y > 5, meaning that player 2L cooperates for a longer period of time in this regime than
with (@,0,). The payoffs of players 1L, 2L, and 2H are identical between regimes (4, 92)
and (@, ). The payoff of player 1H is weakly greater under (&,6:). To see this, note
that delaying when player 2L quits does not change the discounted (terminal) payoff of the
quit event to player 1H (since &'/& = r on (0,7T); however, the delay gives player 1H an
additional payoft due to cooperation by player 2L.

To summarize the steps, I have identified an equilibrium regime (&, ég) under which
the payoff of every player-type is weakly greater than with the original regime («, ). By
construction, (d, ég) is a Q-regime. This proves the first assertion of the theorem. To prove
that an IIE regime exists, recall that the class of Q-regimes is parameterized by the numbers
a® = a(0) € [0,1] and 69 = 6,(0) € [p2,p1]. It is obvious that payoffs are continuous in
these parameters. Furthermore, the set of parameter values yielding equilibrium regimes (a
subset of [0,1]?) is closed; this follows from continuity of the relevant continuation payoff
expressions. Thus, for each welfare function w(vyy(0),v1.(0), v2(0),v2.(0)) that is strictly
increasing, there is a Q-regime that maximizes w over all equilibrium regimes with level
functions continuous on (0, 00). This proves the second assertion. Q.E.D.
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Proof of Lemma 3

Consider the region of (m, p) for which agym(m, p) is “interior,” meaning agym is less
than D(p) so T' > 0. (The other case is easy to handle.) It is not difficult to show that an
interior solution is unique and continuous in m and p. To prove agym is weakly increasing in

p, by the implicit function theorem it is enough to demonstrate that 9%w Y™ /9adp > 0.
We thus need to show that 0%uj/0a’dp > 0 and 8?uy/0a’dp > 0. Equivalently, we
need 9*uy/0TOp < 0 and 0?uy /0Tdp < 0, where T' and o are related by the identity

a’ = D(p)e™" in an interior solution. Note that

I
Y (T-p)y”
and
ug =7yD(P)(1 —p)e ™ +pe "TTzZ 4 pe "z /r. (8)

Differentiating these expressions, we obtain the desired cross partial conditions. Regarding
ug, the calculations are simplified by first noting that

Oug/OT = —rug +pe "1z 9)

To prove agym is weakly decreasing in m, note that

mu}{(agym(mm)) +(1- m)UIL(O‘(sJym(myp)) =0

in an interior solution. Clearly uf (agym (m,p)) > 0, so it must be that u}(agym(m,p)) <
0. The result then follows. To prove that 7" > 0 in the case of m = 1, first note that if
T = 0 then the high types’ payoff is maximized with a® = D(p). Then it is enough to
demonstrate that, treating the expression for uy in the previous paragraph as a function
of T, duy(0)/dT > 0. Using equations (8) and (9), we have

duy(0)/dT = —ryD(p)(1 — p) — pz + pz > 0,
which completes the proof. Q).E.D.
Proof of Lemma 4
This follows from the argument used in the last step of the proof of Theorem 2.
Proof of Lemma 5
As in the proof of Lemma 3, we can write the payoffs as a function of 7. Note that
urg =Y(1 —p)e™™" + pe Tz + pe " Z)r

and

Ugyy = € TTZ + e Z/r,
where p € (0, 1] captures the fact that it may be necessary to have player 2L betray in a
region (s, 7T for some s < T. If T'= 0 defines an equilibrium regime, then it must be the

case that p = 1. One can then follow the steps used in the proof of Lemma 3 to complete
this proof. Q.E.D.
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