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In this paper we address two issues in modeling natural 
terrain using fractal geometry: estimation of fractal dimension, 
and fractal surface reconstruction. For estimation of fractal 
dimension, we extend the fractal Brownian function approach 
to accommodate irregularly sampled data, and we develop 
methods for segmenting sets of points exhibiting self-similarity 
over only certain scales. For fractal surface reconstruction, we 
extend Szeliski's regularization with fractal priors method to 
use a temperature parameter that depends on fractal dimen- 
sion. We demonstrate both estimation and reconstruction with 
noisy range imagery of natural terrain. D 1% Academic press, Inc. 

1. INTRODUCTION 

Many problems in the analysis of natural surface shapes 
and the construction of terrain maps to model them remain 
unsolved. One reason is that the familiar Euclidean geome- 
try of regular shapes, such as surfaces of revolution, does 
not capture well the irregular and less structured shapes 
found in nature, such as a boulder field or surf washing 
onto a beach. 

Mandelbrot [20-221 proposed fractals as a family of 
mathematical functions to describe natural phenomena 
such as coastlines, mountains, branching patterns of trees 
and rivers, clouds, and earthquakes. Since Mandelbrot in- 
troduced them, fractal sets and functions have been found 
to describe many other environmental properties [7], and 
have received a great deal of attention from scientists, 

This paper addresses two issues in fractal modeling 
I artists, and others. 

(Fig. 1): . 

5 1. Estimating the fractal dimension of natural surfaces 
given range data. Such estimates are descriptors of natural 
terrain that express its roughness. These estimates are valu- 
able for such purposes as mobile robot path planning 
around rough terrain, compression of terrain maps, and 
geological analysis of terrain morphology. 

' Current address: N?T Human Interface Labs, 3-9-11 Midori-cho, 
Musashino-shi, Tokyo 180 Japan. E-mail: arakawa@nttarm.ntt.jp.hil. 

2. Reconstructing natural surfaces, given sparse range 
data and the fractal dimension. Surface reconstruction pro- 
vides knowledge of surface geometry that is valuable for 
such purposes as mobile robot obstacle avoidance, decom- 
pression of terrain data, and realistic terrain visualization. 

The first issue has been explored by a number of authors, 
who have given algorithms for estimating fractal dimen- 
sion. In this paper, we extend that work to the case of 
natural terrain patterns acquired by a laser rangefinder. 
This extension requires handling fairly noisy depth data, 
and handling points that are not spaced regularly over 
the terrain. 

The need to handle irregularly spaced data derives from 
laser rangefinders and camera-based computer vision sys- 
tems, which typically acquire depth data in a sensor-cen- 
tered spherical coordinate system. As one would expect, 
regularly spaced samples in the spherical system map onto 
irregularly spaced samples in a Cartesian system. Figure 2 
illustrates how, in a Cartesian system, a sensor (either 
camera or rangefinder) acquires denser range data from 
closer objects, and sparser range data from farther objects, 
despite a regular sampling in the image. 

The second issue has not received much attention. In 
this paper, we define the natural surface reconstruction 
problem of constructing dense elevation maps of natural 
surfaces, given sparse and irregularly spaced depth data. 
This problem differs from the traditional surface recon- 
struction problem in requiring that the reconstructed sur- 
face realistically reflect the rough, original surface. In con- 
trast to approaches to surface reconstruction that impose 
smoothness constraints, our approach to natural surface 
reconstruction imposes roughness constraints. 

A problem related to the second issue is to compute the 
uncertainty on the reconstructed surface. We have devel- 
oped and demonstrated a Monte Carlo algorithm for com- 
puting this uncertainty [2], but will not present it in this 
paper since it does not directly concern fractal modeling. 

This paper is organized as follows. In Section 2, we 
present an extension to existing fractal dimension estima- 
tion algorithms, enabling them to cope with irregularly 
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FIG. 1. Approach to modeling natural terrain based on fractal ge- 
ometry. 

spaced data. In Section 3,  we present a surface reconstruc- 
tion technique that computes elevation maps at arbitrary 
resolution, yet preserves the roughness of the original pat- 
tern. In the final section, we summarize the findings and 
identify directions for future research. 

2. ESTIMATING FRACTAL DIMENSION 

In this section, we first review related research. Next, 
we define formally some terms related to self-similarity 
and self-affinity. With these definitions in hand, we then 
describe the fractal Brownian function approach, and pres- 
ent results of experiments with synthetic patterns. Finally, 
we extend the approach to handle irregularly spaced data, 
and present results for range images. 

2.1. Related Research 

Several classes of techniques for estimating fractal di- 
mension have been reported in the literature: box-count- 
ing, &-blanket, spectral analysis, and fractal Brownian func- 
tion approaches. 

The box-counting approach counts the number of boxes 
of various sizes which cover a fractal pattern [36]. One 
shortcoming of this approach was identified (and circum- 
vented) by Keller et al. [15], who report that the fractal 
dimension estimated by such methods saturates as it ap- 
proaches 3.0. 

The &-blanket method was proposed by Peleg et al. [25] 
as a variation on the box-counting approach, and they 
applied the method to classification of natural textures. 
The method has been explored by Dubuc [lo], and Dubuc 
et al. [ l l ]  for estimating the fractal dimension of both 
curves and surfaces. 

As suggested by Mandelbrot [21], if the target pattern 
is assumed to be generated under the fractional Brownian 
motion model, spectral analysis methods [16, 261 can be 
applied to estimate the fractal dimension. These methods 
estimate the fractal dimension by linear regression on the 
log of the observed power spectrum as a function of the 
frequency. Wornell [37] proposed a representation of 1 lf 
processes using orthogonal wavelet bases, and applied it to 
various one-dimensional signal processing tasks, including 
estimating fractal dimension with the maximum likeli- 
hood approach. 

Other approaches that do not fit comfortably in the 
above categories have been developed. For example, Mar- 
agos and Sun [23] use morphological operations with vary- 
ing structuring elements to evaluate the fractal dimension, 
and develop an iterative optimization method that con- 
verges to the true fractal dimension. 

FIG. 2. Typical sampling pattern for rangefinder or camera. This figure shows the elevations in a Cartesian system when a scanning rangefinder 
observes a horizontal plane. The sensor acquires denser range data from closer objects, and sparser range data from farther objects. 
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All of these estimation methods apply to regularly sam- 
pled patterns, such as images. They do not apply to irregu- 
larly sampled patterns, such as terrain maps constructed 
from range data. Lundahl et af. [19] and Deriche and Tew- 
fik [9] developed methods to estimate fractal dimension 
based on computing a maximum likelihood estimate of 
the autocorrelation matrix of discrete fractional Gaussian 
noise, which is a discrete version of the changes of frac- 
tional Brownian motion. These methods were demon- 
strated with regularly sampled one-dimensional signals. In 
principle, these methods could be applied to irregularly 
sampled signals also, although at significant computational 
expense. With regularly sampled data, the autocorrelation 
matrix is positive, symmetric, and Toeplitz. Thus, it is rela- 
tively easy to compute the inverse and the determinant 
necessary to compute the likelihood function. In the case 
of irregularly sampled data, the autocorrelation matrix is 
no longer Toeplitz, so inverting the matrix requires signifi- 
cant computational effort. 

The maximum likelihood methods apply well to one- 
dimensional signals, because the rows and columns of the 
autocorrelation matrix correspond to the differences of 
signal values. Indeed, Lundahl et al. [19] applied the 
method to profiles of an image and estimated fractal di- 
mensions of one-dimensional profile signals in various di- 
rections independently. However, the generalization to 
two-dimensional isotropic signals does not appear to have 
been published. 

Unlike all the methods above, the fractal Brownian func- 
tion approach does apply to irregular sampling, because it 
is based on a probabilistic model on the distance between 
data points. This model applies no matter what the spacing 
of samples, so long as the number of samples is sufficient. 
Before describing in detail this approach in Section 2.3, 
we define formally several terms. 

c 

2.2. Definitions 

In a Euclidean space of dimension E ,  consider a set S 
of points x = (x l r  . . ., xE) .  After scaling by r, 0 < r, the 
set S becomes rS, with points rx = ( r x l ,  . . ., rxE). 

The set S is self-similar when S is the union of N distinct 
(nonoverlapping) subsets, each of which is identical, up to  
translation and rotation, to rS. The fractal dimension D of 
self-similar S then satisfies 

(1 1 1 = N P  or D = -log Nllog r. 

ri > 0, determines an affinity v', where 9 transforms x E 
S into q(x)  = ( r l x l ,  . . ., rExE). This operation transforms 
S into q ( S )  by scaling different coordinates by different 
amounts. The set S is self-affine when S is the union of 
N distinct subsets, each of which is identical to the sets 
transformed by affine v'. If the condition of invariance 
under nonuniform scaling is satisfied statistically, the set 
is statistically self-affine (cf. the definition of statistical 
self-similarity). 

In (1) we defined fractal dimension in terms of the self- 
similar set S. We can also define it in terms of the self- 
affine set S [36], but for the purposes of this paper, we 
will define it in terms of one particular class of self-affine 
patterns, those generated by fractional Brownian motion. 

2.3. Fractal Brownian Function Approach 

One class of fractal patterns is created by a process with 
fractional Brownian motion. The fractal Brownian function 
approach applies to this class by fractal patterns. In this 
section, we explain fractional Brownian motion, define 
fractal Brownian functions, and discuss methods proposed 
for using them to estimate fractal dimension. 

Brownian motion B ( t )  is a stochastic process defined 
as follows. 

1. B(0) = constant. 
2. B ( b )  - B ( a )  - N(0,  ( b  - U ) ( T * ) ,  for a I 6.  

Note that B ( b )  - B ( a )  and B ( c )  - B ( b )  are statistically 
independent, for a 5 b 5 c. 

This can be rewritten as 

B(r t )  = r'12B(t). 

A trace of B( t )  requires different scaling factors in the 
two coordinates: r for t ,  but r1l2 for B ( t ) .  Therefore, it is 
self-affine. 

Fractional Brownian motion BH( t )  generalizes Brownian 
motion, and is defined as follows. 

1. BH(0) = constant. 
2. For constant C, 

BH(t) - BH(0) = c [ 1:- ( ( t  - s)"-1'* - ( - ~ ) " - ~ " } d B ( s )  

+ ,/A ( t  - ~ ) ~ - " ' d S ( s ) ] .  

The set S is statistically self-similar if it is composed of N 
distinct subsets, each of which is scaled by ratio r from the 
original, and is identical in all statistical respects to  rS. 
The fractal dimension of statistically self-similar S is given 

A collection of real scaling factors r = ( r l  , . . ., rE),  with 

A trace of BH(t )  exhibits a statistical scaling behavior. If 
the scale t is changed by the factor r, then the increments 
ABH(t) change by a factor 1-5 

by (1). 
AB,(rt)  r" ABH(t) .  
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Traces of fractional Brownian motion are one class of 
fractal patterns. 

Pentland [26] defined a fractal Brownian function as an 
extension of statistical self-affinity that characterizes self- 
affine processes, including fractional Brownian motion. A 
random function f ( t )  is a fractal Brownian function if, for 
all t and At. there exists H in 

which is independent of At, where g(x) is a cumula- 
tive distribution function. In this definition, AfAr = 
f(t + At) - f ( t )  is statistically self-affine, and H is a self- 
affinity parameter, related to the fractal dimension D of 
f ( t )  by D = 2 - H .  If g(x) is a zero-mean Gaussian with 
unit variance, thenf( t )  represents fractional Brownian mo- 
tion BH(t). If, in addition, H = 1/2, then f(t) represents 
classical Brownian motion B(t). 

Interpreting t as a vector quantity t extends this defini- 
tion to higher topological dimensions. In this case, the A? 
appearing in the denominator of (2) must be rewritten as 
the norm IlAtll. If f(t) is a pattern in D-dimensional Euclid- 
ean space, then D = E + 1 - H [36]. For instance, if we 
analyze fractal dimension of natural terrain, we can express 
the terrain as an elevation map f(t) on a horizontal plane 
t = (x, y)  and the fractal dimension can be estimated by 

Pentland [26] proves that under certain conditions (con- 
stant illumination, constant albedo, and a Lambertian sur- 
face reflectance function), a three-dimensional surface with 
a spatially isotropic fractal Brownian shape produces an 
image (i) whose intensity surface is fractal Brownian, and 
(ii) whose fractal dimension is identical to that of the com- 
ponents of the surface normal. He also shows that the 
definition of a fractal Brownian function on intensity I(t)- 
instead of f ( t )  in (2)-can be rewritten as 

D = 3 - H .  

where E(AZliAtll) is the expected value of the change in 
intensity Z(t) over distance IlAtll. Note that AIllAtl1 is al- 
ways positive. 

To evaluate the suitability of this fractal model for im- 
ages of natural surfaces, he observed the empirical distribu- 
tions of intensity differences AZllAtl1 for different distances 
IIAtll. He observed the distributions to be approximately 
Gaussian. Moreover, he computed the standard deviation 
S(AZllAtll) of each distribution, and found the points (log 
((At(/, log S(AIllAtll)) to lie on a line. From this line in log- 
log space, he estimated the slope H ,  which is 

(4) 

Given H,  the fractal dimension of the two-dimensional 
pattern is D = 3 - H. 

Yokoya [38] also assumed that intensity in images 
is distributed by a fractal Brownian function, and that 
g(x) - N(0,  v’). He developed a method for estimating 
fractal dimension similar to Pentland’s. Instead of the stan- 
dard deviation in (4), he used the expected value E(AZl13,11): 

Both methods are reasonably robust against noisy data, 
because they use statistics computed from a large number 
of data points. Yokoya’s method, in particular, tolerates 
zero-mean normally distributed sensor noise, because the 
method implicitly performs an averaging operation. 

The computational complexity of both methods is 
O(iV~Atsearc,,~~) for regularly sampled data, where N is the 
number of data points, and IIAtsearchl( is the maximum search 
size. Because Pentland’s method computes the standard 
deviation, it requires slightly more computation than Yo- 
koya’s method, which computes the first moment. 

2.4. Estimation from Irregularly Sampled 
Elevation Data 

In previous sections, we have discussed fractal dimension 
estimation from image intensity Z(t); here, we consider 
elevation z(d) (with d = (x, y))  instead of [(t). The proce- 
dure for estimating fractal dimension from a set of irregu- 
larly sampled elevations z(d) is stated in the following 
three steps. 

1. Compute statistics of Iz,, - tx+lix.y+riJ. 

In the sensor frame, consider two points on the xy plane: 
(x, y)  and (x + dx, y + dy). The Euclidean distance be- 
tween them is Ad = ddx’ + dy’. We are interested in 
statistical variations in the absolute value of the difference 
in elevation between these two points: AzAd = Iz,,? - 
~ ~ + ~ , ~ + ~ , , l .  Pentland’s method requires the standard devia- 
tion of the distribution of elevation differences; Yokoya’s 
method requires the expected value of the distribution of 
elevation differences. 

Because the data points are distributed irregularly on 
the xy plane in the sensor frame, we must extend the 
original methods, which assume the data is distributed reg- 
ularly, or equivalently, that the sampling interval is con- 
stant. For i = 0, 1, . . . , m, and Adk < Adk+l, we prepare 
counters A i ,  Bi ,  and Ci to correspond to distance Ad,. 
These counters are for computing expected values, stan- 
dard deviations, and numbers of sample pairs, respectively. 
Let E be a small distance that satisfies 0 < E < Ad,, for 
any i. This parameter represents the width of a circular 
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FIG. 3. Accommodating irregular sampling intervals. Because of ir- 
regular sampling, we cannot detect a pair of points located a certain 
distance Ad, away on the xy plane. As a permissible area, we set a circle 
whose width is 2.s around a point ( x .  y )  with z .  If the point ( x  + dx, y + 
d y )  exists in the area, its elevation z ‘  is used to compute A, and B,. 

permissible area including a circle of radius Adj (Fig. 3 ) .  
Suppose there is a data point at ( x  + dx, y + d y )  with 
elevation z’. If [Adj - Ad( is less than E ,  then the point 
lies in the permissible area, and we update the counters 
A,, B j ,  and C, as 

Aj + Aj + ) Z  - ~ ’ 1 ,  Bj + Bj + ( Z  - z’)*, Cj + C, + 1. 

After considering all pairs of data points, we ensure that 
C, is larger than a threshold number of pairs. If Ci is small, 
then we question whether the number of samples was suf- 
ficient to compute reliable statistics, and discard this data. 
Otherwise, we compute the sample standard deviation for 
Pentland’s method by 

and the sample mean for Yokoya’s method by 

2. Plot the points in log-log space and identify linear 
segments. 

For Pentland’s method, the point coordinates are (log Adi ,  
log Shd,).  For Yokoya’s method, the point coordinates are 

Because most natural patterns exhibit self-similarity only 
over certain scales, and not over all scales, it is necessary 
to segment sets of points that are linear. We investigated 
two approaches to this segmentation problem. 

The first approach is polyline fitting using the minimax 
method, as proposed by Kurozumi [17]. In the field of 
document image processing, this technique is frequently 
used to detect line segments. The technique segments the 
given points into several sets of points which distribute 

(1% Ad, ,  log EAd,).  
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within narrow rectangles, i.e., nearly along lines. The width 
of the rectangle must be specified as a threshold. The cardi- 
nality of the sets is a natural criterion for determining 
which should be used to estimate the fractal dimension. 
However, the cardinality is fairly sensitive to the rectangle 
width, thus making it difficult to select the proper threshold 
for this Segmentation technique. 

The second approach employs iterative least-square line- 
fitting [l]. Using this technique, we can construct a set of 
points that lie within a specified distance of the line. This 
technique is not sensitive to changes of the threshold. How- 
ever, the technique selects only the first linear part satis- 
fying the criterion. In the case where several fractal pat- 
terns exist, each with a different fractal dimension, multiple 
linear segments will appear in the log-log plot. Simply 
selecting the first will preclude consideration of the others. 
In these experiments, we use one or the other method; a 
future topic of research is to combine them to identify all 
of the fractal patterns. 

3. Estimate fractal dimension from the slope of linear 
segments. 

When the points lie on a line in the log-log space, we 
can estimate the fractal dimension of the pattern by the 
difference between the Euclidean dimension of the pattern 
and the slope of the line formed by the points. 

2.5. Experiments with Synthetic Patterns 

We implemented the modified method based on the 
fractal Brownian function approach, and applied it to 
sparse synthetic elevation data. We created the data by 
discarding 95% of the data points, selected randomly from 
synthetic fractal images (similar to the tops in Figs. 10-12 
generated by the Successive Random Addition (SRA) 
method [28]). Figure 4 plots actual fractal dimension versus 
the fractal dimension estimated using the modified Yokoya 
method. The estimated values increases monotonically 
with the actual fractal dimension, and no saturation occurs. 
The method tends to overestimate for D < 2.55, and to 
underestimate for D > 2.55. The results are similar, al- 
though not identical, to those from dense synthetic images 

To determine the robustness of the methods against 
Gaussian noise, we repeated these trials on subsampled 
synthetic elevations with additive noise distributed N(0 ,  
a&), added independently to x ,  y and z(d).  The signal-to- 
noise ratio (SNR) is computed as 20 log,, osloN[dB], where 
the (+; is the maximum among the variances of x, y and 
z ( d )  signals. Figure 4 illustrates the results. Table 1 tabu- 
lates the statistics of the fractal dimensions estimated from 
100 sets of elevations with various Gaussian random gener- 
ators. Figure 4 and Table 1 indicate that for SNR of 25 
dB or greater, the method computes reasonable estimates 

(see 111). 
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FIG. 4. Errors with Yokoya’s method with irregularly sampled synthesized data. The graph on the left-hand side plots the real fractal dimension 
against the dimension estimated by the modified Yokoya’s method. The solid line illustrates the ideal relation. The graph on the right-hand side 
illustrates the effect of Gaussian noise. The dotted and dashed lines represent estimates from data without noise and from data with noise with 
SNR = 30, 25, 20, 15, and 10 dB. 

of the fractal dimension, because significant degradation 
cannot be seen compared to the estimates from data with- 
out noise. 

2.6. Experiments with Range Images 

In this section, we apply our method to range images 
acquired with a scanning laser rangefinder manufactured 

by Perceptron [ 181. The sensor acquires range images with 
respect to a spherical-polar coordinate system. Equal sam- 
pling intervals in this coordinate system become unequal 
and irregular when mapped into a Cartesian system. Thus, 
the data points are not equally spaced when expressed in 
Cartesian coordinates. 

We selected eight patterns from range images acquired 

TABLE 1 
Estimation Errors of Fractal Dimensions from Irregularly Sampled Elevations with Different Gaussian Noise 

SNR = 30 dB SNR = 25 dB SNR = 20 dB 
True No noise 
FD error[%] Mean[%] Std. dev. Worst[%] Mean[%] Std. Dev. Worst[%] Mean[%] Std. Dev. Worst[%] 

2.1 8.00 
2.2 5.18 
2.3 3.17 
2.4 1.54 
2.5 0.28 
2.6 0.65 
2.7 1.48 
2.8 2.29 

8.15 1.30 x 10-3 8.31 
5.38 1.26 x 10-3 5.51 
3.20 1.25 x 10-3 3.33 
1.52 1.25 x 10-3 1.66 
0.27 1.23 x 10-3 0.41 
0.68 1.23 x 10-3 0.79 
1.47 1.19 x 10-3 1.56 
2.28 1.17 x 10-3 2.36 

9.16 2.05 X 9.35 
5.96 1.94 X 6.16 
3.50 1.84 x 10-3 3.68 
1.67 1.71 x 10-3 1.83 
0.35 1.58 x 10-3 0.49 
0.63 1.50 x 10-3 0.78 
1.42 1.41 X IO-’ 1.56 
2.24 1.34 x 10-3 2.35 

13.59 3.70 X lo-’ 14.07 
9.02 3.26 x IO-’ 9.38 
5.42 2.90 x lo-’ 5.67 
2.75 2.55 x IO-’ 2.95 
0.88 2.20 x lo-’ 1.06 
0.38 1.89 x 10-’ 0.60 
1.31 1.65 x I O - %  1.52 
2.17 1.52 X 10 ‘ 2.37 
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with the rangefinder. Figures 5-7 illustrate the images, 
which are presented in order of increasing roughness, as 
determined subjectively by the authors. We estimated the 
fractal dimension of the regions indicated by white rect- 
angles. 

Before applying the procedures to estimate fractal di- 
mension, we checked whether the data acquired by the 
rangefinder satisfies the conditions on fractal Brownian 
functions stated in (2). Figure 8 histograms z,,~ - zxtdx,ytdy 
for Pattern 2, with Ad = 0.4, 0.6, and 0.8 m. From the 
figure it is clear that the condition in (2), that g ( x )  be a 
cumulative distribution function, is satisfied. We conclude 
that the patterns are fractal Brownian functions. 

A further condition on the distributions, imposed by 
Yokoya’s method, is that they are normal. We conducted 
x2 tests for Gaussianity and observed negative results, i.e., 
that the probabilities of the data being normally distributed 
were quite low. This suggests that it is not probable that 
the points were created by a fractional Brownian motion 
process (which is a special case of a fractal Brownian func- 
tion). However, to the extent that the distributions are 
symmetric, and exhibit a central tendency, there is some 
justification in proceeding to apply Yokoya’s method, de- 
spite the negative 2 test results. 

Figure 9 shows the result of applying Yokoya’s method 
to the range image regions: the points (log Ad, log EAd) 
segmented by iterative least-square fitting. The points dis- 
tribute linearly, therefore, we observe self-similarity in all 
of these natural terrain patterns. On some patterns, plotted 
points distribute in several sets of linear parts. If we intend 
to estimate all fractal dimension in such distribution, seg- 
mentation by polyline fitting is appropriate. However, we 
must set a parameter of allowable error for fitting, because 
the segmentation results are highly sensitive to the pa- 
rameter. 

Table 2 lists the fractal dimensions estimated by Yo- 
koya’s method, with both segmentation techniques. Some 
of the results for segmentation by polyline fitting required 
careful selection of the amount of allowable error. We also 
illustrate in parentheses the fitting error normalized by log 
E(AzAd) .  All errors are small enough to determine that 
the patterns are fractal. Moreover, the rows are ordered 
by roughness, as perceived by the authors. The order of 
estimated fractal dimension correlate strongly to the intu- 
itive order (the last three patterns-sandy flat floors-are 
almost identical). These results suggest that the fractal 
dimension estimated can be utilized as a measure of 
roughness of natural terrain. 

The computational complexity of the method utilized 
here is O(W), where N is the number of pixels, because 
it is necessary to calculate distances between all pairs of 
pixels in order to determine which pairs lie in the permissi- 
ble area. On a Sun4/40 with 24 MB of physical memory, 
estimating the fractal dimension for Pattern 2 (10,000 pix- 

els) requires 1.2 X 10’ s, and Pattern 5 (19,600 pixels) 
requires 5.5 x lo3 s. 

3. FRACTAL RECONSTRUCTION OF 
NATURAL SURFACES 

The surface reconstruction problem can be formulated 
as follows. Given a scattered set of surface elevation mea- 
surements, produce a complete surface representation sat- 
isfying three conditions: 

It must take the form of a dense array of inferred 

It must pass approximately through the original data 

It must be smooth where new points are inferred. 

measurements with regular spacing. 

points. 

The surface reconstruction problem may be called a 
fitting problem by computer graphics researchers, and an 
approximation problem by others. It is closely related to 
the surface interpolation problem, for which the second 
condition requires the surface to pass exactly through the 
original data points. 

The smoothness constraint in the third condition is inap- 
propriate for natural surfaces, which as a rule exhibit 
roughness over a wide range of scales [7]. Thus, for the 
natural surface reconstruction problem, the third condition 
above becomes the following: 

It must be realistically rough where new points are in- 
ferred. 

This revised condition imposes a requirement that the 
roughness of the original pattern be known. In turn, this 
imposes a requirement that the surface reconstruction 
techniques adapt in a nonuniform manner to the roughness 
of the original pattern. 

In this section, we use the estimated fractal dimension 
to control the roughness of the reconstructed surfaces. 
Specifically, we estimate the fractal dimension at a coarse 
scale (given by the spacing of the sensed range data) and 
use it at a finer scale (between range data samples). This 
approach relies on the property that as scale changes, the 
fractal dimension does not. 

3.1. Related Research 

The surface reconstruction problem has been formulated 
as an optimization problem, and solutions have been ob- 
tained through relaxation methods. For example, Grimson 
[13] suggested that given a set of scattered depth con- 
straints, the surface that best fits the constraints passes 
through the known points exactly and minimizes the qua- 
dratic variation of the surface. He employed a gradient 
descent method to find such a surface. Extending this ap- 
proach to use multiresolution computation, Terzopoulos 
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Pattern 1 

Pattern 2 

Pattern 3 

FIG. 5.  Rangefinder images ( 1 ) .  The figure illustrates image pairs: processed range (left) and raw reflectance (right). Only the range images are 
used to estimate fractal dimension. 
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- 
Pattern 5 

-- 
Pattern 6 

FIG. 6. Rangefinder images (2). 
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Pattern 7 

Pa t te rn  8 

FIG. 7. Rangefinder images (3). 

[33] proposed a method minimizing the discrete potential 
energy functional associated with the surface. In this for- 
mulation, known depth and/or orientation constraints con- 
tribute as spring potential energy terms. Poggie et al. [27] 
reformulated these approaches in the context of regular- 
ization. 

Discontinuities in the visible surface have been a central 
concern in the approaches taken by Marroquin with Mar- 
kov random fields [24], by Blake and Zisserman with weak 
continuity constraints [4], and by Terzopoulos with contin- 
uation methods [35]. 

Burt [8] developed a method that relies on locally fitting 
polynomial surfaces to the data. The method achieves com- 
putational efficiency through computation by parts, where 
the value computed at a given position is based on pre- 
viously computed values at nearby positions. 

Boult [5] developed surface reconstruction methods 
based on minimization with semireproducing kernel 
splines, and with quotient reproducing kernel splines. He 

compared the time and space complexity of these and other 
methods for a number of different cases. 

Stevenson and Delp [29] presented a two-stage algo- 
rithm for reconstructing a surface from sparse constraints. 
The first stage forms a piecewise planar approximation to 
the surface, and the second stage performs regularization 
using a stabilizer based on invariant surface characteristics. 
By virtue of the selection of stabilizer, the algorithm is 
approximately invariant to rigid 3D motion of the surface. 

The natural surface reconstruction problem has received 
less attention than the surface reconstruction problem. In 
the field of approximation, Barnsley [3] introduced iterated 
function systems with attractors that are graphs of a contin- 
uous function f that interpolate a given data set { ( x i ,  y ; ) }  
so that f ( x i )  = y ; .  It appears that these functions are well 
suited for approximating fractal functions. Barnsley con- 
centrated on existence proofs and moment theory for these 
functions, and there does not appear to be a firm connec- 
tion to the issues at hand. 

. 
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Z(d+D)-Z(d) 
Histogram of Pattern 2 with Ad = 0 4 m 

z(d+D)-z(d) ~ 

Histogram of Pattern 2 with Ad = 0.6 m 

Z(d+O)-Z(d) 
Histogram of Pattern 2 with Ad = 0.8 m 

FIG. 8. Empirical distribution functions. These graphs illustrate histo- 
grams of z ~ . ~  - zr4,, ,,,.,,, with Ad = ddx2 + dy2 on Pattern 2. 

Yokoya et al. [39] present a technique for interpolating 
shapes described by a fractional Brownian function. The 
technique follows a random midpoint displacement ap- 
proach [28]. At each level of recursion, the midpoint is 
determined as a Gaussian random variable whose ex- 
pected value is the mean of its four nearest neighbors. 
Next, the technique displaces this midpoint by an amount 
that depends on the fractal dimension and the standard 
deviation of the fractional Brownian function. Thus, their 
technique is both stochastic and adaptive. However, there 
are key limitations: 

1. The technique requires an equal spacing between 
samples of the original pattern. 

2. The technique cannot generate stationary random 
fractals. This is a result of a compromise between compu- 
tational expense and generality. 

3. The technique, like a midpoint displacement 
method,’ cannot generate stationary random fractal incre- 
ments [21]. 

I Some modified techniques 128, 30) have been proposed to solve the 
nonstationary increment problem. 

I I I 
3.0 -2.5 -2.0 -1.5 -1.0 0.5 0.0 0.5 1.0 

Result on Pattern 2 (slope=0.455) 
IOQ d 

log d 
Result on Pattern 4 (slopr=0.766) 

1 1 
4 0  -2.5 -2.0 -1.5 -1.0 0.5 0.0 0.5 l!O 

log d 
Result on Pattern 6 (slope=0.889) 

FIG. 9. Results with Yokoya’s method on rangefinder images. These 
graphs illustrate the segmented points and the lines fitted to them. The 
label (log d, log E ( d ) )  corresponds to (log Ad, log EA,,) in the text. 

Szeliski [32] showed that regularization based on the 
thin-plate model and weak-membrane model generates 
fractal surfaces whose fractal dimensions are 2 and 3. 

TABLE 2 
Fractal Dimensions Estimated with Different 

Linear Segmentations 

Pattern D (error) LSF D (error) Polyline 

1 2.691 (0.012) 2.661 (0.025) 
2.545 (0.021) 2.512 (0.016) 2 

3 2.498 (0.016) 2.486 (0.014) 
2.234 (0.024) 2.239 (0.025) 4 
2.210 (0.009) 2.196 (0.010) 5 

6 2.111 (0.018) 2.118 (0.021) 
7 2.090 (0.009) 2.102 (0.014) 
8 2.038 (0.018) 2.010 (0.022) 
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FIG. 10. Reconstruction of synthetic surface (D = 2.3) using Szeliski’s method. (top to bottom) Synthetic original, subsampled. and recon- 
structed surfaces. 

respectively. He then developed a probabilistic method 
for visual surface reconstruction using Maximum A Poste- 
riori (MAP) estimation based on the fractal prior (see 
Section 3.2). The method generates surfaces whose fractal 
dimension lies between 2 and 3. Szeliski’s approach range data from natural terrain. 

provides the central inspiration for this work. Our contri- 
bution is to extend his approach, amending a number 
of technical details concerning the temperature parame- 
ter, and applying the extended approach to nonsynthetic 
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,5 18 

FIG. 11. Reconstruction of synthetic surface (D = 2.5) using Szeliski's method. (top to bottom) Synthetic original, subsampled, and recon- 
structed surfaces. 
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FIG. 12. Reconstruction of synthetic surface ( D  = 2.7) using Szeliski's method. (top to bottom) Synthetic original, subsampled. and re( 
structed surfaces. 

:on- 
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FIG. 13. Scaling behavior of original (left) and reconstructed (right) surfaces. 

1 3.2. Regularization Using Fractal Priors 

interpolating sparse elevation data that uses MAP estima- 
tion, and fractal prior distributions. In his formalization, where ulJ  is an absolute elevation computed using an inter- 
the maximization of a posteriori probability is similar to polation matrix I that computes absolute elevations from 
the minimization of energy performed by regularization. the relative elevations in the multiresolution decomposi- 
For energy minimization, he employs a multigrid represen- tion, and d,,] is a given elevation value. The term c , , ~  repre- 
tation of the data called the relative multiresolution decom- sents the confidence in d,, typically given by the inverse 
position. For surface reconstruction, he minimizes the en- of the measurement error. 
ergy in each layer I (from the coarsest layer to the finest The term E,(u) in (6) is the prior constraint energy, 
layer) formulated as a blend of the thin-plate and weak-mem- 

brane models (called "splines under tension" by Terzo- 

Ed = - cI. ] (u, .J - ',.]). 
Szeliski [31, 32) developed a Bayesian framework for 2 ( 1 . 1 )  

E'(u/) E&u/, d) + E;(U/)/T,. (6) POUlOS (341) 

The term E,/ in (6) is the data compatibility energy 

TABLE 3 
Temperatures Determined 

Empirically for Synthetic Data 

D T P  (D - DI 

2.2 9.5 x 10-6 7.0 x IO-' 

2.4 8.9 x 10- 5 3.0 x 
2.5 3.0 x 1 0 - 4  1.9 X lo-> 
2.6 7.5 x IO-J 8.0 x 

2.3 3.0 x 10-5 2.1 x 10-2 

2.7 3.0 x I O  1.0 x 10-3 
2.8 9.5 x IO-'  5.1 x 10-2 

where the weights are 

(7) 

(8) 

WP = (277Tf;)lW:), 

wfn'l = 2 m + D - 4 )  / wm 3 2 (  

and D is the fractal dimension. 
The parameter Tp in (6) is similar to the temperature 

for the Gibbs sampler developed by Geman and Geman 
[12]. At higher temperatures, the local conditional proba- 
bility distributions become more uniform. 
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FIG. 14. Surfaces reconstructed from synthetic data using nonzero temperatures. From top to bottom, the fractal dimensions are set to 2.3. 2.5, 
and 2.7. The original synthesized and subsampled elevations are the same as for Figs. 10-12. 
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FIG. 15. Scaling behavior of reconstructions using nonzero temperatures. 

Using (7), Szeliski found empirically that minimizing the 
energy of only the finest layer, the prior model behaves 
as a fractal whose dimension is D in the vicinity of fre- 
quency fo. Equation (8) changes the frequency, thus vary- 
ing the fractal dimension of different resolutions in the 
multiresolution decomposition. 

Szeliski applied Gauss-Seidel relaxation for energy min- 
imization. The energy can be rewritten in the quadratic 
form 

(9) 

(10) 

1 
2 

1 
2 

E ( u )  = -uTAu - U% + c 

= - (U - u * ) ~  A(u - u*) + k,  

with A = A,/ T, + Ad, b = A d ,  and the optimal elevations 
that minimize the energy u* = A-’b. Because the energy 
term is quadratic, the relaxation method reaches the mini- 
mum energy, and the optimal elevations are computed 
with T, = 0. 

which is a Gaussian with mean u+ and variance Tplaij (also 
called a Gibbs or Boltzmann distribution). Thus, setting 
Tp to a nonzero value changes the variance (“noise”) of 
the reconstructed surface. 

3.3. Effect of Temperature on Surface Reconstruction 

The temperature parameter Tp controls the diffusion of 
the local energy distribution [32]. Do the fractal character- 
istics of the reconstructed surface depend on T,? 

TABLE 4 
Temperatures Determined by New 
Formalization for Synthetic Data 

D D* T,,, (D* - D(  

2.2 2.236 4.4 x 10-6 6.0 x lo-’ 
2.3 2.308 1.5 x 10.’ 4.4 x 10-2 
2.4 2.390 4.5 x lo-< 2.6 x 10 ’ 

1.8 x lo-’ 2.5 2.476 1.4 x 
1.7 x 1 0 - 2  2.6 2.561 4.1 x 1 0 - 4  

The probability distribution corresponding to the energy 2.7 2.643 1.3 x 10.’ 3.5 x 1 0 - 2  
2.8 2.716 3.8 x 10-3 5.6 x lo -?  function is 
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FIG. 16. Surfaces reconstructed using temperatures computed by new formalization. From top to bottom. the fractal dimensions are set to 2.3. 
2.5, and 2.7. The original synthesized and subsampled elevations are the same as for Figs. 10-12. 
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To answer this question, we synthesized eight elevation 
maps with fractal dimensions varying from 2.1 to 2.8. We 
subsampled these elevation maps, set Tp to zero, and then 
reconstructed the subsamples. Figures 10-12 depict the 
reconstructed surfaces for fractal dimensions 2.3, 2.5, and 
2.7. In each case, the reconstructed result is too smooth, 
as compared to the original synthetic patterns. 

Figure 13 plots estimates, using Yokoya’s method, of 
the fractal dimension of the eight reconstructed surfaces. 
More precisely, the figure illustrates the scaling characteris- 
tics of the underlying data: the abscissa represents logarith- 
mic scale (e.g., over what size neighborhood is the estimate 
computed), and the ordinate represents logarithmic spatial 
variation (e.g., the amount of variation in surface eleva- 
tion). If the underlying data possesses fractal characteris- 
tics, then the curve in the log-log plot will be linear over 
a wide range of scales, and the slope of the line will vary 
inversely with the fractal dimension (the greater the slope, 
the smaller the fractal dimension). 

Results for the eight original synthetic data sets appear 
on the left-hand side of Fig. 13. The curves exhibit linear 
behavior over most scales; the departure from linearity at 
larger scales is an artifact of the technique for estimating 
the fractal dimension. 

Results for the reconstructions appear on the right-hand 
side of Fig. 13. To zeroth order, the curves are parallel, 
implying (incorrectly) that the surfaces have the same frac- 
tal dimension. To first order, analysis reveals that the slope 
in each of the plots is too steep at higher frequencies 
(smaller scales); i.e., the fractal dimension of the recon- 
structed surfaces is too low. This is also apparent, qualita- 
tively, in the reconstructions shown in Figs. 10-12. These 
results demonstrate that surface reconstruction using a 
temperature of zero produces overly smooth surfaces, at 
least at higher frequencies. Thus, the answer is affirmative 
to the question of the dependence of fractal characteristics 
on Tp .  

Since setting Tp to zero produces unsatisfactory recon- 
structions, what is the proper Tp for a given fractal dimen- 

TABLE 5 
Temperatures Determined by New 

Formalization for Range Data 

2.12 1.0 x 10-7 1.0 x 10 ’ 
2.23 1.8 X 10.’ 4.5 x 10-2 
2.51 1.0 x 10-4 1.6 x 10 
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FIG. 18. 
and bottom). 

Surfaces reconstructed from range data. The range data was acquired for rocky terrain (top) and two different sandy terrains (middle 

sion D? To answer this question empirically, let Syn ( ) 
synthesize a dense fractal pattern of fractal dimension D,  
Sub( ) subsample a pattern, Rec( ) reconstruct a pattern 
using regularization with temperature T p ,  and Est( ) esti- 
mate the fractal dimension of a pattern (again, using Yo- 
koya’s method). Let D be given by 

Est(Rec(Sub(Syn(D)), T,)) = b. (11) 

The proper temperature Tp for D is that which minimizes 
the difference between D and D. When searching for the 
minimum difference, we use the estimated fractal dimen- 
sion D* = Est(Syn(D)) instead of D, because the estimated 

fractal dimension is apt to be smaller than the real fractal 
dimension, especially for D > 2.5. 

Table 3 records seven empirically determined tempera- 
tures, and the differences between the fractal dimension 
of the original patterns and of the reconstructed results. 
All the differences are small, lending credence to the con- 
clusion that setting Tp appropriately permits the method 
to preserve the roughness of the original patterns, even 
on reconstructed surfaces, 

Figure 14 shows surface reconstructions using three of 
the empirically determined temperatures. The recon- 
structed surfaces are reasonably rough compared to the 
original synthetic patterns. 

Figure 15 plots the estimated fractal dimension of the 
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FIG. 19. Scaling behavior of reconstructions from range data with new temperatures 

reconstructed results. The curves display fairly linear be- 
havior over most scales, and unlike the right-hand side of 
Fig. 13, they no longer appear parallel or exhibit steep 
slopes at higher frequencies. 

3.4. Temperature as a Function of Fractal Dimension 

The results from the previous section demonstrate con- 
trol over the fractal characteristics of the reconstructed 
surface by setting appropriate nonzero temperatures. 
However, the temperatures do  not appear to have any 
meaning regarding fractal dimension; the temperatures 
simply control the amount of local diffusion [32]. In this 
section, we formalize the temperatures as a function of 
fractal dimension using an analogy to the SRA method. 

The SRA method synthesizes fractional Brownian mo- 
tion. It adds normally distributed random values to eleva- 
tions in the multigrid representation. The variances are 
controlled according to the resolution of each layer I by 

where D is the fractal dimension of the pattern to be syn- 
thesized. 

Szeliski’s method adds a normally distributed random 
value to the elevations of each layer in the multigrid repre- 
sentation by setting a nonzero temperature T,,. The tem- 
perature is proportional to the variance of the Gaussian, 
and controls the amount of diffusion in the high-frequency 
domain. His method uses the same temperature (same 
variance) for all layers. 

In order to synthesize patterns that preserve fractalness 
at higher frequencies, we set the temperature TI,/ at each 
layer I by analogy with the SRA method 

where T,,(D) is the temperature for the finest-resolution 
layer, and u0 is the standard deviation of elevation values 
sampled at the finest resolution. 

The two unknowns are q, and k .  Pentland’s method for 
fractal dimension estimation [26] directly computes the 
parameter 0,. To compute k,  it suffices to know one tem- 
perature Tpo(D),  and then to follow the iterative method 
taken in the previous section to determine the proper tem- 
peratures. 

To test this formalization of temperature as a function 
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FIG. 20. Surface reconstructed from digital terrain data for Mt. Erebus. Original elevation data (top) and reconstructed surface when the fractal 
dimension is set to 2.65 (bottom). 

of fractal dimension, we applied it to three different types 
of data: synthetic data, range data from a scanning laser 
rangefinder, and digital terrain map data. 

For synthetic data, we first determined Tpo(D) for D = 
2.4. From this known temperature, it follows that k = 4.7 X 
lo-’. Using this value of k ,  Eqs. (12) and (13) compute 
temperatures for different D. Table 4 records the com- 
puted temperatures, as well as the difference between the 
fractal dimension D* = Est(Syn(D)) and the fractal dimen- 
sion D given by (1 1). The differences between D* and b 
are negligible. 

Figure 16 illustrates the surfaces reconstructed using 
these new temperatures. The surfaces appear appropri- 
ately rough and highly realistic. Figure 17 plots the esti- 
mated fractal dimension of the reconstructed surfaces. It 
shows that the reconstructed surfaces maintain linearity 
over a wide range of scales. 

We acquired range data from laser rangefinder images 

of a test area with sand on the ground, and some meter- 
scale rocks. We selected a relatively smooth area of the 
terrain consisting mainly of sand. We computed the proper 
temperature for this pattern and calculated’ k as 4.0 X 
lo-*. Table 5 shows the temperatures computed using this 
value of k. The differences between D* and b are compara- 
ble to those observed for synthetic data (Table 4). 

Figure 18 shows three reconstructed surfaces. The top 
surface is reconstructed from data corresponding to a 
rougher area of the terrain consisting mainly of rocks, and 
the other surfaces are reconstructed from data correspond- 
ing to smoother areas consisting mainly of sand. Using the 
same parameters ( k ,  go, Tpo), the method adapts to the 
roughness of the original surface, reconstructing the rocky 

’The parameter k is constant for patterns of any fractal dimension. so 
long as they are generated by the same process. For this new data. a 
different generating process acts. Therefore, we must recompute k .  
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area rather roughly, and reconstructing the sandy area 
rather smoothly. 

Figure 19 plots the scaling behavior of the reconstructed 
elevation maps. These are not as linear as for the synthetic 
data. However, they do exhibit enough of a linear tendency 
to demonstrate scale-invariance. 

We acquired digital terrain data from an aerial cartogra- 
phy database of Mount Erebus, an active volcano in Ant- 
arctica. We estimated the fractal dimension D* to be ap- 
proximately 2.3, with a. = 68.0. We used the value of k 
determined above for the range data, and reconstructed 
the sparse data. Figure 20 shows that the method produces 
results that are dense and fairly realistic, including even 
the shape of craters. 

Our approach requires large amounts of computation. 
Reconstruction of a 256 X 256 elevation map typically 
consumes around 2 h on a Sun4/75 with 24 MB physical 
memory. The surface reconstruction approach has been 
implemented on a massively parallel machine, reducing 
substantially the computation time (a speedup of 100 for 
a 64K MasPar) [40]. 

4. DISCUSSION 

In this paper, we addressed two issues in fractal modeling 
of natural terrain: estimation of fractal dimension, and 
fractal surface reconstruction. 

With respect to the first issue, we investigated the fractal 
Brownian function approach to the problem of estimating 
fractal dimension. We extended published algorithms to 
accommodate irregularly sampled data supplied by a scan- 
ning laser rangefinder, and applied the extended methods 
to noisy range imagery of natural terrain (sand and rocks). 
The resulting estimates of fractal dimension correlated 
closely to the human perception of the roughness of the 
terrain. We conclude that it is reasonable and practical to 
model natural terrain as a fractal pattern, and that the 
fractal dimension is a reasonable measure of roughness 
of terrain. 

Problems remaining to be addressed include determin- 
ing the region in which to conduct fractal analysis, identi- 
fying which linear parts of the log-log curves are most 
significant, and segmenting multifractal patterns. We may 
need further simulations using different noise models (e.g., 
non-Gaussian additive noise, quantization, and truncation) 
in order to study the sensitivity of methods to estimate 
fractal dimension, and to determine how appropriate the 
estimation is. 

With respect to the second issue, we described an ap- 
proach to fractal surface reconstruction that produces 
dense elevation maps from sparse inputs. The reconstruc- 
tion stochastically performs energy minimization using reg- 
ularization, in which the prior knowledge terms include 
roughness constraints, and in which the temperature term 

depends on the fractal dimension. We demonstrated the 
method using sparse elevation data from rugged, natural 
terrain, and showed that it adaptively reconstructs surfaces 
depending on the roughness of the original data. The re- 
constructed elevations are realistic and natural. 

As future work, we consider two topics. First, our surface 
reconstruction approach does not take discontinuities into 
account. Natural terrain contains many discontinuities, 
such as step edges around stones. Our method does not 
produce realistic results reconstructing sparse depth data 
with discontinuties. Many researchers have considered this 
problem and have derived methods that we expect will fit 
well with our approach. 

In nature and more frequently in artificial scenes, many 
patterns are not truly self-similar, but are anisotropic and/ 
or the fractal dimension changes with scale or changes 
spatially. Several methods for handling such patterns have 
been reported in the literature. Bruton and Bartley [6] have 
shown a method to generate fractal images with spatially- 
variant characteristics. Kaplan and Kuo [14] proposed a 
method to synthesize scale-variant fractal textures using 
the extended self-similar (ESS) model. Our approach can- 
not be applied to such patterns directly. However, the 
MAP-based method can interpolate the surfaces with spa- 
tially-variant roughness [32]. Further, our approach can 
change the roughness at a specific scale by controlling the 
temperature at each resolution. 

Another future work should identify the sensitivity of 
our fractal interpolation method, determining the change 
in fractal dimension caused by small variations in the tem- 
perature settings. This work will be important for applica- 
tions requiring small surface roughness tolerances. 

In conclusion, fractal dimension is a powerful descriptor 
of natural terrain, a descriptor related to the ambiguous 
property of roughness. We expect that our contributions- 
analysis and surface reconstruction using fractal dimen- 
sion-will advance fractal modeling of natural terrain be- 
yond mathematical curiosity, and closer to practical 
applications. 
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