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phological openings and closings. The class of alternating
filters (AFs), composed of morphological openings andIn this note, an efficient class of alternating sequential filters

(ASFs) in mathematical morphology is presented to reduce the closings, has been demonstrated to be useful in image
computational complexity in the conventional ASFs about a analysis applications. Sternberg [3] introduced a new class
half. The performance boundary curves of the new filters are of morphological filters called alternating sequential filters
provided. Experimental results from applying these new ASFs (ASFs), which consist of iterative operations of openings
to texture classification and image filtering (grayscale and bi- and closings with structuring elements of increasing sizes.
nary) show that comparable performance can be achieved

Transformations that apply alternating sequences of open-while much of the computational complexity is reduced.
ings and closings introduce less distortion than individual
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openings and closings with the largest structuring element
[2]. Schonfeld and Goutsias [4] have shown that ASFs are
the best in preserving crucial structures of binary images inI. INTRODUCTION
the least difference sense. The ASFs have been successfully
used in a variety of applications such as remote sensingMathematical morphology, a set-theoretical method,

provides an approach to digital image processing based on and medical imaging [5, 6].
A noticeable problem of applying ASFs to image analy-the geometrical shape of an object. It was first investigated

by Matheron [1] and Serra [2]. Using an a priori determined sis is their high computational complexity. For a structuring
element of size n, the computational complexity is thestructuring element, features in an image can be extracted,

suppressed, or preserved by applying morphological opera- fourth power of n when the opening–closing operation is
used. This leads to a huge number of operations. In thistors. Morphological operations tend to simplify image data

while preserving their essential shape characteristics. The note, an efficient class of ASFs based on the adjunctional
property of morphology is proposed to reduce the compu-morphological operations can be employed for many pur-

poses including digitization, enhancement, compression, tational complexity. Moreover, the performance bound of
these new ASFs is derived. To illustrate the analyticalrestoration, segmentation, and description.

An important application in mathematical morphology results, image filtering and texture classification applica-
tions are adopted.is to use a morphological filter to efficiently extract the

crucial structures of binary images. Morphological filtering This paper is organized as follows. In Section II, the
definitions of alternating sequential filters are reviewed.was developed by Matheron [1] with the inception of mor-
Section III describes morphological adjunction and the
new class of alternating sequential filters. Their properties* This work was supported by the National Science Council in Taiwan,
and numerical bound are derived in Section IV. Experi-Republic of China, and by the New Jersey Institute of Technology,

Newark, New Jersey. mental results and discussion of texture classification and
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image filtering applications are given in Section V. Conclu- [8, 9], of each layer can be used in many applications, e.g.,
feature classification and recognition.sions are drawn in Section VI.

III. THE NEW CLASS OF ASFSII. PRELIMINARY: ALTERNATING
SEQUENTIAL FILTERS

A. Morphological Adjunction
Alternating sequential filters (ASFs) in morphology A pair of morphological operators («, d) on Z2 is called

[3] are a combination of iterative morphological filters an adjunction [7] if
with increasing sizes of structuring elements. They offer a
hierarchical structure for extracting the geometrical char-

d(Y) # X ⇔ Y # «(X), where X, Y # Z2. (7)acteristics of objects. It had been proved that AS filters
have less distortion in feature extraction than those filters

That is, if («, d) is an adjunction, then « is an erosion andwhich directly process the images with the largest struc-
d a dilation. For each erosion there exists a unique dilationturing element. The alternating filter is composed of mor-
such that this pair constitutes an adjunction.phological openings and closings whose primitive morpho-

Let a function f be dilated by a structuring element Blogical operations are dilation and erosion. Detailed
n times, denoted as f(dn)B. That is equivalent to f % nB.definitions of dilation, erosion, opening, and closing are
This notation is also applied for erosions n times as «n. Ifgiven in [2, 3].
(«, d) is an adjunction, it has the following property [10].Let X denote a binary image and B a binary structuring

element. The alternating filter is defined as an opening PROPOSITION 1. Let a filter be of the form c 5 «e1dd1

followed by a closing or a closing followed by an opening «e2. If e1 5 d1 5 e2 , this filter can be reduced to
and is represented as

c 5 «e1de1«e1 5 «e1. (8)
AFB(X) 5 (X n B) ? B (1)

Similarly, a filter of the form f 5 dd1«d1dd1 can be reduced to
or

f 5 dd1«d1dd1 5 dd1. (9)
AFB(X) 5 (X ? B) n B. (2)

Filters that are of the form
Another type of AF is defined as

c 5 «enddn . . . «e2dd2«e1dd1 (10)
AFB(X) 5 ((X n B) ? B) n B (3)

are called adjunctional filters [7]. There exists a large
amount of redundancy in adjunctional filters which canor
be removed.

AFB(X) 5 ((X ? B) n B) ? B. (4)
B. Redundancy Removal in ASFs

An alternating sequential filter (ASF) is an iterative In order to simplify the notations of different ASFs,
application of AFB(X) with increasing sizes of structuring several definitions are given to represent different types
elements, denoted as of ASFs as follows.

DEFINITION 1. An ASF with AFB(X) having the form
ASF(X) 5 AFBN

AFBN21
. . . AFB1

(X), (5)
of Eq. (1) is called a TYPE-I ASF.

DEFINITION 2. An ASF with AFB(X) having the formwhere N is an integer and BN , BN21 , . . . , B1 are structuring
of Eq. (2) is called a TYPE-II ASF.elements with decreasing sizes. The BN is constructed by

DEFINITION 3. An ASF with AFB(X) having the form
BN 5 BN21 % B1 , for N $ 2. (6) of Eq. (3) is called a TYPE-III ASF.

DEFINITION 4. An ASF with AFB(X) having the form
The ASFs offer a method of extracting the features of of Eq. (4) is called a TYPE-IV ASF.

images hierarchically. That is, these features can be divided
into different layers according to their corresponding struc- For convenience, a type-i ASF with a structuring ele-

ment B is denoted as ASFB
i . It is observed that the type-turing element sizes. The features, such as size distribution
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III and type-IV ASFs have computational redundancy in DEFINITION 6. An ASF of the following form is called
a TYPE-VI ASF.their structure. If a type-III ASF has n levels, it can be

rewritten as
ASFB

VI(X) 5 ((((((X ? B) n B) n 2B) ? 2B)
? 3B) n 3B) ? ? ?.

(14)
ASFB

III(X) 5 ((((((((X n B) ? B) n B) n 2B) ? 2B)
n 2B) ? ? ? n nB) ? nB) n nB DEFINITION 7. An ASF of the following form is called

a TYPE-VII ASF.5 X(«dd««d«2d2d2«2«2d2 ? ? ? «ndndn«n«ndn)B

5 X(«d2«2d«2d4«4d2 ? ? ? «nd2n«2ndn)B ASFB
VII(X) 5 (((((((((X n B) ? B) n B) ? 2B) n 2B)

? 2B) n 3B) ? 3B) n 3B) ? ? ?.
(15)

5 X(«d2«3d4«4d2 ? ? ? «nd2n«2ndn)B
.. DEFINITION 8. An ASF of the following form is called.

a TYPE-VIII ASF.
5 X(«d2«3d4 ? ? ? d2n«2ndn)B

ASFB
VIII(X) 5 (((((((((X ? B) n B) ? B) n 2B) ? 2B)5 ((((((X n B) ? B) n 2B) ? 2B)

n 2B) ? 3B) n 3B) ? 3B) ? ? ?.
(16)

? ? ? n nB) ? nB) n nB

5 ASFB
I (X) n nB.

(11)

It is noted that ASFV , ASFVI , ASFVII , and ASFVIII are
the modifications of ASFI , ASFII , ASFIII , and ASFIV , re-
spectively. Definitions of the eight different types of ASFsEquation (11) states that a type-III ASF can be reduced
are listed in Table 1. To achieve the computational effi-to a type-I ASF but with an additional opening operation
ciency of the new ASFs, they are rewritten as follows.padded onto the end. Similarly, an n level type-IV ASF

Let n be an odd number throughout the following deriva-can be rewritten as
tions. A type-V ASF can be expressed as

ASFB
IV(X) 5 ((((((((X ? B) n B) ? B) ? 2B) n 2B) ASFB

V(X) 5 (((((X n B) ? B) ? 2B) n 2B)
? 2B) ? ? ? ? nB) n nB) ? nB ? ? ? n nB) ? nB

5 ((((((X ? B) n B) ? 2B) n 2B) 5 X(«dd«d2«2«2d2 ? ? ? «ndndn«n)B
? ? ? ? nB) n nB) ? nB

5 X(«d2«d2«4d2 ? ? ? «nd2n«n)B
5 ASFB

II(X) ? nB.

(12)

5 X(«d3«5 ? ? ? d2n23«2n21d2n«n)B

5 ((((X n B) ? 2B) n 3B) ? ? ? n nB) ? nB.

(17)

Thus, a type-IV ASF can be reduced to a type-II ASF but
with an additional closing operation padded onto the end. Similarly, a type-VI ASF can be expressed as
That is, by using the adjunction property, a type-III (type-
IV) ASF can be implemented by a type-I (type-II) ASF, ASFB

VI(X) 5 (((((X ? B) n B) n 2B) ? 2B)
adding an additional opening (closing) operation. Com- ? ? ? ? nB) n nB
pared with the original implementation of type-III and

5 ((((X ? B) n 2B) ? 3B) ? ? ? ? nB) n nB.

(18)

type-IV ASFs, the computational complexity of this new
method is reduced to about Sd of the original defined opera-
tions.

TABLE 1
Definitions of Eight Different Types of ASFC. The New Class of ASFs

ASF type DefinitionThe definitions of the new class of ASFs are given as
follows. ASFI X n B ? B n 2B ? 2B ? ? ?

ASFII X ? B n B ? 2B n 2B ? ? ?
DEFINITION 5. An ASF of the following form is called ASFIII X n B ? B n B n 2B ? 2B n 2B ? ? ?

ASFIV X ? B n B ? B ? 2B n 2B ? 2B ? ? ?a TYPE-V ASF:
ASFV X n B ? B ? 2B n 2B ? ? ?

ASFVI X ? B n B n 2B ? 2B ? ? ?

ASFVII X n B ? B n B ? 2B n 2B ? 2B ? ? ?ASFB
V(X) 5 ((((((X n B) ? B) ? 2B) n 2B)

ASFVIII X ? B n B ? B n 2B ? 2B n 2B ? ? ?
n 3B) ? 3B) ? ? ?.

(13)
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It is clear that, for each AFB(X) 5 (X n B) ? B layer, Proof. By using the anti-extensive and extensive prop-
erties of the opening and closing filters, it is observedsince either a closing or an opening operation can be saved

in ASFV and ASFVI, their complexities are nearly one half that
the amount of those in ASFI and ASFII . On the other
hand, rewriting the type-VII and type-VIII ASFs by the X n B , (X ? B) n B , X ? B. (21)
same method produces similar results as follows:

Since closing is increasing, if a closing operator is applied
at each side, Eq. (21) can be rewritten asASFB

VII(X) 5 ((((((((X n B) ? B) n B) ? 2B) n 2B)
? 2B) ? ? ? n nB) ? nB) n nB

(X n B) ? 2B , ((X ? B) n B) ? 2B
5 ((((((X n B) ? 2B) n 3B) , (X ? B) ? 2B [?2B],

? ? ? ? (n 2 1)B) n nB) ? nB) n nB

where the present equation is obtained by applying the5 ASFB
V n nB

(19)

operation inside the brackets to the previous equation. By
continuously utilizing the same method, the above equa-

and tion implies

ASFB
VIII(X) 5 ((((((((X ? B) n B) ? B) n 2B) ? 2B) X n B ? B n 2B ? 2B n 3B ? 3B

n 2B) ? ? ? ? nB) n nB) ? nB , X n B ? 2B n 3B ? 3B
, X ? B n B ? 2B n 2B ? 3B n 3B ? 3B

5 ((((((X ? B) n 2B) ? 3B)
? ? ? n (n 2 1)B) ? nB) n nB) ? nB

when n is odd. It is noted that the left-hand side of the
5 ASFB

VI ? nB.

(20)

above equation is exactly a type-I ASF while the right-hand
side is a type-II ASF with an additional closing padded
to its end. On the other hand, if n is even, Eq. (21) im-Therefore, an additional advantage in reducing complex-
pliesity can be achieved if we rewrite the four new defined

ASFs by using the adjunction property. However, although
X n B ? B n 2B ? 2B n 2B , X n B ? 2B n 2Badditional advantages are obtained, there are some im-

, X ? B n B ? 2B n 2B.portant questions to be addressed. What are the properties
of the new ASFs? Do they have a performance boundary?

It is observed that the left-hand side of the above equationThese questions will be answered in the next section.
is a type-I ASF with an additional opening padded to its
end while the right-hand side is an exact type-II ASF. That

IV. PROPERTIES OF THE NEW CLASS OF ASFs is, the type-V ASFs are bounded by the type-I and type-
II ASFs. nPROPERTY 1. The four newly defined operations are in-

creasing. PROPERTY 4. A type-VI ASF is nearly bounded by a
type-I ASF (lower bound) and exactly bounded by a type-

PROPERTY 2. The four newly defined operations are II ASF (upper bound) when n is odd, and is nearly bounded
idempotent. by a type-II ASF (upper bound) and exactly bounded by

a type-I ASF (lower bound) when n is even.The proofs of Properties 1 and 2 are trivial since they
are composed of increasing and idempotent operators. Proof. By using the same method in the proof of Prop-
These two properties are used to ensure that the proposed erty 3, the equation
new operators are morphological filters. In the following
properties the upper and lower bounds of these new ASFs X n B , (X n B) ? B , X ? B (22)
are derived. To ease the analysis, the padded operations
of types- V–VIII are ignored. Thus, an odd number n level

impliestype-V ASF can be written as X n B ? 2B ? ? ? n nB.

X n B ? B n 2B ? 2B n 3B ? 3B n 3BPROPERTY 3. A type-V ASF is nearly bounded by a
, X ? B n 2B ? 3B n 3Btype-II ASF (upper bound) and exactly bounded by a type-
, X ? B n B ? 2B n 2B ? 3B n 3BI ASF (upper bound) when n is odd, and is nearly bounded

by a type-I ASF (lower bound) and exactly bounded by a
type-II ASF (upper bound) when n is even. in case n is an odd number. It is noted that the left-hand
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side and the right-hand side are nearly the type-I and while their filtered results remain comparable to the tradi-
tional ASFs.exactly the type-II ASF, respectively. If n is an even num-

ber, Eq. (22) implies
V. EXPERIMENTAL RESULTS AND DISCUSSION

X n B ? B n 2B ? 2B , X ? B n 2B ? 2B In this section, two kinds of applications are adopted as
, X ? B n B ? 2B n 2B ? 2B. computer simulations to illustrate our analysis. One is for

image filtering and the other for texture classification. Both
new and conventional types of ASFs are used for compari-Thus, the left-hand side and right-hand side are exactly
son of their advantages and disadvantages.the type-I and nearly the type-II ASF, respectively. n

Figures 1a and 1b respectively show a binary image and
PROPERTY 5. The type-VII and type-VIII ASFs are a corrupted version produced by adding pepper–salt noise

bounded by the type-I and type-II ASFs if the padded with 0.1 occurrence probability. The structuring elements
operations are ignored. are square blocks with sizes 3 3 3, 5 3 5, and 7 3 7. Figures

1c–1f show the filtered results of type-I, -II, -V, and -VIProof. It is trivial that this property can be obtained
ASFs, respectively. Similarly, the grayscale image ‘‘Lena,’’by observing Eqs. (17), (18), (19), and (20). That is, the
its distorted version, and its filtered results are shown intype-VII ASF is equivalent to the type-V ASF, and the
Figs. 2a–2h. From the experimental results, it is observedtype-VIII ASF is equivalent to the type-VI ASF if the
that, in contrast to the present ASFs, the newly definedpadded operations are ignored. n
ASFs yield comparable results. Phenomenon of the bound-
ary properties can be easily observed in Figs. 1a–1d. ThatProperties 3, 4, and 5 suggest the performance boundary

of the new class of ASFs. If they are applied to one of the is, the dark part of the filtering result, brought by the type-
V and type-VI ASFs, is contained in that of theimage processing applications, it is interesting to note that

we can predict the performance in advance. Thus, the pro- type-I filtering result while the bright part of the filtering
result, given by the type-V and VI ASFs, is contained inposed ASFs have much better computational efficiency,

FIG. 1. (a) A binary image, (b) a version corrupted by pepper–salt noise (occurrence probability P0 5 0.1), and filtered results from (c) type-
I, (d) type-II, (e) type-V, and (f) type-VI ASFs.
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FIG. 2. (a) Grayscale ‘‘Lena’’ image, (b) a version corrupted by Gaussian noise (s 5 10), and filtered results from (c) opening–closing by 7 3

7 structuring element, (d) closing–opening by 7 3 7 structuring element, (e) type-I, (f) type-II, (g) type-V, and (h) type-VI ASFs.

that of the type-II filtering result. The boundary properties can be decomposed into different image layers si . This
decomposition procedure can be described by the follow-are useful in image filtering because we can predict the

performance of a filter in advance from its boundary ing iterative formulas:
curves. However, it is a little hard to notice these properties
in Fig. 2 since grayscale is used. From Figs. 2c and 2d, it
is observed that ASFs are better than those morphological
filters which are produced by directly applying the largest 5

f0(x, y) 5

si(x, y) 5

fi11(x, y) 5

f (x, y),

(AF)fi(x, y), j 5 0, 1, . . . n,

fi(x, y) 2 si(x, y).
structuring element.

For performance comparisons, an application of texture
classification is adopted. We use 20 texture images of size
512 3 512 from Brodatz in classification. Each texture For each component image, it is first divided into 16

blocks; then the mean value of the training blocks (diagonalimage is decomposed into 5 component images by choosing
squared structuring elements with increasing sizes of 1, 9, blocks) is calculated and stored. The test images are ran-

domly selected from these 20 textures and corrupted by25, 49, and 81 pixels. The decomposition method is similar
to [11] and is described briefly as follows. Let Bi denote a the zero mean Gaussian noise whose variance equals 100.

They are also decomposed into 5 components and theflat structuring element with size i 3 i and B0 5 (0, 0) in
E2. The texture image f (x, y) is processed first by an AF remaining 12 blocks, not training blocks, of each compo-

nent are used to calculate their mean value. The five-with the largest structuring element B9 . By sequentially
applying this procedure through decreasing the size of the dimensional mean vector is then used as the difference

measurement. For each type of ASF, 300 trials are used.structuring element, the image primitives of different sizes
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FIG. 3. The natural texture images used in classification.

Figure 3 shows the 20 texture images. The classification structures in ASFs but also maintain comparable results
in image decomposition and filtering. Moreover, theresults from using type-I, -II, -V, and -VI ASFs are shown

in Table 2. It is important to note that properties 3, 4, and bounding properties are also illustrated in the experimen-
tal results.5 are not available here since the decomposition method

of this application is not exactly the forms of type-V and
type-VI ASFs. That is, we cannot ensure that the correct

VI. CONCLUSIONSclassification rates of ASFV and ASFVI are in the range
made by the rates of ASFI and ASFII . Indeed, it is observed A significantly efficient class of ASFs is introduced in
in Table 2 that the correct classification rates of type-V this paper to outperform typical ASFs. By utilizing the
and type-VI ASFs are somewhat lower than those of type-I adjunctional property in morphology, new types of ASFs
and type-II ASFs. However, only half of the computational are developed. As a result, the computational complexity
complexity is needed for new ASFs. can be reduced to nearly half of the original. Another

From the experimental results it is concluded that the advantage of new types of ASFs is that since their perfor-
new types of ASFs not only offer efficient implementation mance boundary exists, it serves as a performance curve

with which we can predict their filtering results in advance.
Experimental results also validate our analysis and show
the excellent performance of the new types of ASF.

TABLE 2
Classification Results of Type-I, -II, -V, and -VI ASFs

REFERENCES
Type-I Type-II Type-V Type-VI

1. G. Matheron, Random Sets and Integral Geometry, New York, Wiley,Correct classification rate 69% 76% 64% 67%
1975.
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2. J. Serra, Image Analysis and Mathematical Morphology, New York, in 1995 IEEE Workshop on Nonlinear Signal and Image Processing,
Vol. 2, pp. 30–33.Academic Press, 1982.

3. S. R. Sternberg, Grayscale morphology, Comput. Vision, Graphics, 8. C. R. Giardina and E. R. Dougherty, Morphological Methods in
Image Process. 35, 1986, 333–355. Image and Signal Processing, New Jersey, 1988.

4. D. Schonfeld and J. Goutsias, ‘‘Optical morphological pattern res- 9. E. R. Dougherty and J. B. Pelz, Morphological granulometric analysis
toration from noisy binary image,’’ IEEE Trans. Pattern Anal. Mach. of electrophotographic images-size distribution statistics for process
Intelligence 13(1), 1991, 14–29. control, Opt. Engrg. 30(4), 1991, 438–445.

5. I. Destival, Mathematical morphology applied to remote sensing, 10. H. J. A. M. Heijmans, The algebraic basis of mathematical morphol-
Acta Astronaut. 13, 1986, 371–385. ogy. I. Dilations and erosions, Comput. Vision, Graphics, Image Pro-

cess. 50, 1990, 245–295.6. F. Preteux, A. M. Laval-Jeantet, B. Roger, and M. H. Laval-Jeantet,
New prospects in C.T. image processing via mathematical morphol- 11. W. Li and V. H. Coat, Composite morphological filters in multiresolu-
ogy, Eur. J. Radiol. 5, 1985, 313–317. tion morphological decomposition, in 1995 IEE Workshop on Image
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