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In this paper we develop a set of inverse kinematics algorithms suitable for
an anthropomorphic arm or leg. We use a combination of analytical and numeri-
cal methods to solve generalized inverse kinematics problems including position,
orientation, and aiming constraints. Our combination of analytical and numerical
methods results in faster and more reliable algorithms than conventional inverse
Jacobian and optimization-based techniques. Additionally, unlike conventional nu-
merical algorithms, our methods allow the user to interactively explore all possi-
ble solutions using an intuitive set of parameters that define the redundancy of the
system. c© 2000 Academic Press
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1. INTRODUCTION

Inverse kinematics plays a key role in the computer animation and simulation of articu-
lated figures. Often these figures contain more than a hundred degrees of freedom, making
it infeasible (or at best tedious) for the animator to manipulate every joint to control the fig-
ure’s posture. With the assistance of an inverse kinematics algorithm, the animator merely
gives the desired location of certain chosen points on the body and relies on the algorithm
to automatically compute a set of joint angles that satisfy the end-effector constraints. An-
other important use of inverse kinematics occurs in motion capture applications where the
positions and orientations of sensors on a live subject are used to drive the animation of a
computer model. In this case, inverse kinematics is used to find joint angle trajectories that
interpolate the sensor data. Finally, inverse kinematics can also be used in task feasibility
studies in which a virtual agent and environment are used to simulate the performance of
a real-life task, such as an assembly line operation or the workspace analysis of a cock-
pit. In these applications, inverse kinematics is useful in determining which objects in the
environment are reachable.
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Most computer animation systems have adopted inverse kinematics techniques from
robotics. In these approaches, an inverse kinematics problem is cast into a system of nonlin-
ear equations or an optimization problem which can be solved using an iterative numerical
algorithm. Because most inverse kinematics algorithms were originally designed to meet
the requirements of robotics, their straightforward application to computer animation fre-
quently leads to problems. It is instructive to highlight some of the difficulties:

1. In robotics, inverse kinematics tasks only involve constraining the position and ori-
entation of the terminal segment or the end effector. In computer animation, other types
of constraints have to be considered. Some examples include constraining selected points
on nonterminal segments, aiming the end effector, keeping the figure balanced, and avoid-
ing collisions. It is not always easy to incorporate these constraints into a conventional
inverse kinematics formulation. To make matters worse, multiple and possibly conflicting
constraints can be simultaneously active, and the system is usually underdetermined or
overdetermined.

2. Few robots have more than six joints. On the other hand, a virtual human model
may have over 100 degrees of freedom. Traditional inverse kinematics algorithms can
break down or become unacceptably slow for the highly redundant systems that occur in
computer animation.

3. In most conventional robots, the joints are independent and the joint limits are simple
linear inequality constraints. On the other hand, in a human skeleton many of the joints are
coupled because they may easily form closed loops or because they move simultaneously
when a single muscle contracts. Thus in complex joint systems, the number of degrees of
freedom can be less than the number of joint variables. In these cases, it is useful to find
ways of parameterizing the kinematics other than with joint variables.

4. In computer graphics applications, there is often a considerable amount of error in
both the kinematic model and the end-effector trajectory. For example, in a motion capture
application there will be errors in measuring the sensor locations and mismatches between
the human subject and the computer model. Similarly, in an interactive application the user
may only be interested in specifying a crude estimate of the motion for the end effector
and to have the animation system determine a feasible trajectory. Errors are, in general, less
critical in computer graphics applications.

We propose an inverse kinematics toolkit satisfying the special needs of computer graph-
ics. Important features of our approach include:

1. Our toolkit generalizes inverse kinematics constraints to include problems such as
aiming and partial orientation constraints.

2. Our focus is on analytical methods rather than numerical ones. Analytical methods
are generally more efficient and reliable than their numerical counterparts, but require
special kinematic structure. Whenever possible we will subdivide the joint structure of
the body into kinematic units for which analytical solutions can be derived and partition
an inverse kinematics problem into subproblems for each of these units. When a purely
analytical solution cannot be obtained we will use a combination of analytical and numerical
techniques to achieve the greatest possible speed and reliability.

3. In cases where the inverse kinematics problem is underconstrained, we use an intuitive
set of parameters to encode the extra degrees of freedom. The user can interactively adjust
the parameters to explore the space of solutions and to choose the solution best suited for
the application.
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4. Obviously, there is a tradeoff between obtaining an accurate kinematic model of the
body and limiting computational expense. One of our goals is to find a suitable balance
between these two objectives so that visually acceptable results can be obtained in real time.

The work focuses on 7 DOF, fully revolute, open kinematic chains with two spherical
joints connected by a single revolute joint. The primary interest of this work is on the
human arm: the revolute joint models the elbow and the two spherical joints model the
shoulder and the wrist. The kinematic structure of the human leg is remarkably similar to
that of the arm and the same chain may be used to model the leg. In the leg model the
spherical joints are the hip and the ankle, and the revolute joint is the knee.1 We present
examples of both arm and leg animations.

This work does not attempt to design a model suitable for simulating dynamics. Unlike,
for example, the European CHARM project [15], we are not concerned with the development
of a complex biomechanical model for the human arm but only with workspace analysis
and interactive posturing applications.

Additionally, this work does not attempt to address the problem of generating “realistic”
joint trajectories. Instead, we seek to develop tools that allow a user to investigate all
kinematically feasible solutions and to select the solution most suitable for his/her needs. For
interactive applications, we provide a set of intuitive parameters for inspecting all possible
postures. For applications where an optimization criterion is employed, we provide a way
of characterizing the set of solutions using the lowest possible number of variables allowing
the user to express an objective function and its derivatives in terms of these variables. The
responsibility of generating realistic simulations stays with the animator.

2. TRADITIONAL INVERSE KINEMATICS ALGORITHMS

2.1. Problem Definition

Let f : q ∈ <n→ SE(3) represent the forward kinematics map of a kinematic chain. In
other words, given the values ofn joint variables f returns the position and orientation of
the end effector. The inverse kinematics problem can be stated as follows: givenG ∈ SE(3),
find q ∈ <n such thatf (q) = G or determine that no solution is possible. If homogeneous
matrices are used the problem assumes the form:

Findq such that

n∏
i=1

A i (qi ) = G,

where

A i (qi ),G ∈ SE(3)

A i (qi ) =
[

R(qi ) p

0 1

]
.

SinceG defines six constraints, the problem is well posed only if the number of inde-
pendent joint variables is equal to 6. If dim(q) < 6, the problem is overconstrained and in

1 Strictly speaking, the knee is not revolute: it has a small but nontrivial sliding component. The approximation
as a revolute joint will suffice for graphical purposes.
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TABLE 1

Number of Analytic Solutions for

6-Degree-of-Freedom Systems

n Upper bound on solutions

<6 0
>6 ∞
6R, 5RP 16
4R2P, 6R with S joint 8
3R3P 2

general no solution is possible. Conversely, if dim(q) > 6, the problem is said to be under-
constrained or to possessredundantdegrees of freedom. In this case, an infinite number of
solutions may exist. In a redundant system, for a fixed posture of the end effector the joints
of the robot are still free to move along a constraint surface in joint space. This surface is
called theself-motion manifold. Redundant systems are useful because the extra degrees
of freedom can be used for optimizing a cost function, avoiding collision, or keeping clear
from joint limits or Jacobian singularities.

2.1.1. Theoretical Results

For 6-degree-of-freedom systems, precise upper bounds on the number of solutions have
been established. Let R denote a revolute (rotating) joint and P denote a prismatic (trans-
lating) joint. For a general 6R or 5RP manipulator, there are at most 16 possible solutions.
For a 4R2P or a 6R manipulator with a spherical joint, the number of possible solutions
drops to 8. Finally, a 3R3P system can have at most 2 solutions. See Table 1 for a summary
of available results.

2.1.2. Taxonomy of Inverse Kinematics Algorithms

Broadly speaking, inverse kinematics algorithms can be characterized asanalytical or
numerical. Analytical methods are said to becompletesince they find all possible solutions.
Analytical methods can be further subdivided intoclosed-formandalgebraic-elimination-
basedmethods. In a closed-form method, the solution to the joint variables can be directly
expressed as a set of closed-form equations. In general, closed-form solutions can only be
obtained for 6-degree-of-freedom systems with special kinematic structure. Methods based
on algebraic elimination express the joint variables as solutions to a system of multivariable
polynomial equations, or alternatively express a single joint variable as the solution to a
very-high-degree polynomial and determine the other joint variables using closed-form
computations. Since the degree of these polynomials will be greater than 4, algebraic-
elimination-based methods still require the use of numerical subroutines. However, since
numerical methods exist for solving all the roots of a polynomial equation, the algebraic
elimination methods are still classified as analytical in nature.

In contrast to the analytical methods, numerical approaches iteratively converge to a sin-
gle solution based on an initial guess. In general, analytical methods are preferable to their
numerical counterparts because analytical methods yield all solutions and are computation-
ally faster and more reliable. The primary advantage of numerical algorithms is they can
be used in cases where the system is ill-posed. There are three popular numerical methods
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used in solving inverse kinematics problems. The simplest method is the straightforward
application of the Newton–Raphson algorithm for solving systems of nonlinear equations.
Alternatively, the inverse kinematics problem can be converted into a differential equation
in terms ofq andq̇. Finally, the third category of numerical algorithms is based on recasting
the inverse kinematics problem into a nonlinear optimization problem.

2.2. Numerical Algorithms

In the following we list the frequently used numerical inverse kinematics algorithms:

1. Newton–Raphson methods: The solution to an inverse kinematics problem is the roots
to the system of nonlinear equations

F(q) ≡ f(q)− g= 0.

Heref is the forward kinematics map,g is the desired position and orientation of the end
effector, andq is the joint angle vector. Because Newton–Raphson methods use a first-order
approximation to the original equations, convergence can be slow when the equations are
highly nonlinear. Moreover, near the vicinity of a singularity the inverse of the Jacobian is
ill-conditioned and may cause the algorithm to fail.

2. Pieper’s methods: Pieper [17] was one of the first authors to adapt the Newton–
Raphson method for solving inverse kinematics equations. Pieper derived two alternative
methods with different interpretations of the forward kinematics mapping functionf(q). In
the first method,f(q) is viewed as a homogeneous transformation. In the second method an
alternative version of the Newton–Raphson method is used in which the forward kinematics
map is viewed as a screw motion instead of a homogeneous transformation.

3. Methods based on differential equations–resolved motion rate control [26]: The joint
velocities can then be integrated from 0 tot f to produce the joint angles corresponding to
the solution

q(t f ) = q0+
∫ t f

0
q̇(t) dt. (1)

This technique is sometimes calledresolved motion rate control. If a fixed value of1t and
a first-order integration scheme are used, this method is virtually identical to the Newton–
Raphson method. However, it is possible to utilize more accurate and robust integration
techniques. In particular, Cheng and Gupta [4] have proposed a modified predictor–corrector
algorithm for performing the joint velocity integration. They have demonstrated that their
method is more efficient and stable than the best Newton–Raphson methods.

4. For redundant manipulators,J is not square, but both the Newton–Raphson and
differential-equations-based approaches can be extended to redundant manipulators using
J+, the pseudo-inverse [9], or the weighted pseudo-inverse in place ofJ−1 [8, 16].

5. Control-theory-based methods [21]: These are based on casting the differential equa-
tion into a control problem. Supposee= xd − x is the error between the desired and
the current position and orientation. Selectingq̇ = J+a (xd + Ke) yields the linear system
ė+ Ke = 0. Ja is the analytical Jacobian with respect to the Euler angles. Suitable values
for K can then be chosen ensure covergence and to weight the units of orientation relative
to position.
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6. Methods based onJT [21]: Interpreting a tiny displacement in the joint vector as a
torque and the error vector as a force suggests the update law

q̇ = JTKe.

This equation has the physical interpretation of a generalized spring of stiffness constantK
that pulls the end effector toward the goal state. This approach is computationally inexpen-
sive and does not require inversion of the Jacobian. On the other hand, ifKe lies in N(JT ),
q̇ will be zero and no further progress toward the goal state can be made.

7. Optimization approaches: Inverse kinematics can also be regarded as a nonlinear
optimization problem. Letf(q) denote the forward kinematics map from joint space to
Cartesian space, and letxgoal denote the desired end-effector position. Consider the scalar
potential function defined by

P(q) = (f(q)− xgoal)
T · (f(q)− xgoal). (2)

Clearly the function is nonnegative and has a global minimum for anyq∗ that solves the
corresponding inverse kinematics problem. Examples of optimization-based approaches in
computer graphics include Badleret al. [2] and Zhao and Badler [27].

2.3. Other IK Techniques and HAL Chains

In general, closed-form solutions can only be obtained for kinematic chains with special
structure. Pieper found closed-form techniques for 6-degree-of-freedom manipulators when
any three consecutive joint axes intersect at a common point or any three joints are prismatic.
For a completely arbitrary 6-degree-of-freedom manipulator a closed-form solution is not
possible and other analytical techniques must be used. Raghavan and Roth [19] developed a
method based on dialytic elimination for finding all solutions to an arbitrary 6R mechnism.
Their method reduces an inverse kinematics problem to finding the roots of a 16-degree
polynomial. The roots of this polynomial correspond to the solution of one of the joint
variables. The other variables can be computed by solving simple linear systems. The
numerical properties of the algorithm was recently improved by Manocha and Canny [14]
who recast the root finding problem into a generalized eigenvalue problem.

There has been significant interest in the research community to study the inverse kine-
matics of what is called ahuman-arm-likechain or a HAL chain. Korein [12] was one
of the first to do a principled exploration of the geometry of human arm. Hollerbach [6]
listed the three singularities (the shoulder, the elbow, and the wrist) of a 6R manipulator
and investigated how best to add an additional revolute joint to this manipulator. The HAL
chain was found to best satisfy the requirement of simplicity of inverse kinematics, and
the wrist-partitioning algorithm [7] was used to solve it. The inverse kiematics methods
developed by Asano [1] and later by Kogaet al. [10] and Kondo [11] were motivated
by grasping rules. Asano presented two rules, 1DOF hand-redundancy and 2DOF hand-
redundancy hand postures, and derived inverse kinematics solutions for the human arm
based on the minimum wrist muscle load. Kondo’s work is based on the observation that
the arm posture parameters are approximately linearly related to the spherical coordinates
at the shoulder. The linear mapping model was obtained from biomechanical analysis [22].
The end-effector errors remaining after the linear transformation were corrected by a con-
strained optimization technique. Building on the earlier work of Hemami [5], Rieseleret al.
[20] solved some of the prototypical trigonometric equations encountered in the inverse
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kinematics of 7 DOF manipulatiors, including the HAL geometry. Wang and Kazerounian
[25] obtained explicit symbolic formulation for the Jacobian matrix and its null space for
a HAL manipulator. In two recent papers Wang [23] and Wang and Verriest [24] present
an inverse kinematics scheme based on minimum joint velocity norm. The scheme incor-
porates nonlinear joint limits and a detailed three-dimensional description of the shoulder
model. More recently Lee and Shin [13a] employed a hybrid numerical analytical approach
in their inverse kinematics scheme. The analytical component of the limb IK is similar to
ours [22a].

2.4. Goals inJack

Jack[3] permits the user to specify a wide variety of goals for the end effector. Multiple
and disjunctive goals are also permitted. Some of these goals and their corresponding
potential functions are enumerated below.

1. Position goals: In a position goal, the user wants to position the end effector atrgoal ∈
R3 and is unconcerned about the final orientation. This can be achieved by minimizing the
potential function

P(q) = ‖(rgoal− re)‖.

2. Orientation goals: In an orientation goal, the user is only interested in orienting the
end effector so thatxe andye point in the same direction asxg, yg. The corresponding
potential function is

P(q) = ‖(xg − xe)‖ + ‖(yg − ye)‖.

3. Position and orientation goals: A position and orientation goal corresponds to the
conventional inverse kinematics problem. A suitable potential function is

P(q) = wp‖(rgoal− re)‖ + woc2
dx‖(xg − xe)‖ + woc2

dy‖(yg − ye)‖,

wherecdx andcdy are used to scale the units of rotation relative to translation andwp and
wo are weights that adjust the relative importance of the translation goal with respect to the
rotation goal.

4. Aiming at goals: It is sometimes necessary to “aim” a line on the end effector at a
pointp. Let the line on the end effector be represented by the pointre and a vectorv written
in terms ofxe, ye, andxe× ye. The goal is achieved whenp−re

‖p−re‖ = v and the corresponding
potential function is defined as

P(q) =
∥∥∥∥ p− re

‖p− re‖ − v

∥∥∥∥.
5. Plane goal: In a plane goal, the user wants the position of the end effector to lie on a

plane specified by a point and a normal vector (p, n̂). The condition for the point being on
the plane is

(p− re) · n̂ = 0,

which is captured by the potential function

P(q) = ((p− re) · n̂)2.
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Multiple goals are handled by combining individual goals into a global potential function
of the form

G(q) =
∑

wi Pi (q),

wherewi are weight factors. Moreover, goals can also be satisfied disjunctively. In this case
the goal function is defined as

G(q) = min
i
{Pi (q)}.

2.5. Quality Criteria

We will now attempt to define a set of criteria for assessing the strengths and shortcomings
of an inverse kinematics algorithm.

• Efficiency:Since inverse kinematics must often be performed in real time, efficiency
or speed is of paramount concern.
• Reliability: An algorithm is reliable if it can consistently find a solution when one

exists and if it correctly detects instances of the problem that are unsolvable.
• Completeness:Additionally, in some applications it is desirable to find the entire set

of solutions; algorithms satisfying this requirement are termed complete.
• Stability: Numerical stability refers to the algorithm’s robustness when degenerate or

ill conditioned cases arise.
• Generality:Finally, each algorithm will be evaluated on its generality, that is whether

it can be adapted to redundant manipulators or other ill-posed problems where an infinite
number of solutions may exist.

Efficiency is difficult to determine because it depends upon the quality of the imple-
mentation. Additionally, some algorithms may perform well on certain types of problems
and poorly on others. In general, we would expect the Newton–Raphson methods to be the
slowest and the analytical algorithms to be the fastest.

Not all of the algorithms are reliable. For example, the Jacobian transpose method and
the optimization-based approaches can stop in local minima. Numerical instability can also
prevent an algorithm from converging to a solution, and almost all of the numerical routines
suffer from poor reliability near singularities of the Jacobian. Analytical methods do not
suffer from singularities in the Jacobian, but can be susceptible to numerical problems
unless special precautions are taken.

The most significant advantage of numerical algorithms is that they can be generalized
to accommodate additional constraints and objective functions, whereas the analytical ap-
proaches are restricted to 6-degree-of-freedom systems. Optimization methods in particular
provide a convenient framework for incorporating a wide variety of criteria.

3. AN ANALYTICAL ALGORITHM FOR A 7-DOF LIMB

In this section we present the inverse kinematics algorithm for the human arm. The
kinematic chain of our interest contains seven joint variables; i.e., it has one redundant
degree of freedom. Our algorithm uses the extra of freedom to avoid joint limits or to place
the elbow as close as possible to a desired position. Our algorithm is purely analytical
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and has no problems with Jacobian singularities or local minima. We also give empirical
evidence to demonstrate that our algorithm is more efficient and reliable than numerical
approaches.

3.1. Forward Kinematics

Consider the kinematic chain shown in Fig. 1. Let

T1 =
[

R1(θ1, θ2, θ3) 0

0 0 0 1

]
denote the rotation matrix from the proximal to the distal site ofS1 as a function ofθ1, θ2,
andθ3. Similarly,

T2 =
[

R2(θ5, θ6, θ7) 0

0 0 0 1

]
represents the rotation matrix from the proximal to the distal site ofS2 and

Ty =
[

Ry(θ4) 0

0 0 0 1

]
=


cθ4 0 sθ4 0

0 1 0 0

−sθ4 0 cθ4 0

0 0 0 1



FIG. 1. A 7-degree-of-freedom limb.



362 TOLANI, GOSWAMI, AND BADLER

is the rotation produced by revolute joint F. Without loss of generality, we have assumed that
the coordinate frames about the revolute joint have been defined so that rotation produced
by θ4 is about the localy axis of the proximal frame of F. Finally,

A =
[

Ra ta

0 0 0 1

]

and

B =
[

Rb tb

0 0 0 1

]

are the constant transformation matrices from the distal frame ofS1 to the proximal frame
of F, and the distal frame of F to the proximal frame ofS2.

3.2. Inverse Kinematics

To solve the inverse kinematics problem for a desired goal

G =
[

Rg tg

0 0 0 1

]

we must solve the equation

T1AT yBT2 = G (3)

for the unknownsR1,R2, andθ4. The values ofθ1, θ2, θ3, θ5, θ6, andθ7 are then determined
by extracting the Euler angles from the rotation matricesR1 andR2.

3.2.1. Solving forθ4

Sinceθ4 is the only joint variable that affects the distance ofS2, relative toS1, θ4 may
be computed independently. If the normal vector of the plane containingS1, S2, andF is
parallel to the axis of rotation ofF , thenθ4 can be computed trivially using the law of
cosines. We consider the more general case where the axis of rotation of the revolute joint
is not necessarily parallel to the normal. We first note that the position ofS2 relative toS1

does not depend onR2 and is given by

T1AT yBT2[0, 0, 0, 1]T = R1RaRytb+ R1ta. (4)

Taking the dot product of Eq. (4) with itself and setting it equal to the square of the
distance of the goal gives

2tT
a RaRytb = tT

g tg− tT
a ta− tT

b tb, (5)

which is a trigonometric equation of the forma cos(θ4)+ bsin(θ4) = c and can be solved
using straightforward trigonometric methods. In general there are two solutions to (5), but
only one solution is physically realizable because of joint limits on the knee or elbow.
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3.2.2. Characterizing the Extra Degree of Freedom

Because Eq. (3) has seven unknowns but only six constraints, the system has one degree
of redundancy. A simple physical interpretation of the redundant degree of freedom is based
on the observation that if the wrist is held fixed, the elbow is still free to swivel about a
circular arc whose normal vector is parallel to the axis from the shoulder to the wrist.

The workspace of this mechanism was first systematically analyzed by Korein [12].
Korein observed that the first two shoulder joints along with their joint limits restrict the
tip of the elbow to lie on a spherical polygon. By interesecting the elbow circle with the
polygon it is possible to determine the legal elbow configurations as a function of the joint
limits of the first two joints. Additionally, the twist induced by the third joint also restricts
the elbow to lie on a circular arc. It is also possible to determine the restrictions on the elbow
position as a function of the wrist joints. By taking the intersection of all sets of valid elbow
arcs, Korein derived the restrictions on the elbow position induced by the joint limits.

Our approach to solving this problem is based on the same observation as Korein’s.
Korein’s algorithm is derived from a geometric analysis of the problem. By contrast, our
method is purely algebraic and gives an exlicit formula for the joint angles and their deriva-
tives as a function of the swivel angle. This is an advantage when an objective function is
used to select an appropriate value ofφ since it is often necessary to express the objective
function in terms of the joint angles.

In Fig. 2,s, e, andtg define the positions of the shoulder, the elbow, and the goal location
of the wrist. The origin (0, 0, 0) is coincident with the shoulder position. The scalarsL1,
L2, andL3 denote the lengths of the upper arm, lower arm, and the distance from the goal
position to the shoulder. The origin of the coordinate system is taken ass. As the swivel
angleφ varies, the elbow traces an arc of a circle lying on a plane whose normal is parallel to
the wrist-to-shoulder axis. To mathematically describe the circle we first define the normal
vector of the plane by the unit vector in the direction from the shoulder to the wrist,

n̂ = tg

‖tg‖ .

Additionally, we need two unit vectorŝu andv̂ that form a local coordinate system for the
plane containing the circle. We setû to be the projection of an arbitrary axisâ (corresponding

FIG. 2. For a given goal, the elbow is free to move on a circle.
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FIG. 3. Finding the elbow position that is the closest possible to a desired position.

to φ = 0), selected by the user, onto the plane of the circle

û = â− (â · n̂)n̂
‖â− (â · n̂)n̂‖

and set̂v = n̂× û. The center of the circlec and its radiusR can be computed from simple
trigonometry:

cos(α) = L2
3+ L2

1− L2
2

‖tg‖L1

c = cos(α)L1n̂

R = sin(α)L1.

Finally the equation of the elbow position is given by

e(φ) = c+ R(cos(φ)û+ sin(φ)v̂). (6)

The swivel angleφ gives a useful way of characterizing the space of solutions. The swivel
angle has a meaningful physical interpretation to the user and for a given value ofφ, Eq. (6)
can be evaluated to give an additional constraint on the position of the elbow so that the
solution to the inverse kinematics problem is uniquely defined.

Sometimes the user wants to give a desired position of the elbowed instead of a swivel
angle; in this case, it is a simple matter to compute the correspondingφ that minimizes
‖ed − e(φ)‖. Define the vectorsp = (ed − c) andp∗ = p− (p · n̂)n̂. Note thatp∗ is merely
the projection ofp onto the plane containing the elbow circle. As shown in Fig. 3 the value
of φ that minimizes‖ed − e(φ)‖ is the angle betweenp∗ andû. Since sin(φ) = ‖p∗ × û‖

‖p∗‖ and
cos(φ) = p∗ · û

‖p∗‖ , φ = a tan 2(‖p∗ × û‖, p∗ · û).

3.2.3. Solving forR1 andR2

In this section we show how to computeR1 andR2 efficiently given the values ofφ and
θ4. Figure 4 shows the initial configuration of the arm corresponding to an elbow rotation
of θ4 and the goal configuration for a desired swivel angleφ. As before, we have taken
the position of the shoulder joints as the origin.e, eg(φ),w,wg denote the positions of
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FIG. 4. CalculatingR1.

the elbow and wrist in the rest and goal configurations. Assuming that the elbow is not
completely outstretched, the shoulder, elbow, and wrist locations form a reference triangle.
The rotation matrixR1 is merely the rigid body transformation of4sewonto4seg(φ)wg.
To findR1 we first define a local coordinate system [x̂ ŷ ẑ 0

0 0 0 1] associated with4sewby

x̂ = e
‖e‖

ŷ = w− (w · x̂)x̂
‖w− (w · x̂)x̂‖

ẑ = x̂× ŷ.

Analogously we define the coordinate system [x̂g(φ) ŷg(φ) ẑg(φ) 0
0 0 0 1] associated with4seg(φ)wg.

R1 is then given by

R1 =
[

x̂g(φ) ŷg(φ) ẑg(φ) 0

0 0 0 1

][
x̂ ŷ ẑ 0

0 0 0 1

]T

. (7)

Finally, R2 is obtained by rearranging Eq. (3)

T2 = (T1AT yB)−1G

R2 = (R1RaRyRb)−1Rg.

It is straightforward to extend the algorithm to problems that involve only position con-
straints. In this case the wrist angles are chosen by the user and onlyR1 andθ4 are computed.

3.2.4. Joint Limits

In practice, it is necessary to consider joint limits to ensure plausible looking solutions.
In this section, we describe an analytical algorithm that computes all possible values ofφ

that satisfy the joint limits. The algorithm also determines when a solution is not possible.
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FIG. 5. DecomposingR1 into R0 andRφ .

We will first derive the relationship between the joint variablesθ1, θ2, θ3, θ5, θ6, θ7 and the
swivel angleφ and show how this relationship can be used to determine the valid ranges of
φ for each joint.

Computing the valid ranges forθ1, θ2, θ3. As shown in Fig. 5R1 can be expressed as a
sequence of two rotationsR1 = R0Rφ , whereR0 is the rotation matrix that moves the elbow
to e(0) from the rest position by settingφ = 0 in Eq. (7) andRφ is the rotation matrix for a
rotation ofθ about the swivel axis vectorn̂. The joint variablesθ1, θ2, θ3 are the Euler angles
of R1. Irrespective of the Euler angle convention chosen, expanding the equationR1=R0Rφ

into its scalar components yields one of two possible systems of equations of the form

sin(θi ) = f1(φ)

cos(θi ) cos(θ j ) = f2(φ)

cos(θi ) sin(θ j ) = f3(φ)

cos(θi ) cos(θk) = f4(φ)

cos(θi ) sin(θk) = f5(φ)

or

cos(θi ) = f1(φ)

sin(θi ) cos(θ j ) = f2(φ)

sin(θi ) sin(θ j ) = f3(φ)

sin(θi ) cos(θk) = f4(φ)

sin(θi ) sin(θk) = f5(φ),
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wherei, j , andk are any permutation of the sequence{1, 2, 3}, fl = αl sin(φ)+ βl cos(φ)+
γl , andαl , βl , andγl are constants that depend uponR0. Without loss of generality, we will
assume that we have a set of equations of the form

sin(θ1) = f1(φ)

cos(θ1) cos(θ2) = f2(φ)

cos(θ1) sin(θ2) = f3(φ)

cos(θ1) cos(θ3) = f4(φ)

cos(θ1) sin(θ3) = f5(φ).

The other cases can be handled using a straightforward generalization of the techniques
that we are about to describe. We first consider how to determine the valid ranges of
φ that satisfy the joint limits forθ1. There are two families of solutions forθ1 of the
equation sin(θ1) = k (|k| ≤ 1). Family one corresponds to values ofθ1 that lie in the range
(−π

2 ,
π
2 ) and family two corresponds to values that lie in the range (π

2 ,
3π
2 ). To distinguish

between these two families we will use the notationθ11 to indicate a value ofθ1 that
belongs to the first family andθ12 to denote a value ofθ1 in the second family. Obviously,
within each family the relationship between sin(θ1) andθ1 is monotonic. Given a set of
joint limits θ1 min < θ < θ1 max, we can find a corresponding set of valid joint limit ranges
for each family. There will be at most two such ranges. For example, ifθmin = π

4 and
θmax= 7π

4 , then any value ofθ in family two satisfies the joint limits, but solutions in
family one are restricted to lie in the interval (π

4 ,
π
2 ) or in the interval (3π2 ,

7π
4 ) as illustrated in

Fig. 6.
Suppose (a, b) is a valid range forθ1 in family i . Because the relationship between

θ1i and sin(θ1i ) is monotonic in a given familyi , if θ1i ∈ (a, b), then we must have

FIG. 6. Joint limits onθ1.
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FIG. 7. Finding the values ofφ that satisfy the joint limits ofθ1.

sin(θ1i ) ∈ (sin(a), sin(b)). From Eq. (8), the relationship between sin(θ1) andφ is given
by the equation

sin(θ1) = α1 sin(φ)+ β1 cos(φ)+ γ1.

As shown in Fig. 7, to find the corresponding ranges ofφ that yield values ofθ1 in the range
(a, b) we intersect theα1 sin(φ)+ β1 cos(φ)+ γ1 curve with the straight line segments
sin(θ ) = a and sin(θ ) = b and determine if the sections of the curve lying between two
consecutive intersection points are in the range (sin(a), sin(b)). This test can be accomplished
by checking the sign of the derivative of the curve to see if the function is increasing or
decreasing.

The valid ranges ofφ for θ1 are stored in two sets

511 = {(a, b) | θ1 min < θ11(φ) < θ1 max,a < φ < b}
512 = {(a, b) | θ1 min < θ12(φ) < θ1 max,a < φ < b}.

As with θ1, there are two families of solutions forθ2 corresponding to whetherθ1 is in
the range (−π

2 ,
π
2 ) or (π2 ,

3π
2 ).

θ21(φ) = a tan 2(f3, f2) −π
2
< θ1 <

π

2

θ22(φ) = a tan 2(− f3,− f2)
π

2
< θ1 <

3π

2
.
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To determine the valid set ofφ such thatθ2 lies within the joint limits, we compute the
intersections of theθ2i curves withθ2 min and θ2 max and use these intersection points to
partition the curves into piecewise components. If a component lies withinθ2 min andθ2 max,
then the correspondingφ interval is valid. To determine the intersections of theθ21 andθ22

curves withθ2 min andθ2 max we note that since tan(α) = tan(α + π ) the solution ofφ for
the equation

f2(φ)

f3(φ)
= tan(α) (8)

implies that either

a tan 2(f2, f3) = α
or

a tan 2(f2, f3) = α + π ⇒ a tan 2(− f2,− f3) = α.
Thus to compute the desired intersection points, we only need solve Eq. (8) withθ2 min and
θ2 max substituted forα. We then determine if the intersection point corresponds to family
one or family two by checking ifθ21(φ) = α.

The algorithm for determining the valid ranges ofφ proceeds as follows. For each curve
θ2i (φ) compute the associated intersection points and store them into a sorted sequence
along with the end points 0 and 2π . For each set of adjacent intersection points (φ j , φ j+1)
in the sequence determine if the corresponding curve segmentθ2i (φ)φ j<φ<φ j+1 lies within
the rangeθ2 min andθ2 max. This test can be accomplished by checking the derivative ofθ2i

or by evaluating the curve at a randomly chosen point inside the interval (φi , φi+1). Also,
because an angle can wrap around from 0 to 2π the algorithm merges two intervals of the
form (0, φi ) and (φi , 2π ) into a single interval. As withθ1, the valid intervals are stored in
two sets521 and522. The analysis ofθ3 is identical to that ofθ2.

Computing the valid joint ranges forθ5, θ6, θ7. RecallingR2 = (R1RaRyRb)−1Rg and
substitutingR1 = R0Rφ gives us a way of expressing the Euler angles ofR2 as a function
of φ. The valid ranges ofθ5, θ6, and θ7 can be determined using the same techniques
described in the previous section.

Selecting a suitable value ofφ. After we apply the procedure described above, there
will be 12 intervals5i j i=1,2,3,5,6,7; j=1,2. Let A1 andA2 represent the set of validφ intervals
for families 1 and 2 that satisfy the joint limits forθ1, θ2, andθ3:

A1 =
3⋂

i=1

5i1

A2 =
3⋂

i=1

5i2.

Analogously, defineB1 andB2 for joints θ5, θ6, andθ7:

B1 =
7⋂

i=5

5i1

B2 =
7⋂

i=5

5i2.
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V , the set of valid psi intervals that satisfy all six sets of joint limits, is given by

V = (A1 ∩ B1) ∪ (A1 ∩ B2) ∪ (A2 ∩ B1) ∪ (A2 ∩ B2).

GivenV there are at least two useful ways of selecting an appropriate value ofφ. The first
method is to find the largest interval inV and to select its midpoint. This will tend to keep
the arm in a posture that maximizes clearance from the joint limits. Another possibility is
to choose the value ofφ that lies in a valid interval and that is closest to a desired swivel
angleφd.

More generally, we can find the value ofφ that minimizes an arbitrary objective function
f (θ1, . . . , θ7). In order to find a minimizing value forf , we need to solved

dφ f = 0. Apply-
ing the chain rule gives

d

dφ
f (θ1(φ), . . . , θ7(φ)) =

(
dθ1

dφ
, . . . ,

dθ7

dφ

)
∇θ f.

If the relationship betweenθ andφ is of the form sin(θ ) = e(φ), wheree(φ) = α cos(φ)+
β sin(φ)+ γ , the derivativesdθ

dφ can be computed as

d

dφ
sin(θ ) = d

dφ
e(φ)

cos(θ )
dθ

dφ
= e′(φ)

dθ

dφ
= e′(φ)

cos(θ )
= ± e′(φ)√

1− sin2(θ )
= ± e′(φ)√

1− e2(φ)
.

For family 1,

−π
2
< θ <

π

2
⇒ cos(θ ) > 0⇒ dθ

dφ
= e′(φ)√

1− e2(φ)
.

For family 2,

cos(θ ) < 0⇒ dθ

dφ
= − e′(φ)√

1− e2(φ)
.

If the relationship betweenθ andφ is of the form

sin(θ ) cos(ψ) = e1(φ)

cos(θ ) cos(ψ) = e2(φ)

sin(ψ) = e3(φ)

ei (φ) = αi cos(φ)+ βi sin(φ)+ γi ,

whereψ is another joint variable, the derivativedθdφ is slightly more complicated. We first
note that this system of equations implies that

θ = tan−1

(
e1(φ)

e2(φ)

)
or θ = tan−1

(
e1(φ)

e2(φ)

)
+ π.
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Taking the derivative of either equation gives

dθ

dφ
= e′1e2− e1e′2

e2
1 + e2

2

= e′1e2− e1e′2
cos2(ψ)

= e′1e2− e1e′2√
1− e2

3

.

Note that in this case the derivative does not depend upon what familyθ belongs to.
Since f can be arbitrarily complex, there will in general be no closed-form solution to

d
dφ f = 0, and a numerical method must be used instead. However, this approach still has
a number of significant advantages compared to the approach of minimizing with respect
to the joint variablesθ1, . . . , θ7 as in Zhao and Badler [27], for example. In traditional
optimization methods, there are two ways of solving for the minimum off while satisfying
the inverse kinematics and joint limit constraints. In the approach favored in [27], the
problem is cast as

min(w1 f (θ1, . . . , θ7)+ w2(‖g(θ1, . . . , θ7)− gd‖2)

subject to

θi min < θi < θi max; i = 1 . . .7, (9)

whereg(θ1, . . . , θ7) is the forward kinematics mapping function,gd is the desired end-
effector position and orientation, andw1 andw2 are weights that rank the importance of
minimizing the objective function relative to satisfying the inverse kinematics constraint.
In this formulation, the optimization problem is in a seven-dimensional space and because
the inverse kinematics task is merely part of an augmented objective function there is
no guarantee that the inverse kinematics constraint will be satisfied. Another traditional
approach is to pose the problem as

min f (θ1, . . . , θ7)

subject to

g(θ1, . . . , θ7)− gd = 0

θi min < θi < θi max; i = 1 . . .7.

A minimum of the problem above is guaranteed to solve the inverse kinematics problem,
but now the constraints are nonlinear, which makes the optimization problem very difficult
to solve.

In contrast, our method is a hybrid of analytical and numerical techniques. The analytical
phase is used to simplify the dimension of the problem to a single variableφ and to establish
the feasible set of solutions by finding linear inequality limits onφ. A numerical method can
then be used to find the solution to the one-dimensional optimization problem of minimizing
f (φ) instead of a seven-dimensional functionf (θ1, . . . , θ7). Unlike the case of multivariate
optimization, fast and reliable techniques exist for finding the minimum of a function of
one variable.

Unsolvable problems.Sometimes it is not possible to find a value ofφ that satisfies
the limits of all the joint variables. In these cases, it is often useful to give the user an
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approximate solution that satisfies the joint limits. The optimization method used by Zhao
and Badler [27] incorporates this case implicitly. We use an optimization-based method to
handle this case as well, but we take advantage of properties of the problem to simplify the
optimization task.

We first notice that we can usually solve for the desired position of the wrist provided
that the goal position is close enough to the shoulder. This allows us to computeθ4 and
the valid ranges ofφ for variablesθ1, θ2, andθ3. Let V = A1 ∪ A2 denote the set ofφ that
satisfy the joint limits for the two families of solutions forθ1, θ2, andθ3. Since the location
of the wrist does not depend on the other joints, anyφ ∈ V satisfies the joint limits for the
shoulder angles and is a solution for the goal position. Thus, the problem has been reduced
to finding a suitable value ofφ ∈ V that minimizes the orientation error between the wrist
frame and the goal frame.

There are many possible ways of measuring orientation error between two rotation ma-
tricesRd = [n̂d, ŝd, âd] andR = [n̂, ŝ, â]. The approach used by Zhao and Badler [27] uses
the term‖(n̂d− n̂)‖ + ‖(ŝd− ŝ)‖. Another approach is to convert the rotations into their
unit quaternion representations and take the absolute value of their dot product. A value of
1 means that the two rotations are identical, and a value of 0 indicates that the two rotations
are far apart. Another approach is to find the axisû and angleν of equivalent rotation of
the matrix

Rû(ν) = RdRT , −π
2
≤ ν ≤ π

2

and to take the orientation error as sin(ν)2. It is a simple matter to show that

4 sin(v)2 = (r32− r23)
2+ (r13− r31)

2+ (r21− r12)
2,

wherer i j are the components ofRû(ν).
The method used to calculate orientation error can be written as an objective function for

a nonlinear optimization problem with linear inequality constraints in terms of the variables
φ, θ5, θ6, andθ7. This approach has several advantages compared with the approach used in
[27]. The objective function is simpler and the problem is only four-dimensional rather than
seven-dimensional. Additionally, the objective function used in [27] constrains both position
and orientation terms and requires scale factors to weight the relative importance of these
terms. In contrast, the objective function used in our algorithm contains only orientation
constraints, the position constraint is always satisfied.

3.3. Partial Orientation Constraints

It is often the case that a user wants to pose an inverse kinematics solution for only one of
the columns of the orientation component of the goal matrix. Consider the case of a person
hammering a nail. In this example, it is not necessary to solve completely for the orientation
of the end effector to obtain a plausible-looking solution. The only requirements are that
the position of the tip of the hammer coincide with the nail and the axis pointing out of the
head of the hammer align with the shaft of the nail. In this case, the system has an extra
degree of freedom parameterized by the angle of rotation about the axis of the hammer. For
these types of problems, the inverse kinematics problem has the form

T1AT yBT2E = G(ψ),
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FIG. 8. A partial orientation problem is parameterized byφ andψ .

whereE = [ Re te
0 0 0 1] specifies the constant transformation from the proximal frame of the

wrist to the end effector. As shown in Fig. 8, the orientation component of the goal matrix
G depends on three vectorsâ, ûg, v̂g, whereâ is the axis that the user wants to align with
the end effector and thêug and v̂g vectors are defined by constructing a local coordinate
system about the plane whose normal is given byâ,

ûg = p̂− (p̂ · â)â
‖p̂− (p̂ · â)â‖

v̂g = â× ûg,

wherep̂ is the projection axis defined in the previous section. The structure ofG depends
on which column of the goal matrix̂a corresponds to:

â ≡ x̂ G(ψ) =
[
â ûg cos(ψ)+ v̂g sin(ψ) v̂g cos(ψ)− ûg sin(ψ) tg

0 0 0 1

]

â ≡ ŷ G(ψ) =
[
v̂g cos(ψ)− ûg sin(ψ) â ûg cos(ψ)+ v̂g sin(ψ) tg

0 0 0 1

]

â ≡ ẑ G(ψ) =
[
ûg cos(ψ)+ v̂g sin(ψ) v̂g cos(ψ)− ûg sin(ψ) â tg

0 0 0 1

]
.

The parameterψ plays a role for the wrist position similar to the roleφ plays for the
elbow location. Changing the value ofψ moves the wrist relative to the end-effector position
about a circle that lies on a plane whose normal isâ.

We now compute the wrist and elbow positions as function ofφ andψ . The wrist position
w is given by [

w
1

]
= T1AT yBT2[0, 0, 0, 1]T = G(ψ)E−1[0, 0, 0, 1]T .

Expanding the right-hand side of the equation reveals thatw is of the form

w(ψ) =

α1 cosψ + β1 sinψ + γ1

α2 cosψ + β2 sinψ + γ2

α3 cosψ + β3 sinψ + γ3

 , (10)
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whereαi , βi , andγi are constants that depend onG andE. Equation (10) gives a convenient
way of solving for a suitable value ofψ that optimizes for a criterion that involves the
wrist position. For example, if the vertical axis is along thez direction, the values ofψ that
minimize and maximize the height of the wrist can be computed by solving

d

dψ
(α3 cosψ + β3 sinψ + γ3) = 0, (11)

which has a straightforward, trigonometric analytical solution. There are two solutions
to Eq. (11) corresponding to the minimizing and maximizing values ofψ . They can be
distinguished by checking whether the second derivative is positive or negative.

Similarly, the value ofψ that minimizes the distance from a desired wrist positionwd is
given by the solution to the equation

d

dψ
((w(ψ)− wd) · (w(ψ)− wd)) = 0. (12)

Equation (12) has the form

a cos2ψ + bsin2ψ + c(cosψ sinψ)+ d cosψ + esinψ + f = 0.

We can convert the trigonometric terms into a polynomial by making the half angle
substitution

u = tan
ψ

2

cosψ = 1− u2

1+ u2

sinψ = 2u

1+ u2
.

The equation with the substituted variable is a quartic polynomial inu which has a straight-
forward, trigonometric analytical solution. Finally, once the wrist position is known, the
elbow equation can be computed using the method described in the previous section. How-
ever, the elbow position now depends upon the two variablesψ andφ.

Given a goal matrixG and the parametersψ andφ, we can derive the wrist and elbow
positions from Eqs. (10) and (6) withw substituted fortg. θ4 andR0 depend upon bothG
andψ , and theRφ matrix depends uponφ andψ . The inverse kinematics problem can be
solved analytically by computingθ4, R1, andR2 using the methods described earlier.

Joint limits. With a partial orientation constraint the inverse kinematics problem has
2 degrees of freedom instead of 1 and each joint variable can be thought of as a surface
parameterized byψ andφ. The joint limits are planes that partition the surface into regions
that violate or satisfy the joint limits. Unfortunately, it is extremely difficult, perhaps im-
possible, to find a parameterization of these regions. Instead we will resort to the use of a
numerical procedure to enforce the joint limits when required.

Inspecting the scalar components of the equationR1(θ1, θ2, θ3) = R0Rφ we can always
find a system of equation of the form

sin(θi ) = f1(φ,ψ)

cos(θi ) cos(θ j ) = f2(φ,ψ)
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cos(θi ) sin(θ j ) = f3(φ,ψ)

cos(θi ) cos(θk) = f4(φ,ψ)

cos(θi ) sin(θk) = f5(φ,ψ)

or

cos(θi ) = f1(φ,ψ)

sin(θi ) cos(θ j ) = f2(φ,ψ)

sin(θi ) sin(θ j ) = f3(φ,ψ)

sin(θi ) cos(θk) = f4(φ,ψ)

sin(θi ) sin(θk) = f5(φ,ψ),

wherei, j , andk are a permutation of the sequence{1, 2, 3} and fl (φ,ψ), l = 1, . . . ,5, are
lengthy trigonometric expression inφ,ψ which have to be determined through the use of
a symbolic mathematics package. Assume without loss of generality that we have a system
of the first form and thati = 1, j = 2, andk = 3. We can calculate the partial derivatives
of θ1, θ2, andθ3,

∂θ1

∂φ
=


(
∂ f1
∂φ

)/√
1− f 2

1 family 1

−( ∂ f1
∂φ

)/√
1− f 2

1 family 2

∂θ1

∂ψ
=


(
∂ f1
∂ψ

)/√
1− f 2

1 family 1

−( ∂ f1
∂ψ

)/√
1− f 2

1 family 2

and

∂θ2

∂φ
=
[(
∂ f3

∂φ

)
f2− f3

(
∂ f2

∂φ

)]/√
1− f 2

1

∂θ2

∂ψ
=
[(
∂ f3

∂ψ

)
f2− f3

(
∂ f2

∂ψ

)]/√
1− f 2

1

∂θ3

∂φ
=
[(
∂ f5

∂φ

)
f4− f5

(
∂ f4

∂φ

)]/√
1− f 2

1

∂θ3

∂ψ
=
[(
∂ f5

∂ψ

)
f4− f5

(
∂ f4

∂ψ

)]/√
1− f 2

1 .

By expanding the equationR2 = (R0RφRaRyRb)−1Rg(ϕ)R−1
e , we can obtain similar ex-

pressions for the partials ofθ5, θ6, andθ7.
We can now cast the problem of finding a solution to the partial orientation constraint

with joint limits into an optimization problem in terms ofφ andψ . Define the objective
function

F(φ, ϕ) =
7∑

i=1,i 6=4

(θi (ϕ,ψ)− θ∗i )2,
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whereθ∗i = (θmax
i + θmin

i )/2 is the middle of the joint limit range of jointi . Minimizing F
will tend to keep the joint variables as close as possible to the middle of their valid ranges.
A local minimum ofF can be found using a standard nonlinear optimization procedure to
find where the gradient ofF vanishes. The gradient ofF is given by

∇F =
∑7

i=1,i 6=4 2(θi (ϕ,ψ)i − θ∗i ) ∂θi
∂φ∑7

i=1,i 6=4 2(θi (ϕ,ψ)i − θ∗i ) ∂θi
∂ψ

 .
The expressions forθi (φ,ψ), ∂θi

∂φ
, and ∂θi

∂ψ
can be computed analytically as previously

described.
There are several differences between this approach and the optimization-based method

of Zhao and Badler [27]. In our approach the objective function involves the joint limits,
whereas the formulation of the objective function in [27] is the inverse kinematics problem.
Our approach guarantees that the inverse kinematics problem will be solved, at the expense of
possibly violating the joint limits. Conversely, in [27] the joint limits are strictly observed but
the inverse kinematics constraints might not be satisfied. Finally, our optimization problem
is simpler in the sense that it only involves two variables with no constraints compared to
seven variables with linear inequality constraints. On the other hand, our objective function
is considerably more complicated and because there are two different families of solutions
for θ1 andθ5, there are actually four optimization problems that must be solved, one for
each combination of the two families.

3.4. Aiming Problems

Sometimes we want to aim an axis on the end effector toward a target point. This is not a
traditional inverse kinematics problem encountered in robotics applications and it requires
a slightly different formulation. For simplicity, we assume that wrist angles are held fixed
and the only joints that contribute to the task are the shoulder and elbow joints. Because a
pointing task defines two constraints, the system has 2 redundant degrees of freedom.

A physical interpretation of the redundant degrees of freedom is shown in Fig. 9. In the
diagramL1 andL2 denote the length of the upper arm and the distance from the elbow to

FIG. 9. Pointing an axis toward a target.
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FIG. 10. The hand circle equation.

the hand position,p designates the target point,h denotes the hand position,â denotes the
aiming axis, andα is the angle that̂amakes with

→
eh. For a fixed value ofθ4, the hand position

is free to swivel about a circle analogous to the elbow circle of the previous sections.
The system has 2 degrees of freedom:θ4 controls the extent to which the hand is out-

stretched andφ moves the hand about a cone whose apex is the goal point. The hand
position in terms of the shoulder frame is given byh = R1ta+ R1Ry(θ4)tb. If âo is the
aiming direction in the hand frame, the aiming direction in the shoulder frameâ is given
by â= R1Ry(θ4)tbâo.

The angleα between
→
sh andâdepends only uponθ4. From simple trigonometry (Fig. 10)

we infer

cosα = âRT
yta+ âRT

yRytb

L3

L3 =
(
tT
a ta+ tT

aRytb+ tT
bRT

yta+ tT
b tb
)1/2

.

To derive the equation of the circle governing the hand position in terms ofφ we need to
infer the angleγ of the triangle1shg. Assume thatα ≤ π

2 and that̂a · →sh > 0 implies that

β = a cos(−cos(α))

β >
π

2

δ = a sin

(
L3

L4
sinβ

)
γ = π − (β + δ).

The center of the hand circlec and its radiusR are given by

c = L3 cosγ
p
‖p‖

R = L3 sinγ.

Finally to obtainh(φ) we define a local̂u, v̂ coordinate system by projecting an arbitrary
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vectorp̂ onto the plane of the circle as we did in the previous two sections.

h(φ) = c+ R(cosφû+ sinφv̂). (13)

In order to solveR1 we first consider the following subproblem. Given two pointsx, y such
that‖x‖ = ‖y‖ and a unit vector̂z passing through the origin we want to find the angle of
rotationθ aboutẑ that rotatesx ontoy. We also make the assumption thatx andy are not
collinear and that they do not lie along theẑ axis. Letx∗ = x− ẑTẑx andy∗ = y− ẑTẑy be
the projections ofx andy onto the plane perpendicular toẑ. We can findθ by calculating
the angle betweenx∗ andy∗. Since

x∗ × y∗ = ẑ sin(θ )‖x∗‖‖y∗‖ (14)

and

x∗ · y∗ = cos(θ )‖x∗‖‖y∗‖ (15)

we haveθ = a tan 2(̂zT(x∗ × y∗), x · y).
For a specifiedθ4 andh(φ) we find R1 by expressing it as the product of two rotation

matricesS1 andS2 (Fig. 11). Letho denote the position of the hand after the elbow joint
rotates byθ4. S1 is the rotation about the vectorho × h(φ)/‖ho × h(φ)‖ that moves the
hand fromho to h(φ). Now let â1 denote the orientation of the aim vector after we apply
S1. S2 is the rotation about the

→
sh/‖→sh‖ axis that alignŝa1 to â.

If θ4 is specified, the valid ranges ofφ that satisfy the joint limits can be computed as
described in Section 4.3. Ifθ4 is allowed to vary, the optimal values ofθ4 andφ satisfying
the joint limits can be found by solving an optimization problem as described in Section 4.4.
If the aiming constraint forces a joint limit violation, then an optimization algorithm with
nonlinear constraints on the joint limits forθ1, θ2, and θ3 can be used; however, since
optimization with nonlinear constraints can have poor convergence properties a traditional
optimization formulation might work better in this case.

FIG. 11. DecomposingR1 into two rotations.
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TABLE 2

Summary of Methods Used When the Goal Is Reachable

Goal reachable Goal reachable
( joint limits off) ( joint limits on)

Position Analytic Analytic
Position and orientation Analytic Analytic
Position and partial orientation Analytic Analytic+ 2DOF unconstrained

optimization
Aiming Analytic Analytic if θ4 given 2DOF unconstrained

optimization otherwise

3.5. Benchmarks

In this section, we summarize the results of time and accuracy benchmarks comparing
our algorithms against an optimization approach and an inverse Jacobian routine (Tables 2–
7). The optimization implementation used in the study is based on the CFSQP algorithm
developed by Lawrenceet al. [13]. We believe their algorithm is among the best public
domain optimization routines available. For the pseudo-inverse Jacobian implementation,
we used the singular value decomposition and the Bulirsch and Stoer ODE routines from
Numerical Recipes in C[18]. To generate a suitable end-effector trajectory we used Hermite
interpolation to construct a curve connecting the start and goal positions. A suitable an-
gular velocity profile was generated by using a screw motion between the start and goal
orientations.

It should be noted that most numerical routines require a floating point number spec-
ifying the maximum error tolerance and an upper bound on the number of iterations
permitted. Obviously both these parameters have a significant effect on the time and ac-
curacy of the routine. In our benchmarks we used the default values furnished by the
authors.

We measure position error by the norm of the vector from the final end-effector position
to the goal position. The measure of orientation error depends upon the type of inverse
kinematics problem. If the problem requires aligning two rotation matrices, orientation
error is measured by subtracting one from the dot product of the quaternions corresponding
to the goal and final rotation matrices. For partial orientation and aiming problems the
orientation error is taken as the square of one minus the dot product of the end effector and
goal axis.

TABLE 3

Summary of Methods Used When the Goal Is Unsolvable

Goal unreachable

Position and orientation 4DOF constrained optimization
(4 linear constraints)

Position and partial orientation 2DOF constrained optimization
(6 nonlinear constraints)

Aiming 2DOF constrained optimization
(3 nonlinear constraints)
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TABLE 4

Position Only

Our approach Optimization Inverse Jacobian

Joint limits off
Absolute time 0.000024 0.007 0.5
Relative time 1 292 20,833

Joint limits on
Absolute time 0.00023 0.009 0.77
Relative time 1 39 3347

Average position error 2.5× 10−8 3.3× 10−7 5.6× 10−7

Percentage failures 0 0.5% 1.02%

TABLE 5

Position and Orientation

Our approach Optimization Inverse Jacobian

Joint limits off
Absolute time 0.0001 0.02 1.5
Relative time 1 200 15,000

Joint limits on
Absolute time 0.0015 0.03 2.23
Relative time 1 20 1487

Average position error 2.6× 10−8 5.4× 10−7 3.2× 10−7

Average orientation error 1.0× 10−8 1.2× 10−7 1.4× 10−7

Percentage failures 0 0.6% 1.75%

Goal unreachable
Absolute time 0.005 0.037 3.65
Relative time 1 12.3 730

TABLE 6

Partial Orientation

Our approach Optimization

Joint limits off
Absolute time 0.00012 0.015
Relative time 1 125

Joint limits on
Absolute time 0.008 0.024
Relative time 1 1

Relative time ( joint limits enforced) 1 3
Average position error 2.7× 10−8 6.0× 10−7

Average orientation error 0.9× 10−8 1.2× 10−7

Percentage failures 1.1% 0.74%

Goal unreachable
Absolute time 0.054 0.028
Relative time 1.93 1
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TABLE 7

Aiming

Our approach Optimization

Joint limits off
Absolute time 0.000025 0.0065
Relative time 1 260

Joint limits on
Absolute time 0.0067 0.0092
Relative time 1 1.373

Average aiming error 1.25× 10−8 1.43× 10−7

Percentage failures 0 0.45%

Goal unreachable
Absolute time 0.014 0.011
Relative time 1.27 1

All the algorithms tested have accuracy that is more than adequate for most applica-
tions. However, none of the numerical algorithms are reliable all of the time. As long as
the goal is reachable our methods will always find a solution. However, the optimization
and inverse Jacobian methods sometimes fail even when the goal is within the workspace
of the arm. Optimization can fail because of local minima. For example, the optimiza-
tion routine may move the arm in a direction that locally moves it toward a goal only
to have the arm lock at a joint limit. On the other hand, if the routine had moved the
arm in another direction the goal might be satisfiable. The inverse Jacobian method typ-
ically fails when the arm is moved in a configuration where the Jacobian is close to sin-
gular. When this occurs, the joint velocities become very large and change rapidly. This
instability in the joint velocities is detected by the numerical integrator which shrinks
the step size to compensate. The result is very slow convergence near the vicinity of the
singularity.

When we can utilize an analytical method or a hybrid of analytical and numerical tech-
niques, our methods are significantly faster than their purely numerical counterparts. The
inverse Jacobian method is by far the slowest. This is hardly surprising since the inverse
Jacobian method actually solves for an entire trajectory rather than just the final posture
of the arm. Thus the inverse Jacobian method must take relatively small step sizes at each
iteration compared to an optimization-based routine.

The only case where our methods underperform is in partial orientation and aiming prob-
lems where the goal is actually not reachable. In these cases our method is slightly slower
than a traditional optimization-based formulation. Apparently the presence of nonlinear
constraints more than offsets the efficiency gained by reducing the optimization problem
to a lower dimensional space. Fortunately, in problems involving partial orientation and
aiming constraints the goal is seldom unreachable.

3.6. Additional Performance Considerations

One of the advantages of our analytical approach versus the numerical algorithms is in
handling singularities. Geometrically, this occurs when the arm is fully stretched out. In
this case, the Jacobian is no longer full rank and it is impossible to generate velocity along
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FIG. 12. A pseudoinverse solution does not yield a cyclical solution in joint space for a cyclical motion in
end effector space.

one Cartesian direction irrespective of how large the joint velocities are. Singularities cause
problems for both the pseudo-inverse and optimization approaches. In the pseudo-inverse
algorithm, a singularity can cause abrupt discontinuities in the joint velocities. The dis-
continuities are detected by the numerical integrator which reduces the step size taken by
the algorithm. This can significantly degrade the performance of the algorithm. Moreover,
unless special care is taken in the implementation, the singularity can cause the integra-
tor to reduce the step size to the machine precision, possibly producing a run-time error
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FIG. 13. Our algorithm produces a repeatable motion in joint space for a closed cycle in end effector space.

or preventing the algorithm from converging to a solution. In an optimization algorithm,
the Jacobian is used to compute the gradient of the objective function. When the Jacobian
loses rank, the gradient might become zero causing the algorithm to terminate in a local
minimum. By contrast, in our approach a singularity merely causes the radius of the el-
bow circle to vanish. This means that the swivel angle is no longer relevant; regardless of
its value the elbow position is constant. However, a solution for the problem can still be
obtained.

Another problem with numerical approaches is that the solution returned depends upon
the initial guess. In an interactive system this lack of repeatability can be frustrating to
the user. To prevent this problem some interactive systems always begin the figure in a
neutral posture before invoking the inverse kinematics routine. However, this approach is
not satisfactory either since the neutral posture may be a poor initial guess. Additionally,
if a pseudo-inverse approach is used to generate solutions for closed end-effector paths the
corresponding joint trajectories will in general not be closed. This is a significant problem
for computer animation where many tasks tend to be cyclical in nature. For example, if a
pseudo-inverse solution is used to generate a walking sequence the gait will vary from step
to step. This problem is illustrated in Fig. 12, where a pseudo-inverse method is used to trace
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FIG. 14. An optimization approach does not reproduce the same answer when the goal is restored to its
original location.

a circular path. After three cycles, the posture of the arm has drifted significantly from the
initial posture. In contrast, our algorithm produces a repeatable and more natural-looking
solution (Fig. 13).

The dependence of a numerical solution upon the initial guess can also be frustrating
for a user in interactive applications because it may be difficult to reproduce a solution
consistently from session to session. In our approach, the solution returned is independent
of the starting posture. Thus our solutions are always repeatable. This problem is illustrated
in Fig. 14, where an optimization procedure is used to solve an inverse kinematics problem
for the legs. If the user adjusts the position of the goal it becomes difficult to obtain the
original solution when the goal is restored to its original state. In contrast, our algorithm
always gives a consistent solution for a desired goal irrespective of the starting posture
(Fig. 15).

For position and orientation problems, our methods can identify the relationship between
the extra degree-of-freedom and the joint limits. This allows the algorithm to automatically
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FIG. 15. Our algorithm always yields a reproducible solution.

detect when a solution is possible and which joint limits are sensitive to changes in the
elbow posture.

4. CONCLUSIONS AND FUTURE WORK

4.1. Contributions

In this paper we have developed a set of kinematic tools for modeling the forward and
inverse kinematics of a model of the human arm or leg. The advantages and novel aspects
of our work include the following:

1. We have devised analytical and hybrid analytical numerical algorithms for solving
inverse kinematics problems and other constraints such as partial orientation and aiming
problems. Our algorithms are faster to compute and more reliable than purely numerical
methods. For example, Jacobian-based methods become unstable near a singular configu-
ration of the arm and optimization-based methods are subject to local minima problems.
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Neither of these problems occurs when we use an analytical scheme. For each problem,
we identify a minimal set of variables that identify the degrees of freedom in the space of
solutions. These variables also provide the user with an intuitive set of control variables in
interactive applications.

2. Occasionally, we are forced to rely on optimization techniques. However, in many
cases, we are able to reduce the complexity of the optimization problem by decomposing
the problem into an analytical component and a numerical one, and also by expressing
the problem in terms of a lower number of variables than the number of joint variables.
Further efficiency is obtained by converting some constrained optimization problems into
unconstrained ones.

3. Most of our algorithms are repeatable in that the solution does not depend upon the
starting posture of the arm. Repeatability is a significant issue in interactive applications
where a user spends a great deal of time manipulating the solver into finding a satisfactory
final posture. In these cases, it is very important to the user that the solver behave consistently
and not be sensitive to minor perturbations of the starting state.

4. With a numerical approach it is difficult to tell whether algorithm failure indicates the
absence of a feasible solution or a limitation of the technique such as a singular Jacobian or
local minimum. By contrast, for position and orientation problems our approach can reliably
determine whether a solution exists. This feature is particularly useful in task analysis where
it is important to determine which regions of the workspace are reachable.

5. In the case of redundant systems, our algorithms permit the user to explore multiple
solutions using a set of intuitive parameters. By contrast, numerical algorithms only converge
to a single solution, which restricts their usefulness in interactive applications.

4.2. Future Work

We conclude with a list of potential enhancements and topics for future research. To
develop a commercial quality and general purpose inverse kinematics subroutine library for
human body animation, additional issues should be addressed.

1. Since our techniques already work for the arms and legs, the addition of a spine model
would permit us to solve inverse kinematics problems involving the entire body. Although
it is probably not practical to treat the entire body as a gigantic kinematic chain it may
be possible to use an approach in which an inverse kinematics problem is broken into a
smaller set of problems each of which can be solved efficiently using our methods. Zhao
[28] described a “task information” system which converts a set of high-level goals into a
sequence of low-level constraints on key positions of the body. The system first determines
how to position the figure’s center of mass and global orientation so that the task can be
performed. Once all the goals lie within the workspace of the corresponding end effector,
the inverse kinematics routines for individual kinematic units such as the spine, arms, and
legs are invoked. This system decouples a complex inverse kinematics problem into simpler
ones that can be solved efficiently with our methods.

2. Animation and task simulation systems involve more than just determining if a goal
is reachable. Other useful features are constraints such as balance control and collision
avoidance [3, 29]. It may be possible to formulate these constraints in such a way that
analytical or a hybrid of analytical and numerical solutions to them can be found. Efficient
solutions for these additional constraints would be valuable to an animation system for
obvious reasons.
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