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In this paper we develop a set of inverse kinematics algorithms suitable for
an anthropomorphic arm or leg. We use a combination of analytical and numeri-
cal methods to solve generalized inverse kinematics problems including position,
orientation, and aiming constraints. Our combination of analytical and numerical
methods results in faster and more reliable algorithms than conventional inverse
Jacobian and optimization-based techniques. Additionally, unlike conventional nu-
merical algorithms, our methods allow the user to interactively explore all possi-
ble solutions using an intuitive set of parameters that define the redundancy of the
system . (© 2000 Academic Press
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1. INTRODUCTION

Inverse kinematics plays a key role in the computer animation and simulation of arti
lated figures. Often these figures contain more than a hundred degrees of freedom, me
it infeasible (or at best tedious) for the animator to manipulate every joint to control the f
ure’s posture. With the assistance of an inverse kinematics algorithm, the animator me
gives the desired location of certain chosen points on the body and relies on the algori
to automatically compute a set of joint angles that satisfy the end-effector constraints. .
other important use of inverse kinematics occurs in motion capture applications where
positions and orientations of sensors on a live subject are used to drive the animation
computer model. In this case, inverse kinematics is used to find joint angle trajectories
interpolate the sensor data. Finally, inverse kinematics can also be used in task feasil
studies in which a virtual agent and environment are used to simulate the performanc
a real-life task, such as an assembly line operation or the workspace analysis of a ¢
pit. In these applications, inverse kinematics is useful in determining which objects in
environment are reachable.
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Most computer animation systems have adopted inverse kinematics techniques f
robotics. In these approaches, an inverse kinematics problem is cast into a system of no
ear equations or an optimization problem which can be solved using an iterative numer
algorithm. Because most inverse kinematics algorithms were originally designed to n
the requirements of robotics, their straightforward application to computer animation f
quently leads to problems. It is instructive to highlight some of the difficulties:

1. In robotics, inverse kinematics tasks only involve constraining the position and o
entation of the terminal segment or the end effector. In computer animation, other ty,
of constraints have to be considered. Some examples include constraining selected p
on nonterminal segments, aiming the end effector, keeping the figure balanced, and a\
ing collisions. It is not always easy to incorporate these constraints into a conventio
inverse kinematics formulation. To make matters worse, multiple and possibly conflicti
constraints can be simultaneously active, and the system is usually underdetermine
overdetermined.

2. Few robots have more than six joints. On the other hand, a virtual human mo
may have over 100 degrees of freedom. Traditional inverse kinematics algorithms
break down or become unacceptably slow for the highly redundant systems that occt
computer animation.

3. In most conventional robots, the joints are independent and the joint limits are sim
linear inequality constraints. On the other hand, in a human skeleton many of the joints
coupled because they may easily form closed loops or because they move simultanec
when a single muscle contracts. Thus in complex joint systems, the number of degree
freedom can be less than the number of joint variables. In these cases, it is useful to
ways of parameterizing the kinematics other than with joint variables.

4. In computer graphics applications, there is often a considerable amount of erro
both the kinematic model and the end-effector trajectory. For example, in a motion capt
application there will be errors in measuring the sensor locations and mismatches betw
the human subject and the computer model. Similarly, in an interactive application the u
may only be interested in specifying a crude estimate of the motion for the end effec
and to have the animation system determine a feasible trajectory. Errors are, in general,
critical in computer graphics applications.

We propose an inverse kinematics toolkit satisfying the special needs of computer gre
ics. Important features of our approach include:

1. Our toolkit generalizes inverse kinematics constraints to include problems such
aiming and partial orientation constraints.

2. Our focus is on analytical methods rather than numerical ones. Analytical meth
are generally more efficient and reliable than their numerical counterparts, but reqt
special kinematic structure. Whenever possible we will subdivide the joint structure
the body into kinematic units for which analytical solutions can be derived and partitic
an inverse kinematics problem into subproblems for each of these units. When a pu
analytical solution cannot be obtained we will use a combination of analytical and numeri
techniques to achieve the greatest possible speed and reliability.

3. Incases where the inverse kinematics problem is underconstrained, we use an intu
set of parameters to encode the extra degrees of freedom. The user can interactively a
the parameters to explore the space of solutions and to choose the solution best suite
the application.



REAL-TIME INVERSE KINEMATICS 355

4. Obviously, there is a tradeoff between obtaining an accurate kinematic model of
body and limiting computational expense. One of our goals is to find a suitable balal
between these two objectives so that visually acceptable results can be obtained in real

The work focuses on 7 DOF, fully revolute, open kinematic chains with two spheric
joints connected by a single revolute joint. The primary interest of this work is on tt
human arm: the revolute joint models the elbow and the two spherical joints model
shoulder and the wrist. The kinematic structure of the human leg is remarkably similal
that of the arm and the same chain may be used to model the leg. In the leg model
spherical joints are the hip and the ankle, and the revolute joint is the'keepresent
examples of both arm and leg animations.

This work does not attempt to design a model suitable for simulating dynamics. Unlil
forexample, the European CHARM project[15], we are not concerned with the developm
of a complex biomechanical model for the human arm but only with workspace analy
and interactive posturing applications.

Additionally, this work does not attempt to address the problem of generating “realist
joint trajectories. Instead, we seek to develop tools that allow a user to investigate
kinematically feasible solutions and to select the solution most suitable for his/her needs.
interactive applications, we provide a set of intuitive parameters for inspecting all possi
postures. For applications where an optimization criterion is employed, we provide a v
of characterizing the set of solutions using the lowest possible number of variables allow
the user to express an objective function and its derivatives in terms of these variables.
responsibility of generating realistic simulations stays with the animator.

2. TRADITIONAL INVERSE KINEMATICS ALGORITHMS

2.1. Problem Definition

Let f:q € X" — SHS3) represent the forward kinematics map of a kinematic chain. |
other words, given the values ofjoint variablesf returns the position and orientation of
the end effector. The inverse kinematics problem can be stated as followsQ)iwe$H?3),
find g € R" such thatf (q) = G or determine that no solution is possible. If homogeneou
matrices are used the problem assumes the form:

Find g such that

[TAi@) =g,
-1

where

Ai(g). G € SH3)

R(a) P}

Ai(qi>=[ e

SinceG defines six constraints, the problem is well posed only if the number of ind
pendent joint variables is equal to 6. If dig)(< 6, the problem is overconstrained and in

! Strictly speaking, the knee is not revolute: it has a small but nontrivial sliding component. The approximat
as a revolute joint will suffice for graphical purposes.
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TABLE 1
Number of Analytic Solutions for
6-Degree-of-Freedom Systems

n Upper bound on solutions
<6 0
>6 00
6R, 5RP 16
4R2P, 6R with S joint 8
3R3P 2

general no solution is possible. Conversely, if dijné 6, the problem is said to be under-
constrained or to possessiundantdegrees of freedom. In this case, an infinite number o
solutions may exist. In a redundant system, for a fixed posture of the end effector the jo
of the robot are still free to move along a constraint surface in joint space. This surface
called theself-motion manifoldRedundant systems are useful because the extra degre
of freedom can be used for optimizing a cost function, avoiding collision, or keeping cle
from joint limits or Jacobian singularities.

2.1.1. Theoretical Results

For 6-degree-of-freedom systems, precise upper bounds on the number of solutions
been established. Let R denote a revolute (rotating) joint and P denote a prismatic (tr:
lating) joint. For a general 6R or 5RP manipulator, there are at most 16 possible solutic
For a 4R2P or a 6R manipulator with a spherical joint, the number of possible solutic
drops to 8. Finally, a 3R3P system can have at most 2 solutions. See Table 1 for a sumr
of available results.

2.1.2. Taxonomy of Inverse Kinematics Algorithms

Broadly speaking, inverse kinematics algorithms can be characterizahgical or
numerical Analytical methods are said to bempletesince they find all possible solutions.
Analytical methods can be further subdivided intosed-formandalgebraic-elimination-
basedmethods. In a closed-form method, the solution to the joint variables can be direc
expressed as a set of closed-form equations. In general, closed-form solutions can on
obtained for 6-degree-of-freedom systems with special kinematic structure. Methods beé
on algebraic elimination express the joint variables as solutions to a system of multivaria
polynomial equations, or alternatively express a single joint variable as the solution t
very-high-degree polynomial and determine the other joint variables using closed-fo
computations. Since the degree of these polynomials will be greater than 4, algebr
elimination-based methods still require the use of numerical subroutines. However, si
numerical methods exist for solving all the roots of a polynomial equation, the algebr:
elimination methods are still classified as analytical in nature.

In contrast to the analytical methods, numerical approaches iteratively converge to a
gle solution based on an initial guess. In general, analytical methods are preferable to
numerical counterparts because analytical methods yield all solutions and are computa
ally faster and more reliable. The primary advantage of numerical algorithms is they c
be used in cases where the system is ill-posed. There are three popular numerical me
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used in solving inverse kinematics problems. The simplest method is the straightforw
application of the Newton—Raphson algorithm for solving systems of nonlinear equatic
Alternatively, the inverse kinematics problem can be converted into a differential equat
in terms ofq andq. Finally, the third category of numerical algorithms is based on recastir
the inverse kinematics problem into a nonlinear optimization problem.

2.2. Numerical Algorithms
In the following we list the frequently used numerical inverse kinematics algorithms:

1. Newton—Raphson methods: The solution to an inverse kinematics problem is the r
to the system of nonlinear equations

F(o) =f(q) —g =0,

Heref is the forward kinematics map,is the desired position and orientation of the enc
effector, andj is the joint angle vector. Because Newton—Raphson methods use a first-ol
approximation to the original equations, convergence can be slow when the equation:
highly nonlinear. Moreover, near the vicinity of a singularity the inverse of the Jacobian
ill-conditioned and may cause the algorithm to fail.

2. Pieper’'s methods: Pieper [17] was one of the first authors to adapt the Newitt
Raphson method for solving inverse kinematics equations. Pieper derived two alterne
methods with different interpretations of the forward kinematics mapping funffgpnin
the first methodf(q) is viewed as a homogeneous transformation. In the second method
alternative version of the Newton—Raphson method is used in which the forward kinema
map is viewed as a screw motion instead of a homogeneous transformation.

3. Methods based on differential equations—resolved motion rate control [26]: The jo
velocities can then be integrated from Qttao produce the joint angles corresponding to
the solution

q(ts) =do+ | q(t) dt. 1)

This technique is sometimes callexbolved motion rate controlf a fixed value ofAt and

a first-order integration scheme are used, this method is virtually identical to the Newtc
Raphson method. However, it is possible to utilize more accurate and robust integra
techniques. In particular, Cheng and Gupta [4] have proposed a modified predictor—corre
algorithm for performing the joint velocity integration. They have demonstrated that the
method is more efficient and stable than the best Newton—Raphson methods.

4. For redundant manipulators,is not square, but both the Newton—Raphson an
differential-equations-based approaches can be extended to redundant manipulators
J*, the pseudo-inverse [9], or the weighted pseudo-inverse in plate ¢8, 16].

5. Control-theory-based methods [21]: These are based on casting the differential el
tion into a control problem. Suppose= X4 — X is the error between the desired and
the current position and orientation. Selecting= J; (x4 + Ke) yields the linear system
e+ Ke = 0. J, is the analytical Jacobian with respect to the Euler angles. Suitable valt
for K can then be chosen ensure covergence and to weight the units of orientation relz
to position.
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6. Methods based od' [21]: Interpreting a tiny displacement in the joint vector as a
torque and the error vector as a force suggests the update law

q=J"Ke.

This equation has the physical interpretation of a generalized spring of stiffness céhstal
that pulls the end effector toward the goal state. This approach is computationally inexp
sive and does not require inversion of the Jacobian. On the other hidjéls in N(JT),

g will be zero and no further progress toward the goal state can be made.

7. Optimization approaches: Inverse kinematics can also be regarded as a nonli
optimization problem. Lef(q) denote the forward kinematics map from joint space tc
Cartesian space, and bej, denote the desired end-effector position. Consider the scal
potential function defined by

P(Q) = (f(q) - Xgoal)T . (f(Q) - Xgoal)~ (2)

Clearly the function is nonnegative and has a global minimum forcgrthat solves the
corresponding inverse kinematics problem. Examples of optimization-based approache
computer graphics include Badletal. [2] and Zhao and Badler [27].

2.3. Other IK Techniques and HAL Chains

In general, closed-form solutions can only be obtained for kinematic chains with spec
structure. Pieper found closed-form techniques for 6-degree-of-freedom manipulators w
any three consecutive joint axes intersect at a common point or any three joints are prism
For a completely arbitrary 6-degree-of-freedom manipulator a closed-form solution is 1
possible and other analytical techniques must be used. Raghavan and Roth [19] develo
method based on dialytic elimination for finding all solutions to an arbitrary 6R mechnisi
Their method reduces an inverse kinematics problem to finding the roots of a 16-dec
polynomial. The roots of this polynomial correspond to the solution of one of the joil
variables. The other variables can be computed by solving simple linear systems.
numerical properties of the algorithm was recently improved by Manocha and Canny [:
who recast the root finding problem into a generalized eigenvalue problem.

There has been significant interest in the research community to study the inverse k
matics of what is called Aauman-arm-likechain or a HAL chain. Korein [12] was one
of the first to do a principled exploration of the geometry of human arm. Hollerbach [l
listed the three singularities (the shoulder, the elbow, and the wrist) of a 6R manipule
and investigated how best to add an additional revolute joint to this manipulator. The H,
chain was found to best satisfy the requirement of simplicity of inverse kinematics, a
the wrist-partitioning algorithm [7] was used to solve it. The inverse kiematics metho
developed by Asano [1] and later by Koga al. [10] and Kondo [11] were motivated
by grasping rules. Asano presented two rules, 1DOF hand-redundancy and 2DOF hi;
redundancy hand postures, and derived inverse kinematics solutions for the human
based on the minimum wrist muscle load. Kondo’s work is based on the observation 1
the arm posture parameters are approximately linearly related to the spherical coordin
at the shoulder. The linear mapping model was obtained from biomechanical analysis [.
The end-effector errors remaining after the linear transformation were corrected by a c
strained optimization technique. Building on the earlier work of Hemami [5], Riesesdr
[20] solved some of the prototypical trigonometric equations encountered in the inve
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kinematics of 7 DOF manipulatiors, including the HAL geometry. Wang and Kazerouni
[25] obtained explicit symbolic formulation for the Jacobian matrix and its null space f
a HAL manipulator. In two recent papers Wang [23] and Wang and Verriest [24] prest
an inverse kinematics scheme based on minimum joint velocity norm. The scheme in
porates nonlinear joint limits and a detailed three-dimensional description of the shoul
model. More recently Lee and Shin [13a] employed a hybrid numerical analytical appro:s
in their inverse kinematics scheme. The analytical component of the limb IK is similar
ours [22a].

2.4. Goals inJack

Jack[3] permits the user to specify a wide variety of goals for the end effector. Multipl
and disjunctive goals are also permitted. Some of these goals and their correspon
potential functions are enumerated below.

1. Position goals: In a position goal, the user wants to position the end effectgs &t
R? and is unconcerned about the final orientation. This can be achieved by minimizing
potential function

P(q) = ”(rgoal —re)l.

2. Orientation goals: In an orientation goal, the user is only interested in orienting t
end effector so thate andy. point in the same direction ag;, yg. The corresponding
potential function is

P(@) = [I(Xg — Xe) Il + I(Yg — Ye)l-

3. Position and orientation goals: A position and orientation goal corresponds to
conventional inverse kinematics problem. A suitable potential function is

P(q) = wpll(r goal — Fe)ll + woCiy I (Xg — Xe)ll + woCy I (Vg — Ye)I.

wherecyy andcgy are used to scale the units of rotation relative to translationugnand
w, are weights that adjust the relative importance of the translation goal with respect to
rotation goal.

4. Aiming at goals: It is sometimes necessary to “aim” a line on the end effector a
pointp. Let the line on the end effector be represented by the pgamd a vectov written
in terms ofXe, Ye, andxe x Ye. The goal is achieved whqllg}zu = v and the corresponding
potential function is defined as

p—re
P(q) = || ——¢ _v].
@ an—ren H

5. Plane goal: In a plane goal, the user wants the position of the end effector to lie ¢
plane specified by a point and a normal vectmm). The condition for the point being on
the plane is

(p—re)-A=0,
which is captured by the potential function

P@) = ((p —re) - )%
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Multiple goals are handled by combining individual goals into a global potential functic
of the form

G(a) =) wik(),

wherew; are weight factors. Moreover, goals can also be satisfied disjunctively. In this cz
the goal function is defined as

G(q) = min(R (a)).

2.5. Quality Criteria

We will now attempt to define a set of criteria for assessing the strengths and shortcomi
of an inverse kinematics algorithm.

e Efficiency:Since inverse kinematics must often be performed in real time, efficien
or speed is of paramount concern.

o Reliability: An algorithm is reliable if it can consistently find a solution when one
exists and if it correctly detects instances of the problem that are unsolvable.

e CompletenessAdditionally, in some applications it is desirable to find the entire se
of solutions; algorithms satisfying this requirement are termed complete.

e Stability: Numerical stability refers to the algorithm’s robustness when degenerate
ill conditioned cases arise.

e Generality:Finally, each algorithm will be evaluated on its generality, that is whethe
it can be adapted to redundant manipulators or other ill-posed problems where an infi
number of solutions may exist.

Efficiency is difficult to determine because it depends upon the quality of the impl
mentation. Additionally, some algorithms may perform well on certain types of problen
and poorly on others. In general, we would expect the Newton—Raphson methods to be
slowest and the analytical algorithms to be the fastest.

Not all of the algorithms are reliable. For example, the Jacobian transpose method
the optimization-based approaches can stop in local minima. Numerical instability can
prevent an algorithm from converging to a solution, and almost all of the numerical routir
suffer from poor reliability near singularities of the Jacobian. Analytical methods do n
suffer from singularities in the Jacobian, but can be susceptible to numerical proble
unless special precautions are taken.

The most significant advantage of numerical algorithms is that they can be generali
to accommodate additional constraints and objective functions, whereas the analytical
proaches are restricted to 6-degree-of-freedom systems. Optimization methods in partic
provide a convenient framework for incorporating a wide variety of criteria.

3. AN ANALYTICAL ALGORITHM FOR A 7-DOF LIMB

In this section we present the inverse kinematics algorithm for the human arm. T
kinematic chain of our interest contains seven joint variables; i.e., it has one redund
degree of freedom. Our algorithm uses the extra of freedom to avoid joint limits or to pla
the elbow as close as possible to a desired position. Our algorithm is purely analyt
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and has no problems with Jacobian singularities or local minima. We also give empiri
evidence to demonstrate that our algorithm is more efficient and reliable than numer

approaches.

3.1. Forward Kinematics

Consider the kinematic chain shown in Fig. 1. Let

{Rl(ela 6, 63) 0]
T, =
00O 1

denote the rotation matrix from the proximal to the distal sit&0és a function ob,, 65,
andds. Similarly,

{Rz(es, 0s, 07) 0]
T, =
00O 1

represents the rotation matrix from the proximal to the distal sit® aind

cd, 0 s9, O
T — |:Ry(94) O:| _ 0 1 0 O
Y7 looo 1 —s0, 0 ch; O
0 0 0 1
S1
e T i
. 1
P
&
—— —
f
)
8 | X
o \"“.-..,J__'
/
AAAA ~1 ""Y,"“‘:‘ \
i"-l,/; ‘\\\\B e :--:-/? ':_"::,-
\ o \
N v - \
\ \

FIG. 1. A 7-degree-of-freedom limb.
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is the rotation produced by revolute joint F. Without loss of generality, we have assumed
the coordinate frames about the revolute joint have been defined so that rotation prodt
by 6, is about the locay axis of the proximal frame of F. Finally,

R t
A:[ a a:|
000 1
and

R t
B:[ b b]
000 1

are the constant transformation matrices from the distal fran® tf the proximal frame
of F, and the distal frame of F to the proximal frameSf

3.2. Inverse Kinematics

To solve the inverse kinematics problem for a desired goal

Ry t
G:{ 9 g]
000 1

we must solve the equation
T,AT,BT, =G 3)

for the unknown®R1, R,, andd,. The values o1, 65, 63, 65, 0, andy; are then determined
by extracting the Euler angles from the rotation matrikgandR,.

3.2.1. Solving forf,

Sinced, is the only joint variable that affects the distanceSpf relative toS;, 6, may
be computed independently. If the normal vector of the plane contafing, andF is
parallel to the axis of rotation df, thenf, can be computed trivially using the law of
cosines. We consider the more general case where the axis of rotation of the revolute |
is not necessarily parallel to the normal. We first note that the positi@ adlative toS
does not depend drR, and is given by

T1ATBT>[0, 0,0, 1]" = RiRaRyth + Rita. (4)

Taking the dot product of Eq. (4) with itself and setting it equal to the square of tt
distance of the goal gives

2t] RaRyty = tgtg — tita — tity, (5)

which is a trigonometric equation of the foratos@,) + bsin{,;) = ¢ and can be solved
using straightforward trigonometric methods. In general there are two solutions to (5),
only one solution is physically realizable because of joint limits on the knee or elbow.
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3.2.2. Characterizing the Extra Degree of Freedom

Because Eq. (3) has seven unknowns but only six constraints, the system has one di
of redundancy. A simple physical interpretation of the redundant degree of freedom is be
on the observation that if the wrist is held fixed, the elbow is still free to swivel about
circular arc whose normal vector is parallel to the axis from the shoulder to the wrist.

The workspace of this mechanism was first systematically analyzed by Korein [1
Korein observed that the first two shoulder joints along with their joint limits restrict th
tip of the elbow to lie on a spherical polygon. By interesecting the elbow circle with tt
polygon it is possible to determine the legal elbow configurations as a function of the jc
limits of the first two joints. Additionally, the twist induced by the third joint also restrict:
the elbow to lie on a circular arc. Itis also possible to determine the restrictions on the elk
position as a function of the wrist joints. By taking the intersection of all sets of valid elbc
arcs, Korein derived the restrictions on the elbow position induced by the joint limits.

Our approach to solving this problem is based on the same observation as Korel
Korein's algorithm is derived from a geometric analysis of the problem. By contrast, o
method is purely algebraic and gives an exlicit formula for the joint angles and their deri
tives as a function of the swivel angle. This is an advantage when an objective functio
used to select an appropriate valuepadince it is often necessary to express the objectiv
function in terms of the joint angles.

In Fig. 2,s, e, andty define the positions of the shoulder, the elbow, and the goal locatic
of the wrist. The origin (0, 0, 0) is coincident with the shoulder position. The schlars
L,, andL3 denote the lengths of the upper arm, lower arm, and the distance from the ¢
position to the shoulder. The origin of the coordinate system is taksn/fsthe swivel
angleg varies, the elbow traces an arc of a circle lying on a plane whose normal is paralle
the wrist-to-shoulder axis. To mathematically describe the circle we first define the norr
vector of the plane by the unit vector in the direction from the shoulder to the wrist,

ty

A= .
lItgll

Additionally, we need two unit vectoandV that form a local coordinate system for the
plane containing the circle. We geto be the projection of an arbitrary axi§corresponding

L1

A ¥

FIG. 2. For a given goal, the elbow is free to move on a circle.
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FIG. 3. Finding the elbow position that is the closest possible to a desired position.

to ¢ = 0), selected by the user, onto the plane of the circle

o
>

>

)
)
and set = A x (. The center of the circleand its radiusk can be computed from simple
trigonometry:

>

la—(&- A

cost) — L3+ Lf—L3
o itglita

¢ = cosg)L1n
R = sin(@)Lj.

Finally the equation of the elbow position is given by
e(¢p) = ¢+ R(cos)l + sin(@)V). (6)

The swivel angl@ gives a useful way of characterizing the space of solutions. The swiv
angle has a meaningful physical interpretation to the user and for a given valuE@f(6)
can be evaluated to give an additional constraint on the position of the elbow so that
solution to the inverse kinematics problem is uniquely defined.

Sometimes the user wants to give a desired position of the edpamstead of a swivel
angle; in this case, it is a simple matter to compute the correspowrdthgt minimizes
lleq — e(¢)|l. Define the vectorp = (g4 — ¢) andp* = p — (p - A)A. Note thaip* is merely
the projection op onto the plane containing the elbow circle. As shown in Fig. 3 the valu
of ¢ that minimizes|es — &(¢)|l is the angle betweepi andd. Since sing) = 2 >0l angd

N ) e
cosgp) = 5. ¢ = atan2(|p* x Q| p* - Q).

3.2.3. Solving forR; andR;

In this section we show how to compuRe andR; efficiently given the values af and
04. Figure 4 shows the initial configuration of the arm corresponding to an elbow rotati
of 64 and the goal configuration for a desired swivel angléAs before, we have taken
the position of the shoulder joirstas the origine, gy(¢), w, wy denote the positions of
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w

FIG. 4. CalculatingR;.

the elbow and wrist in the rest and goal configurations. Assuming that the elbow is |
completely outstretched, the shoulder, elbow, and wrist locations form a reference trian
The rotation matrixR; is merely the rigid body transformation afsewonto Asey(¢)wy.

To find R we first define a local coordinate systeéwf{ % (i] associated witlthAsewby

N e
X=—
el
§= w — (W - X)X
T lw — (W R)K]|
Z=Xx¥.

Analogously we define the coordinate systé?ﬁ’{ 995@ 292?’) 01] associated witlhsg(¢)wy.

R; is then given by

R — Xg(9) Yo(P) Zy(#) 0“* y
e 0

z 017
: (7)
0 0 0o 1jlo 01

Finally, R, is obtained by rearranging Eq. (3)
T, = (T1AT,B)'G
Rz = (R1RaRyRp) *Ry.

It is straightforward to extend the algorithm to problems that involve only position col
straints. In this case the wrist angles are chosen by the user andcenhygld, are computed.

3.2.4. Joint Limits

In practice, it is necessary to consider joint limits to ensure plausible looking solutiol
In this section, we describe an analytical algorithm that computes all possible valjies ¢
that satisfy the joint limits. The algorithm also determines when a solution is not possit
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w
Armin rest position efter flexlonby @ 4

FIG.5. Decomposin@; into R, andR,.

We will first derive the relationship between the joint varialtles,, 03, 65, 65, 6; and the
swivel anglep and show how this relationship can be used to determine the valid ranges
¢ for each joint.

Computing the valid ranges fo¥, 62, 63. As shown in Fig. 3R; can be expressed as a
sequence of two rotatioi®, = RoRy, whereRg is the rotation matrix that moves the elbow
to &(0) from the rest position by setting= 0 in Eq. (7) ancR, is the rotation matrix for a
rotation ofé about the swivel axis vectdr. The joint variable$,, 6,, 65 are the Euler angles
of R;. Irrespective of the Euler angle convention chosen, expanding the eqRatioRoR
into its scalar components yields one of two possible systems of equations of the form

sin@) = fi(¢)
cosp;) cos@;) = fa(¢)
cos@;)sin@;) = fa(¢)
cosf;) cospy) = fa(9)
cos@;) sin@x) = fs(¢)

or

cosf;) = fi(¢)
sin@) cosp;) = fa()
sin@) sin@;) = fa(¢)
sin@;) cosk) = fa(¢)
sin@:) sin@) = fs(¢),
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wherei, j, andk are any permutation of the sequefte2, 3, f| = o sin(p) + B cosg) +
M, andy, B, andy are constants that depend ugg Without loss of generality, we will
assume that we have a set of equations of the form

sin@1) = fi(¢)
cosp1) cos@s) = fa(¢)
cos@y) sin(@2) = f3(¢)
cospr) cosps) = fa(¢)
cos@y) sin@s) = fs(¢).

The other cases can be handled using a straightforward generalization of the techni
that we are about to describe. We first consider how to determine the valid range:
¢ that satisfy the joint limits fo®;. There are two families of solutions fex of the
equation sird;) = k (|k| < 1). Family one corresponds to valuesgpthat lie in the range

—%, %) and family two corresponds to values that lie in the rar@e%—). To distinguish
between these two families we will use the notatéap to indicate a value o6, that
belongs to the first family ané, to denote a value af; in the second family. Obviously,
within each family the relationship between #i)(and6; is monotonic. Given a set of
joint limits 61 min < 0 < B1max We can find a corresponding set of valid joint limit ranges
for each family. There will be at most two such ranges. For exampléyif= 7 and
Omax = 77”, then any value ob in family two satisfies the joint limits, but solutions in
family one are restricted to lie inthe intervgl,(3) or in the interval @ 77”) asillustratedin
Fig. 6.

Suppose d, b) is a valid range fow; in family i. Because the relationship between

61, and sing,,) is monotonic in a given familyi, if 64, € (a, b), then we must have

;fanuuz familyl

]

FIG. 6. Joint limits oné,.
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FIG. 7. Finding the values op that satisfy the joint limits of;.

sin@y,) € (sin(@), sin®)). From Eq. (8), the relationship between gin(and ¢ is given
by the equation

sin@1) = a1 sin(@) + B1 cosEp) + y1.

As shown in Fig. 7, to find the corresponding ranges tifat yield values of; in the range
(a, b) we intersect thex; sin(@) + 1 cosg) + y1 curve with the straight line segments
sin@) = a and sin@) = b and determine if the sections of the curve lying between twi
consecutive intersection points are inthe range#3js{n()). Thistest can be accomplished
by checking the sign of the derivative of the curve to see if the function is increasing
decreasing.

The valid ranges o for 6, are stored in two sets

Iy, = {(a, b) | 01 min < 911(¢) < Oimax @ < ¢ < b}
nlz = {(a, b) | O1min < 912(¢) <Oimaxa < ¢ < b}-

As with 6, there are two families of solutions fés corresponding to whethey is in
the range £ %, %) or (%, ).
62,(¢) = atan 2(fa, ) S <t<3

3
65,(¢) = atan 2( fs, — 1) % <0, <2,
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To determine the valid set @f such that), lies within the joint limits, we compute the
intersections of thé, curves withf, min and . max and use these intersection points to
partition the curves into piecewise components. If a component lies withinando, max
then the correspondinginterval is valid. To determine the intersections of theando,,
curves withd, min andf, max We note that since tamj = tan + ) the solution ofp for
the equation

fa(#) _
f3(®)

tang) (8)

implies that either
atan2(fy, f3) = «
or
atan2(fy, f3) = o + 7 = atan2¢ f;, — f3) = a.

Thus to compute the desired intersection points, we only need solve Eq. (Spwitland
02 max Substituted for. We then determine if the intersection point corresponds to famil
one or family two by checking i, (¢) = «.

The algorithm for determining the valid rangesgoproceeds as follows. For each curve
62,4y compute the associated intersection points and store them into a sorted sequ
along with the end points 0 andr2For each set of adjacent intersection poigts ¢;.1)
in the sequence determine if the corresponding curve segimépls, <44, lies within
the range, min and6b, max. This test can be accomplished by checking the derivativg, of
or by evaluating the curve at a randomly chosen point inside the intefva(.1). Also,
because an angle can wrap around from Ostdtze algorithm merges two intervals of the
form (0, ¢;) and ¢, 2) into a single interval. As witldy, the valid intervals are stored in
two setsII,, andIl,,. The analysis ofjs is identical to that ob,.

Computing the valid joint ranges f@k, 05, 6;. RecallingR, = (RlRaRbe)—le and
substitutingR; = RoRy gives us a way of expressing the Euler angleRohs a function
of ¢. The valid ranges ofs, 05, and; can be determined using the same technique
described in the previous section.

Selecting a suitable value @f After we apply the procedure described above, ther
will be 12 intervalslli; i—1,235.6.7;
for families 1 and 2 that satisfy the joint limits féx, 6,, andés:

3
A= (1T,
i=1

3
A = ﬂ IT;,.
i=1

Analogously, defind3; andB; for joints 05, 65, andé;:
7
B, = ﬂ IT;,
i=5

7
B, =),
i=5
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V, the set of valid psi intervals that satisfy all six sets of joint limits, is given by
V = (Al N Bl) U (Al n Bg) U (Az N B]_) @) (A2 N Bz).

GivenV there are at least two useful ways of selecting an appropriate vath€eldie first
method is to find the largest interval ihand to select its midpoint. This will tend to keep
the arm in a posture that maximizes clearance from the joint limits. Another possibility
to choose the value af that lies in a valid interval and that is closest to a desired swive

anglegy.
More generally, we can find the valueg@that minimizes an arbitrary objective function
f (61, ..., 67). Inorder to find a minimizing value fof, we need to solvgj5 f = 0. Apply-

ing the chain rule gives

% f(61(9). ..., 6:(9)) = (ﬁ ..... %> Vo f.

If the relationship betweefiandg is of the form sing) = e(¢), wheree(¢) = a cosg) +
B sin(p) + v, the derivative%i can be computed as

d . d
¢ sin@) = %e(qb)

d
cos@)ﬁ _ €¢(g)

o _e¢) _, €@ _ . €@
dp  cosh) ~ \/1_sife) /1-€(@)
For family 1,
AP Lo Y@
> 0 2=>cos€) 0=>d¢— 1—e2(¢)'
For family 2,

cosf) < 0= @ ___<w)

dp  /1-e(9)

If the relationship betweef and¢ is of the form

sin() cos()) = ew(¢)
cosg) cosf)) = ex(e)
sin(y) = es(¢)

&(¢) = o cosg) + pi sinlp) + 7,

where is another joint variable, the derivati\% is slightly more complicated. We first
note that this system of equations implies that

_ tan? M) _ —1(@)
6 =tan (62(¢) or 6 =tan e2(¢) + 7.
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Taking the derivative of either equation gives

d0 _ ee—ed €e—e6 -6

dp  e+¢&  co(y)  J1-¢&

Note that in this case the derivative does not depend upon what farbéjongs to.

Since f can be arbitrarily complex, there will in general be no closed-form solution t
% f = 0, and a numerical method must be used instead. However, this approach still
a number of significant advantages compared to the approach of minimizing with resj
to the joint variable9., ..., 67 as in Zhao and Badler [27], for example. In traditional
optimization methods, there are two ways of solving for the minimurhwhile satisfying
the inverse kinematics and joint limit constraints. In the approach favored in [27], t
problem is cast as

min(ws f (01, . ... 67) + w2(l9(6x, - . .. 67) — Gall®)
subject to
Qimin<9i<9imax; i=1...7, (9)

whereg(9,, ..., 67) is the forward kinematics mapping functiogy is the desired end-
effector position and orientation, ang, andw, are weights that rank the importance of
minimizing the objective function relative to satisfying the inverse kinematics constrail
In this formulation, the optimization problem is in a seven-dimensional space and beca
the inverse kinematics task is merely part of an augmented objective function there
no guarantee that the inverse kinematics constraint will be satisfied. Another traditio
approach is to pose the problem as

min f(@l, ey 97)

subject to

901, ...,07) —da=0
eimin<9i<9imax; |=17

A minimum of the problem above is guaranteed to solve the inverse kinematics probls
but now the constraints are nonlinear, which makes the optimization problem very diffic
to solve.

In contrast, our method is a hybrid of analytical and numerical techniques. The analyti
phase is used to simplify the dimension of the problem to a single varedote to establish
the feasible set of solutions by finding linear inequality limitsso® numerical method can
then be used to find the solution to the one-dimensional optimization problem of minimizi
f (¢) instead of a seven-dimensional functib., . . ., 7). Unlike the case of multivariate
optimization, fast and reliable techniques exist for finding the minimum of a function
one variable.

Unsolvable problems. Sometimes it is not possible to find a value¢othat satisfies
the limits of all the joint variables. In these cases, it is often useful to give the user
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approximate solution that satisfies the joint limits. The optimization method used by Zh
and Badler [27] incorporates this case implicitly. We use an optimization-based methoc
handle this case as well, but we take advantage of properties of the problem to simplify
optimization task.

We first notice that we can usually solve for the desired position of the wrist provids
that the goal position is close enough to the shoulder. This allows us to cofmpatel
the valid ranges op for variabless,, 6,, andés. LetV = A; U A, denote the set af that
satisfy the joint limits for the two families of solutions féy, 6,, andés. Since the location
of the wrist does not depend on the other joints, @any V satisfies the joint limits for the
shoulder angles and is a solution for the goal position. Thus, the problem has been red
to finding a suitable value @f € V that minimizes the orientation error between the wrist
frame and the goal frame.

There are many possible ways of measuring orientation error between two rotation |
tricesRq = [fg, &, &g] andR = [A, §, &]. The approach used by Zhao and Badler [27] use
the term||(Aqg — A)|| + ||(& — §)|l. Another approach is to convert the rotations into thei
unit quaternion representations and take the absolute value of their dot product. A valu
1 means that the two rotations are identical, and a value of 0 indicates that the two rotat
are far apart. Another approach is to find the dk&snd anglev of equivalent rotation of
the matrix

Ra(v) = RgRT, —

=V=

NS
NS

and to take the orientation error as si)f( It is a simple matter to show that
4sin@)? = (32 — r23)° + (13 — ran) + (fa1 — r12)°,

wherer;; are the components & (v).

The method used to calculate orientation error can be written as an objective function
a nonlinear optimization problem with linear inequality constraints in terms of the variabl
¢, 05, 05, andb;. This approach has several advantages compared with the approach use
[27]. The objective function is simpler and the problem is only four-dimensional rather th
seven-dimensional. Additionally, the objective function used in [27] constrains both positi
and orientation terms and requires scale factors to weight the relative importance of tt
terms. In contrast, the objective function used in our algorithm contains only orientati
constraints, the position constraint is always satisfied.

3.3. Partial Orientation Constraints

Itis often the case that a user wants to pose an inverse kinematics solution for only on
the columns of the orientation component of the goal matrix. Consider the case of a pel
hammering a nail. In this example, it is not necessary to solve completely for the orientat
of the end effector to obtain a plausible-looking solution. The only requirements are tl
the position of the tip of the hammer coincide with the nail and the axis pointing out of tl
head of the hammer align with the shaft of the nail. In this case, the system has an e
degree of freedom parameterized by the angle of rotation about the axis of the hammer.
these types of problems, the inverse kinematics problem has the form

T1ATyBTE = G(v),
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e
FIG. 8. A partial orientation problem is parameterizeddwand.
whereE = [OFf;O ti] specifies the constant transformation from the proximal frame of th
wrist to the end effector. As shown in Fig. 8, the orientation component of the goal mat
G depends on three vectdasly, V4, whered is the axis that the user wants to align with

the end effector and th&, andV, vectors are defined by constructing a local coordinat
system about the plane whose normal is giveiaby

o P—(P-aa
7 Ip—(p-a)al
Uy = ax g,

wherep is the projection axis defined in the previous section. The structuBd#pends
on which column of the goal matrix corresponds to:

a=x G(I//) — a Gg COS(W) + \79 Sm(W) \7g COS(lﬁ) - Gg Sln(w) tg_

L0 0 0 1)
A=y G(y) = (Vg COSE)) ; Qg sin(y) 2 {q cOS@)) —(;—Vg sin@y) tgl.
a=2 G(y)= [0g cos) ; Vgsin(y) Vgcose)) ; Qg sin@y) :; tj

The parametety plays a role for the wrist position similar to the rabeplays for the
elbow location. Changing the valuepfmoves the wrist relative to the end-effector position
about a circle that lies on a plane whose normal is

We now compute the wrist and elbow positions as functionafidy,. The wrist position
w is given by

H’] = T1ATBT,[0,0,0,1]" = G(¥)E*[0,0,0,1]".

Expanding the right-hand side of the equation revealswhatof the form

a1 COSY + B1Siny +
W) = | azcosy + Bosiny + 2 |, (10)
a3 COSY + Basiny + y;3
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whereg;, i, andy; are constants that depend@randE. Equation (10) gives a convenient
way of solving for a suitable value af that optimizes for a criterion that involves the
wrist position. For example, if the vertical axis is along #direction, the values of that
minimize and maximize the height of the wrist can be computed by solving

%(as cosy + Bzsiny + y3) =0, (11)

which has a straightforward, trigonometric analytical solution. There are two solutio
to Eq. (11) corresponding to the minimizing and maximizing valueg offhey can be
distinguished by checking whether the second derivative is positive or negative.

Similarly, the value of that minimizes the distance from a desired wrist positigns
given by the solution to the equation

d
gu (W) — wo) - W(y) — wa)) = 0. (12)
14
Equation (12) has the form
acos ¥ + bsir? ¢ + c(cosy siny) + d cosy + esiny + f = 0.

We can convert the trigonometric terms into a polynomial by making the half ang
substitution

14

u =tanE
1-u?

OV =1
siny = 2_u
1+ u?

The equation with the substituted variable is a quartic polynomiakifich has a straight-
forward, trigonometric analytical solution. Finally, once the wrist position is known, th
elbow equation can be computed using the method described in the previous section. +
ever, the elbow position now depends upon the two variaplaade.

Given a goal matribG and the parameterg and¢, we can derive the wrist and elbow
positions from Egs. (10) and (6) with substituted foty. 64 andRo depend upon bot
andy, and theR, matrix depends upo# andyr. The inverse kinematics problem can be
solved analytically by computingy, R1, andR; using the methods described earlier.

Joint limits. With a partial orientation constraint the inverse kinematics problem he
2 degrees of freedom instead of 1 and each joint variable can be thought of as a sur
parameterized by and¢. The joint limits are planes that partition the surface into region:
that violate or satisfy the joint limits. Unfortunately, it is extremely difficult, perhaps im
possible, to find a parameterization of these regions. Instead we will resort to the use
numerical procedure to enforce the joint limits when required.

Inspecting the scalar components of the equaRefdy, 62, 63) = RoR, we can always
find a system of equation of the form

sin@) = fi(¢, ¥)
cos@i) cosp;) = fa(e, ¥)
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cos@;) sin@;) = fa(¢, v)
cosp;) cos) = fa(e, ¥)
cos@i) sin(k) = fs(¢, ¥)

or

cosi) = fi(¢. ¥)
sin@:) cosg;) = fa¢, ¥)
sin@) sin@;) = fa(¢, ¥)
sin@) cosbk) = fa(e, ¥)
sin@) sin@) = fs(¢, ¥),
wherei, j, andk are a permutation of the sequerite2, 3 and fi (¢, ¥),| =1, ..., S, are
lengthy trigonometric expression ¢ ¢ which have to be determined through the use o
a symbolic mathematics package. Assume without loss of generality that we have a sy

of the first form and that = 1, j = 2, andk = 3. We can calculate the partial derivatives
of 61, 6, andos,

26, (3—;})/\/1——1‘12 family 1
2 (7;‘)/\/1——1‘12 family 2
26, (5%) /\/W family 1
w —(5%) /\/W family 2

and

36>

- () ()
- [(3) - ()]
() ()]

3 [\ 9g )
993 [/ 9fs fs\ ]
— = |=—)fa— f5| — \/1- f2.
oy _(aw) ) S(aw _ '
By expanding the equatioR, = (RoRsRaRyRb) 'R4(¢)R5?%, we can obtain similar ex-
pressions for the partials 6§, 6, andéy.
We can now cast the problem of finding a solution to the partial orientation constra

with joint limits into an optimization problem in terms @f and . Define the objective
function

7
F.0)= > Gilp.v) -6

i=1i4
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whereg;* = (M3 4 gMiny /2 is the middle of the joint limit range of joirt Minimizing F

will tend to keep the joint variables as close as possible to the middle of their valid rang
A local minimum of F can be found using a standard nonlinear optimization procedure
find where the gradient df vanishes. The gradient &f is given by

ZiY:l,i;ﬂ; 2(9| ((p, w)l _ QI*)?}_(Z;
Zi7:1,i7g4 2(9| ((p, ¢)| _ 9|*)%

VF =

The expressions fof; (¢, V), %, and % can be computed analytically as previously
described.

There are several differences between this approach and the optimization-based me
of Zhao and Badler [27]. In our approach the objective function involves the joint limit:
whereas the formulation of the objective function in [27] is the inverse kinematics proble
Ourapproach guarantees thatthe inverse kinematics problem will be solved, atthe expen
possibly violating the joint limits. Conversely, in [27] the joint limits are strictly observed bu
the inverse kinematics constraints might not be satisfied. Finally, our optimization probl
is simpler in the sense that it only involves two variables with no constraints comparec
seven variables with linear inequality constraints. On the other hand, our objective funct
is considerably more complicated and because there are two different families of soluti
for 6; and®s, there are actually four optimization problems that must be solved, one f
each combination of the two families.

3.4. Aiming Problems

Sometimes we want to aim an axis on the end effector toward a target point. Thisis n
traditional inverse kinematics problem encountered in robotics applications and it requi
a slightly different formulation. For simplicity, we assume that wrist angles are held fixe
and the only joints that contribute to the task are the shoulder and elbow joints. Becau:
pointing task defines two constraints, the system has 2 redundant degrees of freedom

A physical interpretation of the redundant degrees of freedom is shown in Fig. 9. In 1
diagramL; andL, denote the length of the upper arm and the distance from the elbow

FIG. 9. Pointing an axis toward a target.
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FIG. 10. The hand circle equation.

the hand positiorp designates the target point_n)tdenotes the hand positichdenotes the
aiming axis, and is the angle tha makes witheh. For a fixed value of,, the hand position
is free to swivel about a circle analogous to the elbow circle of the previous sections.
The system has 2 degrees of freed@gicontrols the extent to which the hand is out-
stretched and moves the hand about a cone whose apex is the goal point. The h:
position in terms of the shoulder frame is given foy= Rita + R1Ry(64)ty. If & is the
aiming direction in the hand frame, the aiming direction in the shoulder fi@megiven
by & = R1Ry(04)thao.
The anglex betweersh anda depends only upofy. From simple trigonometry (Fig. 10)
we infer

aRJta + 8RRty
L3
Ls = (tita+ taRyth + tyRyta+ tity)

COSsx =

1/2

To derive the equation of the circle governing the hand position iﬂ)termbswﬂ need to
infer the angley of the triangleAshg Assume that < % and tha@ - sh > 0 implies that

B = acos(cosg))

T
/3>§
§ = asin Ls in
=as (L—45 ,3)
y=m—(B+9).

The center of the hand circteand its radiusk are given by

p
c= Lzcosy—
Ipll

R = Lssiny.

Finally to obtainh(¢) we define a locall, V coordinate system by projecting an arbitrary
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vectorp onto the plane of the circle as we did in the previous two sections.
h(¢) = ¢+ R(cos¢l + singV). (13)

In order to solveR; we first consider the following subproblem. Given two poixtg such
that||x|| = |ly|l and a unit vectog passing through the origin we want to find the angle of
rotationd aboutz that rotates< ontoy. We also make the assumption tikadndy are not
collinear and that they do not lie along thaxis. Letx* = x — 2"zxandy* =y — 2"2y be
the projections ok andy onto the plane perpendicular 2oWe can find? by calculating
the angle betweex andy*. Since

X* x y* = zsin@)|IX*|ly* |l (14)
and
X* - y* = cosP)|IX*| Iy (15)

we havet = atan 2¢"(x* x y*), X - y).

For a specified; andh(¢) we find Ry by expressing it as the product of two rotation
matricesS; andS, (Fig. 11). Leth, denote the position of the hand after the elbow joint
rotates byd,. S; is the rotation about the vectdg x h(¢)/|lho x h(¢)| that moves the
hand fromh, to h(¢). Now |et_él)1 deil)ote the orientation of the aim vector after we apply
S;. S, is the rotation about theh /|| sh|| axis that aligns; to a.

If 64 is specified, the valid ranges ¢fthat satisfy the joint limits can be computed as
described in Section 4.3. #, is allowed to vary, the optimal values @f and¢ satisfying
the joint limits can be found by solving an optimization problem as described in Section 4
If the aiming constraint forces a joint limit violation, then an optimization algorithm witt
nonlinear constraints on the joint limits fex, 6., and 63 can be used; however, since
optimization with nonlinear constraints can have poor convergence properties a traditic
optimization formulation might work better in this case.

C

S1

S2
al

FIG. 11. DecomposingR; into two rotations.
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TABLE 2
Summary of Methods Used When the Goal Is Reachable

Goal reachable Goal reachable
(joint limits off) (joint limits on)
Position Analytic Analytic
Position and orientation Analytic Analytic
Position and partial orientation Analytic Analytie2DOF unconstrained
optimization
Aiming Analytic Analytic if 6, given 2DOF unconstrained

optimization otherwise

3.5. Benchmarks

In this section, we summarize the results of time and accuracy benchmarks compa
our algorithms against an optimization approach and an inverse Jacobian routine (Table
7). The optimization implementation used in the study is based on the CFSQP algori
developed by Lawrencet al. [13]. We believe their algorithm is among the best public
domain optimization routines available. For the pseudo-inverse Jacobian implementa
we used the singular value decomposition and the Bulirsch and Stoer ODE routines fi
Numerical Recipes in {18]. To generate a suitable end-effector trajectory we used Hermi
interpolation to construct a curve connecting the start and goal positions. A suitable
gular velocity profile was generated by using a screw motion between the start and ¢
orientations.

It should be noted that most numerical routines require a floating point number sp
ifying the maximum error tolerance and an upper bound on the number of iteratic
permitted. Obviously both these parameters have a significant effect on the time and
curacy of the routine. In our benchmarks we used the default values furnished by
authors.

We measure position error by the norm of the vector from the final end-effector positi
to the goal position. The measure of orientation error depends upon the type of inve
kinematics problem. If the problem requires aligning two rotation matrices, orientatit
error is measured by subtracting one from the dot product of the quaternions correspon
to the goal and final rotation matrices. For partial orientation and aiming problems 1
orientation error is taken as the square of one minus the dot product of the end effector
goal axis.

TABLE 3
Summary of Methods Used When the Goal Is Unsolvable

Goal unreachable

Position and orientation 4DOF constrained optimization
(4 linear constraints)

Position and partial orientation 2DOF constrained optimization
(6 nonlinear constraints)

Aiming 2DOF constrained optimization

(3 nonlinear constraints)
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TABLE 4
Paosition Only

Our approach  Optimization  Inverse Jacobian

Joint limits off

Absolute time 0.000024 0.007 0.5

Relative time 1 292 20,833
Joint limits on

Absolute time 0.00023 0.009 0.77

Relative time 1 39 3347
Average position error .3 x 1078 3.3x 107 5.6 x 1077
Percentage failures 0 0.5% 1.02%

TABLE 5

Position and Orientation

Our approach ~ Optimization  Inverse Jacobian

Joint limits off

Absolute time 0.0001 0.02 15

Relative time 1 200 15,000
Joint limits on

Absolute time 0.0015 0.03 2.23

Relative time 1 20 1487
Average position error Bx10° 5.4 x 1077 3.2 x 1077
Average orientation error  .Qx 108 1.2x 107 14x 107
Percentage failures 0 0.6% 1.75%
Goal unreachable

Absolute time 0.005 0.037 3.65

Relative time 1 12.3 730

TABLE 6

Partial Orientation

Our approach ~ Optimization

Joint limits off

Absolute time 0.00012 0.015

Relative time 1 125
Joint limits on

Absolute time 0.008 0.024

Relative time 1 1
Relative time (joint limits enforced) 1 3
Average position error Zx 10 6.0 x 1077
Average orientation error Bx 108 1.2 x 107
Percentage failures 1.1% 0.74%

Goal unreachable
Absolute time 0.054 0.028
Relative time 1.93 1
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TABLE 7
Aiming

Our approach  Optimization

Joint limits off

Absolute time 0.000025 0.0065

Relative time 1 260
Joint limits on

Absolute time 0.0067 0.0092

Relative time 1 1.373
Average aiming error  .25x 1078 1.43x 1077
Percentage failures 0 0.45%
Goal unreachable

Absolute time 0.014 0.011

Relative time 1.27 1

All the algorithms tested have accuracy that is more than adequate for most appl
tions. However, none of the numerical algorithms are reliable all of the time. As long
the goal is reachable our methods will always find a solution. However, the optimizati
and inverse Jacobian methods sometimes fail even when the goal is within the worksj
of the arm. Optimization can fail because of local minima. For example, the optimiz
tion routine may move the arm in a direction that locally moves it toward a goal on
to have the arm lock at a joint limit. On the other hand, if the routine had moved tl
arm in another direction the goal might be satisfiable. The inverse Jacobian method
ically fails when the arm is moved in a configuration where the Jacobian is close to <
gular. When this occurs, the joint velocities become very large and change rapidly. T
instability in the joint velocities is detected by the numerical integrator which shrinl
the step size to compensate. The result is very slow convergence near the vicinity of
singularity.

When we can utilize an analytical method or a hybrid of analytical and numerical tec
nigues, our methods are significantly faster than their purely numerical counterparts.
inverse Jacobian method is by far the slowest. This is hardly surprising since the inve
Jacobian method actually solves for an entire trajectory rather than just the final pos
of the arm. Thus the inverse Jacobian method must take relatively small step sizes at
iteration compared to an optimization-based routine.

The only case where our methods underperform is in partial orientation and aiming pr
lems where the goal is actually not reachable. In these cases our method is slightly slc
than a traditional optimization-based formulation. Apparently the presence of nonlins
constraints more than offsets the efficiency gained by reducing the optimization probl
to a lower dimensional space. Fortunately, in problems involving partial orientation a
aiming constraints the goal is seldom unreachable.

3.6. Additional Performance Considerations

One of the advantages of our analytical approach versus the numerical algorithms |
handling singularities. Geometrically, this occurs when the arm is fully stretched out.
this case, the Jacobian is no longer full rank and it is impossible to generate velocity al
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FIG. 12. A pseudoinverse solution does not yield a cyclical solution in joint space for a cyclical motion i
end effector space.

one Cartesian direction irrespective of how large the joint velocities are. Singularities ca
problems for both the pseudo-inverse and optimization approaches. In the pseudo-inv
algorithm, a singularity can cause abrupt discontinuities in the joint velocities. The d
continuities are detected by the numerical integrator which reduces the step size take
the algorithm. This can significantly degrade the performance of the algorithm. Moreow
unless special care is taken in the implementation, the singularity can cause the inte
tor to reduce the step size to the machine precision, possibly producing a run-time e
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FIG. 13. Our algorithm produces a repeatable motion in joint space for a closed cycle in end effector spac

or preventing the algorithm from converging to a solution. In an optimization algorithr
the Jacobian is used to compute the gradient of the objective function. When the Jaco
loses rank, the gradient might become zero causing the algorithm to terminate in a I
minimum. By contrast, in our approach a singularity merely causes the radius of the
bow circle to vanish. This means that the swivel angle is no longer relevant; regardles
its value the elbow position is constant. However, a solution for the problem can still
obtained.

Another problem with numerical approaches is that the solution returned depends u
the initial guess. In an interactive system this lack of repeatability can be frustrating
the user. To prevent this problem some interactive systems always begin the figure
neutral posture before invoking the inverse kinematics routine. However, this approac
not satisfactory either since the neutral posture may be a poor initial guess. Additione
if a pseudo-inverse approach is used to generate solutions for closed end-effector patt
corresponding joint trajectories will in general not be closed. This is a significant proble
for computer animation where many tasks tend to be cyclical in nature. For example,
pseudo-inverse solution is used to generate a walking sequence the gait will vary from
to step. This problem isillustrated in Fig. 12, where a pseudo-inverse method is used to t
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FIG. 14. An optimization approach does not reproduce the same answer when the goal is restored t
original location.

a circular path. After three cycles, the posture of the arm has drifted significantly from t
initial posture. In contrast, our algorithm produces a repeatable and more natural-look
solution (Fig. 13).

The dependence of a numerical solution upon the initial guess can also be frustra
for a user in interactive applications because it may be difficult to reproduce a solut
consistently from session to session. In our approach, the solution returned is indepen
of the starting posture. Thus our solutions are always repeatable. This problem is illustr
in Fig. 14, where an optimization procedure is used to solve an inverse kinematics prob
for the legs. If the user adjusts the position of the goal it becomes difficult to obtain t
original solution when the goal is restored to its original state. In contrast, our algoritt
always gives a consistent solution for a desired goal irrespective of the starting pos
(Fig. 15).

For position and orientation problems, our methods can identify the relationship betwz
the extra degree-of-freedom and the joint limits. This allows the algorithm to automatica
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FIG. 15. Our algorithm always yields a reproducible solution.

detect when a solution is possible and which joint limits are sensitive to changes in
elbow posture.

4. CONCLUSIONS AND FUTURE WORK

4.1. Contributions

In this paper we have developed a set of kinematic tools for modeling the forward &
inverse kinematics of a model of the human arm or leg. The advantages and novel asy
of our work include the following:

1. We have devised analytical and hybrid analytical numerical algorithms for solvil
inverse kinematics problems and other constraints such as partial orientation and air
problems. Our algorithms are faster to compute and more reliable than purely numer
methods. For example, Jacobian-based methods become unstable near a singular co
ration of the arm and optimization-based methods are subject to local minima proble
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Neither of these problems occurs when we use an analytical scheme. For each prot
we identify a minimal set of variables that identify the degrees of freedom in the space
solutions. These variables also provide the user with an intuitive set of control variable:
interactive applications.

2. Occasionally, we are forced to rely on optimization technigues. However, in ma
cases, we are able to reduce the complexity of the optimization problem by decompo:s
the problem into an analytical component and a numerical one, and also by expres
the problem in terms of a lower number of variables than the number of joint variable
Further efficiency is obtained by converting some constrained optimization problems i
unconstrained ones.

3. Most of our algorithms are repeatable in that the solution does not depend upon
starting posture of the arm. Repeatability is a significant issue in interactive applicatic
where a user spends a great deal of time manipulating the solver into finding a satisfac
final posture. Inthese cases, itis very important to the user that the solver behave consist
and not be sensitive to minor perturbations of the starting state.

4. With a numerical approach itis difficult to tell whether algorithm failure indicates th
absence of a feasible solution or a limitation of the technique such as a singular Jacobic
local minimum. By contrast, for position and orientation problems our approach can relial
determine whether a solution exists. This feature is particularly useful in task analysis wh
it is important to determine which regions of the workspace are reachable.

5. In the case of redundant systems, our algorithms permit the user to explore mult
solutions using a set of intuitive parameters. By contrast, numerical algorithms only conve
to a single solution, which restricts their usefulness in interactive applications.

4.2. Future Work

We conclude with a list of potential enhancements and topics for future research.
develop a commercial quality and general purpose inverse kinematics subroutine library
human body animation, additional issues should be addressed.

1. Since ourtechniques already work for the arms and legs, the addition of a spine mc
would permit us to solve inverse kinematics problems involving the entire body. Althout
it is probably not practical to treat the entire body as a gigantic kinematic chain it m
be possible to use an approach in which an inverse kinematics problem is broken in
smaller set of problems each of which can be solved efficiently using our methods. Z!
[28] described a “task information” system which converts a set of high-level goals intc
sequence of low-level constraints on key positions of the body. The system first determi
how to position the figure’s center of mass and global orientation so that the task car
performed. Once all the goals lie within the workspace of the corresponding end effec
the inverse kinematics routines for individual kinematic units such as the spine, arms,
legs are invoked. This system decouples a complex inverse kinematics problem into sim
ones that can be solved efficiently with our methods.

2. Animation and task simulation systems involve more than just determining if a gc
is reachable. Other useful features are constraints such as balance control and coll
avoidance [3, 29]. It may be possible to formulate these constraints in such a way 1
analytical or a hybrid of analytical and numerical solutions to them can be found. Efficie
solutions for these additional constraints would be valuable to an animation system
obvious reasons.
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