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Abstract

Many polygon meshes have properties such as shading
normals, colours, texture coordinates, and/or material at-
tributes that are associated with the vertices, faces or cor-
ners of the mesh. While current research in mesh compres-
sion has focused on connectivity and geometry coding, the
compression of properties has received less attention. There
are two kinds of information to compress. One specifies
each individual property—the property values. The other
describes how the properties are attached to the mesh—the
property mapping. In this paper, we introduce a predictive
compression scheme for the property mapping that is 2 to
10 times more compact than previously reported methods.

1. Introduction

Polygonal meshes are commonly used to represent sur-
faces in 3D and serve as the de facto standard for fast inter-
active visualization. It can require a large number of poly-
gons to accurately represent a detailed model. The fact that
transmission bandwidth and storage capacity are a limited
resource in many graphics applications has motivated re-
searchers to find compact representations for such data.

Over the past few years an immense number of mesh
compression schemes have been proposed [3, 19, 20, 18,
15, 5, 7, 2, 16, 12, 6, 13, 10, 8, 17, 14, 11, 1]. The major-
ity of these contributions focus on only two aspects of mesh
compression: coding the mesh connectivity, that is the in-
cidence relation among the vertices, and coding the mesh
geometry, that is the specific location of each individual ver-
tex. While these two are undoubtedly the basic ingredients
of any polygon mesh, a large number of polygonal datasets
also contain mesh properties.

Typically, mesh properties are used to describe the vi-
sual appearance of the mesh for the moment it is rendered.
Sometimes this information explicitly specifies the colour
with which the polygons will be displayed. But often, espe-
cially for dynamic environments, it specifies how to com-
pute the colour based on the lights in the scene. In this case
shading normals and material attributes are attached to the

polygon mesh and used to calculate the colour at run-time
based on a lighting calculation. In addition, a polygon mesh
can have texture coordinates that specify the mesh appear-
ance through references into an image or a light map.

The compression of mesh properties involves two kinds
of information: the property values and the property map-
ping. The property values specify each individual property,
such as the r, g, and b components for a colour or the u and
v components for a texture coordinate. The property map-
ping specifies how these properties are attached to the mesh.
Deering [3] initiated research on compressing the property
values and was followed by others [18, 2]. These works,
however, pay less attention to the problem of compressing
the property mapping. The few previously proposed tech-
niques [18, 5, 8] are fairly basic and use between 1.5 to 6
bits per vertex (bpv). This is surprisingly many, especially
given the abundance of papers on mesh connectivity cod-
ing [19, 20, 15, 5, 7, 2, 16, 12, 13, 8, 17, 14, 1] that scramble
for improvements of around 0.2 bpv to 0.4 bpv on compres-
sion rates that are already as low as 2 to 3 bpv.

In this paper we show how a set of simple predictions
can be used to efficiently compress the property mapping
of polygon meshes. Our predictive compression scheme re-
sults in bit-rates between 0.1 and 2 bpv, which improves by
a factor of 2 to 10 over previous methods [18, 5, 8].

In the next section, we give some basic definitions and
review the problem of compressing polygon meshes. In
Section 3 we characterize the property mapping of polygon
meshes. In Section 4 we discuss previously proposed meth-
ods for its compression. Then, in Section 5, we describe
our predictive approach and compare our results to those of
other methods. The efficiency of our coder for the case of
stripified triangle meshes is the topic of Section 6, before
we discuss our contribution in the last section.

2. Preliminaries

A polygon mesh is a collection of polygonal faces that
intersect only along shared edges and vertices. Any edge
is shared by at most two faces; unshared edges are bound-
ary edges. Around each face we find a cycle of vertices
and edges; around each vertex we find a cycle of edges and
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faces. Each appearance of a face in a vertex list or of a
vertex in a face list is called a corner.

We distinguish between three mesh components: con-
nectivity, which describes the incidences between vertices,
edges, and faces, geometry, which refers to the locations
of each vertex, and properties such as shading normals,
colours, texture coordinates, and material attributes, which
are attached to the vertices, faces or corners of the mesh.

Typically, polygon mesh compressions schemes first en-
code the mesh connectivity [19, 20, 5, 16, 8]. Starting from
an arbitrary edge, the encoder traverses the vertices and the
triangles of the mesh using some deterministic strategy (e.g.
breadth or depth first search). During this traversal the en-
coder records a stream of symbols from which the corre-
sponding decoder can reconstruct the connectivity.

The geometry and the properties of the mesh are usually
compressed with simple delta coding [3] or more sophis-
ticated predictive coding methods [19, 20, 2], but always
based on local neighbourhood information that is available
to the encoder and the decoder at that time. The availability
of neighbourhood information is assured by using the same
traversal for encoding and decoding; this way the encoder
can keep track of what the decoder knows.

The fact that encoder and decoder use the same traversal
order is also used to establish the connection between the
geometry/property data and the vertices, faces, or corners
that they are associated with. Since the traversal defines an
implicit ordering of these mesh elements, the encoder sim-
ply stores the compressed geometry/property data in the or-
der in which the vertices, faces, or corners are encountered
that they are attached to. The decoder performs the same
traversal and re-assigns the data to the appropriate places.

A one-pass coder uses the traversal order induced by
the connectivity encoder to process geometry and property
data. A multi-pass coder, on the other hand, traverses the
mesh two or more times during both encoding and decod-
ing. The decoder first reconstructs the complete connec-
tivity information before re-attaching the geometry and the
properties. In the multi-pass case the mesh traversals used
to compress and store the geometry and property data can
be different from the traversal used for connectivity coding.

3. Characterizing the Property Mapping

In the literature a property mapping is often classified as
either per-vertex, per-face, or per-corner with the first two
being special cases of the last. In the per-vertex case the
properties are attached to the vertices of the mesh; a com-
mon property is shared by all corners around a vertex. In the
per-face case the properties are attached to the faces of the
mesh; a common property is shared by all corners around
a face. In the per-corner case the properties are attached to
the corners of the mesh; although each corner could have

a different property, typically a common property is shared
by a set of adjacent corners.

For shading normals, colours and texture coordinates
there is usually a one-to-one mapping between the prop-
erties and the mesh elements. A per-vertex mapping has
as many properties as vertices and each property is used by
one vertex. Similarly a per-face mapping has as many prop-
erties as faces and each property is used by one face. For
a per-corner mapping there are at least as many properties
as vertices and at most as many properties as corners. Here
each property can be used by a set of adjacent corners if
they lie around the same vertex.

An exception is the mapping of material attributes,
which are usually attached to the faces of the mesh. They
are mapped differently because each material attribute is
used by many faces. All faces that represent the same real-
world surface are given the same material attribute.

A per-vertex mapping for shading normals, colours, and
texture coordinates results in a completely smooth shaded
mesh when interpolated shading (e.g. Gouraud shading) is
applied. It is smooth along each edge because the prop-
erties attached to the vertices at its ends are interpolated.
It is smooth across each edge because the same properties
are interpolated on both sides of the edge. Shading dis-
continuities may be introduced by cutting the mesh along
a discontinuity and duplicating the affected vertices. These
duplicates are given the same vertex location but different
properties, which creates the shading discontinuity.

A per-face mapping of shading normals or colours gives
the mesh a faceted appearance unless it is highly tessellated.
An example for a face-based property assignment is a pre-
computed radiosity solution. Each face is assigned a colour
that expresses the amount of light it emits or transmits.

A per-corner mapping is a more elegant way to specify
shading discontinuities in smooth shaded meshes. Each ver-
tex in a smooth region of the mesh has a single property that
is shared by all its corners. Vertices along a discontinuity,
however, have multiple properties each of which is shared
by a set of adjacent corners. This avoids having to cut the
mesh and deal with multiple copies of vertices.

Following, a few definitions to characterize the different
configurations that can arise for the property mapping:

Around every vertex is a cycle of corners and edges. In
this paper we use a counter clockwise order to talk about
a next/following and a previous/preceding edge or corner.
A vertex can be visited through any of its edges. For each
edge there is a unique traversal of the corners surrounding
the vertex. The traversal starts with the corner following the
respective edge and ends with the corner preceding it.

We say a corner is a smooth corner if it uses the same
property as the previous corner, otherwise we have a crease
and consequently call it a crease corner (see also the illus-
trations in Figure 1). A smooth vertex uses the same prop-
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Figure 1. Different shaded corners have different
properties associated. A smooth corner uses the same
property as the previous corner, while a crease cor-
ner (a crease) uses a different one. Smooth vertices
have no crease, crease vertices have two creases, and
corner vertices have three or more creases. Smooth
edges have no crease, crease edges have two creases,
while blend edges have only one crease.

erty for all adjacent corners—it has no crease. A crease
vertex uses two different properties each associated with a
set of adjacent corners—it has two creases. A corner vertex
uses three or more properties each associated with a set of
adjacent corners—it has more than two creases. A smooth
edge has no property discontinuity on either end. The two
corners that are next around the respective vertices are both
smooth corners—this edge has no crease. A crease edge
has a property discontinuity on each end. The two corners
that are next around the respective vertices are both crease
corners—this edge has two creases. And finally, a blend
edge has a property discontinuity on only one end—it has
one crease.

A mesh with a per-vertex mapping has no creases; all its
corners are smooth corners, all its vertices are smooth ver-
tices, and all its edges are smooth edges. Such meshes have
a one-to-one mapping from vertices to properties. A mesh
with a per-face mapping has only creases; all its corners are
crease corners, all its vertices are crease or corner vertices,
and all its edges are crease edges. Such meshes have a one-
to-one mapping from faces to properties. A mesh with a
per-corner mapping is somewhere between these two. Such
meshes tend not to have a one-to-one mapping from corners
to properties. However, there is a one-to-one mapping from
smooth vertices plus crease corners to properties.

4. Compressing the Property Mapping

Neither a per-vertex nor a per-face property mapping
need to be stored explicitly. The property values are simply
stored in the order in which the vertices and faces that they
are associated with are encountered during the traversal of
the mesh. Every property is stored only once because of the
one-to-one mapping between vertices/faces and properties.
An exception is the mapping of material attributes. Since a
material attribute is used by many faces it would be stored
many times. In this case it is cheaper to store the prop-
erty mapping from faces to materials explicitly but there-
fore each material attribute only once. This type of mapping
can be efficiently encoded using the super face concept of
the Face Fixer compression scheme [8]. Using super faces
allows to compress structural information, like face group-
ings, together with the mesh connectivity at the expense of
a few extra bits.

A per-corner property mapping also needs to be stored
explicitly. If every property is to be stored only once, we
must specify which corners share a property. So far three
different methods for compressing per-corner mappings of
properties have been proposed.

Gumhold and Strasser [5] describe how to include this
mapping information into the bit-stream of their one-pass
coder. During the traversal of the mesh, all edges are clas-
sified as either smooth edges or as crease/blend edges using
one bit. The latter are distinguished using two additional
bits that specify, for each end of the edge, whether it is a
crease or not. Encoding three possible configurations (e.g.
the case that both ends have no crease cannot occur) with
two bits is slightly wasteful and could be improved. For
triangle meshes this approach requires at least 3 bpv (e.g.
all edges are smooth) and at most 9 bpv (e.g. no edge is
smooth). In praxis bit-rates range between 3 and 5.5 bpv.

Taubin et al. [18] store a discontinuity bit at the moment
their mesh traversal reaches a corner for the first time. This
bit is “0” for a smooth corner and a “1” for a crease corner.
The property data that is associated with crease corners is
then stored in the order in which the corresponding corners
marked with “1” are encountered. This approach requires
exactly as many bits as the mesh has corners, which implies
a bit-rate of 6 bpv for triangular meshes.

In [8] we proposed a simple but effective improvement
on the work by Taubin et al. [18]. Based on the observa-
tion that meshes often have a significant fraction of smooth
vertices, we proposed a scheme that uses vertex bits and
corner bits. We use one bit per vertex to distinguish smooth
vertices (“1”) from crease and corner vertices (“0”). The
corners around a crease or corner vertex are then marked as
before, while the corners around a smooth vertex need no
further treatment. Again, the property data associated with
smooth vertices and crease corners is stored in the same or-
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der as the corresponding “1” bits appear in the bit sequence.
For triangle meshes this approach requires at least 1 bpv
(e.g. all vertices are smooth) and at most 7 bpv (e.g. no
vertex is smooth). The performance gain/loss of this ap-
proach over [18] depends on the fraction of smooth vertices.
For polygon meshes with an average vertex degree of d the
break-even point is reached when this fraction is approx-
imately 1=d with the gain increasing as the fraction gets
larger. If we can afford an initial pass over the mesh we
could always choose the better of the two methods. Oth-
erwise, the bit-rate is at most 1 bpv above, but potentially
5 bpv below the bit-rates of Taubin et al. [18].
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processed
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Figure 2. Simple rules to save vertex and corner bits.
Using rule R1 avoids unnecessary vertex bits, rules
R2, R3, and R4 avoid unnecessary corner bits.

Four simple rules, which are illustrated in Figure 2, can
further reduce the number of vertex and corner bits needed:

rule R1 Vertices that have only one corner do not need a vertex
bit. Such vertices are always smooth vertices.

rule R2 Crease vertices that have only two corners do not need
corner bits. The vertex bit already determines whether it is
a smooth vertex and both corners are smooth corners, or a
crease vertex and both corners are crease corners.

rule R3 If all but one corner of a vertex have been marked and
there has been only one crease corner, then there is no need
for the last corner bit. Because corner bits are only used
for crease/corner vertices and such vertices have at least two
crease corners, the last corner must be a crease corner.

rule R4 Similarly, if all but two corners of a vertex have been

marked and there has been no crease corner, then there is no
need for the last two corner bits.

The rules R1 and R2 rarely apply for meshes without
holes or boundary, since usually only vertices on the bound-
ary have as few as one or two corners. However, these rules
are very effective for compressing the property mapping of
stripified triangle meshes, which is described in Section 6.

5. Predictive Compression

Generally mesh compression techniques make heavy use
of predictive coding. To compress the location of a vertex
Taubin and Rossignac [19] predict it with a linear combi-
nation of previously decoded vertices and then store only a
corrective vector. Touma and Gotsman [20] do the same,
but propose a more efficient prediction method. Connectiv-
ity coders also use predictive methods. Szymczak et al. [17]
report a predictive compression scheme for decoding Edge-
breaker [16] encoded meshes with the Spirale Reversi de-
coder [9]. They exploit the fact that triangle meshes usually
have a large number of vertices with degree 6 to predict the
next Edgebreaker label.

corners edges vertices
name
button 66 34 66 34 — — 100 —

dragknob 66 34 66 34 — — 100 —
handle 60 40 60 40 — — 70 30

handle1 66 34 66 34 — — 100 —
handle2 98 2 98 2 — 92 6 —

part1 66 34 66 34 — — 98 2
part4 83 17 83 17 — 50 50 —
part5 66 34 66 33 <1 1 94 3
spool 81 19 81 19 — 43 57 —
rotor 83 17 83 17 — 49 51 —

oilfilter 77 23 77 23 — 33 61 6
galleon 70 30 70 30 — 48 38 14
sandal 76 24 76 23 <1 56 33 11

Table 1. Statistics on the normal mapping for our
example meshes. Reported are the percentages of
smooth and crease corners, and of smooth ,
crease , and blend edges, and also of smooth

, crease , and corner vertices.

Predictive coding can also be used to compress the prop-
erty mapping. We use neighbourhood information to predict
vertex bits and corner bits. We base our predictions on two
simple observations that are also reflected in the statistics
on the per-corner shading normal mapping given in Table 1
for the set of example meshes shown in Figure 5:

� Most edges are either smooth edges or crease edges.

� Most vertices are either smooth vertices or crease vertices.
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For predictive compression we establish a set of eight
simple predictions. For the vertex bits we have two predic-
tions P1 and P2, for the corner bits we have six prediction P3

to P8. We use an adaptive arithmetic coder [21] that learns
and exploits the probability of the predictions being correct.

Two example configurations for each of the vertex bit
predictions are illustrated in Figure 3. They are as follows:

prediction P1 If the vertex connects to any processed vertex at a
crease, we predict this vertex to be a crease or corner vertex,
because we assume the connecting edge is a crease edge.

prediction P2 In all other cases we make no assumption.

?

1

0
1

0
0

?

0

0

1

0

?

0

1

?

0
1 0

0
0 1

0

1

prediction P1

prediction P2

some edge connects to
a previously processed
vertex along a crease

in all other cases

➥ predict vertex bit: 0
  ➤ assume a crease edge

  ➤ assume nothing

previously
processed vertex

Figure 3. Two example scenarios for each of the two
cases used to predict vertex bits.

Two example configurations for each of the corner bit
predictions are illustrated in Figure 4. They are as follows:

prediction P3 If the current edge connects to a processed vertex
at a crease, we predict the next corner to be a crease corner,
because we assume the edge is a crease edge.

prediction P4 If the current edge connects to a processed vertex
but not at a crease, we predict the next corner to be a smooth
corner, because we assume the edge is a smooth edge.

prediction P5 If there have been already two (or more) crease
corners, we predict the next corner to be a smooth corner
because we assume this vertex is a crease vertex.

prediction P6 If there has been already one crease corner and
since then there have been less than b(degree � 1)=2c
smooth corners, we predict the next corner to be a smooth
corner because we assume this vertex is a crease vertex.

prediction P7 If there have been b(degree � 1)=2c or more
smooth corners, we predict the next corner to be a crease
corner because we assume this vertex is a crease vertex.

prediction P8 In all other cases we make no assumption.

To effectively use predictive methods for single bits we
need to utilize a coder that can exploit the probability of
correct predictions. Arithmetic coders [21] are well suited
for this. We use different probability tables for each of the
eight predictions P1 to P8. Every probability table has two
entries, one predicting the likelihood of a “0” bit and the
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Figure 4. Two example scenarios for each of the six
cases used to predict corner bits.

other predicting the likelihood of a “1” bit. Initially we set
these probabilities to roughly express our predictions. We
use an adaptive version of an arithmetic coder that updates
the respective probability table after every prediction.

Typical bit-rates for compressing the property mapping
using our approach are reported in Table 2. For comparison
we also give the bit-rates achieved using discontinuity bits
as proposed by Taubin et al. [18], using crease edge bits
as proposed by Gumhold and Strasser [5], and using vertex
and corner bits as proposed by Isenburg and Snoeyink [8].

One can argue that the comparison between a coder that
simply stores a bit sequence and one that applies arithmetic
coding to a bit sequence is unfair. This is true. The amount
of compression that can be achieved by applying an arith-
metic coder to a bit sequence depends on the entropy of
the bit sequence. Given a sufficiently long input, the com-
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Figure 5. The example meshes used in this paper are courtesy of Engineering Animation Inc. All except the last are
part of a fishing reel assembly: a) button, b) dragknob, c) handle, d) handle1, e) handle2, f) part1, g) part4, h) part5,
i) rotor, j) spool, and k) oilfilter. Not shown are the galleon and the sandal mesh courtesy of Viewpoint Datalabs.

pression rate of such an entropy coder converges to the en-
tropy of the input. The entropy for a sequence of n bits is
�n(p0 log2(p0)+p1 log2(p1)); where p0 and p1 denote the
probabilities for bit “0” and “1” to occur.

Correlation among subsequent bits can be exploited us-
ing a memory-sensitive coding scheme. An adaptive order-
k arithmetic coder uses a different probability table for each
combination of the preceding k bits and approximates the
order-k entropy. For a sequence of n bits this is

�n

X

k-bit strings �

�
p0j� log2(p0j�) + p1j� log2(p1j�)

�
;

when n is large and where p0j� and p1j� denote the proba-
bility of finding bit “0” and “1” after the k-bit string �.

In Table 3 we give compression rates that are the result
of applying adaptive arithmetic coding of orders 0 to 5 to
the sequence of discontinuity bits generated by the method

of Taubin et al. [18] and compare them with the compres-
sion rates achieved by our predictive coder. There are sud-
den improvements in the compression rates of the discon-
tinuity bit sequence. The biggest jumps occur when the
coder increases its memory to either 2 or 3 bits. The order-2
coder has learned the likelihood of two smooth corners be-
ing followed by a crease corner around a crease vertex. The
order-3 coder has learned the likelihood of three smooth
corners being followed by another smooth corner around a
smooth vertex. However, our predictive scheme always out-
performs any arithmetic order-k coding of the discontinuity
bit sequence. First of all, an order-k coder has no means
to learn predictions P1 and P2 from the discontinuity bit se-
quence, because they involve neighbouring vertices. More-
over, this coder is constantly mislead. It processes a con-
tinuous sequence of discontinuity bits and does not know
whether consecutive bits are from corners of the same or of
different vertices. This causes it to predict and to learn from
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mesh characteristics bits per vertex
name vertices normals T+ GS IS pred
button 99 198 6.0 4.9 6.6 1.2

dragknob 161 322 6.0 5.0 6.8 1.3
handle 100 236 6.0 5.3 6.3 2.1
handle1 128 256 6.0 5.0 6.6 1.5
handle2 1165 1235 6.0 3.1 1.3 0.1

part1 166 336 6.0 5.0 6.4 1.6
part4 330 495 6.0 4.0 3.8 0.9
part5 175 355 6.0 5.0 6.5 1.9
rotor 600 905 6.0 4.0 4.0 1.0
spool 649 1018 6.0 4.1 3.8 1.1

oilfilter 860 1484 6.0 4.4 4.7 1.5
galleon 2372 3974 4.0 3.2 2.8 1.0
sandal 2636 4096 4.1 3.0 2.7 0.9

Table 2. Compression results for the property map-
ping using discontinuity bits as proposed by Taubin
et al. (T+), using crease edge bits as proposed by
Gumhold and Strasser (GS), using vertex and corner
bits as proposed by Isenburg and Snoeyink (IS), and
our proposed predictive version of the latter (pred).

k-bit strings that contain corner bits from different vertices
and therefore have little or no correlation.

6. Stripified Triangle Meshes

For interactive visualization the speed at which a mesh
can be displayed is important. The use of triangle strips [22]
reduces the workload required to render a mesh and thereby
reduces the time needed to display it. Generating good tri-
angle strips [4, 23] is a difficult and time consuming task.
This motivated us to propose a compression technique that
allows to include pre-computed triangle strip information
with little overhead [6]. In this section we show that if such
triangle strip information is available, it can be used to fur-
ther improve the coding of the property mapping.

Triangle strips arrange the mesh triangles into long runs
of adjacent triangles. When rendering a triangle strip, the
vertices shared among subsequent triangles are stored on
the graphics board. This way two vertices from a previ-
ous triangle are re-used for all but the first triangle of every
strip. Compared to rendering each triangle individually this
can potentially reduce the number of vertex repetitions by a
factor of three.

Re-using a vertex not only includes its coordinates, but
also shading normals, colours, or texture coordinates. How-
ever, not every pair of triangles shares these properties
across the common edge. When triangles are connected
along a crease or blend edge they uses a different property
at both or one of their common vertices. The triangle strips

mesh bits per vertex
name T+ aac0 aac1 aac2 aac3 aac4 aac5 pred
button 6.0 5.5 4.9 2.7 2.6 2.6 2.6 1.2

dragknob 6.0 5.5 4.6 2.5 2.5 2.5 2.5 1.3
handle 6.0 5.7 5.3 5.0 4.6 4.6 4.5 2.1

handle1 6.0 5.5 4.8 2.6 2.6 2.6 2.6 1.5
handle2 6.0 0.9 0.9 0.8 0.4 0.3 0.3 0.1

part1 6.0 5.5 5.0 3.5 3.3 3.3 3.3 1.6
part4 6.0 3.9 3.8 3.7 2.1 1.9 1.9 0.9
part5 6.0 5.5 4.7 4.1 4.1 4.1 4.1 1.9
rotor 6.0 4.2 4.0 3.6 1.3 1.1 1.1 1.0
spool 6.0 4.0 3.8 3.8 2.3 2.2 2.1 1.0

oilfilter 6.0 4.7 4.6 4.6 4.0 3.5 3.4 1.5
galleon 4.0 3.5 3.4 2.5 2.3 2.3 2.2 1.0
sandal 4.1 3.3 3.3 2.4 2.2 2.2 2.2 0.9

Table 3. The discontinuity bit sequence for coding
the property mapping (T+) compressed with adaptive
arithmetic coding of orders 0 to 5 (aac0 to aac1) in
comparison to our predictive coder (pred).

generator must ensure that strips do not run across such dis-
continuities. All corners of a vertex that are adjacent in a
triangle strip must share all properties attached to them.

The above complicates the process of creating triangle
strips, but it can be exploited for reducing the number of bits
needed to compress the property mapping. Since a property
will always be shared by all corners of a vertex that are adja-
cent in a triangle strip, the property mapping can be thought
of as per strip corner rather than per corner. The number of
different corners for a mesh with t triangles is 3t. However,
decomposed into s strips we need to distinguish only t+2s

strip corners for the mapping from properties to corners.
The bit-saving rules R1 to R4 are now applicable to strip

corners instead of to corners. Since the number of strip cor-
ners per vertex is much lower than the number of corners,
these rules apply much more often and save many more bits.
Nothing changes for the predictive technique. We continue
to predict vertex bits using P1 and P2 and corner bits (but
only for strip corners) using P3 to P8. In Table 4 we list the
compression rates achieved using a bit sequence of vertex
and strip corner bits (i.e. without predictive compression)
and the compression rates after applying the predictions.

The results in Table 4 show that the availability of trian-
gle strip information makes the compression of the property
mapping a lot cheaper. However, this information is only
available if it was encoded with the mesh in such a way that
it can be decoded prior to decoding the property mapping.
The Triangle Strip Compression scheme [6] compresses the
triangle strips with the mesh connectivity. In most cases this
makes encoding the connectivity more expensive. However,
the savings we get from the improved compression of the
property mapping is often sufficient to offset this expense.
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mesh characteristics bits per vertex
name t s (t+ 2s)=3t IS pred
button 194 4 0.35 1.1 0.2

dragknob 318 6 0.35 1.1 0.2
handle 196 24 0.42 2.0 0.5

handle1 252 5 0.35 1.1 0.2
handle2 2326 125 0.37 1.0 0.1

part1 328 6 0.35 1.1 0.2
part4 656 34 0.37 1.1 0.3
part5 346 9 0.35 1.2 0.2
rotor 1200 41 0.36 1.1 0.3
spool 1294 24 0.35 1.1 0.2

oilfilter 1716 135 0.39 1.4 0.5

Table 4. Compressing the property mapping of stripi-
fied triangle meshes using a bit sequence of vertex and
strip corner bits (IS) and the proposed predictive ver-
sion (pred). Also reported are the number of triangles
t and strips s for each mesh and the ratio (t + 2s)=3t

between strips corners and corners.

7. Discussion

We have introduced a predictive method for compressing
the mapping from corners to properties. Our compression
rates improve by a factor of 2 to 10 on previously reported
methods. We have also described how our scheme can ex-
ploit triangle strip information for compressing the property
mapping. The improvement in compression is so significant
that it can potentially offset the expense of including the tri-
angle strip information with the mesh.

We have also tested simpler versions of our predictive
scheme. The predictions P6 and P7 require access to the de-
gree of a vertex for two integer operations. If simplicity and
speed of the implementation are crucial, it is possible to re-
place them with simpler predictions. We experimented with
predictions based on absolute counts of preceding smooth
and crease corners. The increase in bit-rates was less than
5 percent. This is not surprising, since most of our coder’s
efficiency results from predictions P1 to P5.

Currently our coder uses a simple depth-first traversal or-
der. It might be possible to improve compression by direct-
ing the traversal to places where we expect the most correct
predictions. A traversal order that follows the discontinu-
ities on the mesh, for example, should make sure that most
vertex bits are predicted correctly. For connectivity coding
Alliez and Desbrun [1] used such an approach to improve
the compression scheme by Touma and Gotsman [20].
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