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Qualitative modelling of unknown interface behaviour 
 
M. H. LEE AND S. M. GARRETT 
 
Centre for Intelligent Systems, Department of Computer Science, University of Wales, 
Aberystwyth, Ceredigion SY23 3DB, U.K. email: mhl@aber.ac.uk 
 
When faced with an interface to an unknown system or device humans adopt exploratory 
interactive behaviour in order to gain information and insight. This paper describes 
a computer program which probes, observes and models the input}output space of 
unknown systems. We use a schema concept as the memory structure for recording 
events and adopt a constructive approach that avoids preprocessing the raw data. We 
believe qualitative assessments are important in early analysis and employ techniques 
from qualitative reasoning research in order to capture correlation behaviour. The aim is 
to gain insight into the nature of an unknown system for guidance in future model 
selection. A series of experiments and their results are discussed, together with the 
assumptions and limitations of the method. We suggest further developments for future 
experiments that appear promising. 
 

1. Exploring structure in unknown devices 
 
Encounters with new and complex man-made systems and devices are a human experience 
that has become increasingly common in the late 20th century. With the continued 
advances in technology and the rapidly growing complexity of consumer products, we 
often have to operate equipment whose functionality we may not fully understand*a 
well-known example of this is the ubiquitous video cassette recorder. In most cases, when 
faced with a new device we usually have access to some form of instructions or advice, 
and also the purpose of the device is known, at least tacitly. Thus, varying degrees 
of background knowledge is available to constrain the scope of possible events and 
assist our learning of the operation of the system. However, occasionally we meet 
a system about which we have no prior understanding and we must interact with it in 
order to gain knowledge of its operation. This sometimes happens with interfaces to 
unknown software systems as can nowadays be encountered on the internet, common 
examples being undocumented games or interactive web-based material. Any such 
unknown system can be called a black-box because we (initially) have no notion of 
the mechanisms inside the system. This paper reports on an approach to this problem 
of black-box learning and describes experiments with an exploration and modelling 
program.  Discovering the workings of a black-box is not a new problem and has been previously 
studied in the domain of electronic and mechanical systems. Our inspiration comes from 
Weinberg's studies of human behaviour when confronted with physical input/output 
systems of unknown functionality (Weinberg, 1971). Weinberg constructed a range of 
increasingly complex electrical and electronic black-boxes and recorded the methods 
used and extent to which subjects managed to model the boxes correctly. Many of the 
observations related to human perception and cognitive properties but it was clear that 
systematic construction of models, starting from the most elementary levels and working 
upwards, was a bene"cial and probably essential strategy. More recent work has also 
examined electrical case studies, (Veenman, Elshout & Busato, 1994), and there are many 
investigations into the psychological and learning aspects of this kind of exploratory 
behaviour (e.g. Payne, 1991). We do not address human strategies here, nor do we 
examine any of the human factors involved; instead, we are interested in implementing 
automatic techniques that can probe the input/output space of an unknown system in 
order to build up structures that o!er insight into the nature of that system. 
We assume a black-box is accessed through some form of interface so that a user is 
presented with a set of input/output variables that can be changed or observed. In the 
electrical domain these may consist of switches and meters but in the case of a software 
black-box we would expect some form of controls and displays. Given such an interface, 
and a complete lack of information about the purpose, behaviour and operation of the 



underlying system, our problem is to automate the exploration and modelling of the 
structure of the system as seen through the interface. 
 
This problem, sometimes known as system identifcation, has been tackled from 
several directions. It is important to recognise that various levels of system description 
have been used in diferent approaches. The most fundamental level is the structural level 
where states, associations and constraints describe the essential organisational characteristics 
of a system. Next, the qualitative level can be seen as further description, 
giving ranges of variables and the overall shape of functional relations. Finally, a fully 
speci"ed system has a quantitative level where numeric values are available to precisely 
capture the details of the system. If we accept that a particular choice of structure 
represents the selection of a model then we can see that decisions at the "rst levels relate 
to the selection of suitable system models while the later levels are concerned with setting 
the parameters and "tting trajectories generated by particular models. Most of the 
literature on classical system identi"cation deals with the "tting of numerical models to 
data rather than the selection of models. We cannot use these methods for our black-box 
problem because we have no basis for adopting any particular model structure prior to 
experience. 
A more promising approach to model selection is the work on model-based systems 
that uses qualitative reasoning techniques. Qualitative reasoning research has developed 
various methods and notations for handling many forms of system behaviour but there 
seems to have been little work on the problem of exploring basic system structure and 
"nding a suitable model. Relevant work includes a system by Richards, Kraan and 
Kuipers (1992) that abducts qualitative di!erential equations from qualitative system 
behaviour data and Kay (1997) has obtained results by using multilevel hierarchies, 
containing structural, qulitative and quantitative knowledge. The use of scale-types to 
constrain the generation of solutions has been examined by Washio and Motoda (1997). 
The most relevant example is Haber and Unbehauen (1990), who present a series of 
examples and case studies comparing methods of structure identi"cation. However, all 
these system produce models in the form of qualitative di!erential equations suitable for 
use in the QSIM qualitative simulation approach (Kuipers, 1986). This assumes properties 
of continuity and di!erentiability in the data, an assumption which we should not 
accept. 
Many modelling systems rely on assumptions of continuity (or local linearity) because 
they would be mathematically intractable otherwise. In this way, models can be used that 
approximate di$cult situations to an acceptable degree. But experience of real-world 
data shows that discontinuities, limited regions of correlation, abrupt breaks in dependencies 
and other forms of sudden changes in relationships are all quite common. For 
a fundamental approach to black-box exploration, we must not exclude these features 
from our modelling scope. For the same reasons, we reject extrapolation, estimation, 
neural networks and other forms of regression model because our approach is constructive 
rather than model "tting. That is, we wish to gain insight into the structure of the raw 
data and not commit to a particular type of model before the input/output relations are 
fully understood. 
We have implemented an exploratory system, called black-box modelling (BBM), 
which observes the input}output values of an unknown system and attempts to learn 
patterns of behaviour for prediction and other future use. Our system can be seen as 
a form of constructive piecewise autoassociator and has similarities with the sparse 
distributed memory (SDM) arti"cial neural learning system of Kanerva (1988). SDM is 
a three-layer nearest-neighbour discrete pattern matcher with unlimited storage capacity. 
The main di!erence with BBM is that it involves no Hebbian weight adjustment 
scheme. This explains why noise is treated di!erently, as any neural system based on 
weighted summations will o!er a degree of noise immunity caused by smoothing e!ects. 
The next section describes the main features of our approach and the methods 
adopted. The following section gives details of the modelling system and then a series of 
experiments are described. After the results have been analysed, the "nal sections discuss 
the strengths and weaknesses of BBM, summarise our current progress and suggest 



future experiments. 
 

2. A qualitative modelling system: BBM 
 
Figure 1 shows the relationship between BBM and an unknown system under test. The 
box marked OCCR is the mechanism for perturbing the inputs/outputs and is described 
in Section 3.3. This paper deals with the analysis algorithms; the details of our experiments 
on control are the subject of a later paper. 
2.1. THE SCHEMA STORAGE CONCEPT 
The BBM system use a constructive approach to capture the behaviour of the modelled 
system during continuous interaction. Modelling is thus not a one-shot activity but is 
continuous and cumulative, starting from an empty structure and building on experience. 
We use the notion of a &&schema'' as the basic component for storing experience and 

 
constructing models. Schemas are information structures that an be accessed, combined 
and coordinated in a number of ways and we de"ne a &&schema'' as follows: 
&&A record of a qualitative or quantitative change in the value of one or more output 
channels, initiated by an action that is activated under zero, one or many preconditions.'' 
Schemas originated in the work of the child development psychologist Piaget (Piaget 
& Inhelder, 1969). but have been used in computer models as well as in psychological 
studies. See Arbib (1994, 1995) for an introduction into the literature on the schema 
concept. 
Our use of schemas for recording actions and their contexts is similar to that of Becker 
(1973), who used such structures for learning sensory-motor relations in robotic applications. 
The most relevant example of more recent work is the extensive schema experiments 
in constructive model building of Drescher (1991). We now de"ne schemas more 
precisely. 
For any given unknown system, ;, there must be two or more channels, M;0,2, ;nN, 
at least one of which must be an input and at least one of which must be an output. The 
set of all input channels is labelled I and the set of all output channels is labelled O, thus 
IXO";. The values of the channels in the set I at time t is It . At time t, a particular 
input channel, In , will take one of a set of possible values I(n), this set having at least two 
members. I(n)t is the value of input In at time t, where this value is a member of the set 
I(n), and is termed an action. 
The set of values for all ;'s channels (inputs and outputs), at time t, is called the 
context, Ut , and the terms precontext and postcontext, Uprecont and Upostcont , are used to 
denote the contexts immediately before and after an action. Our schemas record lists of 
di!erences between the precontext (time t!1) and postcontext (time t) called the 
change-list. 
 
 



For a given schema, S, the preconditions, Sprecond , consist of two lists of precontexts: the 
&&for'' list contains precontexts that were observed when it was successful in producing the 
predicted result; the &&against'' list stores the precontexts that were observed prior to the 
same action when it was unsuccessful. These provide evidence for predicting the outcomes 
of an action. Note that &&preconditions'' are tied to a speci"c action as part of 
a schema, whereas &&precontext'' and &&postcontext'' are merely descriptive of the states of 
the channel values at any instant.- 
 

2.2. QUALITATIVE MODELLING AND THE MECHANISM OF CORRELATION 
 

Qualitative reasoning is a branch of Arti"cial Intelligence that uses qualitative models in 
order to explore the theory and application of abstract and approximate representations 
of physical systems (Faltings & Struss, 1992). Eschewing numeric models in favour of 
very low granularity qualitative values allows the key features of an application to be 
highlighted while other details are ignored. Qualitative models often consist of equations 
or inequalities with values restricted to qualitative symbols, such as [#, 0,!] to 
represent positive, zero or negative quantities. It has been a remarkable achievement of 
QR that so much reasoning can be performed on models that represent quantities and 
their derivatives in this way. 
BBM stores both qualitative and quantitative data in schemas. For the output 
di!erences, the quantitative schemas store the magnitude of the change and therefore 
depend upon the range of integers used, but for the qualitative di!erences there are only 
three categories: [#, 0,!], i.e. positive, negative or zero. 
If an output channel changes its value at the same time as an input channel, we say the 
two channels are correlated to some degree. BBM uses the concept of qualitative 
derivatives to implement this idea. This is best shown graphically, as in Figure 2, which 
shows a snapshot of two outputs, A and B, and an input, C, plotted against time. Of the 
channel value changes shown, only a few coincide, i.e. occur over the same time interval; 
these are between t"3 and 4 and between t"6 and 7. Channel A changes with a change 
in channel C twice, and only changes once independently of channel C; channel B, on the 
other hand, only changes with channel C once and changes independently of it several 
 
 
- Taking this approach does have some memory cost, which is needed to store schemas and their statistics, as 
well as the more important time cost required to search through the lists of schemas in order to update entries. 
However, Drescher (1991) has shown a similar storage approach can perform e!ectively and e$ciently and we 
feel our work is also successful in this respect  
 
 
 



other times; thus we say there is a higher correlation  between channels A and C than 
there is between channels B and C. 
As humans, we might test the supposed link between input C and output A by varying 
C and noting any e!ects on A and B; this is the type of assessment the BBM system also 
makes. 
The idea of correlation can be expressed using the notation of qualitative derivatives. 
The qualitative "rst derivative is given by: qdir( )"[d/dt], i.e. the sign of the change in 
direction of a variable. We can then express the correlation in Figure 2, thus: 
qdir(A)"!qdir(C) between t"3 and 7. Note that higher order derivatives are not 
involved at this stage. 
2.3. EXPLORATION BY EXTERNAL EXCITATION 
Experiential data are accumulated during the operation of BBM and the schemas formed 
are used to guide future explorations. 
In order to maximise the information gained about the unknown system being 
analysed, it is important that the BBM system should use its control over the inputs to 
generate the schema input information in a way that aims to cover as much of the input 
state space as possible. Many theoretical states are not possible in reality due to the 
functionality of the unknown system. Despite the inevitably sparse covering of the state 
space, BBM should attempt to cover the input state space as evenly as possible by 
repeating the same actions in di!ering circumstances. 
We used two methods to explore the input state space: (1) ramping of inputs incrementally 
through a range in sequence, and (2) detect range limits by exponential probing 
combined with normally distributed random values within the discovered ranges. In the 
"rst method the input values are ramped from zero up to set limit (typically 20) and then 
down to the inverse of the limit. If the range of the input's values were greater than the set 
limit, the system "nds them by attempting to set each input to an ever increasing power 
of two up to a maximum value (typically 32 678). Once the inputs' minimum and 
maximum limits have been found, the BBM system continues its analysis of the unknown 
system by choosing random values between the minimum and maximum limits. The 
number of random values chosen can either be a "xed number or a percentage of the 
range between the minimum and maximum values of the input. 
2.4. ASSUMPTIONS AND LIMITATIONS 
No exploratory system can avoid embodying assumptions which impose basic limitations 
on its use and performance. For these "rst experiments using schemas and 
techniques from qualitative reasoning, we recognize that some primitive constraints have 
been accepted. The intention is to lift these in later experiments after bene"ting from the 
experience and insight gained from the results. In particular, the main assumptions and 
limitations, are as follows. 



• All channel values are discrete values. These are usually speci"ed as an integer range, 
with binary variables being a special case. 

• The version of BBM reported here allows only one input to be active at a time; a new 
version has successfully relaxed this constraint (Garrett & Lee, 1999). 

• Sequential actions and delayed response models cannot be constructed. This is because 
the system described only accesses the immediate precontext. 

• In some systems, certain channels are able to behave as both inputs and outputs 
according to the direction of the applied actions. However, this version of BBM 
assumes that no channels are bidirectional. 

In later experiments we have addressed all these issues which are brie#y discussed in 
Section 7. 
3. The three stages of BBM modelling 
There are three main stages in the present system. Stage 1 discovers the input/output 
directional character of each channel of the system being analysed; Stage 2 is a learning 
phase where schema are created to record the e!ects of the inputs on the outputs; and 
Stage 3 recalls relevant schemas for a given context in order to access their validity. 
Schema learning continues throughout Stages 2 and 3. 
3.1. STAGE 1: INPUT/OUTPUT ANALYSIS 
This stage determines which channels can or cannot be directly a!ected. In order to 
discover the nature of each channel, BBM applies a positive and negative change to the 
value of each channel in turn. Given that no more than one input is non-zero at any time 
t, a channel's response to an attempt to change each channel in turn will reveal it as 
being: 
An obvious input: if a channel's value is directly alterable by the BBM system, and such 
a change in value a!ects other channels, it must be an input channel. 
A deduced input: if a channel is directly alterable by the BBM system it cannot be an 
output since, by de"nition, outputs are controlled only through the functionality of the 
unknown system. Therefore, it must be an input even if there are no observed e!ects on 
other channels. 
A disabled input/rarely responding output: if a channel is not alterable directly it may 
still be an input that requires a set of circumstances before it will become alterable. 
Alternatively, it may be an output channel that required special precontextual circumstances 
before it becomes changeable by an input channel. We consider such channels to 
be outputs.? 
Disconnected: channels which do not respond at all because they are not connected 
will appear to be disabled inputs or rarely responding output channels and will be 
treated as such. Assuming they are outputs will not a!ect the analysis. 
An obvious output: if a channel changes value at the same time as another channel is 
being directly altered by the BBM system, it will be assumed to be an output channel. 
3.3.1. An illustration of stage 1 analysis 
Consider an unknown system with "ve channels. The BBM system will interact with the 
unknown system as shown in Table 1 in order to discover the directional nature of each 
channel. Taking the initial channel values as zero, the BBM system tries to change each 
channel in turn, "rst positive and then negative, relative to the initial value. The BBM 
system sends this requested change to the unknown system as a set of n values, where n is 
the number of channels of the black box; in this case, "ve. 
This set of requests is shown as Req<al0 } Req<al4, in Table 1. The resulting channel 
values, also shown, are the postcontext for the set of Reg<als in the same time interval; 
the precontext is the set of channel values for the previous time interval. For example at 
t"2 the precontext"M1, 0, 0, 0, 0N, &&action''"[Ch0P!1], and postcontext" 
M0, 0, 0, 0,0N. 
 -Ideally, these channels would be considered inputs until there were any evidence that they are outputs (i.e. 
they are changed by another channel). In fact, we assume they are outputs for two reasons. Firstly, disabled 
inputs are rare and ignoring them will only limit the applicability of BBM very slightly. Secondly, assuming 
a channel is an input until proven otherwise demands either that all outputs should show their directional 
nature during BBM Stage 1, which is unrealistic since many outputs require a complex set of conditions before 
they will change; or that BBM Stage 1 continues throughout all three BBM stages, which adds unnecessary 
complexity to the rest of the analysis stages 



From this we can see that the "rst three channels respond directly when attempts are 
made to change their values to 1; the fact that they do not respond when an attempt is 
made to change them to!1 is irrelevant since any channel that shows any direct change 
cannot be an output: these channels are inputs. Channel 3 does not change at all and the 
BBM system assumes it is an output. The remaining channel does not appear to be 
directly controllable, meaning we will also assume it is an output, and this is con"rmed 
by its change in value at t"5, when channel 2 was set to 1. In the terminology used 
above, channel 2 is an &&obvious input'', channels 0 and 1 are &&deduced inputs'', channel 

 
3 is a &&rarely responding output'' or a &&disabled input'' and channel 4 is an &&obvious 
output''. 
3.2. STAGE 2: THE GENERATION OF SCHEMA INFORMATION 
Schemas are stored in a structure that we call long-term memory (LTM). This is 
a tree-like, hierarchical data structure that begins as an empty structure as shown in 
Figure 3. 
To aid comparison with other schemas, and to facilitate retrieval, schemas are stored 
in LTM in two related structures: schema input information and schema output information. 
We now examine these schema components. 
Schema input information is stored hierarchically on the input side of LTM. It is "rst 
sorted by input channel number; then sorted by value; and under each value details are 
stored about the preconext, list of changes and time of creation. This is shown in Figure 
4. The brackets show how the context and e!ects of an action are separated from the 
action itself. 
Achieving control over a black-box means being able to control the output channels. 
This implies being able to accept and achieve a task such as, &&change channel On by d''. 
  
 
To esciently fufil such requests the system generates a heirarchically structured list of 
output channels and associated changes. Under each change value the BBM system 
stores indexes to the actions that caused the change so that the information about those 
actions may be quickly retrieved. This is shown in Figure 5. This structure is used for 



 
 
both qualitative and quantitative schema output information. 
After some time, schemas have been formed for each action initiated and indexed into 
the LTM, whose complete structure is shown in Figure 6. Some typical data from our 
implementation of the schema input construction process are shown in Figure 7 where 
the structure described above can be discerned. This is an excerpt of the schema input 
information for Input Channel 0, showing most of the information stored under value 0. 
The lines under &&Value"0'' consist of the precontext, the change-list and the time. For 
example, the "rst line records that the postcontext was M1, 0, 30, 3N, the change-list was 
M0, 0,!5, 0N and the time t was 45. In this case I"MU0N#MU1N and O"MU2N#MU3N, 
thus the new input values, M1, 0N, will initiate a further change list for the next time step. 
There is also a line for each new input, beginning &&Input Channel...'', that lists all the 
values this input has been seen to take; in this case every integer value from 0 to 19. 
A similarly display of some schema output information is given in Figure 8. These 
diagrams are complicated by the method of implementation which separates schema 
elements. Also, the process of extracting change data from the input stream at the 
interface is not easily discerned from the implementation data structures. 
Schemas become more accurate the more they are used since each time an action is 
initiated, new data are converted into schema information. Exactly how this helps the 
BBM system to choose the best schema for a particular context is discussed next. 
3.3. STAGE 3: SCHEMA RETRIEVAL AND SELECTION 
&&Retrieval'' refers to the gathering of potentially useful schemas fromLTM via the output 
side indices, whereas &&selection'' refers to their subsequent ordering by some "tness 



  
function and then choosing the most suitable schema. We stress that the BBM system 
attempts to "nd schemas which will match the current context rather than changing the 
current context to match a reliable schema [as Drescher'sA (1991) work did]. 
BBM aims to select a schema from LTM that contains an action which changes the 
inputs so that it will produce a desired change in an output value. This desired output 
change is called the output channel change request (OCCR). An OCCR is only allowed to 
request a change in the value of one output channel at a time, although such a change 
will often cause side-e!ects on other output channels. If a goal requires several output 
channels to be changed then each output channel must be changed by an individual 
OCCR, although the BBM system does check whether the side-e!ects of changes on one 
output channel successfully achieve OCCRs on other output channels. During this stage, 
OCCRs are created by random generation. 
At retrieval the schemas are reconstituted from their component parts in LTM, i.e. the 
preconditions (the &&for'' and &&against'' lists, as described in Section 2.1), the action that 
formed them and the output information index matching the OCCR. The list of all 
actions that have resulted in the desired change in the past is called the possible schema list 
(PSL). Next, the PSL is ordered in various ways using one or more of the selection 
algorithms described below. The resulting list or lists are resorted, and the best schema is 
selected and its action is initiated.  
 
 
 



 
In diagrammatic form: 

 

The sequence of events in selecting a schema to satisfy an OCCR 
There are three main selection algorithms, for-against ratio maximising, hyperspace 
distance measuring and range-value matching, as well as two random algorithms. 
3.3.1. Test algorithms 
Two random algorithms, alg-12 and alg-13, were used as experimental controls. These 
simply select a new action for each new OCCR randomly, either from the existing 
schemas or from the PSL, respectively. The results give a baseline for the learning 
algorithms. 
3.3.2. The for}against ratio maximizing (FARM) algorithm 
The FARM algorithm, alg-21, simply counts the number of &&for'' and &&against'' 
precontexts in the preconditions structure for each schema, and creates a ratio of the 
number of &&for'' precontexts divided by number of &&against'' precontexts. (If there are no 
&&against'' precontexts the value of 0.1 is used rather than zero.) This gives a list of each 
schema's chance of success, based on previous experience. The higher the ratio, the more 
likely it is that the schema should achieve its predicted result. The BBM system then 
chooses the action that has the best apparent chance of achieving the goal change. The 
FARM selection algorithm is coarse but simple and fast. 
3.3.3 Hyperspace distance (HD) algorithms 



The hyperspace distance (HD) algorithms, alg-31 and alg-32, treat the precontext 
elements in the precondition's &&for'' and &&against'' lists as points in hyperspace. The HD 
algorithms assume that being close (in Euclidean distance) to the precontext of a previously 
successfully achieved OCCR will make it more likely that the OCCR will be 
achieved again; and, conversely, being close to the precontext of an unsuccessfully 
achieved OCCR, less likely. This is e!ectively a k-nearest-neighbour approach with 
k"1.  

The HD algorithm calculates the Euclidean distance over all dimensions from the 
current context to each precontext element in the precondition structure of each schema 
in the PSL. The &&for'' and &&against'' lists are processed separately. 
In algorithm alg-31, the worst-case distance from each schema's &&for'' and &&against'' 
list elements is calculated. In the case of the &&for'' list this is the furthest distance from the 
current context that has successfully resulted in the OCCR; in the case of the &&against'' 
lists it is the closest distance that has led to failure to achieve the OCCR. This is 
a pessimistic but conservative strategy. 
In algorithm alg-32, the BBM system takes the average distance from all the &&for'' 
and &&against'' precontext elements. This is more optimistic and aims to promote schemas 
whose preconditional elements are generally favourable but which would be overlooked 
if they contained even a single bad precontextual element. 
Both these approaches are summarized in Figure 9. 
 
3.3.4. Range-value matching (RVM) algorithms 
More reliable predictions of the e!ects of a given schema should be available if the BBM 
system considered the individual elements of a precontext, rather than the precontext as 
a whole. The range-value algorithms use the range of values, Rx, for a particular channel 
of the precontext and the frequency of the values within that range. 
We could use these data simply to promote schemas whose &&for'' precontext ranges 
encompass the current context's value for each of the m output channels, and whose 
&&against'' ranges do not. For the &&for'' list, if a channel value is &&in range'' the BBM 
system assumes it is more likely that the schema with this range will obtain the desired 
OCCR, and conversely for &&against'' ranges. With this approach, the BBM system would 
consider each channel separately unlike the hyperspace distance algorithms. 
However, algorithm alg-41 attempts to narrow the scope of this and all the previous 
algorithms. We need to identify channel values that are essential to a schema's reliability. 
Output channels that have narrow ranges in the &&for'' precontextual data express a high 
need to match to that range, but ranges that are very wide are not so important. 
Moreover, if a current context's output channel value matches a range value exactly, as 
well as being in range, this should be registered as an even better match; especially if that 
value has been seen many times compared to other values in the range. Thus, two 
measures are to be maximised when using alg-41: (a)=r , which describes how well the 
range encompasses the current context channel value. This will be the width of the range 
if the point falls within the range; otherwise it is given by the range multiplied by the 
distance from the nearest end of the range. This is expressed by the function dist(r) for 
a distance r from the nearest end of a range R, and (b)=v, which expresses how well the 
current value for a channel matches any previously seen values, calculated by dividing 
the frequency, fx, of that value by the sum frequency of all values, +n~1 



i/0 
fi . 

  
Once the &&for'' and &&against'' ordered lists are formed by one of the algorithms above, 
the selection of the winning schema, whose action will be initiated, can be made. The 
BBM system simply selects the schema with the highest value returned from alg-12 to 
alg-41. (Selecting randomly from a small number of top schemas was found to be less 
reliable than choosing the single best schema.) 
 
4. The experiments 
The experiments and results described here are all taken from Garrett (1997). This thesis 
contains the background for a constructive schema-based approach, details of a range of 
experimental black-box systems, more on the above set of experimental algorithms and 
information about implementation methods. Also included are the full set of collated 
results and their analysis and appraisal. Full details on all these aspects can be found in 
Garrett (1997) but we present the main results and signi"cant "ndings here. 
The BBL system was implemented in the high-level scripting language Tcl/Tk within 
a Unix environment. The experimenters interface is shown in Figure 10. 
We performed a wide range of experiments using all the above algorithms on a series 
of target systems. Following normal experimental practice, the target systems start with 
almost trivially simple designs and increase in complexity until real applications are 
reached. The simple cases are valuable because they are small enough that their outputs 
can be calculated; thus, the implemented algorithms can be thoroughly tested and 
validated by detailed examination and checking. 
All the experiments were grouped according to whether they had: binary- or integervalued 
variables; single, double or multiple numbers of input and output channels; and 
static or dynamic internal functions. Static systems have combinatorial functions while 
dynamic systems incorporate output values from the previous time step into their 
function. This gave 72 groups: there are six possibilities for input (or output) con"guration 
and so there are 36 cases for each of static and dynamic systems. Our experiments 
were designed to cover a representative set of these cases. 
The experiments fall into three types. 
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called &&testboxes'' and we show results 
for three examples: a system that can not be learned (purely random output); an example 
with added noise; and an intermittent error case. 
Simulated real systems. Simulations were constructed to provide black-boxes with 
behaviours approaching that found in real-world systems. We experimented with a bath 
"lling example, a car control system, a tra$c problem and a mobile robot application. 
We give details of the bath problem here. 
As our main example of a realistic dynamic system, we used a bathtub that can be "lled 
with water by taps at various temperature. We investigated three variations of the 
bath-"lling experiment: a two-tap version with depth and temperature sensing, bath1; 
a three-tap version, (cold, warm and hot), bath2; and a two-tap version with sensing of 
the frequency of operation of the taps, bath3. In all versions, the bath is 40 units deep 
maximum and the water is pumped out at a constant rate of 5 units per time interval 
(regardless of water depth). Instant mixing of di!erent temperatures is assumed. There is 
a depth gauge and a temperature reading device. The taps (inputs) work independently of 
one another and all have maximum and minimum #ow rates of 19 and 0 units of depth 
per time interval. The &&cold'', &&hot'' and &&warm'' taps control the entry of water at 3, 40 
and 203C. In the tap frequency version, the relative frequency of the last two episodes of 
cold- and hot-tap activation is recorded. For example, if the cold tap has been active for 
the last 4 time units, and immediately previously the hot tap had been active for 6 time 
units, the interleaving frequency is 4/6 ("2/3). The next time the hot tap is activated its 
frequency count is reset to zero, and so on for both cold and hot taps. The task is to keep 
the water at a given level and temperature (and, if applicable, at a given interleaving 
frequency): a di$cult enough task to be challenging and non-trivial. 
 
5. Analysis of results 
 
Each experimental unknown system was processed by each of the six PSL selection 
algorithms and a set of 50 qualitative attempts and 50 quantitative attempts constituted 
one run. A full set of results for a box consisted of 10 runs, the results of which were then 
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averaged. Thus, each system was subjected to 500 qualitative and 500 numeric change 
requests. 
As the generation of change requests involves a random element, the experiments were 
calibrated by repeating over full set of results; the average deviation between sets of 
results was 2.08% with only 5 out of 91 di!erences greater than 5%, all of which were less 
than 9%. 
The points visited in the state space were plotted from the results to ascertain the 
coverage produced during exploration. In all the simple boxes, the density was acceptable 
but in most of the real applications the coverage was very sparse or patchy. 
For each experimental system, we computed a table of success metrics, giving the level 
of qualitative and quantitative success as the percentage of trials producing correct 
results. All results for each system were plotted as graphs of algorithm version against 
percentage success; with separate plots for qualitative, quantitative and average level of 
success. The full set of results are tabulated and displayed in Garrett (1997). For space 
reasons, we show here the more complex (and interesting) cases using the non-test 
algorithms, alg-21 to alg-41. 
The success rates of the more exacting algorithms increase somewhat with the number 
of input channels. This makes sense since the BBM system does not have to rely on the 
schemas formed around the actions of one channel. Because the OCCRs are generated 
automatically, the results include cases of impossible actions, i.e. requests that are out of 
range of the current variables. Thus, the results of trials should not be expected to be 
100% correct; a reasonable "gure is over 90%. 
In the single-channel binary-valued systems, the problem space is so small that 
complete mapping of input}output behaviour into schemas is achieved quite rapidly. 
These were used to validate the implementation and the experimental design. 



The three testbox experiments are all based on noisy variants of a previous test case. 
In testbox-random, we investigated how BBM copes with a system that contains two 
outputs that are not controllable (the outputs are set to random values). In a similar way, 
the testbox-noisy showed he e!ects of adding noise to an input's value (random noise 
at 50% of max signal level) and in testbox-loose a &&loose output connection'' was 
simulated by returning zero randomly for one-third of the output readings. 
The results, shown in Table 2, all show relatively poor performance as could be 
expected. testbox-random shows the lack of any structure being detected by BBM. 
With a three-valued qualitative representation random data has a 33% chance of 
success*this is clearly seen in Table 2, while the quantitative results are showing almost 
zero matching. With a fairly high noise level testbox-noisy performs only slightly 
better on the quantitative results while performing remarkably well on qualitative data. 
Testbox-loose, with an intermittent disconnection, proves more di$cult for qualitative 
matching but produces better quantitative results. This is as expected as the data is 
noise-free when not subject to the fault; thus the repeatability is higher. 
The bath results cover part of the experiments concerned with multiway relationships 
and non-binary channels. The bath-1 results are shown in Table 3. The separate 
success rates of the two output channels indicate that, with numeric matching, the BBM 
system "nds it much easier to model channel 2 (water depth) than channel 3 (temperature). 
There is little to choose between the algorithms but channel 3 fails on numeric 

matching. 



 The results for the bath-2 and bath-3 systems are very similar although the BBM 
system has more trouble modelling the bath-3 systems with its unusual interleaving 
concept between inputs (see Table 4). 
The results for the remaining applications were all very similar and not very high*the 
qualitative results were the best, with success rates of 78% compared with around 50% 
for the random algorithms. We report on the mobile robot experiments which were 
typical for all these cases. 
The robot used was a Nomad commercial mobile robot that could move either 
forward at variable speed or rotate about its base. We had a simulator available for this 
robot system and we used this to form the black-box interface. The actuation and sensing 
variables selected as interface channels consisted of two motor channels for forward and 
rotate, 16 sensory channels for sonar object detection and three sensory channels for 
orientation and position-sensing. 

  
The results can be plotted in a chart that shows the usage of each variable value and 
the density of the plots indicate the coverage of the state space achieved. In the robot 
experiments, this showed very localised exploration with patches of activity in a generally 
sparse space. There are two reasons for this: "rst the OCCRs may generate values that 
are impossible for the application and secondly the probing mechanism has no sense of 
direction and does not learn from the structure already discovered. We believe this 
accounts for the rather inconclusive results. 
 
6. Discussion 
 
The aim of this work was to examine methods for probing an unknown interface in order 
to explore its behaviour in terms of dimensionality, continuity and other structural 
aspects. Data collected from unknown systems of any complexity may be sparse, 
incomplete and contain many discontinuities and disruptive aspects. This "rst set of 
experiments has entailed some fairly severe constraints and we summarise these and their 
e!ects below: 
No prior modelling bias. We have avoided the temptation to "t incoming data to 
a preselected model; thus we do not use curve "tting, neural networks or any other forms 
of non-linear regression technique. 
No explicit generalization. We have adopted a memory-based approach in which all 
data points are stored if they have not already been experienced and captured. This does 
not employ any weighting or smoothing factors and hence there is no explicit treatment 
of noise. 
No explicit interpolation or extrapolation mechanisms. We have avoided the continuity 
assumption that correlations exist in the regions between data points. This assumes the 
data are not continuous but has regions of irregularity and changing relations between 
the inputs and outputs. It can also be sparse and impoverished. 



In the work described, most of the quantitative results prove ine!ective at detecting 
structure in the data. This is because of our assumptions cause the current BBM system 
to treat individual channel values as distinct entities. This invokes the &&curse of dimensionality 
'' as the input space becomes so enormous and so sparse. Nevertheless, this 
characterizes the nature of the data we aim to explore and explains why we approached 
the problem with a memory-based technique and nearest-neighbour selection. The 
qualitative results produced higher levels of success because mapping an extremely 
sparse space is much easier with qualitative variables. 
E!ectively, noise does not exist if it is below the resolution of the descretized variables. 
In the case of qualitative changes, i.e. [#, 0,!], quite high levels of noise can be 
tolerated provided an adjacent qualitative region is not entered. This explains why the 
results for noisy signals are so much better than might be expected. 
The notable features of BBM are as follows: 
Qualitative structure. Despite the above restrictions, qualitative variables have proved 
very e!ective in capturing general but gross structure. Thus qualitatively similar data, 
stored in the form of schemas, are reused in similar situations wherever appropriate. 
A key feature that contributes to the reuse of schemas is the matching of di!erences, 
rather than target values. 
No prior bias. Notwithstanding the limitations above, the lack of model bias means 
that, in high scoring systems, the schemas constructed will authentically re#ect the 
structure of the data. Hence, a collation of the qualitative schemas will provide insight into 
the nature of the data and give guidance for the selection of a more quantitative model. 
Reproducibility. Relating to the above point, as there is no statistical estimation involved, 
all learned data patterns and regularities can be regenerated from schemas exactly. 
Constructive piecewise approach. Our system can be seen as a piecewise autoassociator. 
Such systems attempt to model the unknown black-box function f by constructing 
a collection of functions: h1, h2,…, hm each of which is only partially de"ned on 
a subset of the input space. In many piecewise function decomposition systems the 
constructive functions are linear; however, although we could easily have used this to add 
linear interpolation to BBM, we decided that it should be included only in later versions. 
Incremental learning. Unlike the need for o!-line training in SDM, there is no separate 
training phase in BBM; schemas are continuously constructed. New schemas are learned 
whenever the system has insu$cient experience to cover the current data. 
Continuous validation. As the data are not modi"ed by storage there is no need to 
validate the state of the system after a series of learning runs. Validation automatically 
occurs whenever a new set of data recalls an appropriate schema. 
Separation of storage scheme from processing method. The LTM data structure proved 
valuable for supporting experimentation with di!erent schema selection algorithms. 
This can readily facilitate new selection methods or enhancements such as linear 
interpolation. 
 
7. Addressing the limitations of BBM 
 
We have noted the limitations of our current system and have carried out further 
investigations to "nd ways in which these may be overcome. One severe limitation is that 
only one input is allowed to be non-zero at any one time interval. Multiple simultaneous 
actions produce the problem of deciding whether the changes in output values are 
a result of the coincident, individual e!ects of the inputs or a function of the joint inputs. 
One way of investigating this problem is to treat combined inputs as a single complex 
input and to compare the e!ects of this complex input with the e!ects of each of its 
component parts. In order to deal with this problem, we performed some experiments 
with an interface through which the inputs were accessed via incremental bu!ers. Extra 
components in the interface would increment the internal inputs if an input was positive, 
and decrement it if negative. This allowed several channels to be non-zero at the same 
time, provided that their values do not change simultaneously. We achieved control of 
the bathtub systems with this arrangement and will report on results later. 



Another limitation of the current BBM system is that it cannot model channels that 
are bidirectional in character. However, this can be achieved by characterizing the input 
channels as before but with the provision that any channel might possibly be an output 
even if some or all are also inputs. The structure of LTM will then need to store details 
about an individual channel's input and output behaviour in both the input and output 
side of LTM, but otherwise remains much the same. One of the problems of this 
approach is that it assumes all channels could behave as outputs. Thus, there will be 
more output information gathered and output analysis will be slower. 
BBMcan be extended so that sequences of actions, that lead to desired events, can then 
be discovered. Using the recorded time index of each context element it is possible to 
compare more than just the immediate precontext before an event. Given that BBM 
records the entire history from the beginning of its analysis of an unknown system it can 
detect common strings of actions of arbitrary length. However, using sequences of 
actions and preconditions requires devising a way of "nding commonalities in strings of 
preconditions for sequences of a given size in order to capture the goal of the complete 
sequence. This can be done for small sequences but otherwise raises complex pattern 
matching problems 
 
8. Future work 
 
There are two main areas in which we are continuing work on BBM. First we need to 
develop methods for presenting the LTM repository in a way that is helpful for 
perceiving the structures that have been collected. This mainly involves processing and 
collating the LTM contents suitable for presentation. It will be important to "nd the most 
appropriate viewpoint to bring out the captured relationships and modern visualization 
techniques may be useful here. Secondly, as was hinted at by Figure 1, we have extended 
BBMfor use as a controller to maintain a given goal state in an application. Experiments 
are under way to show how several precontexts can be pursued as a control action. 
There are also a number of further experiments that appear promising. Hierarchical 
schema structures, called &&composites'', have been used by Drescher (1991), and Becker 
(1973) also proposed a similar meta-schema device. It seems clear that such higher order 
schemas may o!er methods for compression of base schemas into more general data 
abstractions. Other issues include the above-mentioned use of piecewise interpolation for 
quantitative schema construction, the exploitation of second-order di!erentials of input/ 
output data and further treatment of compound actions. 
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Regarding real-world target applications, as mentioned previously, a possible application 
is an &&unknown'' software system such as an interactive service or game on the world 
wide web. This would provide another series of experiments but we have not yet 
connectedBBMto such a &&black-box''. Our experience with real data in the mobile robot 
experiment was not very conclusive. The main di$culty was that a great many trials are 
required to collect enough data to e!ectively populate the problem space. Our design of 
BBM was intended to navigate through the state space but the density plots showed that 
the exploration strategy appeared ine$cient. It seems that our method of range probing 
(Section 2.3) is insu$cient for driving the navigation process through complex state 
spaces for certain domains. This requires a more intelligent search or guidance process 
that needs further investigation. 
 
9. Conclusions 
 
Our experiments have explored the role of qualitative representations in a piecemeal 
constructive approach to mapping unknown systems without predetermined model 
structures. We have emphasized the use of raw data, involving discontinuities, sparsity 
and fragmentation. These decisions have imposed severe constraints and BBM has 
several shortcomings. However, the results illustrate the potential of our approach and 
suggest further developments that may prove valuable in automatic modelling experiments. 



The &&curse of dimensionality'' has not been addressed directly; that was not our 
intention, instead by recording patterns in LTM we gain insight into the behaviour of the 
unknown system that will aid future modelling. In that respect, our LTM structure has 
similarities with the SDM learning model of Kanerva (1988) and other distributed 
memory models. 
We notice how qualitative values have introduced some limited noise immunity and 
believe higher-order qualitative di!erentials will add enhanced representation of the key 
model features. We did not address noise and precision issues explicitly but regarded any 
noise levels as being lower than the resolution of the discrete variables. 
We have seen the role of qualitative representations in the trade-o! between speci"city 
and generality. Despite their imprecision, qualitative models have proved valuable in 
many application areas for abstracting or capturing the essence of system behaviour. 
The three main algorithms used in the experiments selected schemas on the basis of: 
the ratio of numbers of positive to negative examples for the change desired; the 
nearestneighbour 
(Euclidean) distance; and an interval measure of matching on each channel. 
The "rst two algorithms can only o!er a crude approximation of a schema's "tness 
because they treat the schema precontexts as multi-channel entities. The range-value 
matching algorithms attempt to match each element of the context to the individual 
channel elements of the precontextual information. However the nearest-neighbour 
strategy is very suitable for this problem space and we suggest the application of the 
hyperspace distance algorithms to individual channels in combination with the range 
matching method will give further progress. 
Unlike other approaches, our method does not assume any prior structure but o!ers 
a way of automating the exploration of unknown systems. This could be very valuable as 
a "rst stage process that gathers data, determines structure and suggests models for the 
system under examination. The longer term bene"ts are in building tools that perform 
this function and will have considerable use within agents that explore internet and 
web-based services. Our contribution is to illustrate the role of qualitative representations 
and promote a constructivist approach. We hope this kind of work will continue 
and will shed further light on the qualitative structure of problems in a way that relates to 
the &&intution and insight'' that so characterizes human thinking, especially when exploring 
unknown systems. 
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