
Int. J. Human-Computer Studies (2000) 000–000

Interactive Machine Learning: Letting Users Build Classifiers

MALCOLM WARE, EIBE FRANK, GEOFFREY HOLMES, MARK HALL, IAN H. WITTEN

Department of Computer Science, University of Waikato, Hamilton, New Zealand

According to standard procedure, building a classifier using machine learning is a
fully automated process that follows the preparation of training data by a domain
expert. In contrast, interactive machine learning engages users in actually generat-
ing the classifier themselves. This offers a natural way of integrating background
knowledge into the modeling stage—so long as interactive tools can be designed that
support efficient and effective communication. This paper shows that appropriate
techniques can empower users to create models that compete with classifiers built by
state-of-the-art learning algorithms. It demonstrates that users—even users who are
not domain experts—can often construct good classifiers, without any help from a
learning algorithm, using a simple two-dimensional visual interface. Experiments on
real data demonstrate that, not surprisingly, success hinges on the domain: if a few
attributes can support good predictions, users generate accurate classifiers, whereas
domains with many high-order attribute interactions favor standard machine learn-
ing techniques. We also present an artificial example where domain knowledge allows
an “expert user” to create a much more accurate model than automatic learning
algorithms. These results indicate that our system has the potential to produce
highly accurate classifiers in the hands of a domain expert who has a strong interest
in the domain and therefore some insights into how to partition the data. Moreover,
small expert-defined models offer the additional advantage that they will generally
be more intelligible than those generated by automatic techniques.

c© 2000 Academic Press

1. Introduction

Standard machine learning algorithms are non-interactive: they input training data
and output a model. Usually, their behavior is controlled by parameters that let the
user tweak the algorithm to match the properties of the domain—for example, the
amount of noise in the data. In practice, even users familiar with how the algorithm
works must resort to trial and error to find optimal parameter settings. Most users
have limited understanding of the underlying techniques and this makes it even harder
for them to apply learning schemes effectively.

The same problem arises when choosing a technique for a particular data mining
problem. The best choice generally depends on the properties of the domain, yet there
is no standard recipe for selecting a suitable scheme. The problem is compounded by
the fact that users are often unaware of the strengths and weaknesses of individual
learning schemes. Parameter and scheme selection are the only mechanisms through
which users can affect how the model is generated, and (at least in propositional

c© 2000 Academic Press



2 INTERACTIVE MACHINE LEARNING

machine learning) there is no other way for domain knowledge to enter the inductive
process beyond the data preparation stage.

This paper presents a graphical interactive approach to machine learning that makes
the learning process explicit by visualizing the data and letting the user “draw” de-
cision boundaries in a simple but flexible manner. Because the user controls every
step of the inductive process, parameter and scheme selection are no longer required.
When used by a domain expert, background knowledge is automatically exploited
because the user is involved in every decision that leads to the induced model. The
scheme works most naturally with numeric attributes, although the interface does
accommodate nominal ones. 1

The material presented in this paper builds on an earlier approach to interactive
classifier construction by Ankerst et al. (1999), whose system lets users generate an
univariate decision tree by placing split points on numeric attributes using an interac-
tive visualization. There are two main differences with the work presented here. First,
our system allows complex interactions between any pair of attributes to be captured
using a two-dimensional visualization. Second, we present results of an empirical eval-
uation that involves several novice users and standard datasets, enabling us to identify
strengths and weaknesses of this interactive visual approach to machine learning.

The paper is organized as follows. The next section describes our method of inter-
active classifier construction. Section 3 gives a detailed example. Next we apply the
system to the problem of classifying Kiwifruit and compare the resulting classifier’s
performance to a decision tree automatically generated by a state-of-the-art decision
tree inducer. Section 5 presents an empirical comparison of classifiers constructed by
five novice users and a variety of univariate and multivariate decision tree learners on
five benchmark datasets. Section 6 demonstrates the usefulness of our interactive tech-
nique in the hands of a domain expert using an artificial domain. Section 7 discusses
related work, while Section 8 summarizes the main results and future directions.

2. Visual Decision Tree Construction Using 2D Polygons

Flexibility and simplicity are the key elements in the design of our system. The goal
is to make the process of building a classification model as intuitive as possible. The
system enables the user to construct a decision tree graphically with bivariate splits on
attributes (Lubinsky, 1994). Bivariate splits were chosen for three reasons. First, they
are representationally more powerful than univariate splits. Second, it is difficult to
construct splits visually on more than two attributes. Third, all users are familiar with
two-dimensional data representations from drawing programs and graphical packages.

Each bivariate split is represented as a polygon or set of polygons. Polygons are
easy to draw and can approximate arbitrarily complex two-dimensional shapes. In
conjunction with the standard recursive “divide and conquer” decision tree procedure,
they enable users to approximate the target concept to any degree of accuracy while

1 Nominal attributes are coded as integers by indexing their values. In conjunction with the polygon-
shaped decision boundaries discussed in Section 2, this allows the user to define arbitrary splits on
nominal attributes.



INTERACTIVE MACHINE LEARNING 3

minimizing the number of splits that must be generated to identify “pure” regions of
the instance space.

Figure 1 illustrates the user interface. There are two kinds of panel: tree visualizers
(Figure 1a, d, and f) and data visualizers (Figure 1b, c, and e). At the top of each
screen is a selector that indicates which kind of panel is currently being displayed;
users can click this to switch between panels at any stage of the construction process.
The tree visualizer displays the structure of the decision tree in its current state:
Figure 1a, d, and f shows trees with one, two, and three leaves respectively. The user
can select any node by left-clicking on it, which highlights the node and loads the data
at that node into the data visualizer. The data visualizer contains a two-dimensional
visualization of the instances that reach the selected node: Figure 1b, c, and e show
the data for the root node of Figure 1a, the root node of Figure 1d, and the right child
of the root of Figure 1f respectively. The data visualizer allows the user to define a
split by drawing polygons in the visualization. Once a split has been generated, the
resulting nodes are appended to the tree structure in the tree visualizer.

2.1. BASIC FUNCTIONALITY

The data visualizer is divided into three areas: controls (at the top), a two-dimensional
scatter plot (on the left), and one-dimensional bar graphs (on the right). The controls
allow the user to select attributes and control other aspects of the display. The scatter
plot displays the instances on a plane whose axes are defined by the two attributes
currently selected by the user. The color of each data point indicates the class value
of the instance corresponding to that point, and a key to the color coding, giving
each attribute name in the color that represents it, is displayed below the scatter plot.
(Three colors are used in Figure 1.)

The bar graphs, one for each attribute in the dataset, provide a compact one-
dimensional visualization of each attribute in isolation. The array of bar graphs scrolls
to accommodate more attributes than will fit in the space provided (although this is
not necessary with the dataset of Figure 1). These bars provide a convenient way
of visualizing the discriminatory power of individual attributes. The horizontal axis
of an attribute’s bar spans the range of the attribute it represents. Data points are
randomly distributed along the short vertical axis to provide an indication of the
distribution of class values at any given point in the attribute’s range.

There are two ways in which the user can select attributes for display in the scatter
plot. First, pull-down menus are provided in the control area at the top of the data
visualizer that allow the user to choose the attribute for the X and Y axes by selecting
the name of an attribute from the appropriate drop-down list. Second, attributes
can be selected from the attribute bars displayed in the right area of the data visual-
izer: clicking on a bar with the left or right mouse button chooses that attribute for
the scatter plot’s X and Y axis respectively. Nominal attributes can be chosen; the
different attribute values are displayed along the axis in a discrete manner.

Once the user is satisfied with their choice of attributes, a split can be drawn
interactively in the scatter plot area of the data visualizer. This is accomplished by
enclosing data points within one or more polygons. A pull-down menu at the top of
the panel lets the user choose from a list of shapes that can be drawn. The shapes



4 INTERACTIVE MACHINE LEARNING

range from a simple rectangle or polygon to a “polyline” or open-sided polygon (as
shown in Figure 1c and e). They are drawn by left-clicking a series of points in the
scatter plot. In the case of a polyline, a final click (with the right mouse button) on
one side of the line determines which data points are enclosed; the end-points of the
line segment at either end of the polyline are extended to infinity.

A split is defined by the area enclosed within the polygon that has been drawn,
or the union of these areas if there is more than one polygon. When satisfied with
the result, the user inserts it into the tree structure by clicking the Submit button at
the top of the data visualizer. This appends two new nodes, the left containing all
instances enclosed by the polygons, the right receiving all remaining instances. The
modified tree can be viewed by switching to the tree visualizer. If, on the other hand,
the user is not satisfied with the split they have drawn, it can be removed by clicking
the Clear button.

The process of defining splits and appending them to the tree continues until the
user is satisfied with the resulting classifier. At any stage the data at any given node in
the tree can be visualized by left-clicking on that node. If the user decides to redefine
a split at an existing interior node, the subtree below that node will be replaced by the
nodes corresponding to the new split. The user also has the option of simply removing
an existing subtree without defining a new split by right-clicking on a node in the tree
visualizer.

2.2. OTHER FEATURES

Users can adjust how the tree structure is displayed in the tree visualizer. A right-click
outside a node generates a pop-up menu from which one can select different options
to rescale the tree. In addition, it is possible to move the tree by dragging it with the
left mouse button.

The data visualizer offers additional options that alter the appearance of the data
to accommodate preferences of individual users. The color assigned to each class can
be changed using a pop-up color selector. The jitter slider is useful if several instances
occupy exactly the same coordinates in the scatter plot. Depending on the level of
jitter, all data points are randomly perturbed by a small amount.

The data visualizer also allows the user to examine properties of individual data
points by left-clicking on any point in the scatter plot (so long as “select instance” is
chosen in the shape-selection pull-down menu near the top—as it is in Figure 1b). This
brings up a text window summarizing all attribute values for the instances (possibly
more than one) located at that point in the plot.

3. An example

Here is a detailed walk through the process of building a decision tree for the well-
known Iris data (Blake, Keogh & Merz, 1998). This dataset has a simple structure
that lends itself naturally to interactive classifier construction. It consists of four
numeric attributes that measure properties of Iris flowers. There are three classes,
each representing a different variety of Iris.

Before any splits are made, the tree visualizer displays a single node that corresponds
to the root of the tree (Figure 1a). Inside the node is shown the number of instances



INTERACTIVE MACHINE LEARNING 5

(a) (b)

(c) (d)

(e) (f)

FIGURE 1. Constructing a classifier for the Iris data



6 INTERACTIVE MACHINE LEARNING

belonging to it, broken down by class. In this case there are 50 instances of each class.
The node is automatically selected: this is indicated by a highlighted border (cf. the
borderless unselected nodes in Figure 1d and f).

To generate a split, the user switches to the data visualizer, which at this juncture
displays the data points at the root node. Figure 1b shows the situation after the user
has chosen the third and fourth attributes (petallength and petalwidth) for the X and
Y axes respectively; both the selection controls and the attribute bars are updated
accordingly.

Next, the user draws a split in Figure 1c, in this case by choosing the polyline
option to generate an open-sided polygon and splitting off the instances belonging to
the Iris-setosa variety (located in the lower left corner of the display). The “enclosed”
area of the polyline is shown in light gray.

Figure 1d shows how the tree is altered as a consequence of submitting the split.
Two new nodes are attached to the root. The left one corresponds to the light gray area
in the data visualizer, the right one to the remaining (black) region of the instance
space. The right node is automatically highlighted for further processing, because
users generally work by splitting off “easy” regions and leaving the rest for later
refinement. The instances at this new node are automatically displayed in the data
visualizer. Note that the details of the split in the root are hidden from the user who
just gets to see which attributes are used for the split.

The illustration shows one further split being made, again using the polyline primi-
tive, which divides the remaining instances into two almost pure subsets in Figure 1e.
The resulting decision tree is shown in Figure 1f. It contains a total of five nodes and
classifies all but one of the training instances correctly.

4. Classifying Kiwifruit

Our interest in interactive machine learning derives from the observation that several
datasets from our applied data mining projects appear to lend themselves naturally
to manual classification. We first noticed this when displaying the datasets using the
XGobi data visualization tool (Swayne, Cook & Buja, 1998) so that our clients could
see what was going on.

A particular example of this type of problem involves classifying Kiwifruit vines
into twelve classes. The task is to determine which pre-harvest fruit management
treatment had been applied to the vines, on the basis of visible-NIR spectra collected
at harvest and after storage (Kim, Mowat, Poole & Kasabov, 1999). The training and
test data contain 879 instances and 929 instances respectively.

The training data, visualized using the first two attributes, is shown in Figure 2a.
One author, with no prior knowledge of the domain and no previous attempts at
generating a classifier for this problem, created a decision tree manually from the
training data, using the procedure described in the last section, in a matter of an
hour or so. The resulting tree contained 53 nodes and achieved an accuracy of 85.8%
on the test data: Figure 2b shows a miniature view. For comparison, we ran the
decision tree inducer C4.5 (Quinlan, 1993) 2 using the same training and test data. It

2 We used revision 8 of this algorithm.



INTERACTIVE MACHINE LEARNING 7

(a) (b)

FIGURE 2. Classifying Kiwifruit vines

produced a tree containing 93 nodes with an accuracy of 83.2% on the test data. This
result encouraged us to perform a controlled experiment involving more subjects and
standard benchmark datasets.

5. Experiments on Benchmark Datasets

In order to test whether users can, in general, construct accurate models, we performed
an experiment using a selection of standard numeric-attribute datasets from the UCI
repository (Blake, Keogh & Merz, 1998). The datasets were chosen to present subjects
with a range of predictive tasks of varying difficulty, and to be large enough to obtain
reliable accuracy estimates (since cross-validation would be tedious, to say the least!—
and it would be impossible to prevent the user from transferring knowledge from one
fold to another). Each dataset was divided into training and test sets. Table 1
summarizes the characteristics of the datasets.

User classifications are compared against three state-of-the-art decision tree induc-
tion methods. C4.5 (revision 8) is selected because it uses tests on a single attribute
at each node, building regions of hyper-rectangles. This can be thought of as a lower
bound on the user classifier. OC1 (Murthy, Kasif & Salzberg, 1994) and Ltree (Gama
& Brazdil, 1999) build regions of hyper-planes, potentially involving a linear combi-
nation of all attributes. These systems offer a corresponding upper bound to the user
classifier, a situation where a user could in some sense visualise all attributes at once.

Five novice users used our system to construct a model for each dataset. They were
allowed to familiarize themselves with the software by practicing on the Iris dataset
before building classifiers for the benchmark datasets. Table 2 shows the accuracy on
the test set and Table 3 the size of each decision tree produced by the users; it also
contains corresponding figures for the trees generated by the three induction methods.

Table 2 shows that for three of the five datasets—waveform, shuttle and segment—
users are able to equal or better the induction methods’ performance. For sat , three
users were able to get within 5% of C4.5’s performance. On the letter dataset, all
users were roundly outperformed by the induction methods, although user C put in a
sterling effort and achieved nearly 64% accuracy.

The user-generated trees, and the multivariate trees of OC1 and Ltree, are almost
always smaller than those produced by C4.5, the only exception being the tree that



8 INTERACTIVE MACHINE LEARNING

TABLE 1
Datasets.

Dataset Train Test Attributes Classes
waveform 500 4500 40 3
shuttle 43500 14500 9 7
segment 210 2100 19 7
sat 4435 2000 36 6
letter 15000 5000 16 26

TABLE 2
Test set accuracy of the generated decision trees.

Dataset C4.5 Ltree OC1 A B C D E
waveform 72.47 73.87 69.73 72.53 71.58 78.13 66.33 64.53
shuttle 99.95 99.06 99.99 99.83 99.95 99.97 99.93 99.76
segment 88.90 90.00 80.57 88.71 86.52 89.67 90.52 74.95
sat 85.45 87.50 86.75 78.10 78.90 83.85 80.80 81.95
letter 87.70 83.50 82.24 42.00 33.86 63.86 43.94 38.54

user E produced for the segment dataset and OC1’s effort on the shuttle dataset. This
is no surprise because bi- and multi-variate splits are inherently more powerful than
the univariate splits that C4.5 uses. Although univariate splits have the advantage
of being easily interpretable when printed in textual form, bivariate splits can be
analyzed simply by visualizing them—and our experience with users is that they find
such visualizations extremely enlightening.

It is interesting to see that the smallest and largest trees, both user-generated by
users D and E respectively, produce the best and worst results on the segment data.
A possible explanation for this result is that user E failed to identify a predictive
combination of attributes. In this domain, it is relatively straightforward to separate
the classes if appropriate attributes are chosen to define the class boundaries.

The difference in size between the manually-generated trees and those produced
by the automatic methods is particularly striking for the letter dataset. It is clear
from the magnitude of the difference that users were overwhelmed by the task of
generating an accurate classifier for this domain. The problem is that the data cannot
be separated into clearly defined clusters by looking at just two attributes at a time.
High-dimensional attribute interactions need to be modeled to obtain an accurate
classifier for this domain.

Table 4 provides insight into the complexity of the tasks from a user’s perspective.
It shows the time spent constructing models, in minutes for the users and minutes and
seconds for the automatic methods. For the letter dataset, the problem is that two
attribute dimensions are insufficient to separate off substantial numbers of instances of
the same class. This leads to a seemingly endless interaction where the human desire
to finish the task outweighs the need to build an accurate model.

6. An Artificial Example

The experimental results from the previous section show that users who are not
domain experts can generate classifiers that rival those produced by an automatic
learning method. However, the real benefit of an interactive technique is that domain



INTERACTIVE MACHINE LEARNING 9

TABLE 3
Size of the generated decision trees.

Dataset C4.5 Ltree OC1 A B C D E
waveform 73 61 21 21 61 23 13 19
shuttle 53 19 67 19 29 27 23 29
segment 35 27 19 25 31 25 17 57
sat 431 136 183 37 71 39 23 241
letter 2105 1695 1133 121 73 171 79 137

TABLE 4
Time in minutes (and seconds) to construct tree.

Dataset C4.5 Ltree OC1 A B C D E
waveform 0:11 0:03 1:32 28 34 18 20 11
shuttle 0:50 0:54 66:46 22 18 34 33 25
segment 0:03 0:01 0:09 22 10 15 30 24
sat 0:22 0:19 26:01 47 32 40 52 91
letter 0:47 9:06 144:51 107 67 207 182 56

experts, who have some intuition as to how to partition the data appropriately, can
directly influence the construction process. The expert’s prior knowledge can improve
the classifier’s accuracy, especially if little data is present. Moreover, compared to
the ordinary user, experts usually have a strong interest in the domain and are cor-
respondingly more willing to spend the time required to create an accurate model.
Another potential advantage of expert-defined partitions is that they reflect the ex-
perts background knowledge, thereby making the model more intelligible for other
experts.

To demonstrate the potential benefit of using interactive machine learning in con-
junction with a domain expert we performed an experiment on an artificial dataset.
We used the spirals data illustrated in Figure 3. This dataset, well-known as a bench-
mark for artificial neural networks, exhibits two classes that represent two intertwined
spirals. The dataset consists of 194 instances, 97 for each class. We randomly chose
97 of the instances and set them aside as a test set. The default accuracy on the test
data, obtained by predicting the majority class in the training data, was 43.3%. We
applied all three decision tree learners from the previous section to the full training
dataset, evaluating the performance on the test data. They failed to identify any pre-
dictive features in the data, resulting in an accuracy comparable to the default (i.e.
50% or lower).

We let two users manually construct classifiers from increasing amounts of training
data, more specifically, for 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97 instances. Figure 3a
shows the first dataset and Figure 3b the last one. The first user was told that the
classes are arranged in two intertwined spirals. This user represents the “domain
expert,” who has some prior knowledge regarding the basic structure of the data.
No information about the domain was given to the second user. Figure 4 shows the
resulting learning curves: the percentage of correct classifications on the test data
for varying numbers of training instances. This result nicely illustrates the utility
of background knowledge. Given 30 to 70 training instances, the “expert” generates



10 INTERACTIVE MACHINE LEARNING

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

S
ec

on
d 

at
tr

ib
ut

e

First attribute

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

S
ec

on
d 

at
tr

ib
ut

e

First attribute

(a) (b)

FIGURE 3. Spirals training data with (a) 10 and (b) 97 instances.

40

50

60

70

80

90

100

0 20 40 60 80 100

P
er

ce
nt

 c
or

re
ct

 o
n 

te
st

 d
at

a

Number of training instances

domain expert

naive user

FIGURE 4. Two learning curves for the spirals data.

a substantially more accurate classifier than the “naive” user. With less than 30
instances neither user was able to discern any meaningful structure in the data. Given
more than 70 instances the spiral structure is apparent even to the naive user.

This example is obviously contrived. It represents an extreme case where humans
are expected to outperform automatic techniques. The purpose of this experiment is
solely to demonstrate that background knowledge can make a substantial contribution
if it is compatible with the visualization technique employed by the interactive machine
learning tool—in our system, if it translates into generic geometric patterns in a two-
dimensional representation.

7. Related Work

Ankerst et al. (1999) pioneered interactive decision tree construction. Their system,
which they called “perception-based classification” (PBC), allows users to generate
splits from a visualization of a dataset. The dataset is shown as a set of circle segments,
one for each attribute, and concentric arcs are associated with attribute values. In
other words, instances are sorted from the center of the circle to its outer boundary
according to their value for that attribute; along the arc, instances are distributed
randomly. The color of an instance indicates its class. The user can define univariate
multiway splits on an attribute by choosing a circle segment and inserting arcs into



INTERACTIVE MACHINE LEARNING 11

it. As in our approach, the data is then divided into subsets using this split and
corresponding nodes are added to the tree structure.

PBC is closely related to our approach to interactive machine learning. Instead of
simple univariate splits we allow more complex bivariate splits, exploiting the user’s
ability to identify clusters in two-dimensional scatter plots. In our system, the func-
tionality of the circle segments is achieved by the attribute bars on the right side of
the data visualizer. In fact, it is not clear to us why PBC is based on circle segments
instead of linear attribute bars: due to their shape, circle segments may give the user
the misleading impression that there is a qualitative difference between instances close
to the center of the circle and those close to its boundary. In a later paper, Ankerst et
al. (2000) reach this very conclusion and abandon circle segments in favour of attribute
bars.

Ankerst et al. (1999) present experimental results for PBC, obtained from a single
user, for three of the five datasets employed in Section 5: sat , segment , and shuttle.
Unfortunately they state neither the user’s experience nor how many trials were in-
volved in obtaining the results. In their experiments, user-generated decision trees
were less accurate than an implementation of C4.5 on sat and segment , and equally
accurate on shuttle. However, the difference in accuracy was never large and the
user-generated trees had the advantage of being much smaller.

The experimental results presented in Section 5 add two important new findings.
First, manual classifier construction is not likely to be successful for large datasets
with high-dimensional attribute interactions. Second, the accuracy of a user-generated
classifier depends strongly on the person who produced it. For example, professionally-
motivated users who are intimately familiar with the data are likely to produce better
results than casual users.

8. Conclusions

This paper presents a novel interactive method for constructing decision tree classi-
fiers. 3 The system is easy and intuitive to use. With it, people can build accurate
classifiers after very little practice, shortly after encountering the system for the first
time. An interactive approach to building classifiers allows users who are familiar with
the data to exercise effective use of domain knowledge. It also has the advantage of
demonstrating the inductive process in a concrete way, thereby educating users about
what the results mean.

Experiments on standard numeric-attribute datasets involving several users show
that for some datasets manually-constructed models can be smaller and as accurate as
those produced by the decision tree inducers C4.5, Ltree and OC1. Users build good
models when clusters are visually apparent in two dimensions. For large datasets
involving high-dimensional interactions, manual classifier construction is too tedious
to be worthwhile.

The new challenge is to create a symbiotic relationship that combines the skills of
human user and machine learning algorithm. For example, learning algorithms like
Induct (Gaines & Compton, 1995), which produces a hierarchy of if-then rules, lend

3 The software is part of the Weka workbench, available from http://www.cs.waikato.ac.nz/ml



12 INTERACTIVE MACHINE LEARNING

themselves naturally to a symbiotic approach. Situations in which manual decision-
tree construction will fail can be identified by visualizing the data, and in such cases
the user may want to invoke a learning algorithm to take over the induction process.
The latest version of our system has this capability: its empirical evaluation is next
on our research agenda.

Acknowledgments

We would like to thank Paul Compton and the anonymous referees for their construc-
tive comments and suggestions.

References

Ankerst, M., Elsen, C., Ester, M. & Kriegel, H.-P. (1999). Visual classification: An
interactive approach to decision tree construction. In Proceedings of the 5th In-
ternational Conference on Knowledge Discovery and Data Mining (pp. 392–397).
ACM Press.

Ankerst, M., Ester, M. & Kriegel, H.-P. (2000). Towards an effective cooperation of the
user and the computer for classification. In Proceedings of the 6th International
Conference on Knowledge Discovery and Data Mining (pp. 179–188). ACM Press.

Blake, C., Keogh, E. & Merz, C. J. (1998). UCI Repository of Machine Learning
Data-Bases. Irvine, CA: University of California, Department of Information and
Computer Science. [http://www. ics.uci.edu/∼mlearn/MLRepository.html].

Gaines, B. & Compton, P. (1995). Induction of ripple-down rules applied to modeling
large databases. Journal of Intelligent Information Systems, 5(3), 211–228.

Gama, J. & Brazdil, P. (1999). Linear tree. Intelligent Data Analysis, 3, 1–22.
Kim, J., Mowat, A., Poole, P. & Kasabov, N. (1999). Applications of connectionism to

the classification of kiwifruit berries from visible-near infrared spectral data. In
Proceedings of the ICONIP99 International Workshop (pp. 213–218). University
of Otago.

Lubinsky, D. (1994). Classification trees with bivariate splits. Applied Intelligence, 4,
283–296.

Murthy, S. K., Kasif, S. & Salzberg, S. (1994). A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research, 2, 1–32.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Swayne, D. F., Cook, D. & Buja, A. (1998). XGobi: Interactive dynamic data vi-
sualization in the X window system. Computational Graphical Statistics, 7(1),
113–130.


