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Human monitoring behavior in manual and automated scheduling systems is
examined through an experiment that required the subjects to perform scheduling
and monitoring tasks. The task required the assignment of a series of incoming
customers to the shortest of three parallel service lines. The subject was either in
charge of the customer assignment (Manual Mode) or was monitoring an automated
system performing the same task (Automatic Mode). In both cases, the subjects
were required to detect the nonoptimal assignments that they or the computer had
made. The results showed better error detection performance and lower subjective
workload in the automatic mode. The subjects in the manual mode were both biased
against declaring their own assignment errors and less sensitive to their misassign-
ments. Results are compared with previous findings of monitoring behavior in
manual control systems, and are discussed in terms of human decision making,
reliability, workload and system design.

1. Introduction

Although the role of the human operator in modern systems is quickly changing
from that of a manual controller to that of a monitor and supervisor, the data and
knowledge base from which system design guidelines can be provided remains
sparse. Our understanding of the effects of automation and the characteristics of
human monitoring behavior remains limited at best; and as a result, the deployment
of automation has often been haphazard and ill-conceived (Parsons, 1983; Price,
1985; Wiener, 1988). A clear understanding of the characteristics of human
monitoring behavior and the nature of the human supervisory and monitoring role
becomes of critical concern for the successful implementation and operation of many
modern systems, including commercial and military airplanes (Chambers & Nagel,
1985, Pew, 1986), air traffic control (Parasuraman, 1987; Hopkin, 1992), advanced
manufacturing systems (Sharit, 1985; Sanderson, 1989), and process control (Bain-
bridge, 1983; Sorkin & Woods, 1985).

A major decision regarding the operator’s role in automated systems is one of
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human involvement and machine autonomy: should the operator serve as a passive
monitor of failures and malfunctions with computers performing control functions
more autonomously, or should the operator serve as an active participant in the
control or decision loop with computers as intelligent assistants? Answers to these
questions are not entirely clear. Both the concept of a passive monitor and that of an
active participant have received support from arguments based on considerations of
workload, safety, system familiarity, and trust.

One major argument that supports the role of the passive monitor is based on
aviation accident analysis: since humans are the major cause of most accidents, the
argument goes, air safety should be dramatically improved by removing humans
from the control loop. A computer performing the same human function is usually
more reliable and less susceptible to environmental and system factors (Chambers &
Nagel, 1985; Nagel, 1988). Another argument that supports the concept of a passive
monitor is based on the belief that automation will reduce the level of operator
workload and improve operator performance on the remaining tasks, a belief that
can be traced back to one of the earliest philosophies of automation, which stated
that “‘man is best when doing least” (Birmingham & Taylor, 1954).

One major argument that supports the concept of an active participant is that no
matter how much of a process is automated, should the process fail, the supervisor
will be required to assume the original role as a controller: there is accumulating
evidence and concern that removing the human from the control loop inhibits
development and speeds the loss of control skill (Chambers & Nagel, 1985). This
deficiency has been termed “out of the loop unfamiliarity”, or OOTLU (Wickens,
1992). Given that control skills are acquired largely from task performance
(Umbers, 1979) and that recall of knowledge from long-term memory requires
frequent exercise to remain efficient, it is not surprising that anecdotal evidence for
automation-induced OOTLU is accumulating (Wiener, 1988). Another argument
that supports the concept of an active participant is that humans do not make
terribly effective monitors of highly automated systems. Attentional factors such as
vigilance decrements can limit human performance in complex monitoring tasks
(Parasuraman, 1987). Furthermore, automation may simply shift the locus of
workload by moving the operator to the higher level of a supervisory controller
(Sheridan, 1987). There are also arguments that the operator’s trust in automated
devices, that is critical to the operation of autonomous systems, has yet to be fully
established (Muir, 1988; Wiener, 1988; Moray & Lee, 1990).

Despite the increasing urgency of addressing these controversies associated with
the changing naiure of operator participation in modern systems, few experiments
have systematically examined the effects of operators’ mode of participation on their
monitoring behavior in manual and automated systems. Of the limited number of
reported studies, most have been in the realm of manual tracking and flight
simulation. Young (1969) and Wickens and Kessel (1979, 1980) have demonstrated
the superiority of man-in-the-loop monitoring performance in detecting dynamic
system failures (where system failures were defined as sudden changes in controlled
element dynamics). Using detection latency and accuracy as measures, both studies
showed superior speed-accuracy characteristics for active controllers vs. passive
monitors. Both studies attributed the better detection performance when humans
are in the control loop to the added proprioceptive information available to the
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active controller, Similar results have also been reported recently by Bortolussi and
Vidulich (1989).

Evidence that demonstrated superior failure detection performance in the
automatic mode was provided by Ephrath and Curry (1977), who used professional
airline pilots to perform a complex, multi-loop landing approach simulation. In this
study, failures consisted of slow, steadily diverging errors in either the yaw or pitch
axis. Since failures in this study were not defined by a change in control laws, no
adaptation in control behavior was required by the occurrence of a failure. The
proprioceptive channel thus did not provide unique cues for the manual mode pilots,
and their detection performance declined with the higher workload of concurrent
manual control.

While these studies identified proprioceptive information and workload as two
critical factors that determine an operator’s monitoring performance, the results
were derived from manual tracking and flight deck environments that have a
significant manual control component. There is a significant lack of understanding of
the critical factors that influence monitoring behavior in automated systems that
mainly perform decision functions rather than motor control. One important
example is advanced scheduling systems, in which schedulers make decisions
according to some scheduling rules about the timing and sequencing of performing
operations on various tasks to reach certain criteria. In advanced scheduling systems,
much scheduling is done by computers equipped with sophisticated scheduling
algorithms, and the human’s responsibility is to monitor the operation of the
computer scheduler. Although we have begun to accumulate knowledge about
human scheduling abilities (Sanderson, 1989; Moray, Dessouky, Kijowski &
Adapathya, 1991), no study has been reported which examined the characteristics of
human monitoring behavior in scheduling systems. Our knowledge accumulated in
the manual tracking studies is not readily generalizable to the scheduling environ-
ments and other cognitive systems, because of the great differences in the nature of
the tasks.

The objective of this study was to examine the characteristics of human
monitoring behavior in manual and automated scheduling systems through an
experiment that required the subjects to perform scheduling and monitoring tasks.
The task required the assignment of a series of incoming customers to the shortest of
three parallel service lines. The subject was either in charge of the customer
assignment (Manual Mode) or was monitoring an automated system performing the
same task (Automatic Mode). In both cases, the subjects were required to detect the
nonoptimal assignments that they or the computer had made. Performance indices
of the signal detection paradigm were used to compare the error detection sensitivity
and decision criterion when the human functions as a active scheduler or a passive
monitor. NASA subjective workload ratings (Hart & Staveland, 1988) and time
estimation performance as a secondary task were also collected to analyse the
workload demands and their effects on monitoring performance.

One important factor that has been identified as having significant influence on
human performance in automated systems is the operators’ level of self-confidence
in their own judgments and their trust in automated devices (Moray & Lee, 1990). A
general conclusion from previous studies is that people tend to be overconfident in
their judgments of their own abilities in performing various tasks such as diagnosis,
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forecasting, and memory retrieval. This bias has been observed in several forms and
in several contexts {Fischhoff & MacGrepor, 1982; Pitz & Sachs, 1984). For example,
in the context of automotive troubleshooting, Mehle (1982) observed that subjects
are unjustly confident that they have entertained all possible diagnosis hypotheses.

In the context of decision aids, there is also evidence that decision-makers’ level
of self-confidence is often overestimated, and that this overconfidence in their own
judgments leads them to mistrust the outcomes of various automated decision aids
designed to supplement their judgments (Kleinmuntz, 1985, 1990). This overcon-
fidence is often a manifestation of a well documented decision bias called
confirmation bias: decision makers tend to seek (and therefore find) information
that confirms their chosen hypothesis (Einhorn & Hogarth, 1978; Kahneman, Slovic
& Tversky, 1982). This bias produces a sort of “cognitive conceit” (Edwards, 1968)
or “cognitive tunnel vision” (Sheridan, 1981), in which decision makers fail to
encode or process information that is contradictory to or inconsistent with their
initial hypothesis.

These results have significant implications for the analysis of automated cognitive
systems, and also provided us the basis for a prediction about human performance in
scheduling systems. We predicted that, besides workload and information require-
ments, a third dimension—that of possible biases in decision making—is an
important factor that determines human monitoring performance. The effects of the
three factors on human monitoring behavior in manual and automated scheduling
systems were investigated in this study.

2. Method

2.1. TASKS

A dynamic scheduling and monitering task was developed to simulate a supermarket
“customer’” assignment situation. The task required the assignment of a series of
incoming “customers’ to the shortest of three parallel service lines displayed on a
computer display (see Figure 1). The display area of each “customer” was directly
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FIGURE |. A pictorial representation of the task display. The “customer” arriving at the left is waiting to
be assigned to one of the three lines at the right. In this ¢xample the optimal choice with the minimal
waiting time is clearly line 3, which has the least sum of areas.



MONITORING BEHAVIOR AND AUTOMATION 1019

proportional to the service time required by the given “customer”. Thus the shortest
line refers to the line with the least sum of areas. The shape of a customer did not
provide information for customer assignment. One customer arrived at a time, and
the interval between the arrival of a new customer and the assignment of the
previous customer was randomly distributed between 3 and 4 seconds.

During different experimental sessions, the new “‘customers” were assigned either
by the subjects (Manual Mode), or by the computer (Automatic Mode). In both
cases the subjects were required to monitor whether the assignments that they or the
computer had made were optimal (i.e. whether the “customer” was assigned to the
line with the shortest expected wait), and indicate nonoptimal assignment by
pressing a left-hand key (an “oops™ response). In the manual mode, assignments
were made by pressing one of three left-hand keys corresponding to the three
service lines. The subjects were instructed that speed and accuracy were equally
important for making customer assignment. However, they were required to make
customer assignment immediately if they heard a high-pitched tone, which was used
as a *‘time-out” signal to create a time pressure of customer assignment by subjects.
The time interval between ‘‘customer™ arrival and tone presentation was varied to
create fast and slow conditions. The high-pitched tone was presented to a subject
only if he/she failed to make an assignment within the time interval. In the
automatic mode, the subjects were actually monitoring the “shuffled” playback of a
computer recording of their own manual sessions. Thus, the frequency as well as the
specific stimulus appearance of the nonoptimal assignments in the automatic mode
was yoked to the frequency and appearance with which they occurred in the manual
mode. Yet the sequence of automatic trial segments never replicated the sequence
of the manual segments. By doing so, the two modes can be compared at the same
difficulty level of monitoring task. The subjects were never informed of this identity
before the end of the experiment, nor did they report that they ever realized it when
they were informed of this identity after completing the experiment.

In addition to the scheduling and monitoring task, the subjects were required to
perform a time estimation secondary task, which was employed as an objective
measure of task workload. For the time estimation task, the subjects were asked to
estimate elapsed time by the time production method (Hart, 1975): They were
instructed to estimate 10s intervals and press a right-hand time estimation key
whenever they felt that 10s had elapsed since the previous keypress. The subjects
were also instructed not to use counting, tapping or any sort of direct timing
procedures.

2.2. EXPERIMENTAL DESIGN AND PROCEDURE

In order to provide adequate training to the subjects, each subject was given 10
“customer assignment’’ training sessions of 1 h each. These 10 training sessions were
held on 10 separate days. Nine right-handed subjects participated in the experiment
and were paid four dollars per hour as remuneration. In each training session, visual
and aunditory feedback was presented on a trial-by-trial basis to develop proficiency
and consistency at lane size discrimination. The subjects were instructed to reach an
assignment accuracy of at least 70%, which was over twice what would be expected
by chance (33%). The mean assignment time of the last five training sessions of
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each subject (RT) was used as the criterion for calculating the time pressure of fast
and slow conditions of the experimental sessions for that subject. The time pressure
was Iwice the mean assignment time (2-00% RT) for the slow condition and 0-75
times the mean assignment time (0-75* RT) for the fast condition.

At the end of the “‘customer assignment” training sessions, subjects performed
one 12-5min time estimation block with no concurrent activities, followed by three
12-5min time estimation blocks with only manual “customer assignment”. Then,
subjects performed another 12-5min time estimation block with no concurrent
activities. The average time estimation performance of the two blocks in which
subjects performed only time estimation was used as the baseline for time estimation
performance. Subsequently, the subjects were given a 1-h training session with error
detection and time estimation requirements imposed onto the routine customer
assignment task. This session was designed to familiarize subjects with all tasks in
the experimental situation.

The last 4 days were the experimental sessions (two manual and two automatic
mode sessions). Because of the “yoked” nature of the experiment and thus the
recording requirement for the automatic condition, the first and the third days for
each subject were “manual mode” sessions, and the second and fourth days were
“automatic mode” sessions. The trial segment orders were ‘‘shuffled” between
modes, and the fast and slow trials were counterbalanced between sessions. Each
session consisted of four blocks (two fast and two slow) of 12-5min each. The
subjects were instructed to give top priority to customer assignment and error
detection, and give second priority to time estimation.

After each block, the NASA-TLX workload scale was used to collect the
subject’s subjective workload experience in that block. There are two main
components to the procedure: the rating scales themselves and the assignment of
importance weights to the different attributes. This procedure resulted in a weighted
workload rating and six subscale ratings for the subject in each experimental
condition. The six subscales include three task-related factors (physical requirement,
mental requirement, time requirement}, and three subject-related factors (amount of
effort, frustration, success and failure). For a detailed description of the rationale
and implementation of the NASA workload scale, see Hart & Staveland (1988).

3. Results

3.1. SCHEDULING PERFORMANCE

The “‘customer” assignment performance of the subjects in the manual mode was
measured as customer assignment error frequencies, which are presented in the first
and the fourth rows of the data in Table 1. An error in customer assignment
occurred when a customer was assigned to a line that did not have the least sum of
areas. Error frequency was calculated as the ratio of the number of assignment
errors to the total number of assignments. There are two major results that have
implications for analysing the results of monitoring performance, which is the focus
of the current study: first, the time pressure manipulation did not produce



MONITORING BEHAVIOR AND AUTOMATION 1021

TasLE 1
Performance of each subject on the scheduling and the monitoring tasks recorded as
“customer” assignment error frequencies and error detection frequencies

Subject No. 1 2 3 4 5 6 7 8 9 Mean
Slow Assignment
Speed error 0344 0250 0280 0329 0258 0291 0230 0393 0328 0-300
Manual

detection 0-207 0104 0093 0202 0080 0058 0050 0130 0157 0120

Automaltic
detection 0227 0237 0165 0361 0239 0202 0161 0172 0363 0236

Fast Assignment
Speed error 0356 0302 0-254 0-246 0279 (0298 0-180 0376 0-296 0287
Manual

detection 0312 0131 0076 0246 0-119 0057 0054 0149 0-189 0-148

Automatic
detection 0260 0285 0147 0412 0295 0172 0158 0151 0387 0-252

a significant effect on assignment accuracy (¢(8)=1-017, p >0-10). Second, two
subjects (S1 and S8) were not only the least accurate of the group in terms of the
assignment task, but were also the only subjects to fall consistently below the
accuracy criterion set by the experimenter.

3.2. MONITORING PERFORMANCE

Monitoring performance was analysed with the performance indices of the signal
detection paradigm: error detection sensitivity and decision criterion.

3.2.1. Error detection sensitivity
The hit and false alarm rates at each level of mode and speed were first calculated
for each subject. A hit was an event in which a subject made a detection response
when an error actually occurred. A false alarm was defined as a detection response
when no error occurred. A’ scores, a related measure of sensitivity {Pollack &
Norman, 1964), were then computed and subjected to statistical analysis. This
method does not make any assumptions about the form of the underlying signal and
noise distributions. It requires only that the receiver operating characteristic (ROC),
a Cartesian plot of hit probability p(H) against false alarm probability p(FA), be
monotonically increasing. This means that for a receiver of constant sensitivity, no
increase in hit rate will be accompanied by a decrease in false alarm rate, and
vice-versa. For a detailed description of the calculation and rationale of A" scores,
see Pollack and Norman (1964), or Wickens (1992).

While the current experimental paradigm depended on subjects assigning cus-
tomers to the best of their ability, nothing precluded them from producing
intentional and therefore more easily detected errors in the manual mode. To the
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Figurk 2. Scatterplot of the nine subjects’ assignment accuracy vs. mean A’ increment from manual-fast
to automatic-fast conditions. The numbers in the scatterplot correspond to the subject numbers.

extent that intentional errors in assignment provided information to the subject
about error likelihood, it would create a bias that favored manual mode detection.

To investigate this possibility, a scatterplot showing assignment accuracy against
A’ difference is shown in Figure 2. It is evident that two subjects (S1 and S8) are
more different from the group than the rest of the group is from itself. They were
the same two subjects whose “customer assignment™ accuracy fell consistently below
the accuracy criterion set by the experimenter. For these reasons, it was felt that
these subjects may have adopted a strategy of achieving higher detection accuracy in
the manual mode by intentionally sacrificing their assignment performance. Thus,
the data of these two subjects are excluded from further analysis.

The A’ scores were presented in Figure 3, and examined in a two-way repeated
measures analysis of variance. Detection sensitivity was found to be significantly
higher in automatic than in manual conditions (F(1, 6)=48-2, p <0-001). No
significant main effect for task pace was found (p>0-10), nor was there any
interaction between the two factors of mode and pace (p > 0-10).

3.2.2. Response Bias
One of the reasons for the popularity of the signal detection theory is the
proposition that the receiver’s sensitivity and response criteria are orthogonal
dimensions that can be examined separately. According to the signal detection
theory (Green & Swets, 1966), when there are no differences in payoffs between the
different events, subjects optimally should match their response frequency to the
frequency with which signals occur. Signals are, in this case, assignment errors. Any
mismatch between the two rates reflects a response bias.

To examine the effects of response bias, the system’s signal rates were compared
with the subject’s response (“‘oops”) rate in each mode (Table 1). Since the
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FIGURE 3. Mean A’ data as a function of participatory mode and task speed.

differences of interest were within and not between the two paces, two separate
one-way repeated measures ANOVAs with three levels (error frequency, manual
error detection frequency, and automatic error detection frequency) were per-
formed, corresponding to the two levels of task pace. The result of each analysis
showed significant differences (p < 0-01 for all); thus paired comparisons of means
were performed within each of the two ANOVAs.

Since multiple post hoc comparisons on a single set of data produce a cumulative
“family-wise" error, these single-df comparisons were cvaluated against Tukey's F
as a correction (Keppel, 1982). The results of the paired comparisons, as presented
in Table 2, showed that rate of responses in the automatic mode did not differ
significantly from the signal rate for either subset of the sample at either task pace.
This indicates that subjects’ error detection response rates tended to be optimal in
the automatic mode. However, in the manual mode, subjects were significantly less
frequent in responding relative to both the optimal prescription of signal rate and to
the automatic mode (p <0-01 for all, see Table 2}, indicating a conservative
response bias.

TABLE 2
Paired comparison F values for signal vs. res-
ponse frequency
Signal vs. Signal vs. Manual vs.
Pace  Manual Automatic  Automatic
Slow 182-74* 2-33 78-46%
Fast 24-46% 0-00 110-07*

*p <001
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3.3. MONITORING WORKLOAD

The means of the NASA-TLX workload ratings under the four experimental
conditions are shown in Figure 4. A two-way repeated measures analysis of variance
demonstrated that workload in the manual mode was significantly higher than in the
automatic mode (F(1, 6) =7-97, p <0-05), and that there was a significant interac-
tion between the factors of mode and speed (F(1,6)=20-10, p <0-01), but no
significant speed effect (F(1, 6) = 3-45, p > 0-10). A Fisher test further indicated that
the subjective workload rating was significantly higher in the manual-fast condition
than in any of the other three conditions, while no significant differences existed
among these three means.

The time estimation data are summarized in Table 3. Earlier research has found
that the median of the length of the 10s intervals was a more representative
measure of central tendency than the mean, and the average absolute deviation of
scores from the median was a more representative measure of dispersion than the
standard deviation from the mean (Hart, 1975). Thus, the median and the average
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FigURE 4. Mean workload ratings as a function of participatory mode and task speed.

TaBLE 3
Time estimation performance (s)

Time
Manual Manual Automatic  Automatic  Assignment estimation
fast slow fast slow only only
Median 15-56 16-01 16-58 17-22 12-55 13-03

Absolute
deviation 3-86 409 4-38 4-41 2:22 2-40
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absolute deviation were used in the current analysis. Both the length and variability
of the 10s intervals were approximately the same for the single task time estimation
sessions and the sessions with only the customer assignment task (z =0-38 for the
median ¢-test, 1 = (49 for the absolute deviation}. However, a repeated measures
one-way ANOVA revealed that the added requirement to monitor and detect
assignment errors increased the length and variability of time estimation
(F(5,35)=6-46 for the median length, p <0-01; F(5, 35) =11-20 for the average
deviation, p <0-01). Fisher tests revealed that both measures of time estimation
performance under the four experimental conditions had significantly larger values
than under the baseline condition, yet the four experimental conditions did not show
significant differences among themselves.

4. Discussion

The objective of the current study was to examine the characteristics of human
monitoring behavior in manual and automated scheduling systems. Indices of the
signal detection paradigm—namely, detection sensitivity and response criterion—
were used to analyse subjects’ monitoring performance. Several interesting results
regarding subjects’ monitoring performance were observed in this study: subjects
showed greater sensitivity to assignment errors in the automatic than in the manual
condition; and they adopted conservative, nonoptimal response criteria in the
manual mode of the error detection task. Each of these issues will be discussed in
turn,

4.1. ERROR DETECTION SENSITIVITY

As discussed in the introduction, previous studies on operator performance in
manual and automated tracking and control systems have identified the availability
of task information and the level of workload as two critical factors that influence
monitoring performance. Manual performance of a task wili aid the operator in
detecting system failures to the extent that it provides the operator with information
about the system, but will degrade detection performance insofar as it increases the
operator’s workload (Wickens & Kessel, 1979; Ephrath & Young, 1981; Rouse,
1981). To use this heuristic as a basis for predicting whether a manual or automated
detection environment will prove more favorable thus requires differentiating the
effects of information and workload on task performance.

To disambiguate these effects, the present study employed objectively similar
stimuli between modes to partially control for differences in detection task
information available to the subject. In the automatic mode, the subjects actually
monitored the yoked playback of their own manual sessions, although they were
never informed of the identity, nor did they ever realize it. It is very difficult to see
how the present automatic environment could offer unique information about error
probability (i.e. information not similarly available in the manual mode) to the
operators. In contrast, in the manual mode, the task of assigning the customers may
have allowed some subjects to gain some knowledge and even control of how error
probabilities were changing from moment to moment (and in fact, two subjects very
likely capitalized on this control). It therefore scems safe to say that to whatever
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extent an information inequality existed, it could not have favored the automatic
mode. We thus have a point of departure for arguing that reduced workload, and
not an information advantage, accounted for the greater detection sensitivity
observed in the automatic mode. The subjective workload measures indeed provided
indication that higher levels of workload were perceived in the manual
mode.

This finding of a sensitivity decrement produced by higher workload is in contrast
to that of Wickens and Kessel (1979). In their study, the added workload of
controlling a primary tracking task did not hinder the detection of failures in that
task. T'o explain the different resuits of the two experiments, we need to examine the
various subtasks’ demands for attentional resources. In Wickens and Kessel's study,
the resources required by tracking concerned mainly the response mechanisms,
whereas the resources involved in their failure detection task were primarily related
to perceptual and decision-making mechanisms. Their failure detection task required
a comparison of visual feedback with expectancies of the qualitative way in which
the tracking cursor would respond to a given control input. Since the response
processes and perceptual/decision-making processes draw from different processing
resources that are not mutually available (Wickens, 1992), it is not surprising that
little significant interferences were observed between tracking and detection.

However, in the present study, the “‘customer’ assignment and the detection tasks
are both perceptual/decision-making tasks, and thus draw from the same
perceptual/cognitive processing resources. This competition for commmon processing
resources between the assignment task and the monitoring task resulted in the
interference between the assignment and the error detection tasks and thus the
lower detection sensitivity.

4.2. RESPONSE BIAS IN MONITORING

As a dimension that is independent of the sensitivity of the observer, response bias
allows a comparison between the frequency of to-be-detected signals and the
frequency of the monitor’s response. This distinction allows description of a monitor
as risky (declares an error too frequently), optimal (declares errors with the same
probability as that of an erroneous customer assignment), or conservative (declares
an error too infrequently).

In the automatic mode, subjects produced response rates that were not sig-
nificantly different from the optimal frequency of response. However, in the manual
mode, subjects were significantly less frequent in responding relative to the optimal
prescription of signal rate, indicating a conservative response bias. This conservat-
ism, or “cognitive conceit” (Edwards, 1968; Fischoff, 1977), has been demonstrated
in studies of human decision making. The current study, adopting a unique approach
of employing ‘“‘yoked” manual and automatic conditions, provides new evidence of
this conservatism in a monitoring environment.

One theoretical explanation of this phenomenon is the expectancy theory, which
was originally proposed by Baker (1961) to explain the vigilance decrement
phenomenon. This theory considers decrements in detection performance during a
watch to be due to a conservative adjustment of the response criterion in response to
the observed infrequency of events. Subjective expectancy, then, is reduced every
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time a signal is missed by the observer. This leads to a sequential increase in
conservatism until, in concert with other factors in the detection environment, a new
level of equilibrium for the criterion is achieved. Thus a lower initial expectancy may
lead to a spiraling increase in missed signals and response bias. This phenomenon is
also labeled as the “‘vicious circle” hypothesis (Broadbent, 1971).

While the current experiment was not a vigilance paradigm (i.e. trial sessions were
not lengthy nor signals infrequent), this theory does shed some light on the
interpretation of the current results. It illustrates that the cognitive conceit of an
overconfident monitor may plant the seed of conservatism, and this conservatism
can be further self-reinforced in the process of monitoring. In addition to the
observation that subjects could not detect many of their own nonoptimal assign-
ments, another important observation is that they did not realize the existence of
this limitation in their ability to detect their own errors. Subjects expressed great
surprise when they were informed, at the end of the experiment, that the computer
assignment errors in the automatic mode were actually the subject’s own
errors recorded in the manual mode and that they detected more of these errors
in the automatic mode than in the manual mode. These observations have
important implications for flexible antomation systems. Operators in these systems
should be made aware of the existence and the effects of their overconfidence bias
or cognitive conceit in their training procedures and when they use automated
decision aids. Knowledge of performance results should be added to the system if
possible.

The current results also have important implications for certain human reliability
issues. Adams (1982) has suggested that one attribute of human operators is that
they are often self-correcting with respect to their own errors. However, the present
results suggest that where the system does not provide performance feedback, some
kinds of errors are less, rather than more, likely to be detected by an operator that is
“in the loop™. With the terminology of error analysis provided by Norman (1983),
the present study provided evidence that some mistakes (errors of perception of
situation or of the choice of intentions) are more, rather than less, obscure to skilled,
confident operators, although skilled operators are shown to be good at detecting
their own slips (errors of executing intentions) (Rabbitt, 1978; Woods, 1984; Reason,
1990). Future research should identify adequate feedback mechanisms and training
procedures to help operators realize and overcome these problems in monitoring
tasks.

In summary, the present study indicates that, besides workload and information
requirements, a third dimension—that of possible biases in decision making—is an
important consideration in the analysis of human monitoring behavior in automated
cognitive systems and in the allocation of monitoring functions to human operators.
While previous studies have demonstrated the superiority of man-in-the-loop
monitoring performance in motor control and tracking systems because of the added
proprioceptive information, the results of the current study seem to support the
concept of man-out-of-loop monitoring in automated cognitive systems that perform
decision functions rather than motor control. Future research should further
examine these important issues of operators’ role in modern systems, and identify
adequate feedback mechanisms, training procedures and support iools to improve
operators’ monitoring performance.
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