JOURNAL OF ALGORITHMS 16, 218-233 (1994)

A Polynomial Time Algorithm for Unidimensional
Unfolding Representations*

JeaN-PauL DoignoN

Université Libre de Bruxelles, c.p. 216, Bd du Triomphe, B-1050 Bruxelles, Belgium
AND

JEAN-CLAUDE FALMAGNE

School of Social Sciences, University of California, Irvine, California 92717

Received July 23, 1991; accepted May 4, 1993

Two conditions on a collection of simple orders—unimodality and
straightness—are necessary but not jointly sufficient for unidimensional unfolding
representations. From the analysis of these conditions, a polynomial time algo-
rithm is derived for the testing of unidimensionality and for the construction of a
representation when one exists. © 1994 Academic Press, Inc.

Suppose that the objects forming a finite set X are ranked according to
personal preference by the subjects from a finite population 4. Without
loss of generality, it is assumed that the (simple) orders <, thus pro-
duced by the subjects a from A are all distinct. Then .= (X,{< la €
A}) constitutes a (multipreference) system. We always set m = | 4| and
n = |X|, where m > 1 and n > 2.

The unfolding model of Coombs [5] (see also Falmagne and Doignon
[6]) offers an explanation of such data on the basis of relative proximity in
some embedding “psychological” space. Formally, a metric space (£, d),
and two mappings f: 4 — E and g : X — E are sought, such that for all

*This work is supported by Grant BNS 8911-339 to Jean-Claude Falmagne at the Univer-
sity of California, Irvine. Jean-Paul Doignon acknowledges invitations to the Irvine Research
Unit in Mathematical Behavioral Sciences during August 1990 and August 1991. The authors
are grateful to Jean-Pierre Barthélemy and Bernard Monjardet for having brought their
attention to important references.

218

0196-6774 /94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

UNIDIMENSIONAL UNFOLDING 219

a€Aandi,jEX:
i<, iff d(f(a),g(i)) <d(f(a),g(j))

In this situation, the pair (f, g) of mappings is a representation of the
system # in the metric space (E, d).

Any system .# can be represented in some Euclidean space E’ of
dimension r; this is easily seen by taking r sufficiently large (that is,

=n — 1). Several computer programs are available for the tentative
construction of Euclidean representations in lower dimensions (for a
recent survey, see, ¢.g., Borg and Lingoes [4]). However, it seems that the
following fundamental question remains unanswered (|p — g] denotes the
Euclidean distance between points p, g).

Question U. Given a natural number r, find necessary and sufficient
conditions on a system .#= (X,{<_|a € A}) for the existence of two
mappings f: A —~E"and g: X > E"such thatforalla € 4 and i, j € X,

i<, iff |f(a) —g(i)| <|f(a) —g()].

When such an equivalence holds, the system .# satisfies r-unfolding, or
equivalently, is an r-unfolding system. The pair (f, g) is an r-representation
of .#.

Our paper is devoted to the case r = 1, that is, to one-unfolding systems,
or unidimensional (unfolding) systems. Let us collect here a few obvious
facts, without proof.

Lemma 1. Any unidimensional system .# has a one-representation (f, g)
in R such that, for all a € A and all distinct i,j, k,l € X:
() 2f(a) # g(i) + g(j);
(ii) g(@i) + g(j) # g(k) + g(l);
(iii) 2g(k) # g(i) + g(j);
(iv) f(a) and g(i) are rational numbers.

Moreover, we always have m < (’2') + 1. Ifm< (;) + 1, the set A can be

enlarged to a set A', with |4’ = (;) + 1, so as to form a unidimensional
system (X,{<' |la € A)) extending (X,{<,la €A} in the sense that
<, =<, foranya € A.

- a

The value (;) + 1 results from the existence of exactly (;) midpoints of

pairs of represented objects. It motivates the following definition, which is
adequate only in the case of unidimensional unfolding.

220 DOIGNON AND FALMAGNE

DeriNiTION 2. A unidimensional system .# with m = (;) + 1 is said
to be full.

We investigate two necessary conditions for unidimensionality, that we
call “unimodality” and “straightness.” As shown by Coombs [5, p. 91],
their conjunction does not, in general, imply unidimensionality. From the
analysis of these conditions, however, we derive an algorithm for testing
unidimensionality and constructing a representation when one exists. In
the full case, our paper merely restates Coombs’ results in an algorithmic
framework. In the general case, we obtain new results.

1. UNIMODALITY

When a system .# is represented on the Euclidean line, its set X of
objects inherits two opposite orders from the ordering of points on the
line. Each preference order < ,, for a € A, has a special property with
respect to these two orders.

DeriniTION 3. A simple order <, on X is unimodal with respect to
some order < _ on X when forall i,j, k € X:

o

i<, j<,k = j<,i or j<,k.
A system #= (X,{< ,|la € A} is unimodal if there exists some reference
order <, on X such that each <, (for @ € 4) is unimodal with respect

—a
to <

<,
ProrosiTiON 4. Any unidimensional system is unimodal.

This is shown by taking as a reference order an order inherited from a
one-representation. To discuss unimodality, we introduce some more
terminology. The open interval }i, k[, with endpoints /, k in the order <,
is

{jli <, j <,k} wheni<, k,
liokly =S {jlk <, j <,i} whenk <, i,
%) when i = k.

The closed interval {i, k], is obtained by adding i and k to)i, k[,. The
beginning set of i in <, is] —,i], = {j € X|j <,i}. We denote by rk,i
the rank of i in <, and by b, the element of rank a in <, (with
1<ax<n)

A system .# is encoded in a m X n array M as follows. First label
arbitrarily the objects of X from 1 to n and select some ordering of the

UNIDIMENSIONAL UNFOLDING 221

subjects of A. Then store the order <, of the ith subject in the ith row

—a

as the following sequence of numbers:

a, a, ... a,.

The proof of the next proposition is easy, and omitted.

ProrosiTion 5. Given two orders <, and <, on X, the following
three assertions are equivalent:

(i) <, is unimodal with respect to <

0s
(ii) each i from X is an extreme element in < , of the set {j € X|j < ,i};

— 0

(iii) any beginning set in <, is an interval in <

= 5

From Proposition 5, we derive an algorithm that tests whether a system
.+ is unimodal with respect to a given reference order < _,. We consider
the orders <, one at a time, and the elements a,, a,,...,a, one after
the other. By maintaining two pointers to the endpoints of the interval in
<, formed by the set {a,,a,,...,a,), we can easily test whether

e}

{a,,a,,...,a,,,} also forms an interval in < ,. The resulting algorithm
(similar to Romero [12, Section 2.4]) has execution time in O(mn). (An
elementary manipulation of natural numbers not larger than n, such as an
assignment or comparison, counts for one step.)

When the reference order is not given, how could we test whether a
system .# is unimodal? Since a reference order never is unique (its
opposite is again a reference order, and there may be other reference
orders), the design of a good algorithm is less obvious. The question is also
of interest in voting theory (Black [3]), because Condorcet effect of
intransitive simple majority comparisons never occurs for a unimodal
family of orders. Bartholdi and Trick [1] gave an algorithm, with running
time in O(mn?), by referring to the consecutive one’s property. In view of
extensions to our unfolding problem, we design a direct algorithm with
running time in O((m + n)n).

Our analysis starts from Proposition 5(iii). Assume that the order <, is

unimodal with respect to some reference order < . The beginning sets of

— 0
<, having at least two objects become closed intervals in < ; we call
these intervals boxes. Inverting the order of all objects in a box results in
another reference order for <. Morcover, all reference orders for <,
are obtainable by repeating such inversions. Thus, an order on n objects is
unimodal with respect to 27! reference orders (Romero [12]). For the

extension to a system .#, we need the following concept.

DeriniTiON 6. Let 2 < a <n. Then « determines a fault in the
system .# if all beginning sets {a,,a,,...,a,}, for a € A4, are equal. We
also refer to this unique set as the fault (determined by a).

222 DOIGNON AND FALMAGNE

Note that n always determines a fault. In the setting of Coombs’ model,
a fault has a straightforward interpretation: any subject prefers any object
in the fault over any object not in the fault.

ProposITION 7. Assume that the system .# is unimodal. Then its
reference order is unique up to reversing iff there is only one fault in #. In
general, there are 2/ reference orders if f is the number of faults in 4.

The proof of Proposition 7 will be based on Lemmas 10 and 11. The
faults in a unimodal system .# with reference order <, all become
intervals in < _, that we again call boxes. Inverting the order of objects in
a box, i.e., “flipping” the box, transforms <, into another reference
order for .#. More precisely,

Remark 8. All reference orders mentioned in Proposition 7 are easily
generated from one of them by flipping some or all of the f boxes derived
from the faults.

ExampLE 9. Suppose a unimodal system is encoded as the array

6
1
1

NN
o O
o 0O

1
7
7

W s W
W s
W N
[\S IRV, RV]

There are four faults. The 16 reference orders can be summarized by
showing the boxes in one of them, e.g.,

(this suggests an easily implementable data structure for the set of refer-
ence orders).

LemmMa 10. Suppose that two distinct objects i and j appear at rank n in
some two of the orders of the unimodal system .#. Let us take any reference
order <, for which i < j, and denote by S the transitive closure of the
union of all < ,, a € A. Then any object k such that iSk or jSk has its rank
in <, determined by #.

Proof. First note that i must be the first element in <, (use Proposi-
tion 5(iii)). Assume that, say, i < _p <,/ <, k. Then] — =, p]. must
become an interval in <, with p as an extremity and i as the other. Thus

we can locate p, and, moreover, we know [i, p], (as an unordered set).

UNIDIMENSIONAL UNFOLDING 223

Next,] — «, /], must become an interval in <, that includes p and has /
as one of its extremities. In both cases p <,/ and I < ,p, we can locate /
and in the same time compute [i,/], (as an unordered set). The next step
is similar: | — o, k], becomes an interval that includes /; thus we can
locate k.

The general situation is handled the same way; we remark that the case
JSk becomes similar when <, is replaced with its opposite. O

LemmMma 11. Assume that the system .# has only one fault. If k is an
object that appears with rank «a in some order < ,, where a € A and
| <a < n, and k never appears with greater rank in any of the <, for
b € A, then there is an object | having rank less than a in <, but greater
than a in some of the orders < _ with ¢ € A.

We leave the proof of Lemma 11 and of Proposition 7 to the reader.
Now to check a system .# for unimodality, we can proceed as follows.

SKETCH OF THE ALGORITHM. The columns of the array M representing
a system . will be visited from last to first. The reference order is being
built in an array ref in such a way that the still non-assigned cells form an
interval. Two pointers are kept to the extremities of this interval. More-
over, the ith component of an auxiliary array indexed by 1,2,..., n holds
the value “undone,” “left,” or “right,” thus indicating in which extremity
of the unassigned interval (the label of) object i is assigned.

If the last column of M contains only one object x, this object is assigned
to the rightmost empty cell of ref; the same with the next column, etc.
When a column with more than one object is first detected, there are two
cases. If the column contains more than two objects, then the system is not
unimodal and the algorithm stops. Else the two objects are assigned
respectively (and arbitrarily) to the leftmost and rightmost empty cells of
ref.

The algorithm continues by visiting the remaining columns of M. When
an object k is met for the first time, it is assigned to one of the two
extremities of the non-assigned interval of ref. To decide which one, an
object as in Lemma 11 is sought. If none exists, then we have a fault at
the rank of k, and we may assign k to any of the extremities. If / is found,
then & must be allocated to the left extremity exactly in case / was
assigned to the right.

When ref has been completely assigned, it remains to check that it
encodes a reference order for . if not, unimodality fails. O

ProrosiTioN 12. The algorithm described above has running time in
O((m + n)n).

224 DOIGNON AND FALMAGNE

Proof. During execution, all cells of M are visited. When a new object &
is met, the beginning set it determines in one of the orders <, has to be
scanned; note that this will happen less than » times. We have seen after
Proposition 5 that unimodality with respect to a known order can be tested
in O(mn) steps. Thus the total number of steps is in O(n? + mn).

a

Remark 13. It is not difficult to amend the algorithm in such a way
that it produces all the reference orders, using a data structure of the kind
suggested in Example 9.

2. STRAIGHTNESS

For each pair (g(i), g(;)) of real numbers representing a pair of objects
(i,), consider its midpoint (g(i) + g(j))/2. Suppose that there is only
one such midpoint between the representing points of two subjects a and
b. Then their orders <, and <, only differ by the transposition of the
two corresponding objects. Such a transposition will be called a mutation.
Each mutation selects an unordered pair from X, which will also be
referred to as the mutation.

A graph called the permutohedron is obtained by taking all the orders
on X as vertices, and declaring two orders as adjacent whenever they
differ by exactly one mutation. This graph happens to be the vertex—edge
graph of an (n — 1)-polyhedron, also called permutohedron (Guilbaud
and Rosenstiehl [8]; see also Feldman Hogaasen [7] and Le Conte
de Poly-Barbut [10]; Bjorner [2] has an extensive list of references). The
distance between two orders on X, defined as half the cardinality of their
symmetric difference, is also the distance between the corresponding two
vertices on the permutohedron.

Here is another necessary condition for unidimensional unfolding that is
also well known.

ProrosiTioN 14. Any unidimensional system has orders that form a
subset of the vertices in a shortest path on the permutohedron.

DerFiNiTION 15. A system will be called straight when its orders form a
subset of the vertices in a shortest path on the permutohedron.

Thus a straight system determines two opposite, canonical listings of its
orders. It is not difficult to design an algorithm that constructs a listing
while checking the system for straightness. A listing will be encoded as an
array perm indexed by 1,2,..., n, with perm, referencing to the order
<, that comes in the ith position. Here we simply say that perm,
contains a.

UNIDIMENSIONAL UNFOLDING 225

SKETCH OF THE ALGORITHM. To improve algorithm performance, we
will record in another field of perm; an integer number between ~n(n —
1)/2 and n(n — 1)/2 in such a way that the distance between two orders
equals the absolute difference of the two associated numbers.

We start by choosing an order <, and initialize perm with a and 0.
Then we take a second order, say < ,, and initialize perm, with b and the
distance between <, and <.

The remaining orders are considered one at a time. When the (i + 1)th
order <, is considered, its distances to the orders referenced by perm,
and perm, are computed. We can determine from these distances where
< 4 has to be inserted in the listing and determine its associated number.
Straightness of the actual listing of i + 1 orders needs to be checked only
by looking at <, and either its two neighbors (on both sides of <, in
the listing), or to the two extremities in the listing (if <, was added at
one extremity of the listing). O

ProrosiTioON 16. The abouve algorithm terminates in at most O(m(m +
n log n)) steps.

Proof. When considering the (i + 1)th order, we need to compute at
most four distances (refer to lemma below), and to perform O(i) opera-
tions on the array perm. O

Lemma 17. The distance between two orders <, and <, can be
computed in at most O(n log n) steps.

Proof. First construct the order <, with ¢, = b;. The distance be-

-

tween <, and <, equals the distance between < _ and the natural

order on {1, 2,..., n}. The latter distance can be computed by applying the
list merge sorting algorithm to < _ (see Knuth [9, Exercise 5.2.4-21]). O

—C

3. NON-SUFFICIENCY OF UNIMODALITY AND STRAIGHTNESS

Coombs [5] showed that a full, straight, and unimodal system does not
necessarily satisfy unidimensional unfolding. His counterexample is based
on the following idea. As soon as the ordering of the objects on the
Euclidean line is known, the search for a representation reduces to the
resolution of a system of linear inequalities. Such an ordering must be a
reference order that comes at one extremity of the listing of the orders;
assume here it is the natural order on {1,2,...,n}, at the end of the
listing. Introduce real unknowns x; for i = 1,2,...,n, and consider the

226 DOIGNON AND FALMAGNE

system of inequalities (or equivalently the system of reverse inequalities),
X, <x,< 00 <x,,

X+ x; <x, +x,

where an inequality of the last type appears whenever the mutation §j
occurs before kl in the listing of the orders (we write ij instead of {i, j}). A
one-representation (f, g) exists iff this system of linear inequalities admits
a solution. Indeed, if this system has a solution, set g(i) = x,, and then,
for a € A, pick f(a) in such a way that

2f(a) >g(i) +g(j) (resp.2f(a) <g(i) +&(J))

if the mutation i, where i <, j, occurs (resp. does not occur) between
<, and <,

To take advantage of this idea in the non-full case, we need to
characterize among all reference orders for a unidimensional system those
that can be used as the ordering of objects in at least one representation.
This characterization is the goal of the next two sections.

We mention that the technique of Scott [13] can be applied to the
system of inequalities mentioned above in order to characterize unidimen-
sional systems. However, as shown by Michell [11], the theoretical condi-

tions derived on the system seem to remain intricate.

4. STRAIGHT REFERENCE ORDERS

Given a system, a first step in the search for a representation could be
the construction of a reference order for unimodality that does not destroy
straightness.

DermniTion 18. An order <, on X is a straight reference order for a
(straight) system #=(X,{<,la € A)) if this system is unimodal with
respect to < _, and, moreover, the system augmented with < _ and the

opposite of <, is straight.

Given a straight system, the following lemma shows that a straight
reference order always must be added, or come at the beginning or at the
end of any listing (and, of course, its opposite at the other extremity). A
convex set in a graph is a set C of vertices such that C contains all the
vertices on all shortest paths connecting two vertices of C. The convex
closure of a set A of vertices is the smallest convex set containing A.

UNIDIMENSIONAL UNFOLDING 227

Lemma 19. Let < _ be a reference order for a unimodal system A.
Then <, belongs to the convex closure (on the permutohedron) of {<,

la € A} only if <, €{<,la € A} and, in that case, <, does not belong
to the convex closure of the other orders.

Proof. Assume w.lo.g. that <, is the natural order. All orders <,

—
unimodal with respect to <, have 2 <, 1exceptif <, = <. Thus all

orders <, in the convex closure of the orders distinct from < also
have 2 <, 1. O

What can we say about existence and uniqueness of a straight reference
order for a given, straight, and unimodal system .#? When counting
straight reference orders, we will only consider those that are, or can be,
added at the end of the listing (assuming, of course, this listing to be
fixed). In the sequel, such a straight reference order will be called final.

DeriniTion 20. Let 2 < a < n. Then a determines a strong fault in &
if it determines a fault and, moreover, all orders < _, for a € A, have the
same element in rank a.

The interpretation of a strong fault in Coombs’ setting is obvious: there
is an object that is related to any other in the same way by all subjects
without being the most preferred object.

ProrosiTiON 21. Assume that the system .# is unimodal and straight
with m > 2 and that it admits a final straight reference order <, on X

(which needs not be one of the < .’s). Then this final straight reference order

is unique iff there is no strong fault in .#. More precisely, there are 2° final
straight reference orders if s is the number of strong faults in 4.

Proof. If a determines a strong fault with object i at rank «, a final
straight reference order <, can be transformed into another one by
moving { to the other side of the interval in <, formed by all the objects
having rank less than « in the system.

We now assume that there is more than one final straight reference
order. If only one object appears in the last position of all the < ’s, then
n determines a strong fault. If two objects are seen in those last positions,
any straight reference order has a well-defined position at one extremity of
the listing: any two final straight reference orders <, and <, must end
with the same object. We also know from Remark 8 that <, is trans-
formed into <, through a sequence of steps of the form:

— O
—select a box B, in <, and flip it;

- 0

—select a box B, # B, inside B, and flip it;

—select a box B, + B, _, inside B, _,, and flip it,

228 DOIGNON AND FALMAGNE

where each of these boxes corresponds to a fault in the system. Take an
element i that is located at one extremity of box B, and does not belong
to box B,. For y € B/\ {i}, we obtain(y <, iandi <, y)or(y <, i
and i <, y). In order to have straightnessof all < ’splus <, and <,
there can be no mutation iy with y € B, \ {i} between two of the < s
(because otherwise one of <, or <, which are both final, cannot be
straight). Hence the relative position of ¢ and y is the same in all < s.

If {i} = B, \ B,, we sece immediately that / must be the largest element
in the beginning set B, for each order < ,; thus rk(/) determines a
strong fault, If {i} € B, \ B,, then B, \ B, contains only one other element
i* extremal in B, for <, (and for <). The same arguments can be
used for i* as for i: the relative position of i* and y taken in B, \ {i*} is
the same in all < /’s. Hence, the largest element in the beginning set B,

for any <, must be always i or always i*. Thus we have a strong fault at

rk (i) or at rk (i*). This establishes the uniqueness result. A recurrence
on s completes the proof. O

Remark 22. The proof shows that the generation of all final straight
reference orders from one of them is done in a simple way: objects located
at strong faults can be moved to only one other, well defined, position.

The following result will have an important consequence on the design
of an algorithm for checking whether a system admits a final straight
reference order (see Remark 24 below).

THeOREM 23. Any unimodal and straight system .# admits a straight
reference order.

Proof. (1) The thesis holds for m = 2 in case there is only one fault.
By Proposition 21, the reference order is then unique up to reversing. Let
A={a,b}, u=a,, and v =05, Thus u # v since n > 1. Taking the
reference order <, with u <, v, we prove that <,, <,, < isa
listing. If it were not, some mutation would appear between <, and <,
and also between <, and < ,. Let us pick one such mutation § with
[i, j1, as large as possible. Exchanging notations i and j if necessary, we
will have i < _j, j <,i, and i <_j. Note that / < i implies by unimodality
that i <,/ and, similarly, that j < _p implies j < _,p. Then / < i implies
both / < _j and j <,/; by the choice of i and j, there results j < L
Similarly, j < ,p implies both i <_p and i <, p; thus also i <,p.

From the above, | — x, j], = [i, jl, =] — »,i], and there is a fault
determined by rk,(j) = rk,(i). By our starting assumption, j = u and
i = v, in contradiction with { <, jand u < v.

(2) The thesis holds for m = 2. Restrict the system to the objects in
the first fault (that is, the fault determined by the least possible rank). By

UNIDIMENSIONAL UNFOLDING 229

the first part of the proof, there exists a straight reference order < , for
this restricted system. Now collapse the fault in one artificial object, and
construct a straight reference order <, for the system consisting of this
artificial object and all objects in the second fault but not in the first (with
obvious orders). Restore inside <, the original objects according to < .
The resulting order is a straight reference order for the system restricted
to the second fault. A similar construction can be applied to each succes-

sive fault.

(3) The thesis holds in the general case. Assume that the system .4 is
unimodal and straight, with <, the first order in a listing, and <, the
last one. Consider any reference order for {< ,, <,} such that <,, <,
<, is a listing (we just proved the existence of <). Of course, {<,la €
A} U { <} is automatically straight. Let us show that any order <, for
¢ € A, is unimodal with respect to < . If not, we have , j, kK € X such

<,
that

i<, i<,k
and j after i and & in < .. This leads to two cases:

(1) i <_k <_j. Then we infer that i/ <_j from straightness, and that
J <,k from unimodality. Straightness gives k& < ,j and then unimodality
gives j < ,i. Hence the last element of the set {i, j, k} in respectively <,

< <, is I, j, k. This is impossible because the system restricted to

=y e

{i, j, k} must remain unimodal.
(2) k < i <_j. The arguments are similar. O

Remark 24. With the notations of part (3) of preceding proof, to
construct a straight reference order for a straight and unimodal system,
one needs only to look at the “extreme” orders <, and < ,: any final
reference order for { < ,, <} is also a final reference order for the whole
system.

Here is how to check whether a given system . admits a final reference
order.

SKETCH OF THE ALGORITHM.

Phase 1. Find, if possible, a listing of the orders (using the algorithm of
Section 2). If none exists, straightness is violated and there is no final
reference order.

Phase 2. Denoting by <, the first and by <, the last orders in the
listing, try to construct a final reference order <, for {<,, <}, with
<, its opposite (apply a variant of the algorithm sketched in Section 1,
taking also into account the desired straightness of {< ,, <., <,, <.

a’
In case of failure, the given problem has no solution.

230 DOIGNON AND FALMAGNE

Phase 3. For ¢ € A\ {a, e}, check that < _ is unimodal with respect

- cC

to < . If this is not always true, there is no final reference order for the

<,
given system. Otherwise, <, is a solution. O

ProposiTION 25. This algorithm has running time in O(m? + n® +
mn log n).

Proof. Phase 1 performs in at most O(m(m + n log n)) steps (Proposi-
tion 16), Phase 2 in at most O(n?) steps (Proposition 12), Phase 3 at most
O(mn) steps (see after Proposition 5). O

5. UNIDIMENSIONAL UNFOLDING

How do we decide whether a given system . satisfies unidimensional
unfolding? We cannot simply state that it suffices to build a final straight
reference order, and, in case of success to work out the resulting system of
inequalities (as in Section 3). There could be “good” (i.e., leading to a
representation) and “bad” (i.e., not leading to any representation) orders
among the 2° final straight reference orders, where s is again the number
of strong faults in the system. Fortunately, the following result shows that
any final straight reference order will work.

THEOREM 26. Let #=(X,{<,la € A}) be a straight and unimodal
system, and let <, be any final straight reference order for #. Then #

admits a one-representation (in R) iff it admits a one-representation (f, g)
that also satisfies for all x, y € X:

g(x) <g(y) iff x <,y

Proof. Suppose that .# admits a one-representation (f’, g’). We then

set, for x,y € X,

x<yy iff g(x) =<g'(y).
Then < is a straight reference order for .#, and either it is final or its
opposite is. We may assume that <, is final. We indicate how to
transform the representation (f’, g’) into a representation (f, g) satisfying
the conditions of the theorem.

By our analysis of final straight reference orders, we know that < . is
transformed into < , by a sequence of steps of the following type. Select
a strong fault «, with thus 2 < a < n, and, 4 being any subject, move the
object a, from one end of the interval formed in the actual reference
order by a,, a,,...,a,, to the other end of that interval (see Remark 22);

note that after each such step we again have a final straight reference

UNIDIMENSIONAL UNFOLDING 231

order. We only treat the case in which < is transformed in only one
step into <, and indicate how to modify (f’, g’) under that assumption.

Let i* and i be the extremities of the interval formed in <, by
a,a,,...,a,, with i* < _i. We handle the case in which /* is not the
initial element of < and { is not the final element, leaving the other
cases to the reader. Note that a, equals i or i*; we give details in the first
eventuality only (in fact, taking the reverse listing of the orders <

exchanges the two eventualities). Set

a

=max . {x € Xlx < ,i*},
j= maxsd{x € Xlx < i},

[=min_ {x € Xl|i <,x}.

The new final straight reference order <, is thus obtained from <, by
moving { to a position between k and i*. If x € [i*,i], and y € X'\
[i*,i],,, then we have x <,y for each a in A. This fact will be used
repeatedly. For instance, [< ,k, together with g'(k) < g'(¢), implies the
left inequality below, while the right inequality comes from i* < i, to-

gether with g(i*) < g(i):

AURTIUNP (G AT L0}

Hence, if at the same time we subtract a constant positive value ¢ from all
g'(x) with x < i* and add ¢ to all g'(y) with i <y, we still have a
representation. We can choose ¢ in such a way that the resulting represen-
tation, again denoted as (f', g'), satisfies for any two subjects a, ¢ from A,

2f'(e) — 2f'(a) +£'(J) <g'(]),
that is

2f'(e) —g'(!) <2f'(a) - &'(J). (1)
Since j < k with g'(k) < g'(j), we have

g'(k) +8'(J) <

; f(a),

that is

g'(k) <2f'(a) —8'(J)- (2)

232 DOIGNON AND FALMAGNE
Similarly, since i* </ with g'(i*) < g'({), we have

g'(i) +g'(1)
< e

f(e) .
that is
2f'(e) ~&'(1) <g'(i%). (3)
Moreover, from k < i* and g'(k) < g'(i*), we derive
g'(k) <g'(i%). (4)

Because of Eqgs. (1)~(4), there is a real number r such that, for all subjects
aand e in A,

2f'(e) —g'(l) <r<2f'(a) —g'(J),
g'(k) <r<g'@i*).

If we now take f = f" and g = g', except for g(i) = r, we readily see that
(f, g) is again a one-representation. Indeed, we only need to check that
the comparisons of object i with the other objects are faithfully repre-
sented (because subjects and objects distinct from i keep the same
representing points). For x € X\ {i}, we have for each subject b either
rk,(x) < @ or rk,(x) > a. In the first case, g’(x) < g’(j) < g'(i); since
g(i) < 2f(b) — g(j), we derive f(b) > (g(i) + g(x))/2, which is the re-
quired condition because g(i) < g(x). In the second case, we may have
g'(x) < g'tk), or g'(1) < g'(x).
The first alternative gives

g(x) +g(i) - g(k) +g(i) - g(k) +g(i*)
2 = 2 2

<f(b)

(the last inequality is because i* <, k), and thus (g(x) + g(i))/2 < f(b),
which is the required condition because here g(x) < g(i).
The second alternative gives

g(x) +g(i) . g(l) +g(i) > £(b)
2 2
(the last inequality is by the choice of g(i)), and thus f(b) < (g(x) +
£(i)) /2, which is the required condition because here g(i) < g(x).

We finally note that, for any two objects x, y, we clearly have g(x) <
g(y)iff x <, y. D

UNIDIMENSIONAL UNFOLDING 233

An algorithm for checking a system for unidimensionality now results
from our analysis. First, find (if possible) a listing and a final straight
reference order by applying the algorithm from Section 4. Then determine
a solution (if any) to the system of linear inequalities described in Section
3. As the coefficients take only the values 1, 0, and — 1, this can be done in
polynomial time (thanks to a result of Tardos [14] on combinatorial
programs). Let F(p,q) be the number of steps required to check the
consistency and produce a solution to a system of p strict linear inequali-
ties in g variables.

THEOREM 27. There is a polynomial time algorithm for checking whether
a system .# satisfies unidimensional unfolding. In the positive case, the
algorithm produces a one-representation of .#. Execution is done in at most
O(m? + n?> + mnlogn + F(n?, n)) steps.

REFERENCES

1. J. BarTHOLDI AND M. A. TRricK, Stable matchings with preferences derived from a
psychological model, Oper. Res. Lett. 5 (1986), 165-189,

2. A. BsOrNER, Orderings of Coxeter groups, Contemp. Math. 34 (1984), 175-195.

3. D. Brack, “The Theory of Committees and Elections,” Univ. Press, Cambridge, UK,
1958.

4. 1. BorG anp J. LiNGOES, “Multidimensional Similarity Structure Analysis,” Springer-
Verlag, New York, 1987.

5. C. H. Coowmss, “A Theory of Data,” Wiley, New York, 1964.

6. J.-CL. FALMAGNE AND J.-P. DoigNoN, Bisector spaces: Geometry for triadic data, in
“Mathematical Psychology: Current Developments” (J.-P. Doignon and J.-C). Falmagne,
Eds.), pp. 89-105, Springer-Verlag, New York, 1991,

7. J. FELbMan HOGAASEN, Ordres partiels et permutoédre, Math. Sci. Humaines 28 (1969),
27-38.

8. G. Tu. GunBaup & P. Rosenstienr, Analyse algébrique d'un scrutin, Math. Sci.
Humaines 4 (1963), 9-33.

9. D. E. Knuth, “The Art of Computing Programming. (Vol. 3. Sorting and Searching),”
2nd printing, Addison-Wesley, Menlo Park, CA, 1973.

10. Cu. Le ConTE pE PoLy-BarBuT, Le diagramme du treillis permutoédre est intersection
des diagrammes de deux produits directs d’ordres totaux, Math. Inform. Sci. Humaines
112 (1990), 49-53.

11. J. MicHELL, “An Introduction to the Logic of Psychological Measurement,” Erlbaum,
Hillsdale, NJ, 1990.

12. D. RoMmERro, “Variations sur l'effet Condorcet,” unpublished doctoral dissertation,
Université Scientifique et Médicale de Grenable, 1978.

13. D. ScotT, Measurement models and linear inequalities, J. Math. Psychol. 1 (1964),
233-247.

14. E. TARDOS, A strongly polynomial algorithm to solve combinatorial linear programs,
Oper. Res. 34 (1986), 250-256.

