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Tech. Report 92-04 

January 10, 1992 

Abstract 

We describe an efficient algorithm for maintaining a minimum span­
ning tree (MST) in a graph subject to a sequence of edge weight modifi­
cations. The sequence of minimum spanning trees is computed offiine, 
after the sequence of modifications is known. The algorithm performs 
O(log n) work per modification, where n is the number of vertices in 
the graph. We use our techniques to solve the off.line geometric MST 
problem for a planar point set subject to insertions and deletions; our 
algorithm for this problem performs O(log2 n) work per modification. 
No previous dynamic geometric MST algorithm was known. 
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1 Introduction 

For many years, algorithm researchers have studied problems of maintaining 
information about a dynamically changing graph. A classical problem in this 
field is maintaining the minimum spanning tree (MST) of a graph in which 
the weights of individual edges are subject to change [1, 5, 6, 10]. 

Each such update causes at most one edge to leave the MST and at most 
one ·other edge to take its place; one might expect algorithms for computing 
these changes to be quite efficient. Indeed, the best known algorithm takes 
0( ylm) time per update, for a graph with n vertices and m edges [6]. How­
ever there is clearly room for improvement in this case. For planar graphs 
the situation is better; one can compute the changes to the MST in time 
O(log n) per update (5, 9]. 

All of the above algorithms are online: They accept as input one update 
at a time, and must output the corresponding changes to the MST before the 
next update is available to them. It is natural to consider offl,ine algorithms 
for the same problem; such an algorithm would be given a single input con­
sisting of a long sequence of updates, and only after the entire sequence is 
known would it output the corresponding sequence of MST changes. Offiine 
algorithms are less general than online ones: an offiine algorithm can not 
maintain the MST when updates depend on previous results of the algo­
rithm. In exchange for this loss of flexibility one might expect improved 
time bounds. Surprisingly, there seems to be no p;revious work on offiine 
dynamic MST algorithms. 

This paper presents such an algorithm. The time per update is O(logn), 
greatly improving the previous 0( fo) bound for the online problem and 
even matching the best known time bound for planar graphs. 

We also examine the problem of ma,intaining a MST of a _dynamic planar 
point set. It is well known that the MST is a subgraph of the Delaunay · 
triangulation; therefore the static problem can be solved in time O(nlogn). 
However no efficient algorithm was known for the dynamic geometric MST 
problem, in which updates consist of insertions and deletions of single points. 
We use techniques similar to those in our graph algorithm, and the graph 
algorithm itself as a subroutine, to achieve O(log2 n) update time for the 
offi.ine dynamic geometric MST problem. This time bound can be improved 
to 0 (log n log log n) for rectilinear MS Ts. 
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2 Reduction and Contraction 

Our offiine graph MST algorithm works in a series of phases. In each phase 
we perform two steps: reduction and contraction. In a given phase we divide 
the sequence of edge weight updates into blocks and perform the reduction 
and contraction operations separately for each block. 

Reduction consists of finding a set of edges in the graph which, given the 
update operations in the block, can not be used in any of the MSTs of any of 
the sequence of weighted graphs corresponding to the updates. Once these 
edges are found, they can be removed from the graph without changing the 
results of the computation in that block. Thus the graph can be made to 
have a smaller number of edges. 

Contraction, similarly, consists of finding a set of edges which must be 
used in all the MSTs for the block. We then contract each of these edges, by 
merging sets of vertices that are connected by those edges. Thus the graph 
can be made to have a smaller number of vertices.· 

Reduction and contraction were used in a previous paper in which we 
described algorithms for finding a set of several different spanning trees 
having the minimum possible total weight [2]. However in that paper the 
actual process of reduction and contraction is performed differently. Curi­
ously enough the problem solved in that paper had previously been attacked 
by using the (online) dynamic MST problem as a subroutine [6]. 

Both reduction and contraction are implemented in this paper using 
(static) MST computations. For this purpose we will use the recently dis­
covered linear time MST algorithm of Fredman and Willard [7]. This al­
gorithm uses a nonstandard model of computation, in which edge weights 
are binary integers; other MST algorithms do not specify the representation 
of weights, and only operate on them, by comparisons. In our algorithm 
we allow O(logn) time per update, and we never operate on more than 
0( n2 ) updates at once. Therefore we have time to sort the weights using 
any O_(nlogn) time comparison based algorithm, and convert them to the 
integer representation needed by the MST algorithm. 

Edge insertion and deletion operations can also be handled, by treating 
a deleted edge as having infinite cost. The obvious implementation of this 
would cause the algorithm to use fl(n 2 ) space to keep track of the costs of 
all edges; we will show how to avoid this space penalty. 
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3 Reduction 

The following fact is the basis of the reduction step. 

Lemma 1. Let G be a weighted graph, and S be a subset of its edges. Let 
T be the MST of G - S. Then no matter how the edge weights in S are 
changed, the MST of G will only contain edges in T U S. 

Proof: This follows immediately from the standard "dual greedy" MST 
algorithm in which the highest weight edge in any cycle is removed until 
the remaining graph has no cycles. If we break the cycles in G - S first, all 
edges in G - S -Twill be removed. Therefore all edges in the MST will be 
in the remaining graph, T U S. D 

Lemma 2. Assume we are performing a reduction step in a block of k 
updates. Then we can reduce the number of edges, in the graph from m to 
at most n + k - 1, in time O(m). 

Proof: Let S be the set of edges updated in the block. Compute the MST 
of G - S and apply Lemma 1. Then we need only keep the n - l MST edges, 
together with the edges in S; Lemma 1 shows that throwing away the other 
edges will not change the results of the computation in this block. D 

4 Contraction 

The following fact is the basis of the contraction step. 

Lemma 3. Let G be a weighted graph, and S be a subset of its edges. Let 
T be the MST of G, when the edges of Sare given weights lower than those 
of any other edge in the graph. Then no matter how the edge weights in S 
are changed, the MST of G will always contain the edges in T - S. 

Proof: Consider changing the weights of the edges in S, one by one, from 
the weights in T to the new desired weight. At each such change, either 
the MST will not change, or the changed edge will leave the MST and some 
other edge will replace it. Therefore, the edges in T - S will remain)n the 
MST. o 
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Lemma 4. Assume we are performing a contraction step in a block of k 
updates. Then we can reduce the number of vertices in the graph from n to 
at most k + 1, in time O(m). 

Proof: Let S be the set of edges updated in the block. We assume that 
Lemma 2 has already been applied, so G - S is a tree. Weight the edges in 
S lower than the minimum weight in G - S and compute the MST T of G. 

Construct a new graph G' as follows. Create a new vertex for each 
connected component of T - S, and replace each edge ( x, y) in the graph 
with (x', y') where x' and y' are the vertices corresponding to the components 
containing x and y respectively. 

Lemma 3 shows that each MST of G, for a given assignment of weights 
to the edges of S, can be found by computing the MST of G', and taking the 
union of the corresponding edges in G with the edges in T- S. In particular, 
each individual change to the MST of G (consisting of the removal of one 
edge from the MST, and the addition of one replacement edge) corresponds 
exactly to such a change in the MST of G', and vice versa. D 

5 The Graph Algorithm 

We now solve the off.line dynamic graph MST problem. Recall that the 
algorithm is divided into phases, in each of which we perform reduce and 
contract steps within blocks of edge weight update operations. It remains to 
specify how many phases to use, and what block size to use within a phase. 

We begin with all blocks of size m, the largest number of edges in the 
graph at any one time. Contraction and reduction are no help for such a 
large block, so we do not perform th~se steps in the first phase. Within 
a block we treat insertions and deletidns as changes involving infinite edge 
weights, as discussed previously; the initial selection of block size m instead 
of n2 /2 means we only need O(m) space instead of O(n2). At this point we 
can sort the weights used within the block (including the edge weights on 
entry to the block) in preparation for the MST algorithm of Fredman and 
Willard [7]. 

In each succeeding phase, we start with blocks of size b, and in each block 
the graph has been reduced, contracted, and reduced again. Therefore by 
Lemmas 2 and 4 it has at most b + 1 vertices and b edges not involved in 
updates. There are of course at most b edges involved in updates. We then 
split each block into two smaller blocks of approximately equal length. These 
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blocks will be used in the new phase, in which we again reduce, contract, 
and reduce the graph. 

After O(log n) such phases, each block will consist of a single update and 
the reduced graph in each block will have two vertices and one non-updated 
edge, at which point we can easily tell whether the updated edge replaces 
or is replaced by the other edge. 

This gives us a sequence of edge replacements, which we translate back 
into the unreduced form to produce the sequence of MST changes corre­
sponding to the initial sequence of edge cost updates in the original graph. 

Theorem 1. Given a sequence of k edge weight modifications in a graph, 
starting from a state in which all weights are equal, we can compute the 
corresponding sequence of minimum spanning trees in time O(klogn) and 
space O(m). 

Proof: The correctness of the algorithm follows from Lemmas 2 and 4. In 
each phase, for each block of size b, we perform O(b) operations; therefore, 
for each update we perform 0 ( 1) operations. There are 0 (log n) phases, so 
for each update we perform O(log n) total work. D 

6 The Geometric Algorithm 

We now describe how to solve the offiine MST problem for a planar point 
set, with updates consisting of point insertions and deletions. The geometric 
MST is simply the MST of the complete graph on the points, with edges 
weighted by distance. However each point update corresponds to the inser­
tion or deletion of 0( n) edges in the cqmplete graph, so a direct application 
of our graph algorithm would be no :'more efficient than recomputing the 
MST using the 0( n log n) time static algorithm after each update. 

Instead we use the following approach. We recursively break our update 
sequence into blocks, as in the graph algorithm. The processing at each 
level consists of identifying certain pairs of points as "interesting", adding 
the corresponding edges to a graph problem, and removing some of the 
points from lower levels of the recursion. After this decomposition, we will 
have identified 0 ( n log n) interesting edges in each block of length n; all 
MST edges will occur in this list of interesting edges. Each such edge can be 
considered to be inserted in the graph when both of its two endpoints have 
been inserted in the plane, and deleted when one of its endpoints is deleted. 
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Thus we reduce the problem to a graph problem in which there are O(log n) 
edge updates per point insertion or deletion, and which can therefore be 
solved in time O(log2 n) per point update. 

We assume throughout this section that point distances are measured 
using the Euclidean L 2 metric; similar techniques apply to other commonly 
used metrics. Define a sextant from point x to be an infinite closed wedge 
with 60° angle having x as its corner, with either one side of the wedge hor­
izontal or both sides at 60° angles from horizontal. Each point corresponds 
to six possible sextants, and these six sextants together cover the plane. Our 
identification of interesting edges is based on the following well known facts. 

Lemma 5. Let (x, y) be an edge in the geometric MST of a planar point 
set S. Then y is the nearest point to x in the sextant from x containing y. 

Proof: Let z be closer. Then the edges xz and zy are both shorter than 
xy, so xy could not be a MST edge. D 

Lemma 6. Given sets S and T, the nearest points in S in each sextant 
from each point ofT- can be found in time O((ISI + ITI) log ISi). 

Proof: For each sextant direction, one can construct in time O(ISI log ISi) 
an appropriate Voronoi diagram of the points of S. Point location queries 
in such a diagram can be performed for each point of T, in time O(log ISi) 
per query. Six such diagrams need be computed, for the six possible sextant 
directions, and six such queries need be performed for each point of T. D 

We now describe our offiine geometric MST algorithm. As before, we 
consider blocks of update operations, perform certain reduction steps on 
them, and recursively divide them into pairs of smaller blocks. 

Our block reduction works as follows. Let S be the static points of the 
block; that is, those points that are not inserted or deleted by the updates in 
the block. Let T be the dynamic points, that are updated within the block. 
Using lemma 6 we compute, for each point in SU T, the nearest points 
in S in each sextant. We declare each pair of points found in this step to 
be an interesting edge. Finally, we remove S from the point set when we 
consider the two recursive subblocks created by splitting our block. Thus in 
the recursive processing, the set of static points in each subblock will be a 
subset of the dynamic points in the other subblock. 
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Theorem 2. Given a sequence of k point insertions and deletions in the 
plane, starting from an empty plane, we can compute the corresponding 
sequence of minimum spanning trees in time O(klog2 n) and space O(n), 
where n is the maximum number of points in the plane at any one time. 

Proof: We start with blocks of size O(n/logn). In the first reduction, 
there are O(n) static points and therefore the time taken is O(nlogn) per 
block. In subsequent reductions, when the block size is m, the number of 
static points is at most m+ 1, the maximum size of the other block into which 
the block's parent is split; therefore, the time taken is O(mlogm). The 
total work within each initial block perlevel of the recursive decomposition 
is 0 ( n), and the total work in all the 0 (log n) levels is 0 ( n log n). Once the 
decomposition is performed, we will have identified at most six interesting 
edges per point per level, or 0( n) interesting edges altogether. Solving the 
offl.ine graph MST problem on the sequence of insertions and deletions of 
interesting edges takes time 0( n log n ). Therefore the total time per block 
is O(nlogn), and the time per update is O(log2 n). 

It remains to show that all MST edges are included in the set of interest­
ing edges, and therefore that the algorithm correctly computes the sequence 
of MSTs for the changing point set. Let (x, y) be an edge in the MST after 
change c, and consider the largest block b containing c in which at least 
one of x and y would be static (if it weren't thrown away in a larger block). 
Such a block must exist, because only one point can be dynamic in the block 
containing c alone. Then neither x nor y can have been thrown away in a 
larger block, because only static points are thrown away. Assume without 
loss of generality that x is static in b .. · By lemma 5, x is the closest point 
to y in its sextant at time c. Since the static points of b are a subset of 
the input points existing after change,;c, point x must be the static point in 
block b that is closest to yin its sextant. Therefore it is included in the set 
of interesting edges. D 

7 Rectilinear Spanning Trees 

We can improve theorem 2 for the important case of rectilinear minimum 
spanning trees. These are MS Ts for the Li (or equivalently L00 ) planar 
metric. The following analogues of lemmas 5 and 6 hold; lemma 8 below is 
proved in [2]. We define a quadrant to be a quarterplane bounded by one 
horizontal and one vertical line. 
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Lemma 7. Let (x, y) be an edge in the rectlinear MST of a planar point 
set S. Then y is the L1 -nearest point to x in the quadrant from x contain­
ing y. D 

Lemma 8. Given sets S and T, in two sorted orders, one for each coordi­
nate, the L1 -nearest points in S in each quadrant from each point of T can 
be found in time O((ISI + ITI) loglog ISi). D 

Lemma 8 speeds up the time spent identifying interesting edges. However 
there is another bottleneck in our algorithm, which is the O(logn) time spent 
processing each interesting edge. We deal with this by interleaving the graph 
edge reduction of theorem 2 with our geometric point reduction. To do this 
we maintain a mixed problem, consisting of a graph in which some of the 
vertices are geometric points, some of the vertices are just vertices, pairs 
of geometric points can be connected by their L1 -distances, and all vertices 
can be connected by the edges in the graph. 

Lemma 9. Given a mixed problem consisting of O(n) points, non-point 
vertices, and edges, with the points sorted by each coordinate, the mixed 
rectilinear MST can be computed in time 0 ( n log log n). 

Proof: We compute a set of O(n) interesting point-point distances using 
lemma 8, in time O(nloglogn). This gives us a pure graph problem with 
O(n) vertices and edges, which can be solved using any O(nloglogn)-time 
MST algorithm. D 

We cannot use the linear time MST algorithm of Fredman and Willard [7] 
because the coordinates of the input, points are not assumed to be in­
tegers. However the best known non-integer MST algorithm takes time 
0 ( n log log* n) for our problem [8], easfly meeting the 0 ( n log log n) require-. 
ment. 

Theorem 3. Given a sequence of k point insertions and deletions in the 
plane, starting from an empty plane, we can compute the corresponding 
sequence of rectilinear minimum spanning trees in time O(klognloglog n) 
and space O(n), where n is the maximum number of points in the plane at 
any one time. 

Proof: We begin with blocks of size n. Within each initial block, we sort 
the points by each coordinate; these sorted orders will be maintained in the 
smaller blocks recursively split from the initial blocks. In each block, we 
maintain a mixed problem such that the following conditions hold. 
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• The MST of the mixed problem is a contraction of the MST of all 
static points in the block. 

• Each edge in the MST of all static points that is removed by some 
change in the block corresponds either to a pair of geometric points in 
the mixed problem, or to an edge in the mixed problem. 

• For each edge in an MST in the block that connects a static and 
dynamic point, the static point is one of the geometric points in the 
mixed problem. 

• The size of the mixed problem is proportional to the size of the block. 

In blocks consisting of a single change, we have a mixed problem of con­
stant size in which one geometric point is inserted or deleted; the appropriate 
MST update can be found in constant time. 

In larger blocks, we split each block into two smaller blocks and reduce 
the mixed problem appropriately. This is done as in the graph algorithm 
by computing two MSTs, one of the mixed problem without any dynamic 
points, and one of the mixed problem with all dynamic points. We also 
compute all interesting edges consisting of the closest static point in each 
quadrant to each dynamic point. 

Then as in the graph algorithm we. can remove all graph edges not in 
the first MST, and contract the edges that are in both MSTs. Whenever a 
contraction involves a geometric point, that point must become a graph ver­
tex instead; therefore we cannot contract all edges that are in both MSTs. 
Instead, we mark all static points that .are the nearest in some quadrant to 
some dynamic point; edges touching marked points will not be contracted. 
Because of lemma 7, in a block of b ~hanges at most 4b static points will 
be marked, and each marked point can protect at most 4 edges from con­
traction. At most 3b static MST edges can be replaced when we include the 
dynamic points. Therefore the contraction results in a mixed problem having 
at mos·t l9b edges and vertices, so the problem size is reduced appropriately. 
It can be verified that all the conditions above are maintained. The reduc­
tion process takes time 0 (blog log b), for a total time of 0 (log n log log n) 
per change. D 
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8 Conclusion 

We described efficient algorithms for offiine computation of MSTs in a chang­
ing graph or point set. We use reduction and contraction, which we intro­
duced in our paper on finding several small spanning trees [2], and have 
recently applied to a persistent query version of the dynamic MST prob­
lem [3]. Reduction and contraction have thus proven useful for a variety of 
MST problems; perhaps they can be used in other graph algorithms. 

The most pressing open problem suggested by this work is maintenance 
of geometric MSTs. No algorithm was known that achieved sublinear time 
bounds for both point insertions and deletions. We achieve O(log2 n) time, 
at the expense of requiring offiine operation. In an earlier version of this 
paper, we noted that our results may lead the way to efficient online algo­
rithms for this problem. Subsequent to this research, we have found such 
an algorithm: we can maintain rectilinear MSTs in time 0( folog3 n) per 
update, and Euclidean MSTs in time 0( n 516 log112 ·n) per upd_ate [4]. 
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