
UC Irvine
ICS Technical Reports

Title
Offline algorithms for dynamic minimum spanning tree problems

Permalink
https://escholarship.org/uc/item/6j46j8nc

Author
Eppstein, David

Publication Date
1992-01-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j46j8nc
https://escholarship.org
http://www.cdlib.org/

<;

Offiine Algorithms for Dynamic
-------Minimum Spanning Tree Problem§._

David ~pstein-::=/

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 92-04

January 10, 1992

Abstract

We describe an efficient algorithm for maintaining a minimum span­
ning tree (MST) in a graph subject to a sequence of edge weight modifi­
cations. The sequence of minimum spanning trees is computed offiine,
after the sequence of modifications is known. The algorithm performs
O(log n) work per modification, where n is the number of vertices in
the graph. We use our techniques to solve the off.line geometric MST
problem for a planar point set subject to insertions and deletions; our
algorithm for this problem performs O(log2 n) work per modification.
No previous dynamic geometric MST algorithm was known.

Notice: This MaterjaJ
may be protected
by Copyright Law
(Title 17 U.S.C.)

c 3
(){). f),"() t

' -

•;

1 Introduction

For many years, algorithm researchers have studied problems of maintaining
information about a dynamically changing graph. A classical problem in this
field is maintaining the minimum spanning tree (MST) of a graph in which
the weights of individual edges are subject to change [1, 5, 6, 10].

Each such update causes at most one edge to leave the MST and at most
one ·other edge to take its place; one might expect algorithms for computing
these changes to be quite efficient. Indeed, the best known algorithm takes
0(ylm) time per update, for a graph with n vertices and m edges [6]. How­
ever there is clearly room for improvement in this case. For planar graphs
the situation is better; one can compute the changes to the MST in time
O(log n) per update (5, 9].

All of the above algorithms are online: They accept as input one update
at a time, and must output the corresponding changes to the MST before the
next update is available to them. It is natural to consider offl,ine algorithms
for the same problem; such an algorithm would be given a single input con­
sisting of a long sequence of updates, and only after the entire sequence is
known would it output the corresponding sequence of MST changes. Offiine
algorithms are less general than online ones: an offiine algorithm can not
maintain the MST when updates depend on previous results of the algo­
rithm. In exchange for this loss of flexibility one might expect improved
time bounds. Surprisingly, there seems to be no p;revious work on offiine
dynamic MST algorithms.

This paper presents such an algorithm. The time per update is O(logn),
greatly improving the previous 0(fo) bound for the online problem and
even matching the best known time bound for planar graphs.

We also examine the problem of ma,intaining a MST of a _dynamic planar
point set. It is well known that the MST is a subgraph of the Delaunay ·
triangulation; therefore the static problem can be solved in time O(nlogn).
However no efficient algorithm was known for the dynamic geometric MST
problem, in which updates consist of insertions and deletions of single points.
We use techniques similar to those in our graph algorithm, and the graph
algorithm itself as a subroutine, to achieve O(log2 n) update time for the
offi.ine dynamic geometric MST problem. This time bound can be improved
to 0 (log n log log n) for rectilinear MS Ts.

1

2 Reduction and Contraction

Our offiine graph MST algorithm works in a series of phases. In each phase
we perform two steps: reduction and contraction. In a given phase we divide
the sequence of edge weight updates into blocks and perform the reduction
and contraction operations separately for each block.

Reduction consists of finding a set of edges in the graph which, given the
update operations in the block, can not be used in any of the MSTs of any of
the sequence of weighted graphs corresponding to the updates. Once these
edges are found, they can be removed from the graph without changing the
results of the computation in that block. Thus the graph can be made to
have a smaller number of edges.

Contraction, similarly, consists of finding a set of edges which must be
used in all the MSTs for the block. We then contract each of these edges, by
merging sets of vertices that are connected by those edges. Thus the graph
can be made to have a smaller number of vertices.·

Reduction and contraction were used in a previous paper in which we
described algorithms for finding a set of several different spanning trees
having the minimum possible total weight [2]. However in that paper the
actual process of reduction and contraction is performed differently. Curi­
ously enough the problem solved in that paper had previously been attacked
by using the (online) dynamic MST problem as a subroutine [6].

Both reduction and contraction are implemented in this paper using
(static) MST computations. For this purpose we will use the recently dis­
covered linear time MST algorithm of Fredman and Willard [7]. This al­
gorithm uses a nonstandard model of computation, in which edge weights
are binary integers; other MST algorithms do not specify the representation
of weights, and only operate on them, by comparisons. In our algorithm
we allow O(logn) time per update, and we never operate on more than
0(n2) updates at once. Therefore we have time to sort the weights using
any O_(nlogn) time comparison based algorithm, and convert them to the
integer representation needed by the MST algorithm.

Edge insertion and deletion operations can also be handled, by treating
a deleted edge as having infinite cost. The obvious implementation of this
would cause the algorithm to use fl(n 2) space to keep track of the costs of
all edges; we will show how to avoid this space penalty.

2

<;

3 Reduction

The following fact is the basis of the reduction step.

Lemma 1. Let G be a weighted graph, and S be a subset of its edges. Let
T be the MST of G - S. Then no matter how the edge weights in S are
changed, the MST of G will only contain edges in T U S.

Proof: This follows immediately from the standard "dual greedy" MST
algorithm in which the highest weight edge in any cycle is removed until
the remaining graph has no cycles. If we break the cycles in G - S first, all
edges in G - S -Twill be removed. Therefore all edges in the MST will be
in the remaining graph, T U S. D

Lemma 2. Assume we are performing a reduction step in a block of k
updates. Then we can reduce the number of edges, in the graph from m to
at most n + k - 1, in time O(m).

Proof: Let S be the set of edges updated in the block. Compute the MST
of G - S and apply Lemma 1. Then we need only keep the n - l MST edges,
together with the edges in S; Lemma 1 shows that throwing away the other
edges will not change the results of the computation in this block. D

4 Contraction

The following fact is the basis of the contraction step.

Lemma 3. Let G be a weighted graph, and S be a subset of its edges. Let
T be the MST of G, when the edges of Sare given weights lower than those
of any other edge in the graph. Then no matter how the edge weights in S
are changed, the MST of G will always contain the edges in T - S.

Proof: Consider changing the weights of the edges in S, one by one, from
the weights in T to the new desired weight. At each such change, either
the MST will not change, or the changed edge will leave the MST and some
other edge will replace it. Therefore, the edges in T - S will remain)n the
MST. o

3

Lemma 4. Assume we are performing a contraction step in a block of k
updates. Then we can reduce the number of vertices in the graph from n to
at most k + 1, in time O(m).

Proof: Let S be the set of edges updated in the block. We assume that
Lemma 2 has already been applied, so G - S is a tree. Weight the edges in
S lower than the minimum weight in G - S and compute the MST T of G.

Construct a new graph G' as follows. Create a new vertex for each
connected component of T - S, and replace each edge (x, y) in the graph
with (x', y') where x' and y' are the vertices corresponding to the components
containing x and y respectively.

Lemma 3 shows that each MST of G, for a given assignment of weights
to the edges of S, can be found by computing the MST of G', and taking the
union of the corresponding edges in G with the edges in T- S. In particular,
each individual change to the MST of G (consisting of the removal of one
edge from the MST, and the addition of one replacement edge) corresponds
exactly to such a change in the MST of G', and vice versa. D

5 The Graph Algorithm

We now solve the off.line dynamic graph MST problem. Recall that the
algorithm is divided into phases, in each of which we perform reduce and
contract steps within blocks of edge weight update operations. It remains to
specify how many phases to use, and what block size to use within a phase.

We begin with all blocks of size m, the largest number of edges in the
graph at any one time. Contraction and reduction are no help for such a
large block, so we do not perform th~se steps in the first phase. Within
a block we treat insertions and deletidns as changes involving infinite edge
weights, as discussed previously; the initial selection of block size m instead
of n2 /2 means we only need O(m) space instead of O(n2). At this point we
can sort the weights used within the block (including the edge weights on
entry to the block) in preparation for the MST algorithm of Fredman and
Willard [7].

In each succeeding phase, we start with blocks of size b, and in each block
the graph has been reduced, contracted, and reduced again. Therefore by
Lemmas 2 and 4 it has at most b + 1 vertices and b edges not involved in
updates. There are of course at most b edges involved in updates. We then
split each block into two smaller blocks of approximately equal length. These

4

blocks will be used in the new phase, in which we again reduce, contract,
and reduce the graph.

After O(log n) such phases, each block will consist of a single update and
the reduced graph in each block will have two vertices and one non-updated
edge, at which point we can easily tell whether the updated edge replaces
or is replaced by the other edge.

This gives us a sequence of edge replacements, which we translate back
into the unreduced form to produce the sequence of MST changes corre­
sponding to the initial sequence of edge cost updates in the original graph.

Theorem 1. Given a sequence of k edge weight modifications in a graph,
starting from a state in which all weights are equal, we can compute the
corresponding sequence of minimum spanning trees in time O(klogn) and
space O(m).

Proof: The correctness of the algorithm follows from Lemmas 2 and 4. In
each phase, for each block of size b, we perform O(b) operations; therefore,
for each update we perform 0 (1) operations. There are 0 (log n) phases, so
for each update we perform O(log n) total work. D

6 The Geometric Algorithm

We now describe how to solve the offiine MST problem for a planar point
set, with updates consisting of point insertions and deletions. The geometric
MST is simply the MST of the complete graph on the points, with edges
weighted by distance. However each point update corresponds to the inser­
tion or deletion of 0(n) edges in the cqmplete graph, so a direct application
of our graph algorithm would be no :'more efficient than recomputing the
MST using the 0(n log n) time static algorithm after each update.

Instead we use the following approach. We recursively break our update
sequence into blocks, as in the graph algorithm. The processing at each
level consists of identifying certain pairs of points as "interesting", adding
the corresponding edges to a graph problem, and removing some of the
points from lower levels of the recursion. After this decomposition, we will
have identified 0 (n log n) interesting edges in each block of length n; all
MST edges will occur in this list of interesting edges. Each such edge can be
considered to be inserted in the graph when both of its two endpoints have
been inserted in the plane, and deleted when one of its endpoints is deleted.

5

.f'

Thus we reduce the problem to a graph problem in which there are O(log n)
edge updates per point insertion or deletion, and which can therefore be
solved in time O(log2 n) per point update.

We assume throughout this section that point distances are measured
using the Euclidean L 2 metric; similar techniques apply to other commonly
used metrics. Define a sextant from point x to be an infinite closed wedge
with 60° angle having x as its corner, with either one side of the wedge hor­
izontal or both sides at 60° angles from horizontal. Each point corresponds
to six possible sextants, and these six sextants together cover the plane. Our
identification of interesting edges is based on the following well known facts.

Lemma 5. Let (x, y) be an edge in the geometric MST of a planar point
set S. Then y is the nearest point to x in the sextant from x containing y.

Proof: Let z be closer. Then the edges xz and zy are both shorter than
xy, so xy could not be a MST edge. D

Lemma 6. Given sets S and T, the nearest points in S in each sextant
from each point ofT- can be found in time O((ISI + ITI) log ISi).

Proof: For each sextant direction, one can construct in time O(ISI log ISi)
an appropriate Voronoi diagram of the points of S. Point location queries
in such a diagram can be performed for each point of T, in time O(log ISi)
per query. Six such diagrams need be computed, for the six possible sextant
directions, and six such queries need be performed for each point of T. D

We now describe our offiine geometric MST algorithm. As before, we
consider blocks of update operations, perform certain reduction steps on
them, and recursively divide them into pairs of smaller blocks.

Our block reduction works as follows. Let S be the static points of the
block; that is, those points that are not inserted or deleted by the updates in
the block. Let T be the dynamic points, that are updated within the block.
Using lemma 6 we compute, for each point in SU T, the nearest points
in S in each sextant. We declare each pair of points found in this step to
be an interesting edge. Finally, we remove S from the point set when we
consider the two recursive subblocks created by splitting our block. Thus in
the recursive processing, the set of static points in each subblock will be a
subset of the dynamic points in the other subblock.

6

Theorem 2. Given a sequence of k point insertions and deletions in the
plane, starting from an empty plane, we can compute the corresponding
sequence of minimum spanning trees in time O(klog2 n) and space O(n),
where n is the maximum number of points in the plane at any one time.

Proof: We start with blocks of size O(n/logn). In the first reduction,
there are O(n) static points and therefore the time taken is O(nlogn) per
block. In subsequent reductions, when the block size is m, the number of
static points is at most m+ 1, the maximum size of the other block into which
the block's parent is split; therefore, the time taken is O(mlogm). The
total work within each initial block perlevel of the recursive decomposition
is 0 (n), and the total work in all the 0 (log n) levels is 0 (n log n). Once the
decomposition is performed, we will have identified at most six interesting
edges per point per level, or 0(n) interesting edges altogether. Solving the
offl.ine graph MST problem on the sequence of insertions and deletions of
interesting edges takes time 0(n log n). Therefore the total time per block
is O(nlogn), and the time per update is O(log2 n).

It remains to show that all MST edges are included in the set of interest­
ing edges, and therefore that the algorithm correctly computes the sequence
of MSTs for the changing point set. Let (x, y) be an edge in the MST after
change c, and consider the largest block b containing c in which at least
one of x and y would be static (if it weren't thrown away in a larger block).
Such a block must exist, because only one point can be dynamic in the block
containing c alone. Then neither x nor y can have been thrown away in a
larger block, because only static points are thrown away. Assume without
loss of generality that x is static in b .. · By lemma 5, x is the closest point
to y in its sextant at time c. Since the static points of b are a subset of
the input points existing after change,;c, point x must be the static point in
block b that is closest to yin its sextant. Therefore it is included in the set
of interesting edges. D

7 Rectilinear Spanning Trees

We can improve theorem 2 for the important case of rectilinear minimum
spanning trees. These are MS Ts for the Li (or equivalently L00) planar
metric. The following analogues of lemmas 5 and 6 hold; lemma 8 below is
proved in [2]. We define a quadrant to be a quarterplane bounded by one
horizontal and one vertical line.

7

Lemma 7. Let (x, y) be an edge in the rectlinear MST of a planar point
set S. Then y is the L1 -nearest point to x in the quadrant from x contain­
ing y. D

Lemma 8. Given sets S and T, in two sorted orders, one for each coordi­
nate, the L1 -nearest points in S in each quadrant from each point of T can
be found in time O((ISI + ITI) loglog ISi). D

Lemma 8 speeds up the time spent identifying interesting edges. However
there is another bottleneck in our algorithm, which is the O(logn) time spent
processing each interesting edge. We deal with this by interleaving the graph
edge reduction of theorem 2 with our geometric point reduction. To do this
we maintain a mixed problem, consisting of a graph in which some of the
vertices are geometric points, some of the vertices are just vertices, pairs
of geometric points can be connected by their L1 -distances, and all vertices
can be connected by the edges in the graph.

Lemma 9. Given a mixed problem consisting of O(n) points, non-point
vertices, and edges, with the points sorted by each coordinate, the mixed
rectilinear MST can be computed in time 0 (n log log n).

Proof: We compute a set of O(n) interesting point-point distances using
lemma 8, in time O(nloglogn). This gives us a pure graph problem with
O(n) vertices and edges, which can be solved using any O(nloglogn)-time
MST algorithm. D

We cannot use the linear time MST algorithm of Fredman and Willard [7]
because the coordinates of the input, points are not assumed to be in­
tegers. However the best known non-integer MST algorithm takes time
0 (n log log* n) for our problem [8], easfly meeting the 0 (n log log n) require-.
ment.

Theorem 3. Given a sequence of k point insertions and deletions in the
plane, starting from an empty plane, we can compute the corresponding
sequence of rectilinear minimum spanning trees in time O(klognloglog n)
and space O(n), where n is the maximum number of points in the plane at
any one time.

Proof: We begin with blocks of size n. Within each initial block, we sort
the points by each coordinate; these sorted orders will be maintained in the
smaller blocks recursively split from the initial blocks. In each block, we
maintain a mixed problem such that the following conditions hold.

8

• The MST of the mixed problem is a contraction of the MST of all
static points in the block.

• Each edge in the MST of all static points that is removed by some
change in the block corresponds either to a pair of geometric points in
the mixed problem, or to an edge in the mixed problem.

• For each edge in an MST in the block that connects a static and
dynamic point, the static point is one of the geometric points in the
mixed problem.

• The size of the mixed problem is proportional to the size of the block.

In blocks consisting of a single change, we have a mixed problem of con­
stant size in which one geometric point is inserted or deleted; the appropriate
MST update can be found in constant time.

In larger blocks, we split each block into two smaller blocks and reduce
the mixed problem appropriately. This is done as in the graph algorithm
by computing two MSTs, one of the mixed problem without any dynamic
points, and one of the mixed problem with all dynamic points. We also
compute all interesting edges consisting of the closest static point in each
quadrant to each dynamic point.

Then as in the graph algorithm we. can remove all graph edges not in
the first MST, and contract the edges that are in both MSTs. Whenever a
contraction involves a geometric point, that point must become a graph ver­
tex instead; therefore we cannot contract all edges that are in both MSTs.
Instead, we mark all static points that .are the nearest in some quadrant to
some dynamic point; edges touching marked points will not be contracted.
Because of lemma 7, in a block of b ~hanges at most 4b static points will
be marked, and each marked point can protect at most 4 edges from con­
traction. At most 3b static MST edges can be replaced when we include the
dynamic points. Therefore the contraction results in a mixed problem having
at mos·t l9b edges and vertices, so the problem size is reduced appropriately.
It can be verified that all the conditions above are maintained. The reduc­
tion process takes time 0 (blog log b), for a total time of 0 (log n log log n)
per change. D

9

8 Conclusion

We described efficient algorithms for offiine computation of MSTs in a chang­
ing graph or point set. We use reduction and contraction, which we intro­
duced in our paper on finding several small spanning trees [2], and have
recently applied to a persistent query version of the dynamic MST prob­
lem [3]. Reduction and contraction have thus proven useful for a variety of
MST problems; perhaps they can be used in other graph algorithms.

The most pressing open problem suggested by this work is maintenance
of geometric MSTs. No algorithm was known that achieved sublinear time
bounds for both point insertions and deletions. We achieve O(log2 n) time,
at the expense of requiring offiine operation. In an earlier version of this
paper, we noted that our results may lead the way to efficient online algo­
rithms for this problem. Subsequent to this research, we have found such
an algorithm: we can maintain rectilinear MSTs in time 0(folog3 n) per
update, and Euclidean MSTs in time 0(n 516 log112 ·n) per upd_ate [4].

References

[1] F. Chin and D. Houck. Algorithms for updating minimum spanning
trees. J. Comput. Syst. Sci. 16 (1978) 333-344.

[2] D. Eppstein. Finding the k smalle~t spanning trees. Proc. 2nd Scand.
Worksh. Algorithm Theory, Springer-Verlag LNCS 447 (1990) 38-47;
BIT, to appear.

[3] D. Eppstein. Persistence, offiine algorithms, and space compaction.
Tech. Rep. 91-54, Dept. of Information and Computer Science, Univ.
of California, Irvine, CA 92717.

[4] D. Eppstein. Fully dynamic maintenance of Euclidean spanning trees.
Manuscript.

[5] D. Eppstein, G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook,
and M. Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. Proc. 1st ACM/SIAMS:ymp. Discrete Algorithms (1990)
1-11; A lgorithmica, to appear.

[6] G.N. Frederickson. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput. 14 (1985) 781-
798.

10

•;

[7] M.L. Fredman and D.E. Willard. Trans-dichotomous algorithms for
minimum spanning trees and shortest paths. Proc. 31st IEEE Symp.
Found. Computer Science (1990) 719-725.

[8] H.N. Gabow, Z. Galil, T. Spencer, and R. Tarjan. Efficient algorithsms
for finding minimum spanning trees in undirected and directed graphs.
Combinatorica 6 (1986) 109-122.

[9] H.N. Gabow and M. Stallman. Efficient algorithms for graphic matroid
intersection and parity. Proc. 12th Int. Conj. Automata, Languages,
and Programming, Springer-Verlag LNCS 194 (1985) 210-220.

[10] P.M. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM J. Comput. 4 (1975) 375-380.

11

