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A Primal-Dual Parallel Approximation Technique

Applied to Weighted Set and Vertex Cover

Samir Khuller ∗ Uzi Vishkin † Neal Young ‡

Abstract

We give an efficient deterministic parallel approximation algorithm for the minimum-

weight vertex- and set-cover problems and their duals (edge/element packing). The

algorithm is simple and suitable for distributed implementation. It fits no existing

paradigm for fast, efficient parallel algorithms — it uses only “local” information at

each step, yet is deterministic. (Generally, such algorithms have required randomiza-

tion.) The result demonstrates that linear-programming primal-dual approximation

techniques can lead to fast, efficient parallel algorithms. The presentation does not

assume knowledge of such techniques.

Keywords: set cover, vertex cover, parallel algorithms, approximation algorithms.

1 Introduction

The linear-programming primal-dual method for obtaining sequential algorithms for exact

optimization problems is well studied [Ch83]. Primal-dual techniques have also been used to

obtain sequential approximation algorithms (e.g., for NP-hard problems [Ch79, Ho82, etc.]

and for on-line problems [You]). In this paper, we apply primal-dual techniques to obtain a

deterministic parallel approximation algorithm for the minimum-weight vertex- and set-cover

problems and their duals, maximum-weight edge and element packing.

The result demonstrates that linear-programming primal-dual techniques can lead to

fast, efficient parallel algorithms. The algorithm is natural, yet fits no existing paradigm for

such algorithms, being unique in that it uses only “local” information at each step, yet is
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deterministic. Generally, such algorithms have required randomization (e.g., [II86, ABI86,

Lu86]).

Given an n-vertex, m-edge graph G = (V,E) with vertex weights and an ǫ > 0, our

algorithm returns a vertex cover of weight at most 2/(1 − ǫ) times the minimum. It uses

O(ln2 m ln 1
ǫ
) time andm/ ln2m processors (i.e., O(m ln 1

ǫ
) operations) on an EREW-PRAM.

More generally, the algorithm finds a set cover of weight at most r/(1−ǫ) times the minimum,

using O(r ln2m ln 1
ǫ
) time and M/ ln2m processors (i.e., O(rM ln 1

ǫ
) operations). Here m

is the number of elements, M is the sum of the set sizes, and r is the maximum number of

sets in which any element occurs. (For vertex cover, r = 2.) In each case, the algorithm

also implicitly finds a near-maximal dual solution (an edge or element packing) that is also

within the corresponding factor of optimal.

The algorithm can be implemented using only integer arithmetic (see §4.2). If the weights

are integers and 1/ǫ is less than the sum of the vertex (resp. set) weights, then the weight

of the cover is at most 2 (resp. r) times the minimum.

1.1 Related Work

The first r-approximation algorithm for weighted vertex/set cover was due to Hochbaum

[Ho82]. She considered the relaxation of the natural integer linear program for the problem.

The dual of this program is maximum edge packing. The so-called complimentary-slackness

conditions are that a (fractional) cover and a packing are optimal provided (i) every vertex

in the cover has its constraint met in the packing and (ii) every edge with non-zero packing

weight has exactly one vertex in the cover. Hochbaum observed that an optimal packing was

necessarily maximal, that for any maximal packing, the vertex set formed by the vertices

whose packing constraints are met with equality form a cover, that such a packing and cover

satisfy (i), and that (i) is sufficient to guarantee r-approximation because (ii) is approxi-

mately satisfied in that every edge has at most r vertices in the cover. Since an optimal

dual solution can be found in polynomial time by solving the linear program, Hochbaum

obtained a polynomial-time algorithm. Bar-Yehuda and Even [BE81] observed that sequen-

tially raising the edge-packing weights as much as possible yields a maximal edge packing,

thus obtaining a linear-time algorithm. For our algorithm, we relax (i) further, insisting

only that every vertex in the cover nearly have its constraint met, and we show how to

simultaneously raise many edge-packing weights so that the packing quickly becomes nearly

maximal and the weight of the cover formed by the vertices that nearly have their packing

constraints met with equality is within r/(1− ǫ) of optimal.

In [Cl83], Clarkson showed that in a restricted class of graphs, approximation ratios better

than 2 could be obtained for vertex cover. Clarkson gave the first parallel approximation

algorithm — a relatively complicated randomized algorithm [Cl91]. According to Motwani’s

lecture notes on approximation algorithms [Mot92], which contain a survey of results on

vertex cover, the best approximation ratio known is 2− log logn
2 logn

, due to Bar-Yehuda and Even

[BE85] and to Monien and Speckenmeyer [MS85]. In [Ho83], Hochbaum gives a (2 − 2/k)-

approximation algorithm, where k is the maximum vertex degree, and she conjectures that
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there is no polynomial-time c-approximation algorithm for any c < 2 unless P=NP.

Chvátal’s weighted-set-cover algorithm guarantees a set cover of weight at most ln∆

times the minimum, where ∆ is the maximum set size [Ch79, Lo75, Jo74]. Berger, Rompel,

and Shor [BRS89] give a parallel algorithm that guarantees a factor of (1 + ǫ) ln∆. Their

algorithm uses a linear number of processors and runs in polylogarithmic time with some

restrictions on the weights.

The intuition behind our complexity analysis relies on a lemma of general interest for

parallel graph algorithms (Lemma 6). The lemma has previously found application in the

analyses of randomized parallel graph algorithms: Israeli and Itai’s maximum-matching

algorithm [II86] and Alon, Babai and Itai’s maximal-independent-set algorithm [ABI86].

In concurrent independent work, Cohen gives a parallel approximation algorithm for max-

imum flow in shallow networks [Co92]. If network flows are viewed as packings of source-to-

sink paths, then maximal packings correspond to blocking flows. Cohen gives an ǫ-blocking

flow algorithm that is similar in spirit to our algorithm, although a number of different

issues arise. In a more recent work, Luby and Nisan give a parallel primal-dual approxi-

mation algorithm for positive linear programming [LN93]. Hochbaum’s original algorithm

can be parallelized by employing Luby and Nisan’s algorithm; the resulting algorithm would

obtain an approximation ratio comparable to ours and have an incomparable running time

(growing linearly with 1/ǫ, but not with r). Previously, Goldberg et al. [GPST92] gave a

parallel primal-dual algorithm to find (exactly) maximum-weight bipartite matchings. Their

algorithm appears to be the first parallel algorithm to use primal-dual techniques, but it

requires polynomial time.

1.2 Problem Definitions

Let G = (V,E ⊆ 2V ) be a given hypergraph with vertex weights w : V → ℜ+. Let E(v)

denote the set of edges incident to vertex v. Let G have m edges. Let r, the rank of G, be

the maximum size of any edge. (For an ordinary graph, r = 2.) Let M , the size of G, be

the sum of the edge sizes. For any real-valued function f and a subset S of its domain, let

f(S) denote
∑

x∈S f(x).

Vertex Cover. A vertex cover for G is a subset C ⊆ V of the vertices such that for each

edge e ∈ E, some vertex in e is in C. The (minimum-weight) vertex-cover problem is to find

a vertex cover with minimum total weight w(C).

Edge Packing. An edge packing is an assignment p : E → ℜ+ of non-negative weights

to the edges of the hypergraph such that the total weight p(E(v)) assigned to the edges

incident to any vertex v is at most w(v). The (maximum-weight) edge-packing problem is

to find an edge packing maximizing p(E), the weight of p. The fractional relaxations of the

vertex cover and edge packing problems are linear programming duals.
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1.3 Related Problems

Let C be a family of sets with weights w : C → ℜ+. Let U denote
⋃

S∈C S.

Set Cover. A set cover is a subfamily C′ ⊆ C such that
⋃

S∈C′ S = U — in words, every

element of U is in some set in the cover. The (minimum-weight) set-cover problem is to find

a set cover of minimum total weight w(C′).

Element Packing. An element packing is an assignment of non-negative weights to the

elements such that the total weight assigned to the elements of any set S is at most w(S).

The (maximum-weight) element-packing problem is to find an element packing maximizing

the net weight assigned to elements.

1.4 Equivalences

The vertex cover problem in hypergraphs is equivalent to the minimum-weight set-cover

problem as follows. For each S ∈ C we have a vertex vS in the hypergraph. For each element

x ∈ U , we have an edge that contains vS if and only if x ∈ S. The number of edges m is

the number of elements. The rank r is the maximum number of sets in which any element

occurs. The size M is the sum of the set sizes. The dual problems are also equivalent.

2 Reduction of Vertex Cover to ǫ-Maximal Packing

We first reduce our problem to the problem of finding what we call an ǫ-maximal packing.

This reduction generalizes [Ho82, BE81], who considered ǫ = 0.

Lemma 1 (Duality) Let C be an arbitrary vertex cover and p an arbitrary edge packing.

Then p(E) ≤ w(C).

Proof:

p(E) =
∑

e∈E

p(e) ≤
∑

e∈E

|e ∩ C| p(e) =
∑

v∈C

p(E(v)) ≤
∑

v∈C

w(v) = w(C).

Lemma 2 (Approximate Complimentary Slackness) Let C be a vertex cover and p be

a packing such that p(E(v)) ≥ (1− ǫ)w(v) for every v ∈ C. Then (1− ǫ)w(C) ≤ r p(E). By

duality, the weights of C and p are within a factor of r/(1− ǫ) from their respective optima.

Proof: Since (1− ǫ)w(v) ≤ p(E(v)) for v ∈ C,

(1− ǫ)w(C) = (1− ǫ)
∑

v∈C

w(v) ≤
∑

v∈C

p(E(v)) =
∑

e∈E

|e ∩ C| p(e) ≤ r p(E).

We tighten Lemma 2 slightly when the weights are integers.
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Lemma 3 In Lemma 2, if the weights are integers and ǫ < 1/w(V ), then the weight of C

is at most r times the minimum.

Proof: Let C∗ be a minimum-weight cover. From Lemma 2, (1 − ǫ)w(C) ≤ r w(C∗), so

w(C) ≤ ⌊r w(C∗) + ǫ w(C)⌋ = r w(C∗).

Given a packing p, define Cp = {v ∈ V : p(E(v)) ≥ (1− ǫ)w(v)}. If Cp is a vertex cover,

then we say p is ǫ-maximal. Note that p is 0-maximal if and only if p is maximal. By Lemma

2, if p is ǫ-maximal, then Cp and p are within a factor of r/(1 − ǫ) from their respective

optima.

3 The Algorithm

We have reduced the problem to finding an ǫ-maximal packing. The algorithm maintains

a packing p and the partial cover Cp = {v ∈ V : p(E(v)) ≥ (1 − ǫ)w(v)}. The algorithm

increases the individual p(e)’s until p is ǫ-maximal and Cp is a cover. When a vertex v

enters Cp, v and the edges containing v are deleted from the hypergraph. Let Ep denote the

set of remaining edges, let Ep(v) denote the remaining edges incident to vertex v, and let

dp(v) be the degree of v in Gp = (V,Ep). Define the residual weight wp(v) of vertex v to be

w(v)− p(E(v)).

In a single round of the algorithm, for each remaining edge e, p(e) is raised. To ensure

that p remains a packing, each vertex v limits the increase in each p(e) for e ∋ v to at most

wp(v)/dp(v). Each p(e) is then increased as much as possible subject to the limits imposed

by all the v ∈ e. That is, each p(e) is increased by minv∈e wp(v)/dp(v). The algorithm

repeats this basic round until p converges to an ǫ-maximal packing. It then returns Cp. To

implement the algorithm we maintain wp instead of p:

Cover(G = (E, V ), w, ǫ) —
Returns a vertex cover of hypergraph G of weight at most

r/(1− ǫ) times the minimum.
1 for v ∈ V par-do wp(v)← w(v); Ep(v)← E(v); dp(v)← |E(v)|

2 while edges remain do

3 for each remaining edge e par-do δ(e)← minv∈e wp(v)/dp(v)

4 for each remaining vertex v par-do

5 wp(v)← wp(v)−
∑

e∈Ep(v) δ(e)

6 if wp(v) ≤ ǫ w(v) then

7 delete v and incident edges, updating Ep(·) and dp(·)

8 return the set of deleted vertices

As noted above, the limit on the increase in each p(e) ensures that p remains a packing.

Consequently, the correctness and the approximation ratio of the algorithm are established

by Lemmas 2 and 3. Using standard techniques [Ja92], each iteration of the while loop

beginning with q remaining edges can be done in O(ln q) time and O(r q) operations on an

EREW-PRAM.
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4 Complexity Analysis

In this section, we prove our main theorem:

Main Theorem The algorithm requires O(r ln2m ln 1
ǫ
) time and M/ ln2m processors, i.e.,

O(rM ln 1
ǫ
) operations.

We use a potential function argument. Given a packing p, define

φp =
∑

v∈V

dp(v) ln
wp(v)

ǫ w(v)
.

The next lemma shows that during an iteration of the while loop φp decreases by at least

the number of edges remaining at the end of the loop. This is how we show progress.

Lemma 4 Let p and p′, respectively, be the packing before and after an iteration of the

while loop. Then φp − φp′ ≥ |Ep′|.

Proof: During the iteration, we say that a vertex v limits an incident edge e ∈ Ep if v

determines the minimum in the computation of minv∈e wp(v)/dp(v). For each vertex v, let v

limit L(v) edges, so that wp′(v) ≤ wp(v)(1 − L(v)/dp(v)). Let V
′ denote the set of vertices

that remain after the iteration. Then

φp − φp′ =
∑

v∈V

(

dp(v) ln
wp(v)

ǫ w(v)
− dp′(v) ln

wp′(v)

ǫ w(v)

)

≥
∑

v∈V ′

dp(v) ln
wp(v)

wp′(v)

≥
∑

v∈V ′

−dp(v) ln(1− L(v)/dp(v))

≥
∑

v∈V ′

L(v)

≥ |Ep′|

The second-to-last step follows because − ln(1− x) ≥ x. The last step follows because each

of the edges that remains is limited by some vertex in V ′.

Lemma 5 There are at most (1 + r ln 1
ǫ
)(1 + lnm) iterations.

Proof: Let p and p′, respectively, be the packing before and after any iteration. Let

a = r ln 1
ǫ
.

Clearly φp′ ≤ |Ep′| a. By Lemma 4, φp′ ≤ φp − |Ep′|. Thus, φp′ ≤ φp(1 − 1/(a + 1)).

Before the first iteration, φp ≤ ma. Inductively, before the ith iteration,

φp ≤ ma(1− 1/(a+ 1))i−1 ≤ ma exp(−(i− 1)/(a+ 1)).
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The last inequality follows from ex ≥ 1 + x for all x. Fixing i = 1 + ⌈(a + 1) lnm⌉, we have

exp(−(i− 1)/(a+ 1)) ≤ exp(− lnm) = 1/m, so before the ith iteration, φp ≤ a.

During each subsequent iteration, at least one edge remains, so φp decreases by at least

1. Thus, φp ≤ 0 before an i+ ath iteration can occur.

Time. As each iteration requires O(lnm) time, the above lemma implies that the total

time is O(r ln2m ln 1
ǫ
).

Operations. Recall that an iteration with q edges requires O(r q) operations. Conse-

quently, the total number of operations is bounded by an amount proportional to r times

the sum, over all iterations, of the number of edges at the beginning of that iteration.

By Lemma 4, in a given iteration, φp decreases by at least the number of edges remaining

at the end of the iteration. Thus, the sum over all iterations of the number of edges during

the iteration is at most m + φp for the initial p. This is m + M ln 1
ǫ
. Hence there are

O(rM ln 1
ǫ
) operations.

Processors. Using standard techniques, the operations can be efficiently scheduled with-

out increasing the time or the operations by more than a constant, so by the Work-Time

Scheduling Principle [Ja92], the number of processors required is M/ ln2m — the work

divided by the time. This establishes the Main Theorem.

4.1 The Intuition for Ordinary Graphs

The potential function analysis, while easy to verify, hides an interesting combinatorial

principle that gives a good intuitive understanding of the algorithm for ordinary graphs.

Recall that, during a single iteration of the while loop, a vertex v limits an edge e if v

determines the minimum in the calculation of minv∈e wp(v)/dp(v), and that L(v) denotes

the number of edges limited by v. If a vertex v limits at least a third of its incident edges,

then wp(v) decreases by at least one third its value. Call such a vertex good. (After O(ln 1
ǫ
)

iterations of the while loop in which v is good, v will enter Cp.) In a given iteration, few

vertices might be good. However, at least half of the remaining edges touch good vertices.

This is a consequence of the following lemma:

Lemma 6 ([II86, ABI86]) Consider a directed graph. Call a vertex good if more than

one-third of its incident edges are directed into it. Then at least half of the edges are directed

into good vertices.

Proof: If a vertex is not good, call it bad. The in-degree of any bad vertex is at most half

its out-degree, so the number of edges directed into bad vertices is at most half the number

of edges directed out of bad vertices. Thus, the number of edges directed into bad vertices

is at most half the number of edges. Thus, at least half the edges are directed into good

vertices.
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To see why the lemma applies, imagine directing each remaining edge into a vertex that

limits it. Then the lemma shows that at least half of the remaining edges touch vertices that

are good. Thus, in a given iteration, at least half the edges touch vertices whose residual

weights decrease by more than a factor of 1/3. This, intuitively, is why the algorithm makes

progress.

This lemma is of independent interest: it drives the analyses of the running times of

Israeli and Itai’s randomized maximal matching algorithm [II86] and of Alon, Babai, and

Itai’s randomized maximal independent set algorithm [ABI86]. Interestingly, the natural

generalization of the lemma to hypergraphs is not strong enough to give an analysis as tight

as our potential function analysis.

4.2 Using Integer Arithmetic

If arithmetic precision is an issue, we can uniformly scale the original (integer) vertex

weights so that the smallest weight is at least m/ǫ, and then use integer division (tak-

ing the floor) when computing the wp(v)/dp(v)’s. Essentially the same analysis carries

through. (If w(v) ≥ m/ǫ, then wp(v) ≥ m while v remains, so wp(v)/dp(v) ≥ 1, hence

⌊wp(v)/dp(v)⌋ ≥ (wp(v)/dp(v))/2, and the net reduction in a wp(v) during an iteration is

at least half what it would have been without taking the floor. Thus, the analysis will go

through by doubling the potential function.)

Assuming without loss of generality that ǫ ≥ 1/(2w(V )), if the original weights are k-bit

integers, then the largest weight after scaling is bounded by

m
⌈

1

ǫ

⌉

2k+1 ≤ 2k+2mw(V ) ≤ 22k+3m |V |.

Hence the scaled weights are (2k + 3 + log2m + log2 |V |)-bit integers. Subsequently all

operations involve only integer arithmetic on smaller, non-negative integers.

Acknowledgments: We would like to thank Michael Luby and an anonymous referee for

pointing out connections to the randomized algorithms of [ABI86, Lu86] and to the work by

Hochbaum [Ho82], respectively.
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